Browsing by Author "Balden, M."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item ERO modelling of net and gross erosion of marker samples exposed to L-mode plasmas on ASDEX Upgrade(Elsevier Science Publishers BV, 2020-12) Hakola, Antti; Keitaanranta, A.; Kumpulainen, H.; Lahtinen, A.; Likonen, J.; Balden, M.; Cavedon, M.; Krieger, K.; Airila, Markus I.; Groth, M.; , ASDEX Upgrade Team; , EUROfusion MST1 Team; Department of Applied Physics; Fusion and Plasma Physics; VTT Technical Research Centre of Finland; Department of Applied Physics; University of Helsinki; Max-Planck-Institut für PlasmaphysikIn this paper, we report experimental and numerical investigations of gross and net erosion of gold (Au) and molybdenum (Mo), proxies for the common plasma-facing material tungsten (W), during L-mode plasma discharges in deuterium (D) in the outer strike-point region of the ASDEX Upgrade tokamak. To this end, erosion profiles of different marker spots (for Au, dimensions 1 × 1 and 5 × 5 mm2) and marker coatings (for Mo) have been determined and modelled using the ERO code. The smaller marker spots were designed to quantify the gross-erosion rate while on the bigger markers local prompt re-deposition of Au allowed obtaining data on net erosion. The experimental results indicate relatively uniform erosion profiles across the marker spots or coatings, very little re-deposition elsewhere, and the largest erosion taking place close to the strike point. Compared to W, the markers show up to 15 times higher net erosion but no major differences in the poloidal migration lengths of Au and W can be seen. Gold thus appears to be a proper choice for studying migration of W in the divertor region. The ERO simulations with different background plasmas are able to reproduce the main features of the experimental net erosion profile of Au. Of the studied parameters, electron temperature has the strongest impact on erosion: doubling the temperature enhances erosion by a factor of 2.5–3. In contrast, for Mo, the simulated net erosion is ~ 3 times smaller than what experimental data indicate. The discrepancies can be attributed to the deviations of the background plasma profiles from the measured ones as well as to the applied models or approximations for the ion temperature, plasma potential, and sheath characteristics in ERO. In addition, the surrounding areas of the marker samples being covered with impurities and W from previous experiments may have considerably reduced the actual re-deposition of Mo. All the simulations predict a toroidal tail of re-deposited particles, downstream of the markers, but the particle density seems to be below the experimental detection threshold. The comparison between the 1 × 1 mm2 and 5 × 5 mm2 marker spots further reveal that re-deposition drops from >50% to <40% when decreasing the marker size. This indicates that small enough marker samples can be used for accurately determining gross erosion in ASDEX Upgrade.Item Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X(IOP Publishing Ltd., 2022-04-01) Pedersen, Thomas Sunn; Abramovic, Ivana; Agostinetti, P.; Torres, M. Agredano; Aekaeslompolo, S.; Belloso, J. Alcuson; Aleynikov, P.; Aleynikova, K.; Alhashimi, M.; Ali, A.; Allen, N.; Alonso, A.; Anda, G.; Andreeva, T.; Angioni, C.; Arkhipov, A.; Arnold, A.; Asad, W.; Ascasibar, E.; Aumeunier, M-H; Avramidis, K.; Aymerich, E.; Baek, S-G; Baehner, J.; Baillod, A.; Balden, M.; Baldzuhn, J.; Ballinger, S.; Banduch, M.; Bannmann, S.; Navarro, A. Banon; Barbui, T.; Beidler, C.; Belafdil, C.; Bencze, A.; Benndorf, A.; Beurskens, M.; Biedermann, C.; Biletskyi, O.; Blackwell, B.; Blatzheim, M.; Bluhm, T.; Boeckenhoff, D.; Bongiovi, G.; Borchardt, M.; Borodin, D.; Boscary, J.; Bosch, H.; Bosmann, T.; Boeswirth, B.; Boettger, L.; Bottino, A.; Bozhenkov, S.; Brakel, R.; Brandt, C.; Braeuer, T.; Braune, H.; Brezinsek, S.; Brunner, K.; Buller, S.; Burhenn, R.; Bussiahn, R.; Buttenschoen, B.; Buzas, A.; Bykov, Yuri; Calvo, Ivan; Mata, K. Camacho; Caminal; Cannas, B.; Cappa, A.; Carls, A.; Carovani, F.; Carr, M.; Carralero, D.; Carvalho, B.; Casas, J.; Castano-Bardawil, D.; Castejon, F.; Chaudhary, N.; Chelis; Chomiczewska, A.; Coenen, J. W.; Cole, M.; Cordella, F.; Corre, Y.; Crombe, K.; Cseh, G.; Csillag, B.; Damm, H.; Day, C.; de Baar, M.; De la Cal, E.; Degenkolbe, S.; Demby, A.; Denk, S.; Dhard, C.; Di Siena, A.; Dinklage, A.; Dittmar, T.; Dreval, M.; Drevlak, M.; Drewelow, P.; Drews, P.; Dunai, D.; Edlund, E.; Effenberg, F.; Ehrke, G.; Endler, M.; Ennis, D. A.; Escoto, F. J.; Estrada, T.; Fable, E.; Fahrenkamp, N.; Fanni, A.; Faustin, J.; Fellinger, J.; Feng, Y.; Figacz, W.; Flom, E.; Ford, O.; Fornal, T.; Frerichs, H.; Freundt, S.; Fuchert, G.; Fukuyama, M.; Fullenbach, F.; Gantenbein, G.; Gao, Y.; Garcia, K.; Regana, J. M. Garcia; Garcia-Cortes; Gaspar, J.; Gates, D. A.; Geiger, J.; Geiger, B.; Giudicotti, L.; Gonzalez, A.; Goriaev, A.; Gradic, D.; Grahl, M.; Graves, J. P.; Green, J.; Grelier, E.; Greuner, H.; Gross, S.; Grote, H.; Groth, M.; Gruca, M.; Grulke, O.; Gruen, M.; Arnaiz, J. Guerrero; Guenter, S.; Haak; Haas, M.; Hacker, P.; Hakola, A.; Hallenbert, A.; Hammond, K.; Han, X.; Hansen, S. K.; Harris, J. H.; Hartfuss, H.; Hartmann, D.; Hathiramani, D.; Hatzky, R.; Hawke, J.; Hegedus, S.; Hein, B.; Heinemann, B.; Helander, P.; Henneberg, S.; Hergenhahn, U.; Hidalgo, C.; Hindenlang, F.; Hirsch, M.; Hoefel, U.; Hollfeld, K. P.; Holtz, A.; Hopf, D.; Hoeschen, D.; Houry, M.; Howard, J.; Huang, X.; Hubeny, M.; Hudson, S.; Ida, K.; Igitkhanov, Y.; Igochine, Valentin; Illy, S.; Ionita-Schrittwieser, C.; Isobe, M.; Jablonski, S.; Jagielski, B.; Jakubowski, M.; Jansen van Vuuren, Anton; Jelonnek, J.; Jenko, F.; Jensen, T.; Jenzsch, H.; Junghanns, P.; Kaczmarczyk, J.; Kallmeyer, J.; Kamionka, U.; Kandler, M.; Kasilov, S.; Kazakov, Y.; Kennedy, D.; Kharwandikar, A.; Khokhlov, M.; Kiefer, C.; Killer, C.; Kirschner, A.; Kleiber, R.; Klinger, T.; Klose, S.; Knauer, J.; Knieps, A.; Koechl, F.; Kocsis, G.; Kolesnichenko, Ya; Koenies, A.; Koenig, R.; Kontula, J.; Kornejew, P.; Koschinsky, J.; Kozulia, M. M.; Kraemer-Flecken, A.; Krampitz, R.; Krause, M.; Krawczyk, N.; Kremeyer, T.; Krier, L.; Kriete, D. M.; Krychowiak, M.; Ksiazek, I.; Kubkowska, M.; Kuczynski, M.; Kuehner, G.; Kumar, A.; Kurki-Suonio, T.; Kwak, S.; Landreman, M.; Lang, P. T.; Langenberg, A.; Laqua, H. P.; Laqua, H.; Laube, R.; Lazerson, S.; Lewerentz, M.; Li, C.; Liang, Y.; Linsmeier, Ch; Lion, J.; Litnovsky, A.; Liu, S.; Lobsien, J.; Loizu, J.; Lore, J.; Lorenz, A.; Losada, U.; Louche, F.; Lunsford, R.; Lutsenko, VN; Machielsen, M.; Mackel, F.; Maisano-Brown, J.; Maj, O.; Makowski, D.; Manduchi, G.; Maragkoudakis, E.; Marchuk, O.; Marsen, S.; Martines, E.; Martinez-Fernandez, J.; Marushchenko, M.; Masuzaki, S.; Maurer, D.; Mayer, M.; McCarthy, K. J.; Mccormack, O.; McNeely, P.; Meister, H.; Mendelevitch, B.; Mendes, S.; Merlo, A.; Messian, A.; Mielczarek, A.; Mishchenko, O.; Missal, B.; Mitteau, R.; Moiseenko, V. E.; Mollen, A.; Moncada, Victor; Moennich, T.; Morisaki, T.; Moseev, D.; Motojima, G.; Mulas, S.; Mulsow, M.; Nagel, M.; Naujoks, D.; Naulin, Volker; Neelis, T.; Neilson, H.; Neu, R.; Neubauer, O.; Neuner, U.; Nicolai, D.; Nielsen, S. K.; Niemann, H.; Nishiza, T.; Nishizawa, T.; Nuehrenberg, C.; Ochoukov, R.; Oelmann, J.; Offermanns, G.; Ogawa, K.; Okamura, S.; Oelmanns, J.; Ongena, J.; Oosterbeek, J.; Otte, M.; Pablant, N.; Panadero