Browsing by Author "Brix, M."
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
- Characterisation of divertor detachment onset in JET-ILW hydrogen, deuterium, tritium and deuterium–tritium low-confinement mode plasmas
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2023-03) Groth, M.; Solokha, V.; Aleiferis, S.; Brezinsek, S.; Brix, M.; Carvalho, I. S.; Carvalho, P.; Corrigan, G.; Harting, D.; Horsten, N.; Jepu, I.; Karhunen, J.; Kirov, K.; Lomanowski, B.; Lawson, K. D.; Lowry, C.; Meigs, A. G.; Menmuir, S.; Pawelec, E.; Pereira, T.; Shaw, A.; Silburn, S.; Thomas, B.; Wiesen, S.; Börner, P.; Borodin, D.; Jachmich, S.; Reiter, D.; Sergienko, G.; Stancar, Z.; Viola, B.; Beaumont, P.; Bernardo, J.; Coffey, I.; Conway, N. J.; de la Luna, E.; Douai, D.; Giroud, C.; Hillesheim, J.; Horvath, L.; Huber, A.; Lomas, P.; Maggi, C. F.; Maslov, M.; Perez von Thun, C.; Scully, S.; Vianello, N.; Wischmeier, M.; , JET ContributorsMeasurements of the ion currents to and plasma conditions at the low-field side (LFS) divertor target plate in low-confinement mode plasmas in the JET ITER-like wall materials configuration show that the core plasma density required to detach the LFS divertor plasma is independent of the hydrogenic species protium, deuterium and tritium, and a 40 %/60 % deuterium–tritium mixture. This observation applies to a divertor plasma configuration with the LFS strike line connected to the horizontal part of the LFS divertor chosen because of its superior diagnostic coverage. The finding is independent of the operational status of the JET cryogenic pump. The electron temperature (Te) at the LFS strike line was markedly reduced from 25 eV to 5 eV over a narrow range of increasing core plasma density, and observed to be between 2 eV and 3 eV at the onset of detachment. The electron density (ne) peaks across the LFS plasma when Te at the target plate is 1 eV, and spatially moves to the X-point for higher core densities. The density limit was found approximately 20 % higher in protium than in tritium and deuterium–tritium plasmas. - Characterisation of the scrape-off layer in JET-ILW deuterium and helium low-confinement mode plasmas
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2024-06) Rees, D.; Groth, M.; Aleiferis, S.; Brezinsek, S.; Brix, M.; Jepu, I.; Lawson, K. D.; Meigs, A. G.; Menmuir, S.; Kirov, K.; Lomas, P.; Lowry, C.; Thomas, B.; Widdowson, A.; Carvalho, P.; Delabie, E.; , JET ContributorsLangmuir probe measurements in neutral beam injection (NBI) heated, low-confinement mode plasmas in JET ITER-like wall showed that the current to the divertor targets, Idiv, in helium (He) plasmas was up to 70% lower on the low-field side (LFS) than in otherwise identical deuterium (D) plasmas. The edge plasma density at which the rollover of Idiv occurred i.e. the onset of detachment, was 10% higher in He plasmas on both the LFS and high-field side (HFS). The density of Idiv rollover increases by 25% for He when the NBI power increases 1MW to 5MW. The total radiated power was similar in He and D plasmas for densities below the Idiv rollover. At densities above the Idiv rollover density, the total radiated power and power from within the separatrix are higher in He, reducing the power across the separatrix and subsequently Idiv,LFS. In He plasmas, the peak radiated power was observed within the confined region above the X-point in tomographic reconstructions from bolometry. - Comparative H-mode density limit studies in JET and AUG
A2 Katsausartikkeli tieteellisessä aikakauslehdessä(2017-08-01) Huber, A.; Bernert, M.; Brezinsek, S.; Chankin, A. V.; Sergienko, G.; Huber, V.; Wiesen, S.; Abreu, P.; Beurskens, M. N.A.; Boboc, A.; Brix, M.; Calabrò, G.; Carralero, D.; Delabie, E.; Eich, T.; Esser, H. G.; Groth, M.; Guillemaut, C.; Jachmich, S.; Järvinen, A.; Joffrin, E.; Kallenbach, A.; Kruezi, U.; Lang, P.; Linsmeier, Ch; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph; Reimold, F.; Schweinzer, J.; Sips, G.; Stamp, M.; Viezzer, E.; Wischmeier, M.; Zohm, H.; , JET ContributorsIdentification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another. Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the L-mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/nGW = 0.8–1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation. It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H- to L-mode. The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL. - The core-edge integrated neon-seeded scenario in deuterium-tritium at JET
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2024-10) Giroud, C.; Carvalho, I. S.; Brezinsek, S.; Huber, A.; Keeling, D.; Mailloux, J.; Pitts, R. A.; Lerche, E.; Henriques, R.; Hillesheim, J.; Lawson, K.; Marin, M.; Pawelec, E.; Sos, M.; Sun, H. J.; Tomes, M.; Aleiferis, S.; Bleasdale, A.; Brix, M.; Boboc, A.; Bernardo, J.; Carvalho, P.; Coffey, I.; Henderson, S.; King, D. B.; Rimini, F.; Maslov, M.; Alessi, E.; Craciunescu, T.; Fontana, M.; Fontdecaba, J. M.; Garzotti, L.; Ghani, Z.; Horvath, L.; Jepu, I.; Karhunen, J.; Kos, D.; Litherland-Smith, E.; Meigs, A.; Menmuir, S.; Morales, R. B.; Nowak, S.; Peluso, E.; Pereira, T.; Parail, V.; Petravich, G.; Pucella, G.; Puglia, P.; Refy, D.; Scully, S.; , JET ContributorsThis paper reports the first experiment carried out in deuterium-tritium addressing the integration of a radiative divertor for heat-load control with good confinement. Neon seeding was carried out for the first time in a D-T plasma as part of the second D-T campaign of JET with its Be/W wall environment. The technical difficulties linked to the re-ionisation heat load are reported in T and D-T. This paper compares the impact of neon seeding on D-T plasmas and their D counterpart on the divertor detachment, localisation of the radiation, scrape-off profiles, pedestal structure, edge localised modes and global confinement. - Experimental study on the role of the target electron temperature as a key parameter linking recycling to plasma performance in JET-ILW
