Browsing by Author "Burakov, Andrej"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Modelling the unbalanced magnetic pull in eccentric-rotor electrical machines with parallel windings(Helsinki University of Technology, 2007-10-25) Burakov, Andrej; Department of Electrical and Communications Engineering; Sähkö- ja tietoliikennetekniikan osasto; Laboratory of Electromechanics; Sähkömekaniikan laboratorioThis research work is focused on developing simple parametric models of the unbalanced magnetic pull produced in eccentric-rotor electrical machines. The influence of currents circulating in the parallel paths of the stator winding on the unbalanced magnetic pull is given the main attention. The interaction between these currents and those circulating in the rotor cage/damper winding is also considered. First, a parametric force model for an eccentric-rotor salient-pole synchronous machine is developed. The effects of the parallel stator windings are not considered in this model. Next, a low-order parametric force model is built for electrical machines equipped with parallel stator windings but operating without the rotor cage/damper winding. This force model is applicable to salient-pole synchronous machines as well as to induction motors. And finally, a special force model is developed for electrical machines furnished with parallel paths both in the rotor and stator windings. This model accounts for the equalising currents circulating in the rotor and stator windings and also for the interaction between these currents. This third force model can be applied to a salient-pole synchronous machine and to an induction machine. The parameters of the force models are estimated from the results of numerical simulations applying a soft-computing-based estimation program. All the developed force models with the estimated parameters demonstrate a very good performance in a wide whirling frequency range. The effects of parallel paths in the rotor and stator windings on the unbalanced magnetic pull are investigated numerically. The acquired results reveal that the total unbalanced magnetic pull and its constituents related to the fundamental magnetic field and slotting are strongly affected by the presence of parallel paths in the stator winding. However, unlike the rotor cage, parallel stator windings may instigate anisotropy in the unbalanced magnetic pull. In such cases, the results of the numerical impulse response test may differ significantly from the conventional calculation results. It is also shown that, despite the fact that the number of parallel paths in the stator is often substantially lower than the number of parallel paths in the rotor, parallel stator windings may still provide a more efficient UMP mitigation than the rotor cage/damper winding.