Alvarez, N.; Pandey, A.; Pasch, E.; Pavlichenko, R.; Pavone, A.; Pawelec, E.; Pechstein, G.; Pelka, G.; Perseo, Valeria; Peterson, B.; Pilopp, D.; Pingel, S.; Pisano, F.; Plockl, B.; Plunk, G.; Poloskei, P.; Pompe, B.; Popov, A.; Porkolab, M.; Proll, J.; Pueschel, M. J.; Puiatti, M-E; Sitjes, A. Puig; Purps, F.; Rahbarnia, K.; Rasmussen, J.; Reiman, A.; Reimold, F.; Reisner, M.; Reiter, D.; Richou, M.; Riedl, R.; Riemann, J.; Risse, K.; Roberg-Clark, G.; Rohde, Volker; Romazanov, J.; Rondeshagen, D.; Rong, P.; Rudischhauser, L.; Rummel, T.; Rummel, K.; Runov, A.; Rust, N.; Ryc, L.; Salembier, P.; Salewski, M.; Sanchez, E.; Satake, S.; Satheeswaran, G.; Schacht, J.; Scharff, E.; Schauer, F.; Schilling, J.; Schlisio, G.; Schmid, K.; Schmitt, J.; Schmitz, O.; Schneider, W.; Schneider, M.; Schneider, P.; Schrittwieser, R.; Schroeder, T.; Schroeder, M.; Schroeder, R.; Schweer, B.; Schwoerer, D.; Scott, E.; Shanahan, B.; Sias, G.; Sichta, P.; Singer, M.; Sinha, P.; Sipilä, S.; Slaby, C.; Sleczka, M.; Smith, H.; Smoniewski, J.; Sonnendrucker, E.; Spolaore, M.; Spring, A.; Stadler, R.; Stange, T.; Stepanov, A.Y.; Stephey, L.; Stober, J.; Stroth, U.; Strumberger, E.; Suzuki, C.; Suzuki, Y.; Svensson, J.; Szabolics, T.; Szepesi, T.; Szucs, M.; Tabares, F. L.; Tamura, N.; Tancetti, A.; Tantos, C.; Terry, J.; Thienpondt, H.; Thomsen, H.; Thumm, M.; Travere, J. M.; Traverso, P.; Tretter, J.; Trier, E.; Mora, H. Trimino; Tsujimura, T.; Turkin, Y.; Tykhyi, A.; Unterberg, B.; van Eeten, P.; van Milligen, B. Ph; van Schoor, M.; Vano, L.; Varoutis, S.; Vecsei, M.; Vela, L.; Velasco, J. L.; Vervier, M.; Vianello, N.; Viebke, H.; Vilbrandt, R.; Vogt, N.; Volkhausen, C.; von Stechow, A.; Wagner, F.; Wang, E.; Wang, H.; Warmer, F.; Wauters, T.; Wegener, L.; Wegner, T.; Weir, G.; Wenzel, U.; White, A.; Wilde, F.; Wilms, F.; Windisch, T.; Winkler, M.; Winter, A.; Winters, Victoria; Wolf, R.; Wright, A. M.; Wurden, G. A.; Xanthopoulos, P.; Xu, S.; Yamada, H.; Yamaguchi, H.; Yokoyama, M.; Yoshinuma, M.; Yu, Q.; Zamanov, M.; Zanini, M.; Zarnstorff, M.; Zhang, D.; Zhou, S.; Zhu, J.; Zhu, C.; Zilker, M.; Zocco, A.; Zohm, H.; Zoletnik, S.; Zsuga, L.; Vogel, G.; Department of Applied Physics; Fusion and Plasma Physics; National Institute for Fusion ScienceWe present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.Item Gross and net erosion balance of plasma-facing materials in full-W tokamaks(IOP Publishing Ltd., 2021-11) Hakola, A.; Likonen, J.; Lahtinen, A.; Vuoriheimo, T.; Groth, M.; Kumpulainen, H.; Balden, M.; Krieger, K.; Mayer, M.; Schwarz-Selinger, T.; Brezinsek, S.; Kelemen, M.; Markelj, S.; Barac, M.; Gouasmia, S.; Radovic, I. Bogdanovic; Uccello, A.; Vassallo, E.; Dellasega, D.; Passoni, M.; Sala, M.; Bernard, E.; Diez, M.; Guillemaut, C.; Tsitrone, E.; , ASDEX Upgrade Team; , EUROfusion MST1 Team; , EUROfusion WP PFC Contributors; Department of Applied Physics; Fusion and Plasma Physics; VTT Technical Research Centre of Finland; University of Helsinki; Max Planck Institute for Plasma Physics; Jülich Research Centre; Jožef Stefan Institute; Ruder Boskovic Institute; Consiglio Nazionale delle Ricerche (CNR); Polytechnic University of Milan; EURATOM/CEAGross and net erosion of tungsten (W) and other plasma-facing materials in the divertor region have been investigated in deuterium (D) and helium (He) plasmas during dedicated experiments in L- and H-mode on ASDEX Upgrade and after full-length experimental campaigns on the WEST tokamak. Net erosion was determined via post-exposure analyses of plasma-exposed samples and full-size wall components, and we conclude that the same approach is applicable to gross erosion if marker structures with sub-millimeter dimensions are used to eliminate the contribution of prompt re-deposition. In H-mode plasmas, gross erosion during ELMs may exceed the situation in inter-ELM conditions by 1-2 orders of magnitude while net erosion is typically higher by a factor of 2-3. The largest impact on net erosion is attributed to the electron temperature while the role of the impurity mixtures is weaker, even though both on ASDEX Upgrade and WEST significant amounts of impurities are present in the edge plasmas. Impurities, on the other hand, will lead to the formation of thick co-deposited layers. We have also noted that with increasing surface roughness, net erosion is strongly suppressed and the growth of co-deposited layers is enhanced. In He plasmas, gross erosion is increased compared to D due to the higher mass and charge states of the plasma particles, resulting from larger energies due to sheath acceleration, but strong impurity fluxes can result in apparent net deposition in the divertor. Our results from ASDEX Upgrade and WEST are comparable and indicate typical net-erosion rates of 0.1-0.4 nm s(-1), excluding the immediate vicinity of the strike-point regions.Item Overview of ASDEX Upgrade results(2017-10) Aguiam, D.; Aho-Mantila, L.; Angioni, C.; Arden, N.; Parra, R. Arredondo; Asunta, O.; de Baar, M.; Balden, M.; Behler, K.; Bergmann, A.; Bernardo, J.; Bernert, M.; Beurskens, M.; Biancalani, A.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Bock, A.; Bogomolov, A.; Bolzonella, T.; Boeswirth, B.; Bottereau, C.; Bottino, A.; van den Brand, H.; Brezinsek, S.; Brida, D.; Brochard, F.; Bruhn, C.; Buchanan, J.; Buhler, A.; Burckhart, A.; Cambon-Silva, D.; Camenen, Y.; Carvalho, P.; Carrasco, G.; Cazzaniga, C.; Carr, M.; Carralero, D.; Casali, L.; Castaldo, C.; Cavedon, M.; Challis, C.; Chankin, A.; Chapman, I.; Clairet, F.; Classen, I.; Coda, S.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G.; Costea, S.; Coster, D. P.; Croci, G.; Cseh, G.; Czarnecka, A.; D'Arcangelo, O.; Day, C.; Delogu, R.; de Marne, P.; Denk, S.; Denner, P.; Dibon, M.; D'Inca, R.; Di Siena, A.; Douai, D.; Drenik, A.; Drube, R.; Dunne, M.; Duval, B. P.; Dux, R.; Eich, T.; Elgeti, S.; Engelhardt, K.; Erdos, B.; Erofeev, I.; Esposito, B.; Fable, E.; Faitsch, M.; Fantz, U.; Faugel, H.; Felici, F.; Fietz, S.; Figueredo, A.; Fischer, R.; Ford, O.; Frassinetti, L.; Freethy, S.; Froeschle, M.; Fuchert, G.; Fuchs, J. C.; Fuenfgelder, H.; Galazka, K.; Galdon-Quiroga, J.; Gallo, A.; Gao, Y.; Garavaglia, S.; Garcia-Munoz, M.; Geiger, B.; Cianfarani, C.; Giannone, L.; Giovannozzi, E.; Gleason-Gonzalez, C.; Gloeggler, S.; Gobbin, M.; Goerler, T.; Goodman, T.; Gorini, G.; Gradic, D.; Graeter, A.; Granucci, G.; Greuner, H.; Griener, M.; Groth, M.; Gude, A.; Guenter, S.; Guimarais, L.; Haas, G.; Hakola, A. H.; Ham, C.; Happel, T.; Harrison, J.; Hatch, D.; Hauer, V.; Hayward, T.; Heinemann, B.; Heinzel, S.; Hellsten, T.; Henderson, S.; Hennequin, P.; Herrmann, A.; Heyn, E.; Hitzler, F.; Hobirk, J.; Hoelzl, M.; Hoeschen, T.; Holm, J. H.; Hopf, C.; Hoppe, F.; Horvath, L.; Houben, A.; Huber, A.; Igochine, V.; Ilkei, T.; Ivanova-Stanik, I.; Jacob, W.; Jacobsen, A. S.; Jacquot, J.; Janky, F.