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2022-06) Lomanowski, B.; Dunne, M.; Vianello, N.; Aleiferis, S.; Brix, M.; Canik, J.; Carvalho, I. S.; Frassinetti, L.; Frigione, D.; Garzotti, L.; Groth, M.; Meigs, A.; Menmuir, S.; Maslov, M.; Pereira, T.; Perez Von Thun, C.; Reinke, M.; Refy, D.; Rimini, F.; Rubino, G.; Schneider, P. A.; Sergienko, G.; Uccello, A.; Van Eester, D.; , JET ContributorsChanges in global and edge plasma parameters (H98(y,2), dimensionless collisionality ν*, core density peaking, separatrix density ne,sep) with variations in the D2 fueling rate and divertor configuration are unified into a single trend when mapped to ⟨Te,ot⟩, the spatially averaged spectroscopically derived outer target electron temperature. Dedicated JET with the ITER-like wall (JET-ILW) experiments in combination with an extended JET-ILW database of unseeded low-triangularity H-mode plasmas spanning a wide range of D2 fueling rates, Ip, Bt and heating power have demonstrated the importance of ⟨Te,ot⟩ as a key physics parameter linking the recycling particle source and detachment with plasma performance. The remarkably robust H98(y,2) trend with ⟨Te,ot⟩ is connected to a strong inverse correlation between ⟨Te,ot⟩, ne,sep and ν*, thus directly linking changes in the divertor recycling moderated by ⟨Te,ot⟩ with the previously established relationship between ν*, core density peaking and core pressure resulting in a degradation in core plasma performance with decreasing ⟨Te,ot⟩ (increasing ν*). A strong inverse correlation between the separatrix to pedestal density ratio, ne,sep/ne,ped, and ⟨Te,ot⟩ is also established, with the rise in ne,sep/ne,ped saturating at ⟨Te,ot⟩ > 10 eV. A strong reduction in H98(y,2) is observed as ⟨Te,ot⟩ is driven from 30 to 10 eV via additional D2 gas fueling, while the divertor remains attached. Consequently, the pronounced performance degradation in attached divertor conditions has implications for impurity seeding radiative divertor scenarios, in which H98(y,2) is already low (∼0.7) before impurities are injected into the plasma since moderate gas fueling rates are required to promote high divertor neutral pressure. A favorable pedestal pressure, pe,ped, dependence on Ip has also been observed, with an overall increase in pe,ped at Ip = 3.4 MA as ⟨Te,ot⟩ is driven down from attached to high-recycling divertor conditions. In contrast, pe,ped is reduced with decreasing ⟨Te,ot⟩ in the lower Ip branches. Further work is needed to (i) clarify the potential role of edge opacity on the observed favorable pedestal pressure Ip scaling; as well as to (ii) project the global and edge plasma performance trends with ⟨Te,ot⟩ to reactor-scale devices to improve predictive capability of the coupling between recycling and confined plasma fueling in what are foreseen to be more opaque edge plasma conditions. - Experimental Validation of a Filament Transport Model in Turbulent Magnetized Plasmas
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2015) Carralero, D.; Manz, P.; Aho-Mantila, Leena; Birkenmeier, G.; Brix, M.; Groth, M.; Müller, H.W.; Stroth, U.; Vianello, N.; Wolfrum, E. - Investigation of H-mode density limit in mixed protium–deuterium plasmas at JET with ITER-like wall
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2024-12) Huber, A.; Sergienko, G.; Groth, M.; Keeling, D.; Wischmeier, M.; Douai, D.; Lerche, E.; Perez von Thun, C.; Brezinsek, S.; Huber, V.; Boboc, A.; Brix, M.; Carvalho, I. S.; Chankin, A. V.; Delabie, E.; Jepu, I.; Kachkanov, V.; Kiptily, V.; Kirov, K.; Linsmeier, Ch; Litherland-Smith, E.; Lowry, C. G.; Maggi, C. F.; Mailloux, J.; Meigs, A. G.; Mertens, Ph; Poradzinski, M.; Zastrow, K. D.; Zlobinski, M.; , JET Contributors; , The EUROfusion Tokamak Exploitation TeamAnalysis of comparable discharges fuelled by either deuterium or protium reveals a clear relationship between the isotope mass and the H-mode density limit. Notably, the density limit is significantly lower in protium, showing a reduction of up to 35 % compared to identical deuterium plasma conditions. Within mixed H-mode density limit (HDL) plasmas, the maximum achievable density, or H-mode density limit, decreases with increasing protium concentration, denoted as cH. For instance, the highest corresponding maximum Greenwald fraction (fGW) of about 1.02 was observed in the pulse with the lowest cH value of 4.4 %. This fGW decreases to 0.96 at cH = 48 %. The average atomic mass, A¯, of the plasma species decreases in these pulses from the value of 1.96 (cH = 4.4 %) down to 1.52 (cH = 48 %). Interestingly, the maximum achievable density appears to be largely unaffected by the applied power value, regardless of whether deuterium or protium is used, as well as under mixed H/D fuelling conditions. Additionally, the measured Greenwald fractions are agreed with a heuristic model based on the SOL pressure threshold of an MHD instability, as proposed by Goldston. This comparison, especially concerning the model's dependence on isotopic mass, shows full consistency between the measured and predicted Greenwald fractions. - The isotope effect on divertor conditions and neutral pumping in horizontal divertor configurations in JET-ILW Ohmic plasmas
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2017) Uljanovs, J.; Groth, M.; Järvinen, Aaro; Moulton, D.; Brix, M.; Corrigan, G.; Drewelow, P.; Guillemaut, C.; Harting, D.; Simpson, J.; Huber, A.; Jachmich, S.; Kruezi, U.; Lawson, K. D.; Meigs, A. G.; Sips, A. C C; Stamp, M. F.; Wiesen, S.Understanding the impact of isotope mass and divertor configuration on the divertor conditions and neutral pressures is critical for predicting the performance of the ITER divertor in DT operation. To address this need, ohmically heated hydrogen and deuterium plasma experiments were conducted in JET with the ITER-like wall in varying divertor configurations. In this study, these plasmas are simulated with EDGE2D-EIRENE outfitted with a sub-divertor model, to predict the neutral pressures in the plenum with similar fashion to the experiments. EDGE2D-EIRENE predictions show that the increased isotope mass results in up to a 25% increase in peak electron densities and 15% increase in peak ion saturation current at the outer target in deuterium when compared to hydrogen for all horizontal divertor configurations. Indicating that a change from hydrogen to deuterium as main fuel decreases the neutral mean free path, leading to higher neutral density in the divertor. Consequently, this mechanism also leads to higher neutral pressures in the sub-divertor. The experimental data provided by the hydrogen and deuterium ohmic discharges shows that closer proximity of the outer strike point to the pumping plenum results in a higher neutral pressure in the sub-divertor. The diaphragm capacitance gauge pressure measurements show that a two to three-fold increase in sub-divertor pressure was achieved in the corner and nearby horizontal configurations compared to the far-horizontal configurations, likely due to ballistic transport (with respect to the plasma facing components) of the neutrals into the sub-divertor. The corner divertor configuration also indicates that a neutral expansion occurs during detachment, resulting in a sub-divertor neutral density plateau as a function of upstream density at the outer-mid plane. - Isotope effect on the detachment onset density in JET ohmic plasmas
A4 Artikkeli konferenssijulkaisussa(2020-01-01) Solokha, V.; Groth, M.; Brezinsek, S.; Brix, M.; Corrigan, G.; Guillemaut, C.; Harting, D.; Jachmich, S.; Kruezi, U.; Marsen, S.; Wiesen, S.This paper investigates the dependence of the detachment onset density on the hydrogen isotope species. In JET ohmic plasmas in the ITER-like wall (JET-ILW) materials configuration, the isotope effect is approximately 10%, and it was observed at the outer target only. The heavier isotopes exhibit lower detachment onset densities and density limits. In addition, higher subdivertor molecular pressures and divertor electron densities were observed in the deuterium.(D) discharges compared to the hydrogen.(H) discharges. EDGE2D-EIRENE and standalone EIRENE simulations show that lower conductance of the pumping plenum, scaling with root m(D)/m(H) in the molecular flow regime present in the experiments, is the primary cause for the experimental observation. - Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2019-11) Joffrin, E.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afanasev; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Alarcon, T.; Albanese, Raffaele; Alegre, D.; Aleiferis, S.; Alessi, E.; Aleynikov, P.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amosov, V.; Sunden, E. Andersson; Andrews, R.; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arshad, S.; Artaud, J.; Arter, W.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Asztalos, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M.; Ayres, C.; Baciero, A.; Baiao, D.; Balboa, I.; Balden, M.; Balshaw, N.; Bandaru, V. K.; Banks, J.; Baranov, Y. F.; Barcellona, C.; Barnard, T.; Barnes, M.; Barnsley, R.; Wiechec, A. Baron; Barrera Orte, L.; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baumane, L.; Bauvir, B.; Baylor, L.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Belonohy, E.; Benayas, J.; Bergsaker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besiliu, C.; Betar, H.; Beurskens, M.; Bielecki, J.; Biewer, T.; Bilato, R.; Biletskyi, O.; Bilkova, P.; Binda, F.; Birkenmeier, G.; Bizarro, J. P. S.; Bjorkas, C.; Blackburn, J.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.V.; Boboc, A.; Bogar, O.; Bohm, P.; Bohm, T.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Boncagni, L.; Bonfiglio, D.; Bonnin, X.; Boom, J.; Borba, D.; Borodin, D.; Borodkina, I.; Boulbe, C.; Bourdelle, C.; Bowden, M.; Bowman, C.; Boyce, T.; Boyer, H.; Bradnam, S. C.; Braic, V.; Bravanec, R.; Breizman, B.; Brennan, D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M.; Brix, M.; Broeckx, W.; Brombin, M.; Broslawski, A.; Brown, B. C.; Brunetti, D.; Bruno, E.; Buch, J.; Buchanan, J.; Buckingham, R.; Buckley, M.; Bucolo, M.; Budny, R.; Bufferand, H.; Buller, S.; Bunting, P.; Buratti, P.; Burckhart, A.; Burroughes, G.; Buscarino, A.; Busse, A.; Butcher, D.; Butler, B.; Bykov, I.; Cahyna, P.; Calabro, G.; Calacci, L.; Callaghan, D.; Callaghan, J.; Calvo, Iván; Camenen, Y.; Camp, P.; Campling, D. C.; Cannas, B.; Capat, A.; Carcangiu, S.; Card, P.; Cardinali, A.; Carman, P.; Carnevale, D.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, Sergio; Carvalho, P.; Carvalho, D. D.; Casson, F. J.; Castaldo, C.; Catarino, N.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavedon, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Challis, C. D.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, B.; Chapman, S. C.; Chernyshova, M.; Chiariello, A.; Chitarin, G.; Chmielewski, P.; Chone, L.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, M.; Clark, E.; Clarkson, R.; Clay, R.; Clements, C.; Coad, J. P.; Coates, P.; Cobalt, A.; Coccorese, V.; Cocilovo, W.; Coelho, R.; Coenen, J. W.; Coffey, I. H.; Colas, L.; Colling, B.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Coster, D.; Craciunescu, T.; Cramp, S.; Crapper, C.; Crisanti, F.; Croci, G.; Croft, D.; Crombe, K.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curson, P.; Curuia, M.; Czarnecka, A.; Czarski, T.; Cziegler, I.; Dabirikhah, H.; Dal Molin, A.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; David, P.; Davies, A.; Davis, W.; Dawson, K.; Day, C.; De Bock, M.; de Castro, A.; De Dominici, G.; de la Cal, E.; de la Luna, E.; De Masi, G.; De Temmerman, G.; De Tommasi, G.; de Vries, P.; Deane, J.; Dejarnac, R.; Del Sarto, D.; Delabie, E.; Demerdzhiev; Dempsey, A.; den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Di Maio, F.; Di Siena, A.; Di Troia, C.; Dickinson, D.; Dinca, P.; Dittmar, T.; Dobrashian, J.; Doerk, H.; Doerner, R. P.; Domptail, F.; Donne, T.; Dorling, S. E.; Douai, D.; Dowson, S.; Drenik, A.; Dreval, M.; Drewelow, P.; Drews, P.; Duckworth, Ph; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; Duran, I.; Durodie, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Edappala, P.; Edwards, A. M.; Edwards, J. S.; Eich, Th; Eidietis, N.; Eksaeva, A.; Ellis, R.; Ellwood, G.; Elsmore, C.; Emery, S.; Enachescu, M.; Ericsson, G.; Eriksson, J.; Eriksson, F.; Eriksson, L. G.; Ertmer, S.; Esquembri, S.; Esquisabel, A. L.; Esser, H. G.; Ewart, G.; Fable, E.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Farahani, A.; Fasoli, A.; Faugeras, B.; Fazinic, S.; Felici, F.; Felton, R. C.; Feng, S.; Fernades, A.; Fernandes, H.; Ferreira, J.; Ferreira, D. R.; Ferro, G.; Fessey, J. A.; Ficker, O.; Field, A.; Fietz, S.; Figini, L.; Figueiredo, J.; Figueiredo, A.; Fil, N.; Finburg, P.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Flinders, K.; Foley, S.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fransson, E.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Fridstrom, R.; Frigione, D.; Fuchs, JC; Fusco, P.; Futatani, S.; Gal, K.; Galassi, D.; Galazka, K.; Galeani, S.; Gallart, D.; Galvao, R.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; Garcia-Munoz, M.; Gardener, M.; Garzotti, L.; Gaspar, J.; Gaudio, P.; Gear, D.; Gebhart, T.; Gee, S.; Geiger, B.; Gelfusa, M.; George, R.