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Joffrin, E.; Kaesemann, C.; Kallenbach, A.; Kalvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Karhunen, J.; Kasilov, S.; Kernbichler, W.; Kim, D.; Kimmig, S.; Kirk, A.; Klingshirn, H. -J.; Koch, F.; Kocsis, G.; Koehn, A.; Kraus, M.; Krieger, K.; Krivska, A.; Kraemr-Flecken, A.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Laggner, F.; Lang, P. T.; Lauber, P.; Lazanyi, N.; Lazaros, A.; Lebschy, A.; Li, L.; Li, M.; Liang, Y.; Lipschultz, B.; Liu, Y.; Lohs, A.; Luhmann, N. C.; Lunt, T.; Lyssoivan, A.; Madsen, J.; Maier, H.; Maj, O.; Mailloux, J.; Maljaars, E.; Manas, P.; Mancini, A.; Manhard, A.; Manso, M. -E.; Mantica, P.; Mantsinen, M.; Manz, P.; Maraschek, M.; Martens, C.; Martin, P.; Marrelli, L.; Martitsch, A.; Mastrostefano, S.; Mayer, A.; Mayer, M.; Mazon, D.; McCarthy, P. J.; McDermott, R.; Meisl, G.; Meister, H.; Medvedeva, A.; Merkel, P.; Merkel, R.; Merle, A.; Mertens, V.; Meshcheriakov, D.; Meyer, H.; Meyer, O.; Miettunen, J.; Milanesio, D.; Mink, F.; Mlynek, A.; Monaco, F.; Moon, C.; Nazikian, R.; Nemes-Czopf, A.; Neu, G.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nocente, M.; Noterdaeme, J. -M.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrcil, T.; Olsen, J.; Orain, F.; Palermo, F.; Papp, G.; Perez, I. Paradela; Pautasso, G.; Enzel, F.; Petersson, P.; Pinzon, J.; Piovesan, P.; Piron, C.; Plaum, B.; Ploeckl, B.; Plyusnin, V.; Pokol, G.; Poli, E.; Porte, L.; Potzel, S.; Prisiazhniuk, D.; Puetterich, T.; Ramisch, M.; Rapson, C.; Rasmussen, J.; Raupp, G.; Refy, D.; Reich, M.; Reimold, F.; Ribeiro, T.; Riedl, R.; Rittich, D.; Rocchi, G.; Rodriguez-Ramos, M.; Rohde, V.; Ross, A.; Rott, M.; Rubel, M.; Ryan, D.; Ryter, F.; Saarelma, S.; Salewski, M.; Salmi, A.; Sanchis-Sanchez, L.; Santos, G.; Santos, J.; Sauter, O.; Scarabosio, A.; Schall, G.; Schmid, K.; Schmitz, O.; Schneider, P. A.; Schneller, M.; Schrittwieser, R.; Schubert, M.; Schwarz-Selinger, T.; Schweinzer, J.; Scott, B.; Sehmer, T.; Sertoli, M.; Shabbir, A.; Shalpegin, A.; Shao, L.; Sharapov, S.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Silva, C.; Simon, P.; Simpson, J.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spolaore, M.; Stejner, M.; Stober, J.; Stobbe, F.; Stroth, U.; Strumberger, E.; Suarez, G.; Sugiyama, K.; Sun, H. -J.; Suttrop, W.; Szepesi, T.; Tal, B.; Tala, T.; Tardini, G.; Tardocchi, M.; Terranova, D.; Tierens, W.; Told, D.; Tudisco, O.; Trevisan, G.; Treutterer, W.; Trier, E.; Tripsky, M.; Valisa, M.; Valovic, M.; Vanovac, B.; Varela, P.; Varoutis, S.; Verdoolaege, G.; Vezinet, D.; Vianello, N.; Vicente, J.; Vierle, T.; Viezzer, E.; von Toussaint, U.; Wagner, D.; Wang, N.; Wang, X.; Weidl, M.; Weiland, M.; White, A. E.; Willensdorfer, M.; Wiringer, B.; Wischmeier, M.; Wolf, R.; Wolfrum, E.; Xiang, L.; Yang, Q.; Yang, Z.; Yu, Q.; Zagorski, R.; Zammuto, I.; Zarzoso, D.; Zhang, W.; van Zeeland, M.; Zehetbauer, T.; Zilker, M.; Zoletnik, S.; Zohm, H.; IST; VTT Technical Research Centre of Finland; Max Planck Inst Astrophys, Max Planck Society; Department of Applied Physics; TEC; JET EFDA, Culham Sci Ctr; Technische Universität München; Consorzio RFX; IRFM; Assoc EURATOM FZJ, Euratom, Julich Research Center, Forschungszentrum Julich, Inst Energy & Climate Res; University of Lorraine; ENEA; Istituto Fisica del Plasma "Piero Caldirola" (IFP-CNR); Swiss Federal Institute of Technology Lausanne; Innsbruck Medical University; Hungarian Academy of Sciences; Institute of Plasma Physics & Laser Microfusion (IFPiLM); Karlsruhe Institute of Technology; Eindhoven University of Technology; Swedish Research Council (VR); General Atomics & Affiliated Companies; University of Sevilla; University of Texas at Austin; Max Planck Comp & Data Facil; Ecole Polytechnique; Hochschule der Medien; Technical University of Denmark; Budapest University of Technology and Economics; University of California at Santa Barbara; School services, SCI; LPP-ERM/KMS EURATOM Association; Vienna University of Technology; Assoc EURATOM Hellen Republ, NCSR Demokritos; IPP; York University; CCFE Fusion Assoc; BSC; Univ Coll Cork UCC; Princeton University; Ghent University; Chinese Acad Sci, Chinese Academy of Sciences, Natl Astron Observ; Department of Radio Science and Engineering; Massachusetts Institute of Technology; Chinese Academy of Sciences; Univ Aix Marseille 1, Centre National de la Recherche Scientifique (CNRS), University of Aix-Marseille, Universite de Provence - Aix-Marseille I, UMR 6098, CNRSThe ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of I-p = 0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully demonstrated. High divertor enrichment values of nitrogen E-N >= 10 have been obtained during pellet injection, which is a prerequisite for the simultaneous achievement of good core plasma purity and high divertor radiation levels. Impurity accumulation observed in the all-metal AUG device caused by the strong neoclassical inward transport of tungsten in the pedestal is expected to be relieved by the higher neoclassical temperature screening in larger devices.Item Overview of ASDEX Upgrade results(IOP PUBLISHING LTD, 2017-10) Kallenbach, A.; Aguiam, D.; Aho-Mantila, L.; Angioni, C.; Arden, Nils; Parra, R. Arredondo; Asunta, O.; de Baar, M.; Balden, M.; Behler, K.; Bergmann, A.; Bernardo, J.; Bernert, M.; Beurskens, M.; Biancalani, A.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Bock, A.; Bogomolov, A.; Bolzonella, T.; Boswirth, B.; Bottereau, C.; Bottino, A.; van den Brand, H.; Brezinsek, S.; Brida, D.; Brochard, F.; Groth, M.; Hakola, A. H.; Karhunen, J.; Kim, D.; Kurki-Suonio, T.; Li, Li; Li, M.; Liu, Y. Q.; Miettunen, J.; Perez, I. Paradela; Salmi, A.; Santos, J.; Shao, Linming; Silva, C.; Simpson, J.; Snicker, A.; Wang, Nengchao; Wang, X.; Yang, Q.; Yang, Z.; Yu, Qingquan; Zhang, W.; , ASDEX Upgrade Team; , EUROfusion MST1 Team; Department of Applied Physics; Max Planck IPP-EURATOM Assoziation; Universidade de Lisboa; Dutch Institute for Fundamental Energy Research; Culham Science Centre; Technical University of Munich; Consorzio RFX; French Alternative Energies and Atomic Energy Commission; Forschungszentrum Jülich; Université de Lorraine; Ècole Polytechnique Fédérale de Lausanne; Chinese Academy of Sciences; VTT Technical Research Centre of FinlandThe ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of I-p = 0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully demonstrated. High divertor enrichment values of nitrogen E-N >= 10 have been obtained during pellet injection, which is a prerequisite for the simultaneous achievement of good core plasma purity and high divertor radiation levels. Impurity accumulation observed in the all-metal AUG device caused by the strong neoclassical inward transport of tungsten in the pedestal is expected to be relieved by the higher neoclassical temperature screening in larger devices.Item Overview of first Wendelstein 7-X high-performance operation(IOP PUBLISHING LTD, 2019-11) Klinger, T.; Andreeva, T.; Bozhenkov, S.; Brandt, C.; Burhenn, R.; Buttenschoen, B.; Fuchert, G.; Geiger, B.; Grulke, O.; Laqua, H. P.; Pablant, N.; Rahbarnia, K.; Stange, T.; von Stechow, A.; Tamura, N.; Thomsen, H.; Turkin, Y.; Wegner, T.; Abramovic, Ivana; Aekaeslompolo, S.; Alcuson, J.; Aleynikov, P.; Aleynikova, K.; Ali, A.; Alonso, A.; Anda, G.; Ascasibar, E.; Baehner, J. P.; Baek, S. G.; Balden, M.; Baldzuhn, J.; Banduch, M.; Barbui, T.; Behr, W.; Beidler, C.; Benndorf, A.; Biedermann, C.; Biel, W.; Blackwell, B.; Blanco, E.; Blatzheim, M.; Ballinger, S.; Bluhm, T.; Boeckenhoff, D.; Boeswirth, B.; Boettger, L-G; Borchardt, M.; Borsuk, Mark; Boscary, J.; Bosch, H-S; Beurskens, M.; Brakel, R.; Brand, H.; Braeuer, T.; Braune, H.; Brezinsek, S.; Brunner, K-J; Bussiahn, R.; Bykov, I.; Cai, J.; Calvo, Iván; Cannas, B.; Cappa, A.; Carls, A.; Carralero, D.; Carraro, L.; Carvalho, B.; Castejon, F.; Charl, A.; Chaudhary, N.; Chauvin, D.; Chernyshev, F.; Cianciosa, M.; Citarella, R.; Claps, G.; Coenen, J.; Cole, M. J.; Cordella, F.; Cseh, G.; Czarnecka, A.; Czerski, K.; Czerwinski, M.; Czymek, G.; da Molin, A.; da Silva, A.; Damm, H.; de la Pena, A.; Degenkolbe, S.; Dhard, C. P.; Dibon, M.; Dinklage, A.; Dittmar, T.; Drevlak, M.; Drewelow, P.; Drews, P.; Durodie, F.; Edlund, E.; van Eeten, P.; Effenberg, F.; Ehrke, G.; Elgeti, S.; Endler, M.; Ennis, D.; Esteban, H.; Estrada, T.; Fellinger, J.; Feng, Y.; Flom, E.