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Ghezzi, F.; Giacalone, J. C.; Giacomelli, L.; Giacometti, G.; Gibson, K.; Giegerich, T.; Gil, L.; Gilbert, M. R.; Gin, D.; Giovannozzi, E.; Giroud, C.; Gloeggler, S.; Goff, J.; Gohil, P.; Goloborod'ko, V.; Gomes, R.; Goncalves, B.; Goniche, M.; Goodyear, A.; Gorini, G.; Goerler, T.; Goulding, R.; Goussarov, A.; Graham, B.; Graves, J. P.; Greuner, H.; Grierson, B.; Griffiths, J.; Griph, S.; Grist, D.; Groth, M.; Grove, R.; Gruca, M.; Guard, D.; Guerard, C.; Guillemaut, C.; Guirlet, R.; Gulati, S.; Gurl, C.; Gutierrez-Milla, A.; Utoh, H. H.; Hackett, L.; Hacquin, S.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S.; Hallworth-Cook, S.; Ham, C.; Hamed, M.; Hamilton, N.; Hamlyn-Harris, C.; Hammond, K.; Hancu, G.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Hazel, S.; Heesterman, P.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O.; Hender, T. C.; Henderson, S. S.; Henderson, M.; Henriques, R.; Hepple, D.; Herfindal, J.; Hermon, G.; Hidalgo, C.; Higginson, W.; Highcock, E. G.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Ho, A.; Hobirk, J.; Hogben, C. H. A.; Hogeweij, G. M. D.; Hollingsworth, A.; Hollis, S.; Hoelzl, M.; Honore, J-J; Hook, M.; Hopley, D.; Horacek, J.; Hornung, G.; Horton, A.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Howell, R.; Hubbard, A.; Huber, A.; Huber, Reto; Huddleston, T. M.; Hughes, M.; Hughes, J.; Huijsmans, G. T. A.; Huynh, P.; Hynes, A.; Igaune, I.; Iglesias, D.; Imazawa, N.; Imrisek, M.; Incelli, M.; Innocente, P.; Ivanova-Stanik, I.; Ivings, E.; Jachmich, S.; Jackson, A.; Jackson, T.; Jacquet, P.; Jansons, J.; Jaulmes, F.; Jednorog, S.; Jenkins, Ian; Jepu, I.; Johnson, T.; Johnson, R.; Johnston, J.; Joita, L.; Joly, J.; Jonasson, E.; Jones, T.; Jones, C.; Jones, L.; Jones, G.; Jones, N.; Juvonen, M.; Hoshino, K. K.; Kallenbach, A.; Kalsey, M.; Kaltiaisenaho, T.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, F. P.; Kempenaars, M.; Kent, O.; Kent, J.; Keogh, K.; Khilkevich, E.; Kim, H. T.; King, R.; King, D.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klas, M.; Klepper, C.; Klix, A.; Knight, M.; Knight, P.; Knipe, S.; Knott, S.; Kobuchi, T.; Kochl, F.; Kocsis, G.; Kodeli, I.; Koechl, F.; Kogut, D.; Koivuranta, S.; Kolesnichenko, Y.; Kollo, Z.; Kominis, Y.; Koeppen, M.; Korolczuk, S.; Kos, B.; Koslowski, H. R.; Kotschenreuther, M.; Koubiti, M.; Kovaldins, R.; Kovanda, O.; Kowalska-Strzeciwilk, E.; Krasilnikov, A.; Krasilnikov, AV; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Ksiazek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lalousis, P.; Lam, N.; Lamb, C.; Lambertz, H. T.; Lang, P. T.; Lanthaler, S.; Neto, E. Lascas; Laszynska, E.; Lawless, R.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leach, R.; Learoyd, G.; Leerink, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichauer, P.; Leichtle, D.; Leipold, F.; Lengar, I.; Lennholm, M.; Lepiavko, B.; Leppanen, J.; Lerche, E.; Lescinskis, A.; Lescinskis, B.; Lesnoj, S.; Leyland, M.; Leysen, W.; Li, Y.; Li, Li; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch; Lipschultz, B.; Litaudon, X.; Liu, G.; Lloyd, B.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lomanowski, B.; Lomas, P. J.; Lonnroth, J.; Lopez, J. M.; Lorenzini, R.; Losada, U.; Loughlin, M.; Lowry, C.; Luce, T.; Lucock, R.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lunt, T.; Lupelli, I.; Lutsenko, VN; Lyssoivan, A.; Macheta, P.; Macusova, E.; Magesh, B.; Maggi, C.; Maggiora, R.; Mahesan, S.; Maier, H.; Mailloux, J.; Maingi, R.; Makwana, R.; Malaquias, A.; Malinowski, K.; Malizia, A.; Manas, P.; Manduchi, G.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marconato, N.; Mariani, A.; Marin, M.; Marinelli, M.; Marinucci, M.; Markovic, T.; Marocco, D.; Marot, L.; Marsh, J.; Martin, A.; Martin de Aguilera, A.; Martin-Solis, J. R.; Martone, R.; Martynova, Y.; Maruyama, So; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Matveev, D.; Matveeva, E.; Mauriya, A.; Maviglia, F.; May-Smith, T.; Mayer, M.; Mayoral, M. L.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McHardy, M.; McKean, R.; McKehon, J.; McNamee, L.; Meadowcroft, C.; Meakins, A.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meiter, S.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merle, A.; Merriman, P.; Mertens, Ph; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Michling, R.; Milanesio, D.; Militello, F.; Militello-Asp, E.; Milocco, A.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miron, Luiciana Ines Comes; Mistry, S.; Miyoshi, Y.; Mlynar, J.; Moiseenko; Monaghan, P.; Monakhov, I.; Moon, S.; Mooney, R.; Moradi, S.; Morales, J.; Moran, J.; Mordijck, S.; Moreira, L.; Moro, F.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Mrowetz, T.; Muir, A.; Muraglia, M.; Murari, A.; Muraro, A.; Murphy, S.; Muscat, P.; Muthusonai, N.; Myers, C.; Asakura, N. N.; N'Konga, B.; Nabais, F.; Naish, R.; Naish, J.; Nakano, T.; Napoli, F.; Nardon, E.; Naulin, V.; Nave, M. F. F.; Nedzelskiy; Nemtsev, G.; Nesenevich, V. G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Ng, S.; Nicassio, M.; Nielsen, A. H.; Nina, D.; Nishijima, D.; Noble, C.; Nobs, C. R.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Normanton, R.; Noterdaeme, J. M.; Nowak, S.; Nunes, I.M.; O'Gorman, T.; O'Mullane, M.; Oberkofler, M.; Oberparleiter, M.; Odupitan, T.; Ogawa, M. T.; Okabayashi, M.; Oliver, H.; Olney, R.; Omoregie, L.; Ongena, J.; Orsitto, F.; Orszagh, J.; Osborne, T.; Otin, R.; Owen, A.; Owen, T.; Paccagnella, R.; Packer, L. W.; Pajuste, E.; Pamela, S.; Panja, S.; Papp, P.; Papp, G.; Parail, V; Pardanaud, C.; Diaz, F. Parra; Parsloe, A.; Parsons, N.; Parsons, M.; Pasqualotto, R.; Passeri, M.; Patel, A.; Pathak, S.; Patten, H.; Pau, A.; Pautasso, G.; Pavlichenko, R.; Pavone, A.; Pawelec, E.; Soldan, C. Paz; Peackoc, A.; Pehkonen, S-P; Peluso, E.; Penot, C.; Penzo, J.; Pepperell, K.; Pereira, R.; Cippo, E. Perelli; von Thun, C. Perez; Pericoli, V.; Peruzzo, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrzilka, V.; Philipps, V.; Pigatto, L.; Pillon, M.; Pinches, S.; Pintsuk, G.; Piovesan, P.; de Sa, W. Pires; Pires dos Reis, A.; Piron, L.; Piron, C.; Pironti, A.; Pisano, F.; Pitts, R.; Plyusnin, V; Poli, F. M.; Pomaro, N.; Pompilian, O. G.; Pool, P.; Popovichev, S.; Poradzinski, M.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Poulipoulis, G.; Powell, T.; Prajapati, Manish; Prakash, R.; Predebon, I.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Primetzhofer, D.; Prior, P.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Purahoo, K.; Pusztai, L.; Puetterich, Th; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M.; Raj, P.; Rakha, A.; Ramogida, G.; Rapson, C. J.; Rasmussen, D.; Rasmussen, J. J.; Rathod, K.; Ratta, G.; Ratynskaia, S.; Ravera, G.; Rebai, M.; Reed, A.; Refy, D.; Regana, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Cortes, S. D. A. Reyes; Reynolds, S.; Ricci, D.; Richiusa, M.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Rivero-Rodriguez, J.; Roach, C.; Robins, R.; Robinson, S.; Robson, D.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, Volker; Romanelli, M.; Romanelli, F.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Saez, X.; Safi, E.; Sahlberg, A.; Saibene, G.; Saleem, M.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I. K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schluck, F.; Schlummer, T.; Schmid, K.; Schmuck, S.; Schoepf, K.; Schweinzer, J.; Schworer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shiraki, D.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, J.; Silva, A.; Silva, C.; Silvagni, D.; Simmons, P.; Simpson, J.; Sinha, A.; Sipila, S. K.; Sips, A. C. C.; Siren, Paula; Sirinelli, A.; Sjostrand, H.; Skiba, M.; Skilton, R.; Skvara; Slade, B.; Smith, R.; Smith, P.; Smith, S. F.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sos, M.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Sparapani, P.; Spelzini, T.; Spineanu, F.; Sprada, D.; Sridhar, S.; Stables, G.; Stallard, J.; Stamatelatos, I.; Stamp, M. F.; Stan-Sion, C.; Stancar, Z.; Staniec, P.; Stankunas, G.; Stano, M.; Stavrou, C.; Stefanikova, E.; Stepanov, A.Y.; Stephen, A.; Stephen, M.; Stephens, J.; Stevens, B.; Stober, J.; Stokes, C.; Strachan, J.; Strand, P.; Strauss, H. R.; Strom, P.; Studholme, W.; Subba, F.; Suchkov, E.; Summers, H. P.; Sun, H.; Sutton, N.; Svensson, J.; Sytnykov, D.; Szabolics, T.; Szepesi, G.; Suzuki, T. T.; Tabares, F.; Tadic, T.; Tal, B.; Tala, T.; Taliercio, C.; Tallargio, A.; Tanaka, K.; Tang, W.; Tardocchi, M.; Tatali, R.; Taylor, D.; Tegnered, D.; Telesca, G.; Teplova, N.; Teplukhina, A.; Terranova, D.; Terry, C.; Testa, D.; Tholerus, E.; Thomas, J.; Thompson, V. K.; Thornton, A.; Tierens, W.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomes, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Tskhakaya, D.; Jun, D. Tskhakaya; Turner, A.D.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyshchenko, M.; Uccello, A.; Uljanovs, J.; Urano, H.; Urban, A.; Urbanczyk, G.; Uytdenhouwen, I.; Vadgama, A.; Valcarcel, D.; Vale, R.; Valentinuzzi, M.; Valerii, K.; Valisa, M.; Olivares, P. Vallejos; Valovic, M.; Van Eester, D.; Van Renterghem, W.; van Rooij, G. J.; Varje, J.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vecsei, M.; Vega, J.; Ventre, S.; Verdoolaege, G.; Verona, C.; Rinati, G. Verona; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincent, M.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Voltolina, D.; von Toussaint, U.; Vondracek, P.; Vuksic, M.; Wakeling, B.; Waldon, C.; Walkden, N.; Walker, R.; Walker, M.; Walsh, M.; Wang, N.; Wang, E.; Warder, S.; Warren, R.; Waterhouse, J.; Watts, C.; Wauters, T.; Webb, M.; Weckmann, A.; Weiland, J.; Weiland, M.; Weisen, H.; Weiszflog, M.; Welch, P.; West, A.; Wheatley, M.; Wheeler, S.; Whitehead, A. M.; Whittaker, D.; Widdowson, A. M.; Wiesen, S.; Wilkie, G.; Williams, J.; Willoughby, D.; Wilson, J.; Wilson, P.; Wilson, H. R.; Wischmeier, M.; Withycombe, A.; Witts, D.; Wolfrum, E.; Wood, R.; Woodley, R.; Woodley, C.; Wray, S.; Wright, J. C.; Wright, P.; Wukitch, S.; Wynn, A.; Xiang, L.; Xu, T.; Xue, Y.; Yadikin, D.; Yakovenko, Y.; Yanling, W.; Yavorskij, Viktor; Young, E.S.K.; Young, R.; Young, D.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zakharov, L.; Zanino, R.; Zarins, A.; Zarins, R.; Fernandez, D. Zarzoso; Zastrow, K. D.; Zerbini, M.; Zhang, W.; Zhou, Y.; Zilli, E.; Zocco, A.; Zoita, V.L.; Zoletnik, S.; Zwingmann, W.; Zychor, I.; Ranjan, SutapaFor the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas. - Overview of the JET results in support to ITER
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2017-06-15) Litaudon, X.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Ahn, J. H.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Albanese, R.; Aldred, V.; Alegre, D.; Alessi, E.; Aleynikov, P.; Alfier, A.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amicucci, L.; Amosov, V.; Andersson Sundén, E.; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arnichand, H.; Arshad, S.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M. D.; Ayres, C.; Bacharis, M.; Baciero, A.; Baiáo, D.; Bailey, S.; Baker, A.; Balboa, I.; Balden, M.; Balshaw, N.; Bament, R.; Banks, J. W.; Baranov, Y. F.; Barnard, M. A.; Barnes, D.; Barnes, M.; Barnsley, R.; Baron Wiechec, A.; Barrera Orte, L.; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baughan, R.; Bauvir, B.; Baylor, L.; Bazylev, B.; Beal, J.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Becoulet, A.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Bellinger, M.; Belonohy; Ben Ayed, N.; Benterman, N. A.; Bergsåker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besliu, C.; Beurskens, M.; Bieg, B.; Bielecki, J.; Biewer, T.; Bigi, M.; Bílková, P.; Binda, F.; Bisoffi, A.; Bizarro, J. P.S.; Björkas, C.; Blackburn, J.; Blackman, K.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.; Boboc, A.; Bodnár, G.; Bogar, O.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Bonelli, F.; Boom, J.; Booth, J.; Borba, D.; Borodin, D.; Borodkina, I.; Botrugno, A.; Bottereau, C.; Boulting, P.; Bourdelle, C.; Bowden, M.; Bower, C.; Bowman, C.; Boyce, T.; Boyd, C.; Boyer, H. J.; Bradshaw, J. M.A.; Braic, V.; Bravanec, R.; Breizman, B.; Bremond, S.; Brennan, P. D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M. D.J.; Brix, M.; Broeckx, W.; Brombin, M.; Brosławski, A.; Brown, D. P.D.; Brown, M.; Bruno, E.; Bucalossi, J.; Buch, J.; Buchanan, J.; Buckley, M. A.; Budny, R.; Bufferand, H.; Bulman, M.; Bulmer, N.; Bunting, P.; Buratti, P.; Burckhart, A.; Buscarino, A.; Busse, A.; Butler, N. K.; Bykov, I.; Byrne, J.; Cahyna, P.; Calabrò, G.; Calvo, I.; Camenen, Y.; Camp, P.; Campling, D. C.; Cane, J.; Cannas, B.; Capel, A. J.; Card, P. J.; Cardinali, A.; Carman, P.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, I.; Carvalho, P.; Casson, F. J.; Castaldo, C.; Catarino, N.; Caumont, J.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavinato, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Cenedese, A.; Cesario, R.; Challis, C. D.; Chandler, M.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, S. C.; Chernyshova, M.; Chitarin, G.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, E.; Clark, M.; Clarkson, R.; Clatworthy, D.; Clements, C.; Cleverly, M.; Coad, J. P.; Coates, P. A.; Cobalt, A.; Coccorese, V.; Cocilovo, V.; Coda, S.; Coelho, R.; Coenen, J. W.; Coffey, I.; Colas, L.