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fontdecaba, J.; Ford, O.; Fornal, T.; Frerichs, H.; Freund, A.; Funaba, T.; Galkowski, A.; Gantenbein, G.; Gao, Y.; Garcia Regana, J.; Gates, D.; Geiger, J.; Giannella, R.; Gogoleva, A.; Goncalves, B.; Goriaev, A.; Gradic, D.; Grahl, M.; Green, J.; Greuner, H.; Grosman, A.; Grote, H.; Gruca, M.; Guerard, C.; Hacker, P.; Han, X.; Harris, J. H.; Hartmann, D.; Hathiramani, D.; Hein, B.; Heinemann, B.; Helander, P.; Henneberg, S.; Henkel, M.; Hernandez Sanchez, J.; Hidalgo, C.; Hirsch, M.; Hollfeld, K. P.; Hoefel, U.; Hoelting, A.; Hoeschen, D.; Houry, M.; Howard, J.; Huang, X.; Huang, Z.; Hubeny, M.; Huber, M.; Hunger, H.; Ida, K.; Ilkei, T.; Illy, S.; Israeli, B.; Jablonski, S.; Jakubowski, M.; Jelonnek, J.; Jenzsch, H.; Jesche, T.; Jia, M.; Junghanns, P.; Kacmarczyk, J.; Kallmeyer, J-P; Kamionka, U.; Kasahara, H.; Kasparek, W.; Kazakov, Y. O.; Kenmochi, N.; Killer, C.; Kirschner, A.; Kleiber, R.; Knauer, J.; Knaup, M.; Knieps, A.; Kobarg, T.; Kocsis, G.; Koechl, F.; Kolesnichenko, Y.; Koenies, A.; Koenig, R.; Kornejew, P.; Koschinsky, J-P; Koester, F.; Kraemer, M.; Krampitz, R.; Kraemer-Flecken, A.; Krawczyk, N.; Kremeyer, T.; Krom, J.; Krychowiak, M.; Ksiazek, I.; Kubkowska, M.; Kuehner, G.; Kurki-Suonio, T.; Kurz, P. A.; Kwak, S.; Landreman, M.; Lang, P.; Lang, R.; Langenberg, A.; Langish, S.; Laqua, H.; Laube, R.; Lazerson, S.; Lechte, C.; Lennartz, M.; Leonhardt, W.; Li, C.; Li, Y.; Liang, Y.; Linsmeier, C.; Liu, S. C.; Lobsien, J-F; Loesser, D.; Cisquella, J. Loizu; Lore, J.; Lorenz, A.; Losert, M.; Lucke, A.; Lumsdaine, A.; Lutsenko, VN; Maassberg, H.; Marchuk, O.; Matthew, J. H.; Marsen, S.; Marushchenko, M.; Masuzaki, S.; Maurer, D.; Mayer, M.; McCarthy, K.; McNeely, P.; Meier, A.; Mellein, D.; Mendelevitch, B.; Mertens, P.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mittelstaedt, J.; Mizuuchi, T.; Mollen, A.; Moncada, Victor; Moennich, T.; Morisaki, T.; Moseev, D.; Murakami, S.; Nafradi, G.; Nagel, M.; Naujoks, D.; Neilson, H.; Neu, R.; Neubauer, O.; Neuner, U.; Ngo, T.; Nicolai, D.; Nielsen, S. K.; Niemann, H.; Nishizawa, T.; Nocentini, R.; Nuehrenberg, C.; Nuehrenberg, J.; Obermayer, S.; Offermanns, G.; Ogawa, K.; Oelmanns, J.; Ongena, J.; Oosterbeek, J. W.; Orozco, G.; Otte, M.; Pacios Rodriguez, L.; Panadero, N.; Panadero Alvarez, N.; Papenfuss, D.; Paqay, S.; Pasch, E.; Pavone, A.; Pawelec, E.; Pedersen, T. S.; Pelka, G.; Perseo, Valeria; Peterson, B.; Pilopp, D.; Pingel, S.; Pisano, F.; Plaum, B.; Plunk, G.; Poeloeskei, P.; Porkolab, M.; Proll, J.; Puiatti, M-E; Sitjes, A. Puig; Purps, F.; Rack, M.; Recsei, S.; Reiman, A.; Reimold, F.; Reiter, D.; Remppel, F.; Renard, S.; Riedl, R.; Riemann, J.; Risse, K.; Rohde, Volker; Roehlinger, H.; Rome, M.; Rondeshagen, D.; Rong, P.; Roth, B.; Rudischhauser, L.; Rummel, K.; Rummel, T.; Runov, A.; Rust, N.; Ryc, L.; Ryosuke, S.; Sakamoto, R.; Salewski, M.; Samartsev, A.; Sanchez, E.; Sano, F.; Satake, S.; Schacht, J.; Satheeswaran, G.; Schauer, F.; Scherer, T.; Schilling, J.; Schlaich, A.; Schlisio, G.; Schluck, F.; Schlueter, K-H; Schmitt, J.; Schmitz, H.; Schmitz, O.; Schmuck, S.; Schneider, M.; Schneider, W.; Scholz, P.; Schrittwieser, R.; Schröder, Michael; Schroeder, T.; Schroeder, R.; Schumacher, H.; Schweer, B.; Scott, E.; Sereda, S.; Shanahan, B.; Sibilia, M.; Sinha, P.; Siplia, S.; Slaby, C.; Sleczka, M.; Smith, H.; Spiess, W.; Spong, D. A.; Spring, A.; Stadler, R.; Stejner, M.; Stephey, L.; Stridde, U.; Suzuki, C.; Svensson, J.; Szabo, Susanne J.; Szabolics, T.; Szepesi, T.; Szokefalvi-Nagy, Z.; Tancetti, A.; Terry, J.; Thomas, J.; Thumm, M.; Travere, J. M.; Traverso, P.; Tretter, J.; Mora, H. Trimino; Tsuchiya, H.; Tsujimura, T.; Tulipan, S.; Unterberg, B.; Vakulchyk, I.; Valet, S.; Vano, L.; van Milligen, B.; van Vuuren, A. J.; Vela, L.; Velasco, J-L; Vergote, M.; Vervier, M.; Vianello, N.; Viebke, H.; Vilbrandt, R.; Vorkoeper, A.; Wadle, S.; Wagner, F.; Wang, E.; Wang, N.; Wang, Z.; Warmer, F.; Wauters, T.; Wegener, L.; Weggen, J.; Wei, Y.; Weir, G.; Wendorf, J.; Wenzel, U.; Werner, A.; White, A.; Wiegel, B.; Wilde, F.; Windisch, T.; Winkler, M.; Winter, A.; Winters, Victoria; Wolf, S.; Wolf, R. C.; Wright, A.; Wurden, G.; Xanthopoulos, P.; Yamada, H.; Yamada, Ichihiro; Yasuhara, R.; Yokoyama, M.; Zanini, M.; Zarnstorff, M.; Zeitler, A.; Zhang, D.; Zhang, H.; Zhu, J.; Zilker, M.; Zocco, A.; Zoletnik, S.; Zuin, M.; Department of Applied Physics; Fusion and Plasma Physics; University of Greifswald; Max Planck Institute for Plasma Physics; Technical University of Denmark; Princeton University; National Institute for Fusion Science; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; EURATOM HAS; Massachusetts Institute of Technology; University of Wisconsin-Madison; Jülich Research Centre; Australian National University; Eindhoven University of Technology; University of Cagliari; Consorzio RFX; Universidade de Lisboa; CEA Cadarache; St. Petersburg Scientific Centre; Oak Ridge National Laboratory; University of Salerno; ENEA Frascati Research Center; Institute of Plasma Physics and Laser Microfusion; University of Szczecin; University of Milano-Bicocca; Auburn University; Karlsruhe Institute of Technology; Universidad Carlos III de Madrid; University of Stuttgart; Austrian Academy of Sciences; National Academy of Sciences of Ukraine; Technical University of Berlin; Opole University of Technology; University of Maryland, College Park; Consiglio Nazionale delle Ricerche (CNR); Kyoto University; Culham Centre for Fusion Energy; Physikalisch-Technische Bundesanstalt; Los Alamos National LaboratoryThe optimized superconducting stellarator device Wendelstein 7-X (with major radius R = 5.5 m, minor radius a = 0.5 m, and 30 m(3) plasma volume) restarted operation after the assembly of a graphite heat shield and 10 inertially cooled island divertor modules. This paper reports on the results from the first high-performance plasma operation. Glow discharge conditioning and ECRH conditioning discharges in helium turned out to be important for density and edge radiation control. Plasma densities of 1-4.5 x 10(19) m(-3) with central electron temperatures 5-10 keV were routinely achieved with hydrogen gas fueling, frequently terminated by a radiative collapse. In a first stage, plasma densities up to 1.4 x 10(20) m(-3) were reached with hydrogen pellet injection and helium gas fueling. Here, the ions are indirectly heated, and at a central density of 8 . 