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Cortes, S.; Coster, D.; Couchman, A. S.; Cox, M. P.; Craciunescu, T.; Cramp, S.; Craven, R.; Crisanti, F.; Croci, G.; Croft, D.; Crombé, K.; Crowe, R.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curuia, M.; Czarnecka, A.; Dabirikhah, H.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; Davies, O.; Davis, W.; Day, C.; Day, I. E.; De Bock, M.; De Castro, A.; De La Cal, E.; De La Luna, E.; De Masi, G.; De Pablos, J. L.; De Temmerman, G.; De Tommasi, G.; De Vries, P.; Deakin, K.; Deane, J.; Degli Agostini, F.; Dejarnac, R.; Delabie, E.; Den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Di Maio, F.; Di Siena, A.; Di Troia, C.; Dinca, P.; D'Inca, R.; Ding, B.; Dittmar, T.; Doerk, H.; Doerner, R. P.; Donné, T.; Dorling, S. E.; Dormido-Canto, S.; Doswon, S.; Douai, D.; Doyle, P. T.; Drenik, A.; Drewelow, P.; Drews, P.; Duckworth, Ph; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; ĎUran, I.; Durodié, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Dzysiuk, N.; Edappala, P. V.; Edmond, J.; Edwards, A. M.; Edwards, J.; Eich, Th; Ekedahl, A.; El-Jorf, R.; Elsmore, C. G.; Enachescu, M.; Ericsson, G.; Eriksson, F.; Eriksson, J.; Eriksson, L. G.; Esposito, B.; Esquembri, S.; Esser, H. G.; Esteve, D.; Evans, B.; Evans, G. E.; Evison, G.; Ewart, G. D.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Fasoli, A.; Faustin, J. M.; Fawlk, N.; Fazendeiro, L.; Fedorczak, N.; Felton, R. C.; Fenton, K.; Fernades, A.; Fernandes, H.; Ferreira, J.; Fessey, J. A.; Février, O.; Ficker, O.; Field, A.; Fietz, S.; Figueiredo, A.; Figueiredo, J.; Fil, A.; Finburg, P.; Firdaouss, M.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Fleming, C.; Flinders, K.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fortuna-Zalesna, E.; Fortune, M.; Foster, S.; Franke, T.; Franklin, T.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Frigione, D.; Fuchs, V.; Fuller, D.; Futatani, S.; Fyvie, J.; Gál, K.; Galassi, D.; Gałazka, K.; Galdon-Quiroga, J.; Gallagher, J.; Gallart, D.; Galváo, R.; Gao, X.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; García-Muñoz, M.; Gardarein, J. L.; Garzotti, L.; Gaudio, P.; Gauthier, E.; Gear, D. F.; Gee, S. J.; Geiger, B.; Gelfusa, M.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Giacalone, J. C.; Giacomelli, L.; Gibson, C. S.; Giegerich, T.; Gil, C.; Gil, L.; Gilligan, S.; Gin, D.; Giovannozzi, E.; Girardo, J. B.; Giroud, C.; Giruzzi, G.; Glöggler, S.; Godwin, J.; Goff, J.; Gohil, P.; Goloborod'Ko, V.; Gomes, R.; Goncalves, B.; Goniche, M.; Goodliffe, M.; Goodyear, A.; Gorini, G.; Gosk, M.; Goulding, R.; Goussarov, A.; Gowland, R.; Graham, B.; Graham, M. E.; Graves, J. P.; Grazier, N.; Grazier, P.; Green, N. R.; Greuner, H.; Grierson, B.; Griph, F. S.; Grisolia, C.; Grist, D.; Groth, M.; Grove, R.; Grundy, C. N.; Grzonka, J.; Guard, D.; Guérard, C.; Guillemaut, C.; Guirlet, R.; Gurl, C.; Utoh, H. H.; Hackett, L. J.; Hacquin, S.; Hagar, A.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S. J.; Hallworth Cook, S. P.; Hamlyn-Harris, C.; Hammond, K.; Harrington, C.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T. D.V.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Haydon, P. W.; Hayter, N.; Hazel, S.; Heesterman, P. J.L.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O. N.; Hender, T. C.; Henderson, M.; Henderson, S. S.; Henriques, R.; Hepple, D.; Hermon, G.; Hertout, P.; Hidalgo, C.; Highcock, E. G.; Hill, M.; Hillairet, J.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Hobirk, J.; Hodille, E.; Hogben, C. H.A.; Hogeweij, G. M.D.; Hollingsworth, A.; Hollis, S.; Homfray, D. A.; Horáček, J.; Hornung, G.; Horton, A. R.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Hough, M. R.; Howarth, P. J.; Hubbard, A.; Huber, A.; Huber, V.; Huddleston, T. M.; Hughes, M.; Huijsmans, G. T.A.; Hunter, C. L.; Huynh, P.; Hynes, A. M.; Iglesias, D.; Imazawa, N.; Imbeaux, F.; Imríšek, M.; Incelli, M.; Innocente, P.; Irishkin, M.; Ivanova-Stanik, I.; Jachmich, S.; Jacobsen, A. S.; Jacquet, P.; Jansons, J.; Jardin, A.; Järvinen, A.; Jaulmes, F.; Jednoróg, S.; Jenkins, I.; Jeong, C.; Jepu, I.; Joffrin, E.; Johnson, R.; Johnson, Thomas; Johnston, Jane; Joita, L.; Jones, G.; Jones, T. T.C.; Hoshino, K. K.; Kallenbach, A.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Karnowska, I.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, T.; Keep, J.; Kempenaars, M.; Kennedy, C.; Kenny, D.; Kent, J.; Kent, O. N.; Khilkevich, E.; Kim, H. T.; Kim, H. S.; Kinch, A.; King, C.; King, D.; King, R. F.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klepper, C.; Klix, A.; Knight, P.; Knipe, S. J.; Knott, S.; Kobuchi, T.; Köchl, F.; Kocsis, G.; Kodeli, I.; Kogan, L.; Kogut, D.; Koivuranta, S.; Kominis, Y.; Köppen, M.; Kos, B.; Koskela, T.; Koslowski, H. R.; Koubiti, M.; Kovari, M.; Kowalska-Strzȩciwilk, E.; Krasilnikov, A.; Krasilnikov, V.; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Ksiażek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwiatkowski, R.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lam, N.; Lambertz, H. T.; Lane, C.; Lang, P. T.; Lanthaler, S.; Lapins, J.; Lasa, A.; Last, J. R.; Łaszyńska, E.; Lawless, R.; Lawson, A.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leddy, J.; Lee, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichtle, D.; Leichuer, P.; Leipold, F.; Lengar, I.; Lennholm, M.; Lerche, E.; Lescinskis, A.; Lesnoj, S.; Letellier, E.; Leyland, M.; Leysen, W.; Li, Li; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch; Lipschultz, B.; Liu, G.; Liu, Y.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lobel, R. C.; Lomanowski, B.; Lomas, P. J.; Lönnroth, J.; López, J. M.; López-Razola, J.; Lorenzini, R.; Losada, U.; Lovell, J. J.; Loving, A. B.; Lowry, C.; Luce, T.; Lucock, R. M.A.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lupelli, I.; Lyssoivan, A.; Macdonald, N.; Macheta, P.; Maczewa, K.; Magesh, B.; Maget, P.; Maggi, C.; Maier, H.; Mailloux, J.; Makkonen, T.; Makwana, R.; Malaquias, A.; Malizia, A.; Manas, P.; Manning, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marinelli, M.; Marinucci, M.; Markovič, T.; Marocco, D.; Marot, L.; Marren, C. A.; Marshal, R.; Martin, A.; Martin, Y.; Martín De Aguilera, A.; Martínez, F. J.; Martín-Solís, J. R.; Martynova, Y.; Maruyama, So; Masiello, A.; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Maviglia, F.; Mayer, M.; Mayoral, M. L.; May-Smith, T.