10(19 )m(-3) a temperature of 3.4 keV with T-e/T-i = 1 was transiently accomplished, which corresponds to nT(i)(0)tau(E) = 6.4 x 10(19) keV s m(-3) with a peak diamagnetic energy of 1.1 MJ and volume-averaged normalized plasma pressure = 1.2%. The routine access to high plasma densities was opened with boronization of the first wall. After boronization, the oxygen impurity content was reduced by a factor of 10, the carbon impurity content by a factor of 5. The reduced (edge) plasma radiation level gives routinely access to higher densities without radiation collapse, e.g. well above 1 x 10(20) m(-2) line integrated density and T-e = T-i = 2 keV central temperatures at moderate ECRH power. Both X2 and O2 mode ECRH schemes were successfully applied. Core turbulence was measured with a phase contrast imaging diagnostic and suppression of turbulence during pellet injection was observed.Item Overview of physics studies on ASDEX Upgrade(IOP PUBLISHING LTD, 2019-07-22) Meyer, H.; Angioni, C.; Albert, C. G.; Arden, Nils; Arredondo Parra, R.; Asunta, O.; De Baar, M.; Balden, M.; Bandaru, V.; Behler, K.; Bergmann, A.; Bernardo, J.; Bernert, M.; Biancalani, A.; Bilato, R.; Birkenmeier, G.; Blanken, T. C.; Bobkov, V.; Bock, A.; Bolzonella, T.; Bortolon, A.; Böswirth, B.; Bottereau, C.; Bottino, A.; Van Den Brand, H.; Brezinsek, S.; Brida, D.; Brochard, F.; Bruhn, C.; Buchanan, J.; Buhler, A.; Burckhart, A.; Camenen, Y.; Carlton, D.; Carr, M.; Carralero, D.; Castaldo, C.; Cavedon, M.; Cazzaniga, C.; Ceccuzzi, S.; Challis, C.; Chankin, A.; Chapman, S.; Cianfarani, C.; Clairet, F.; Coda, S.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G. D.; Costea, S.; Coster, D. P.; Cote, T. B.; Creely, A.; Croci, G.; Cseh, G.; Czarnecka, A.; Cziegler, I.; D'Arcangelo, O.; David, P.; Day, C.; Delogu, R.; De Marné, P.; Denk, S. S.; Denner, P.; Dibon, M.; Di Siena, A.; Douai, D.; Drenik, A.; Drube, R.; Dunne, M.; Duval, B. P.; Dux, R.; Eich, T.; Elgeti, S.; Engelhardt, K.; Erdös, B.; Erofeev, I.; Esposito, B.; Fable, E.; Faitsch, M.; Fantz, U.; Faugel, H.; Faust, I.; Felici, F.; Ferreira, J.; Fietz, S.; Figuereido, A.; Fischer, R.; Ford, O.; Frassinetti, L.; Freethy, S.; Fröschle, M.; Fuchert, G.; Fuchs, J. C.; Fünfgelder, H.; Galazka, K.; Galdon-Quiroga, J.; Gallo, A.; Gao, Y.; Garavaglia, S.; Garcia-Carrasco, A.; Garcia-Munoz, M.; Geiger, B.; Giannone, L.; Gil, L.; Giovannozzi, E.; Gleason-González, C.; Glöggler, S.; Gobbin, M.; Görler, T.; Gomez Ortiz, I.; Gonzalez Martin, J.; Goodman, T.; Gorini, G.; Gradic, D.; Grater, A.; Granucci, G.; Greuner, H.; Griener, M.; Groth, M.; Gude, A.; Günter, Sibylle; Guimarais, L.; Haas, G.; Hakola, A. H.; Ham, C.; Happel, T.; Den Harder, N.; Harrer, G. F.; Harrison, J.; Hauer, V.; Hayward-Schneider, T.; Hegna, C. C.; Heinemann, B.; Heinzel, S.; Hellsten, T.; Henderson, S.; Hennequin, P.; Herrmann, A.; Heyn, M. F.; Heyn, E.; Hitzler, F.; Hobirk, J.; Höfler, K.; Hölzl, M.; Höschen, T.; Holm, J. H.; Hopf, C.; Hornsby, W. A.; Horvath, L.; Houben, A.; Huber, A.; Igochine, V.; Ilkei, T.; Ivanova-Stanik, I.; Jacob, W.; Jacobsen, A. S.; Janky, F.; Jansen Van Vuuren, A.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Joffrin, E.; Kasemann, C. P.; Kallenbach, A.; Kálvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Karhunen, J.; Kasilov, S.; Kazakov, Y.; Kernbichler, W.; Kirk, A.; Kjer Hansen, S.; Klevarova, V.; Kocsis, G.; Köhn, A.; Koubiti, M.; Krieger, K.; Krivska, A.; Kramer-Flecken, A.; Kudlacek, O.; Kurki-Suonio, T.; Kurzan, B.; Labit, B.; Lackner, K.; Laggner, F.; Lang, P. T.; Lauber, P.; Lebschy, A.; Leuthold, N.; Li, M.; Linder, O.; Lipschultz, B.; Liu, Fukun; Liu, Y. Q.; Lohs, A.; Lu, Z.; Luda Di Cortemiglia, T.; Luhmann, N. C.; Lunsford, R.; Lunt, T.; Lyssoivan, A.; Maceina, T.; Madsen, J.; Maggiora, R.; Maier, H.; Maj, O.; Mailloux, J.; Maingi, R.; Maljaars, E.; Manas, P.; Mancini, A.; Manhard, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manz, P.; Maraschek, M.; Martens, C.; Martin, P.; Marrelli, L.; Martitsch, A.; Mayer, M.; Mazon, D.; McCarthy, P. J.; McDermott, R.; Meister, H.; Medvedeva, A.; Merkel, R.; Merle, A.; Mertens, V.; Meshcheriakov, D.; Meyer, O.; Miettunen, J.; Milanesio, D.; Mink, F.; Mlynek, A.; Monaco, F.; Moon, C.; Nabais, F.; Nemes-Czopf, A.; Neu, G.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nocente, M.; Noterdaeme, J. M.; Novikau, I.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrcil, T.; Olsen, J.; Orain, F.; Palermo, F.; Pan, O.; Papp, G.; Paradela Perez, I.; Pau, A.; Pautasso, G.; Penzel, F.; Petersson, P.; Pinzón Acosta, J.; Piovesan, P.; Piron, C.; Pitts, R.; Plank, U.; Plaum, B.; Ploeckl, B.; Plyusnin, V.; Pokol, G.; Poli, E.; Porte, L.; Potzel, S.; Prisiazhniuk, D.; Pütterich, T.; Ramisch, M.; Rasmussen, J.; Rattá, G. A.; Ratynskaia, S.; Raupp, G.; Ravera, G. L.; Réfy, D.; Reich, M.; Reimold, F.; Reiser, D.; Ribeiro, T.; Riesch, J.; Riedl, R.; Rittich, D.; Rivero-Rodriguez, J. F.; Rocchi, G.; Rodriguez-Ramos, M.; Rohde, V.; Ross, A.; Rott, M.; Rubel, M.; Ryan, D.; Ryter, F.; Saarelma, S.; Salewski, M.; Salmi, A.; Sanchis-Sanchez, L.; Santos, J.; Sauter, O.; Scarabosio, A.; Schall, G.; Schmid, K.; Schmitz, O.; Schneider, P. A.; Schrittwieser, R.; Schubert, M.; Schwarz-Selinger, T.; Schweinzer, J.; Scott, B.; Sehmer, T.; Seliunin, E.; Sertoli, M.; Shabbir, A.; Shalpegin, A.; Shao, Linming; Sharapov, S.; Sias, G.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Silva, C.; Silvagni, D.; Simon, P.; Simpson, J.; Smigelskis, E.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spolaore, M.; Stegmeir, A.; Stejner, M.; Stober, J.; Stroth, U.; Strumberger, E.; Suarez, G.; Sun, H. J.; Suttrop, W.; Sytova, E.; Szepesi, T.; Tál, B.; Tala, T.; Tardini, G.; Tardocchi, M.; Teschke, M.; Terranova, D.; Tierens, W.; Thorén, E.; Told, D.; Tolias, P.; Tudisco, O.; Treutterer, W.; Trier, E.; Tripský, M.; Valisa, M.; Valovic, M.; Vanovac, B.; Van Vugt, D.; Varoutis, S.; Verdoolaege, G.; Vianello, N.; Vicente, J.; Vierle, T.; Viezzer, E.; Von Toussaint, U.; Wagner, D.; Wang, N.; Wang, Xianqu; Weiland, M.; White, A. E.; Wiesen, S.; Willensdorfer, M.; Wiringer, B.; Wischmeier, M.; Wolf, R.; Wolfrum, E.; Xiang, L.; Yang, Q.; Yang, Z.; Yu, Q.; Zagórski, R.; Zammuto, I.; Zhang, Wei; Van Zeeland, M.; Zehetbauer, T.; Zilker, M.; Zoletnik, S.; Zohm, H.; Department of Applied Physics; Fusion and Plasma Physics; Culham Science Centre; Max-Planck-Institut für Plasmaphysik; Dutch Institute for Fundamental Energy Research; University of Lisbon; Eindhoven University of Technology; National Research Council of Italy; Princeton University; French Alternative Energies and Atomic Energy Commission; Forschungszentrum Jülich; Université de Lorraine; CNRS; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; University of Warwick; Swiss Federal Institute of Technology Lausanne; University of Innsbruck; University of Wisconsin-Madison; Massachusetts Institute of Technology; Hungarian Academy of Sciences; Soltan Institute for Nuclear Studies; University of York; Karlsruhe Institute of Technology; KTH Royal Institute of Technology; University of Seville; University of Milano-Bicocca; Vienna University of Technology; Max-Planck Computing and Data Facility; General Atomics; Université Paris-Saclay; Graz University of Technology; Institut für Grenzflachenverfahrenstechnik und Plasmatechnologie; Danmarks Tekniske Universitet; Budapest University of Technology and Economics; Polish Academy of Sciences; Royal Military Academy; Ghent University; ITER; University of California, Davis; Polytechnic University of Turin; Barcelona Supercomputing Center; University College Cork; Chalmers University of Technology; University of Cagliari; VTT Technical Research Centre of Finland; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; CAS - Institute of Plasma Physics; Max Planck Institute for Plasma PhysicsThe ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.Item Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall(IOP PUBLISHING LTD, 2019-11) Joffrin, E.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afanasev; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Alarcon, T.; Albanese, Raffaele; Alegre, D.; Aleiferis, S.; Alessi, E.; Aleynikov, P.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amosov, V.; Sunden, E. Andersson; Andrews, R.; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arshad, S.; Artaud, J.; Arter, W.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Asztalos, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M.; Ayres, C.; Baciero, A.; Baiao, D.; Balboa, I.; Balden, M.; Balshaw, N.; Bandaru, V. K.; Banks, J.; Baranov, Y. F.; Barcellona, C.; Barnard, T.; Barnes, M.; Barnsley, R.; Wiechec, A. Baron; Barrera Orte, L.; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baumane, L.; Bauvir, B.; Baylor, L.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Belonohy, E.; Benayas, J.; Bergsaker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besiliu, C.; Betar, H.; Beurskens, M.; Bielecki, J.; Biewer, T.; Bilato, R.; Biletskyi, O.; Bilkova, P.; Binda, F.; Birkenmeier, G.; Bizarro, J. P. S.; Bjorkas, C.; Blackburn, J.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.V.; Boboc, A.; Bogar, O.; Bohm, P.; Bohm, T.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Boncagni, L.; Bonfiglio, D.; Bonnin, X.; Boom, J.; Borba, D.; Borodin, D.; Borodkina, I.; Boulbe, C.; Bourdelle, C.; Bowden, M.; Bowman, C.; Boyce, T.; Boyer, H.; Bradnam, S. C.; Braic, V.; Bravanec, R.; Breizman, B.; Brennan, D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M.; Brix, M.; Broeckx, W.; Brombin, M.; Broslawski, A.; Brown, B. C.; Brunetti, D.; Bruno, E.; Buch, J.; Buchanan, J.; Buckingham, R.; Buckley, M.; Bucolo, M.; Budny, R.; Bufferand, H.; Buller, S.; Bunting, P.; Buratti, P.; Burckhart, A.; Burroughes, G.; Buscarino, A.; Busse, A.; Butcher, D.; Butler, B.; Bykov, I.; Cahyna, P.; Calabro, G.; Calacci, L.; Callaghan, D.; Callaghan, J.; Calvo, Iván; Camenen, Y.; Camp, P.; Campling, D. C.; Cannas, B.; Capat, A.; Carcangiu, S.; Card, P.; Cardinali, A.; Carman, P.; Carnevale, D.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, Sergio; Carvalho, P.; Carvalho, D. D.; Casson, F. J.; Castaldo, C.; Catarino, N.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavedon, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Challis, C. D.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, B.; Chapman, S. C.; Chernyshova, M.; Chiariello, A.; Chitarin, G.; Chmielewski, P.; Chone, L.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, M.; Clark, E.; Clarkson, R.; Clay, R.; Clements, C.; Coad, J. P.; Coates, P.; Cobalt, A.; Coccorese, V.; Cocilovo, W.; Coelho, R.; Coenen, J. W.; Coffey, I. H.; Colas, L.; Colling, B.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Coster, D.; Craciunescu, T.; Cramp, S.; Crapper, C.; Crisanti, F.; Croci, G.; Croft, D.; Crombe, K.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curson, P.; Curuia, M.; Czarnecka, A.; Czarski, T.; Cziegler, I.; Dabirikhah, H.; Dal Molin, A.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; David, P.; Davies, A.; Davis, W.; Dawson, K.; Day, C.; De Bock, M.; de Castro, A.; De Dominici, G.; de la Cal, E.; de la Luna, E.; De Masi, G.; De Temmerman, G.; De Tommasi, G.; de Vries, P.; Deane, J.; Dejarnac, R.; Del Sarto, D.; Delabie, E.; Demerdzhiev; Dempsey, A.; den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Di Maio, F.; Di Siena, A.; Di Troia, C.; Dickinson, D.; Dinca, P.; Dittmar, T.; Dobrashian, J.; Doerk, H.; Doerner, R. P.; Domptail, F.; Donne, T.; Dorling, S. E.; Douai, D.; Dowson, S.; Drenik, A.; Dreval, M.; Drewelow, P.; Drews, P.; Duckworth, Ph; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; Duran, I.; Durodie, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Edappala, P.; Edwards, A. M.; Edwards, J. S.; Eich, Th; Eidietis, N.; Eksaeva, A.; Ellis, R.; Ellwood, G.; Elsmore, C.; Emery, S.; Enachescu, M.; Ericsson, G.; Eriksson, J.; Eriksson, F.; Eriksson, L. G.; Ertmer, S.; Esquembri, S.; Esquisabel, A. L.; Esser, H. G.; Ewart, G.; Fable, E.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Farahani, A.; Fasoli, A.; Faugeras, B.; Fazinic, S.; Felici, F.; Felton, R. C.; Feng, S.; Fernades, A.; Fernandes, H.; Ferreira, J.; Ferreira, D. R.; Ferro, G.; Fessey, J. A.; Ficker, O.; Field, A.; Fietz, S.; Figini, L.; Figueiredo, J.; Figueiredo, A.; Fil, N.; Finburg, P.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Flinders, K.; Foley, S.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fransson, E.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Fridstrom, R.; Frigione, D.; Fuchs, JC; Fusco, P.; Futatani, S.; Gal, K.; Galassi, D.; Galazka, K.; Galeani, S.; Gallart, D.; Galvao, R.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; Garcia-Munoz, M.; Gardener, M.; Garzotti, L.; Gaspar, J.; Gaudio, P.; Gear, D.; Gebhart, T.; Gee, S.; Geiger, B.; Gelfusa, M.; George, R.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Ghezzi, F.; Giacalone, J. C.; Giacomelli, L.; Giacometti, G.; Gibson, K.; Giegerich, T.; Gil, L.; Gilbert, M. R.; Gin, D.; Giovannozzi, E.; Giroud, C.; Gloeggler, S.; Goff, J.; Gohil, P.; Goloborod'ko, V.; Gomes, R.; Goncalves, B.; Goniche, M.; Goodyear, A.; Gorini, G.; Goerler, T.; Goulding, R.; Goussarov, A.; Graham, B.; Graves, J. P.; Greuner, H.; Grierson, B.; Griffiths, J.; Griph, S.; Grist, D.; Groth, M.; Grove, R.; Gruca, M.; Guard, D.; Guerard, C.; Guillemaut, C.; Guirlet, R.; Gulati, S.; Gurl, C.; Gutierrez-Milla, A.; Utoh, H. H.; Hackett, L.; Hacquin, S.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S.; Hallworth-Cook, S.; Ham, C.; Hamed, M.; Hamilton, N.; Hamlyn-Harris, C.; Hammond, K.; Hancu, G.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Hazel, S.; Heesterman, P.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O.; Hender, T. C.; Henderson, S. S.; Henderson, M.; Henriques, R.; Hepple, D.; Herfindal, J.; Hermon, G.; Hidalgo, C.; Higginson, W.; Highcock, E. G.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Ho, A.; Hobirk, J.; Hogben, C. H. A.; Hogeweij, G. M. D.; Hollingsworth, A.; Hollis, S.; Hoelzl, M.; Honore, J-J; Hook, M.; Hopley, D.; Horacek, J.; Hornung, G.; Horton, A.