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McIntosh, S.; McKean, R.; McKehon, J.; Meadows, R. C.; Meakins, A.; Medina, F.; Medland, M.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merrigan, I. R.; Mertens, Ph; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Mianowski, S.; Michling, R.; Middleton-Gear, D.; Miettunen, J.; Militello, F.; Militello-Asp, E.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miyoshi, Y.; Mlynář, J.; Molina, D.; Monakhov, I.; Moneti, M.; Mooney, R.; Moradi, S.; Mordijck, S.; Moreira, L.; Moreno, R.; Moro, F.; Morris, A. W.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Murari, A.; Muraro, A.; Murphy, S.; Asakura, N. N.; Na, Y. S.; Nabais, F.; Naish, R.; Nakano, T.; Nardon, E.; Naulin, V.; Nave, M. F.F.; Nedzelski, I.; Nemtsev, G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Nicholls, K. J.; Nicolas, T.; Nielsen, A. H.; Nielsen, P.; Nilsson, E.; Nishijima, D.; Noble, C.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Nouailletas, R.; Nunes, I.; Oberkofler, M.; Odupitan, T.; Ogawa, M. T.; O'Gorman, T.; Okabayashi, M.; Olney, R.; Omolayo, O.; O'Mullane, M.; Ongena, J.; Orsitto, F.; Orszagh, J.; Oswuigwe, B. I.; Otin, R.; Owen, A.; Paccagnella, R.; Pace, N.; Pacella, D.; Packer, L. W.; Page, A.; Pajuste, E.; Palazzo, S.; Pamela, S.; Panja, S.; Papp, P.; Paprok, R.; Parail, V.; Park, M.; Parra Diaz, F.; Parsons, M.; Pasqualotto, R.; Patel, A.; Pathak, S.; Paton, D.; Patten, H.; Pau, A.; Pawelec, E.; Paz Soldan, C.; Peackoc, A.; Pearson, I. J.; Pehkonen, S. P.; Peluso, E.; Penot, C.; Pereira, A.; Pereira, R.; Pereira Puglia, P. P.; Perez Von Thun, C.; Peruzzo, S.; Peschanyi, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrella, N.; Petržilka, V.; Peysson, Y.; Pfefferlé, D.; Philipps, V.; Pillon, M.; Pintsuk, G.; Piovesan, P.; Pires Dos Reis, A.; Piron, L.; Pironti, A.; Pisano, F.; Pitts, R.; Pizzo, F.; Plyusnin, V.; Pomaro, N.; Pompilian, O. G.; Pool, P. J.; Popovichev, S.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Powell, T.; Pozzi, J.; Prajapati, V.; Prakash, R.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Prior, P.; Proudfoot, R.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Pulley, D.; Purahoo, K.; Pütterich, Th; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M. S.J.; Rakha, A.; Ramogida, G.; Ranjan, S.; Rapson, C. J.; Rasmussen, J. J.; Rathod, K.; Rattá, G.; Ratynskaia, S.; Ravera, G.; Rayner, C.; Rebai, M.; Reece, D.; Reed, A.; Réfy, D.; Regan, B.; Regaña, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Reyes Cortes, S. D.A.; Reynolds, S.; Riccardo, V.; Richardson, N.; Riddle, K.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Roach, C.; Robins, R. J.; Robinson, S. A.; Robinson, T.; Robson, D. W.; Roccella, R.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, V.; Romanelli, F.; Romanelli, M.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruiz, M.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Safi, E.; Sagar, P.; Saibene, G.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samaddar, D.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I.K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schlummer, T.; Schmid, K.; Schmidt, V.; Schmuck, S.; Schneider, Mireille; Schöpf, K.; Schwörer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Shaw, R.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, A.; Silva, C.; Simmons, P. A.; Simpson, J.; Simpson-Hutchinson, J.; Sinha, A.; Sipilä, S. K.; Sips, A. C.C.; Sirén, P.; Sirinelli, A.; Sjöstrand, H.; Skiba, M.; Skilton, R.; Slabkowska, K.; Slade, B.; Smith, N.; Smith, P. G.; Smith, R.; Smith, T. J.; Smithies, M.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sopplesa, A.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Spelzini, T.; Spineanu, F.; Stables, G.; Stamatelatos, I.; Stamp, M. F.; Staniec, P.; Stankūnas, G.; Stan-Sion, C.; Stead, M. J.; Stefanikova, E.; Stepanov, I.; Stephen, A. V.; Stephen, M.; Stevens, A.; Stevens, B. D.; Strachan, J.; Strand, P.; Strauss, H. R.; Ström, P.; Stubbs, G.; Studholme, W.; Subba, F.; Summers, H. P.; Svensson, J.; Świderski; Szabolics, T.; Szawlowski, M.; Szepesi, G.; Suzuki, T. T.; Tál, B.; Tala, T.; Talbot, A. R.; Talebzadeh, S.; Taliercio, C.; Tamain, P.; Tame, C.; Tang, W.; Tardocchi, M.; Taroni, L.; Taylor, D.; Taylor, K. A.; Tegnered, D.; Telesca, G.; Teplova, N.; Terranova, D.; Testa, D.; Tholerus, E.; Thomas, J. D.; Thomas, P.; Thompson, A.; Thompson, C. A.; Thompson, V. K.; Thorne, L.; Thornton, A.; Thrysøe, A. S.; Tigwell, P. A.; Tipton, N.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomeš, M.; Tonner, P.; Towndrow, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Tskhakaya Jun, D.; Turner, I.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyrrell, S. G.J.; Uccello, A.; Ul-Abidin, Z.; Uljanovs, J.; Ulyatt, D.; Urano, H.; Uytdenhouwen, I.; Vadgama, A. P.; Valcarcel, D.; Valentinuzzi, M.; Valisa, M.; Vallejos Olivares, P.; Valovic, M.; Van De Mortel, M.; Van Eester, D.; Van Renterghem, W.; Van Rooij, G. J.; Varje, J.; Varoutis, S.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vega, J.; Verdoolaege, G.; Verhoeven, R.; Verona, C.; Verona Rinati, G.; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Vondráček, P.; Vora, N.; Vu, T.; Pires De Sa, W. W.; Wakeling, B.; Waldon, C. W.F.; Walkden, N.; Walker, M.; Walker, R.; Walsh, M.; Wang, E.; Wang, N.; Warder, S.; Warren, R. J.; Waterhouse, J.; Watkins, N. W.; Watts, C.; Wauters, T.; Weckmann, A.; Weiland, J.; Weisen, H.; Weiszflog, M.; Wellstood, C.; West, A. T.; Wheatley, M. R.; Whetham, S.; Whitehead, A. M.; Whitehead, B. D.; Widdowson, A. M.; Wiesen, S.; Wilkinson, J.; Williams, J.; Williams, M.; Wilson, A. R.; Wilson, D. J.; Wilson, H. R.; Wilson, J.; Wischmeier, M.; Withenshaw, G.; Withycombe, A.; Witts, D. M.; Wood, D.; Wood, R.; Woodley, C.; Wray, S.; Wright, J.; Wright, J. C.; Wu, J.; Wukitch, S.; Wynn, A.; Xu, T.; Yadikin, D.; Yanling, W.; Yao, Lieming; Yavorskij, V.; Yoo, M. G.; Young, C.; Young, D.; Young, I. D.; Young, R.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zanino, R.; Zarins, A.; Zastrow, K. D.; Zerbini, M.; Zhou, Y.; Zhang, Wei; Zilli, E.; Zoita, V.; Zoletnik, S.; Zychor, I.The 2014-2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L-H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at β N ∼ 1.8 and n/n GW ∼ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D-T campaign and 14 MeV neutron calibration strategy are reviewed. - Pedestal particle balance studies in JET-ILW H-mode plasmas