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Howell, R.; Hubbard, A.; Huber, A.; Huber, Reto; Huddleston, T. M.; Hughes, M.; Hughes, J.; Huijsmans, G. T. A.; Huynh, P.; Hynes, A.; Igaune, I.; Iglesias, D.; Imazawa, N.; Imrisek, M.; Incelli, M.; Innocente, P.; Ivanova-Stanik, I.; Ivings, E.; Jachmich, S.; Jackson, A.; Jackson, T.; Jacquet, P.; Jansons, J.; Jaulmes, F.; Jednorog, S.; Jenkins, Ian; Jepu, I.; Johnson, T.; Johnson, R.; Johnston, J.; Joita, L.; Joly, J.; Jonasson, E.; Jones, T.; Jones, C.; Jones, L.; Jones, G.; Jones, N.; Juvonen, M.; Hoshino, K. K.; Kallenbach, A.; Kalsey, M.; Kaltiaisenaho, T.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, F. P.; Kempenaars, M.; Kent, O.; Kent, J.; Keogh, K.; Khilkevich, E.; Kim, H. T.; King, R.; King, D.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klas, M.; Klepper, C.; Klix, A.; Knight, M.; Knight, P.; Knipe, S.; Knott, S.; Kobuchi, T.; Kochl, F.; Kocsis, G.; Kodeli, I.; Koechl, F.; Kogut, D.; Koivuranta, S.; Kolesnichenko, Y.; Kollo, Z.; Kominis, Y.; Koeppen, M.; Korolczuk, S.; Kos, B.; Koslowski, H. R.; Kotschenreuther, M.; Koubiti, M.; Kovaldins, R.; Kovanda, O.; Kowalska-Strzeciwilk, E.; Krasilnikov, A.; Krasilnikov, AV; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Ksiazek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lalousis, P.; Lam, N.; Lamb, C.; Lambertz, H. T.; Lang, P. T.; Lanthaler, S.; Neto, E. Lascas; Laszynska, E.; Lawless, R.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leach, R.; Learoyd, G.; Leerink, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichauer, P.; Leichtle, D.; Leipold, F.; Lengar, I.; Lennholm, M.; Lepiavko, B.; Leppanen, J.; Lerche, E.; Lescinskis, A.; Lescinskis, B.; Lesnoj, S.; Leyland, M.; Leysen, W.; Li, Y.; Li, Li; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch; Lipschultz, B.; Litaudon, X.; Liu, G.; Lloyd, B.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lomanowski, B.; Lomas, P. J.; Lonnroth, J.; Lopez, J. M.; Lorenzini, R.; Losada, U.; Loughlin, M.; Lowry, C.; Luce, T.; Lucock, R.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lunt, T.; Lupelli, I.; Lutsenko, VN; Lyssoivan, A.; Macheta, P.; Macusova, E.; Magesh, B.; Maggi, C.; Maggiora, R.; Mahesan, S.; Maier, H.; Mailloux, J.; Maingi, R.; Makwana, R.; Malaquias, A.; Malinowski, K.; Malizia, A.; Manas, P.; Manduchi, G.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marconato, N.; Mariani, A.; Marin, M.; Marinelli, M.; Marinucci, M.; Markovic, T.; Marocco, D.; Marot, L.; Marsh, J.; Martin, A.; Martin de Aguilera, A.; Martin-Solis, J. R.; Martone, R.; Martynova, Y.; Maruyama, So; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Matveev, D.; Matveeva, E.; Mauriya, A.; Maviglia, F.; May-Smith, T.; Mayer, M.; Mayoral, M. L.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McHardy, M.; McKean, R.; McKehon, J.; McNamee, L.; Meadowcroft, C.; Meakins, A.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meiter, S.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merle, A.; Merriman, P.; Mertens, Ph; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Michling, R.; Milanesio, D.; Militello, F.; Militello-Asp, E.; Milocco, A.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miron, Luiciana Ines Comes; Mistry, S.; Miyoshi, Y.; Mlynar, J.; Moiseenko; Monaghan, P.; Monakhov, I.; Moon, S.; Mooney, R.; Moradi, S.; Morales, J.; Moran, J.; Mordijck, S.; Moreira, L.; Moro, F.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Mrowetz, T.; Muir, A.; Muraglia, M.; Murari, A.; Muraro, A.; Murphy, S.; Muscat, P.; Muthusonai, N.; Myers, C.; Asakura, N. N.; N'Konga, B.; Nabais, F.; Naish, R.; Naish, J.; Nakano, T.; Napoli, F.; Nardon, E.; Naulin, V.; Nave, M. F. F.; Nedzelskiy; Nemtsev, G.; Nesenevich, V. G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Ng, S.; Nicassio, M.; Nielsen, A. H.; Nina, D.; Nishijima, D.; Noble, C.; Nobs, C. R.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Normanton, R.; Noterdaeme, J. M.; Nowak, S.; Nunes, I.M.; O'Gorman, T.; O'Mullane, M.; Oberkofler, M.; Oberparleiter, M.; Odupitan, T.; Ogawa, M. T.; Okabayashi, M.; Oliver, H.; Olney, R.; Omoregie, L.; Ongena, J.; Orsitto, F.; Orszagh, J.; Osborne, T.; Otin, R.; Owen, A.; Owen, T.; Paccagnella, R.; Packer, L. W.; Pajuste, E.; Pamela, S.; Panja, S.; Papp, P.; Papp, G.; Parail, V; Pardanaud, C.; Diaz, F. Parra; Parsloe, A.; Parsons, N.; Parsons, M.; Pasqualotto, R.; Passeri, M.; Patel, A.; Pathak, S.; Patten, H.; Pau, A.; Pautasso, G.; Pavlichenko, R.; Pavone, A.; Pawelec, E.; Soldan, C. Paz; Peackoc, A.; Pehkonen, S-P; Peluso, E.; Penot, C.; Penzo, J.; Pepperell, K.; Pereira, R.; Cippo, E. Perelli; von Thun, C. Perez; Pericoli, V.; Peruzzo, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrzilka, V.; Philipps, V.; Pigatto, L.; Pillon, M.; Pinches, S.; Pintsuk, G.; Piovesan, P.; de Sa, W. Pires; Pires dos Reis, A.; Piron, L.; Piron, C.; Pironti, A.; Pisano, F.; Pitts, R.; Plyusnin, V; Poli, F. M.; Pomaro, N.; Pompilian, O. G.; Pool, P.; Popovichev, S.; Poradzinski, M.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Poulipoulis, G.; Powell, T.; Prajapati, Manish; Prakash, R.; Predebon, I.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Primetzhofer, D.; Prior, P.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Purahoo, K.; Pusztai, L.; Puetterich, Th; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M.; Raj, P.; Rakha, A.; Ramogida, G.; Rapson, C. J.; Rasmussen, D.; Rasmussen, J. J.; Rathod, K.; Ratta, G.; Ratynskaia, S.; Ravera, G.; Rebai, M.; Reed, A.; Refy, D.; Regana, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Cortes, S. D. A. Reyes; Reynolds, S.; Ricci, D.; Richiusa, M.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Rivero-Rodriguez, J.; Roach, C.; Robins, R.; Robinson, S.; Robson, D.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, Volker; Romanelli, M.; Romanelli, F.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Saez, X.; Safi, E.; Sahlberg, A.; Saibene, G.; Saleem, M.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I. K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schluck, F.; Schlummer, T.; Schmid, K.; Schmuck, S.; Schoepf, K.; Schweinzer, J.; Schworer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shiraki, D.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, J.; Silva, A.; Silva, C.; Silvagni, D.; Simmons, P.; Simpson, J.; Sinha, A.; Sipila, S. K.; Sips, A. C. C.; Siren, Paula; Sirinelli, A.; Sjostrand, H.; Skiba, M.; Skilton, R.; Skvara; Slade, B.; Smith, R.; Smith, P.; Smith, S. F.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sos, M.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Sparapani, P.; Spelzini, T.; Spineanu, F.; Sprada, D.; Sridhar, S.; Stables, G.; Stallard, J.; Stamatelatos, I.; Stamp, M. F.; Stan-Sion, C.; Stancar, Z.; Staniec, P.; Stankunas, G.; Stano, M.; Stavrou, C.; Stefanikova, E.; Stepanov, A.Y.; Stephen, A.; Stephen, M.; Stephens, J.; Stevens, B.; Stober, J.; Stokes, C.; Strachan, J.; Strand, P.; Strauss, H. R.; Strom, P.; Studholme, W.; Subba, F.; Suchkov, E.; Summers, H. P.; Sun, H.; Sutton, N.; Svensson, J.; Sytnykov, D.; Szabolics, T.; Szepesi, G.; Suzuki, T. T.; Tabares, F.; Tadic, T.; Tal, B.; Tala, T.; Taliercio, C.; Tallargio, A.; Tanaka, K.; Tang, W.; Tardocchi, M.; Tatali, R.; Taylor, D.; Tegnered, D.; Telesca, G.; Teplova, N.; Teplukhina, A.; Terranova, D.; Terry, C.; Testa, D.; Tholerus, E.; Thomas, J.; Thompson, V. K.; Thornton, A.; Tierens, W.