A4 Artikkeli konferenssijulkaisussa(2023-04) Horvath, L.; Lomanowski, B.; Karhunen, J.; Maslov, M.; Schneider, P. A.; Simpson, J.; Brix, M.; Chapman-Oplopoiou, B.; Corrigan, G.; Frassinetti, L.; Groth, M.; Lawson, K.; Maggi, C. F.; Menmuir, S.; Morales, R. B.; Moulton, D.; Myatra, O.; Nina, D.; Pereira, T.; Réfy, D. I.; Saarelma, S.; Vécsei, M.; , JET ContributorsJET-ILW type I ELMy H-modes at 2.5 MA/2.8 T with constant NBI heating (23 MW) and gas fuelling rate were performed, utilising edge localised mode (ELM) pacing by vertical kicks and plasma shaping (triangularity, δ) as tools to disentangle the effects of ELMs, inter-ELM transport and edge stability on the pedestal particle balance. In agreement with previous studies, the pedestal confinement improves with increasing δ, mostly due to a significant increase in pedestal density while the ELM frequency ( f E L M ) is decreased. Improved pedestal confinement with increasing δ was observed even when the pedestal MHD stability was degraded artificially by vertical kicks, implying that increased triangularity may favourably affect the inter-ELM pedestal recovery. The workflow developed to quantify the pedestal particle balance uses high time-resolution profile reflectometry to characterise the inter-ELM evolution of the plasma particle content ( d N / d t ), the NEO drift-kinetic solver to evaluate the neoclassical fluxes and interpretative EDGE2D-EIRENE simulations to estimate the edge particle source. The edge particle source is then constrained by deuterium Balmer-α line intensity measurements in the main chamber, which are, however, strongly affected by reflections from the metal walls. The reflections are accounted for by the CHERAB code taking the divertor emission (the brightest light source in the torus) distribution from imaging spectroscopy measurements as input. Our analysis shows that in the second half of the ELM cycle, the volume-integrated particle source is larger than d N / d t , indicating that transport plays a key role in the inter-ELM pedestal recovery. - The role of drifts on the isotope effect on divertor plasma detachment in JET Ohmic discharges
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2020-12) Solokha, V.; Groth, M.; Brezinsek, S.; Brix, M.; Corrigan, G.; Guillemaut, C.; Harting, D.; Jachmich, S.; Kruezi, U.; Marsen, S.; Wiesen, S.; , JET ContributorsExperiments in JET-ILW Ohmic confinement mode plasmas show that the line-averaged detachment onset density in deuterium discharges is approx. 10% lower than in hydrogen discharges. The magnitude of the isotope effect on the detachment onset density depends on the divertor geometry, the magnetic configuration and the throughput of the sub-divertor/divertor cryopump system. Simulations with the edge fluid code EDGE2D-EIRENE revealed that the pumping of neutral gas within the JET divertor is effective near the outer divertor target only. The studies show that the magnitude of the isotope effect is determined by the molecular pressure in the sub-divertor pumping plenum. According to the simulations, operating in vertical configurations or closer proximity of the strike point increases the molecular pressure (and thus throughput) in front of the outer pumping plenum by up to 15% compared to the horizontal configuration, thus producing a stronger isotope effect on the detachment onset density. Similarly, EDGE2D-EIRENE predicts that plasma, hence neutral, redistribution due to E × B drifts in favourable BT configurations (ion B × grad(B) towards the divertor) decreases the throughput. The total decrease of the throughput reduces the isotope effect on the detachment onset density, and decreases the detachment onset density for both isotopes. - Variation in the volumetric power and momentum losses in the JET-ILW scrape-off layer
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2023-06) Lomanowski, B.; Park, J. S.; Aho-Mantila, L.; Brix, M.; Groth, M.; Guillemaut, C.; Lowry, C.; Marsen, S.; Meigs, A.; Wischmeier, M.; , JET ContributorsIn attaining the cold plasma condition at the divertor target via gas puffing and/or nitrogen seeding, a large variation in the pressure-momentum and cooling losses has, for the first time, been demonstrated on JET with the ITER-like wall, leveraging novel target electron temperature measurements and JET's unique capability for disentangling the main-ion-driven net dissipation effects from impurity radiation. These observations provide key insights into the dependence of volumetric losses on the dominant dissipation mechanisms, whether due to neutral-plasma interaction processes, impurity radiation induced detachment, and their interplay. While numerical code studies indicate that both volumetric cooling and pressure-momentum losses in the scrape-off layer (SOL) are essential for detachment to occur, experimental confirmation has been largely lacking, in large part due to diagnostic limitations. In the present assessment of L-mode discharges in the diagnostically optimized outer horizontal target configuration, the onset of pressure-momentum losses in nitrogen seeding scans in low recycling conditions is shown to occur at relatively high target electron temperature of 10 eV compared to pure deuterium pressure scans, leading to a more pronounced reduction in the target heat flux, and demonstrating for the first time the importance of momentum losses in impurity radiation dominated dissipative divertors in the absence of strong neutral-plasma interactions. Conversely, a relatively constant target heat flux response is observed above Te,t = 5 eV in pure deuterium density ramps, where the decrease in Te,t is balanced by a rise in target pressure prior to the ion flux rollover, coinciding with the pressure-momentum loss onset. While in practice the relative strength of each dissipation channel will be driven by integrated scenario requirements and core plasma performance constraints, this work demonstrates that there is no universal form of the fmom-loss and fcooling volumetric loss factors and their correlation. Moreover, the results confirm the theoretical and code predictions that both volumetric loss processes are required for detachment, while also resolving an apparent, but counter-intuitive, finding of the code results that volumetric power loss is insensitive to the presence of impurities, demonstrating that this is not the case experimentally. Further interpretive modelling is required to elucidate the dominant momentum and cooling loss channels in the observed trends.