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomes, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Tskhakaya, D.; Jun, D. Tskhakaya; Turner, A.D.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyshchenko, M.; Uccello, A.; Uljanovs, J.; Urano, H.; Urban, A.; Urbanczyk, G.; Uytdenhouwen, I.; Vadgama, A.; Valcarcel, D.; Vale, R.; Valentinuzzi, M.; Valerii, K.; Valisa, M.; Olivares, P. Vallejos; Valovic, M.; Van Eester, D.; Van Renterghem, W.; van Rooij, G. J.; Varje, J.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vecsei, M.; Vega, J.; Ventre, S.; Verdoolaege, G.; Verona, C.; Rinati, G. Verona; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincent, M.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Voltolina, D.; von Toussaint, U.; Vondracek, P.; Vuksic, M.; Wakeling, B.; Waldon, C.; Walkden, N.; Walker, R.; Walker, M.; Walsh, M.; Wang, N.; Wang, E.; Warder, S.; Warren, R.; Waterhouse, J.; Watts, C.; Wauters, T.; Webb, M.; Weckmann, A.; Weiland, J.; Weiland, M.; Weisen, H.; Weiszflog, M.; Welch, P.; West, A.; Wheatley, M.; Wheeler, S.; Whitehead, A. M.; Whittaker, D.; Widdowson, A. M.; Wiesen, S.; Wilkie, G.; Williams, J.; Willoughby, D.; Wilson, J.; Wilson, P.; Wilson, H. R.; Wischmeier, M.; Withycombe, A.; Witts, D.; Wolfrum, E.; Wood, R.; Woodley, R.; Woodley, C.; Wray, S.; Wright, J. C.; Wright, P.; Wukitch, S.; Wynn, A.; Xiang, L.; Xu, T.; Xue, Y.; Yadikin, D.; Yakovenko, Y.; Yanling, W.; Yavorskij, Viktor; Young, E.S.K.; Young, R.; Young, D.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zakharov, L.; Zanino, R.; Zarins, A.; Zarins, R.; Fernandez, D. Zarzoso; Zastrow, K. D.; Zerbini, M.; Zhang, W.; Zhou, Y.; Zilli, E.; Zocco, A.; Zoita, V.L.; Zoletnik, S.; Zwingmann, W.; Zychor, I.; Ranjan, Sutapa; Department of Applied Physics; School services, ELEC; Automaatio- ja systeemitekniik; School services,SCI; Fusion and Plasma Physics; French Alternative Energies and Atomic Energy Commission; Forschungszentrum Jülich; Institute for Plasma Research; Universidade de Lisboa; St. Petersburg Scientific Centre; Culham Science Centre; Queen's University Belfast; University of Helsinki; National Institutes for Quantum and Radiological Science and Technology; Consorzio CREATE; EURATOM/CIEMAT; National Centre for Scientific Research "Demokritos"; Consiglio Nazionale delle Ricerche (CNR); ITER; Kurchatov Institute; Troitskii Institute of Innovative and Thermonuclear Research; Uppsala University; ENEA Frascati Research Center; National Institute of Research and Development for Cryogenic and Isotopic Technologies; Max Planck Institute for Plasma Physics; University of Catania; Fusion Energy Joint Undertaking; Massachusetts Institute of Technology; EURATOM HAS; Consorzio RFX; University of Latvia; University of Oxford; EUROfusion Programme Management Unit; Oak Ridge National Laboratory; KTH Royal Institute of Technology; Université de Lorraine; Institute of Nuclear Physics of the Polish Academy of Sciences; National Academy of Sciences of Ukraine; Institute of Plasma Physics of the Czech Academy of Sciences; Swiss Federal Institute of Technology Lausanne; Comenius University Bratislava; University of Wisconsin-Madison; Lviv Polytechnic National University; University of Milano-Bicocca; Université Côte d'Azur; University of York; National Institute for Research and Development in Optoelectronics; Fourth State Research in Austin; University of Texas at Austin; Belgian Nuclear Research Centre; National Centre for Nuclear Research; Princeton University; Chalmers University of Technology; Tuscia University; University of Rome Tor Vergata; Aix-Marseille Université; University of Cagliari; University of Warwick; Institute of Plasma Physics and Laser Microfusion; Dutch Institute for Fundamental Energy Research; National Institute for Laser, Plasma and Radiation Physics; Ghent University; Jožef Stefan Institute; Karlsruhe Institute of Technology; Dublin City University; University of California, San Diego; Ecole Royale Militaire; General Atomics & Affiliated Companies; Horia Hulubei National Institute of Physics and Nuclear Engineering; Universidad Politécnica de Madrid; Ruder Boskovic Institute; Polytechnic University of Catalonia; Barcelona Supercomputing Center; Centro Brasileiro de Pesquisas Físicas; University of Seville; University of Innsbruck; University of Toyama; University of Strathclyde; National Technical University of Athens; European Commission; VTT Technical Research Centre of Finland; University College Cork; Vienna University of Technology; University of Opole; Daegu University; Foundation for Research and Technology - Hellas; PELIN LLC; Arizona State University; Polytechnic University of Turin; ICREA; Complutense University of Madrid; University of Basel; Universidad Carlos III de Madrid; Purdue University; Technical University of Denmark; University of California, Berkeley; Universidade de São Paulo; University of Ioannina; Lithuanian Energy Institute; University of Bath; HRS Fusion; National Institute for Fusion ScienceFor the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.Item Overview of the JET results in support to ITER(2017-06-15) Litaudon, X.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Ahn, J. H.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Albanese, R.; Aldred, V.; Alegre, D.; Alessi, E.; Aleynikov, P.; Alfier, A.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amicucci, L.; Amosov, V.; Andersson Sundén, E.; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arnichand, H.; Arshad, S.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M. D.; Ayres, C.; Bacharis, M.; Baciero, A.; Baiáo, D.; Bailey, S.; Baker, A.; Balboa, I.; Balden, M.; Balshaw, N.; Bament, R.; Banks, J. W.; Baranov, Y. F.; Barnard, M. A.; Barnes, D.; Barnes, M.; Barnsley, R.; Baron Wiechec, A.; Barrera Orte, L.; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baughan, R.; Bauvir, B.; Baylor, L.; Bazylev, B.; Beal, J.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Becoulet, A.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Bellinger, M.; Belonohy; Ben Ayed, N.; Benterman, N. A.; Bergsåker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besliu, C.; Beurskens, M.; Bieg, B.; Bielecki, J.; Biewer, T.; Bigi, M.; Bílková, P.; Binda, F.; Bisoffi, A.; Bizarro, J. P.S.; Björkas, C.; Blackburn, J.; Blackman, K.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.; Boboc, A.; Bodnár, G.; Bogar, O.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Bonelli, F.; Boom, J.; Booth, J.; Borba, D.; Borodin, D.; Borodkina, I.; Botrugno, A.; Bottereau, C.; Boulting, P.; Bourdelle, C.; Bowden, M.; Bower, C.; Bowman, C.; Boyce, T.; Boyd, C.; Boyer, H. J.; Bradshaw, J. M.A.; Braic, V.; Bravanec, R.; Breizman, B.; Bremond, S.; Brennan, P. D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M. D.J.; Brix, M.; Broeckx, W.; Brombin, M.; Brosławski, A.; Brown, D. P.D.; Brown, M.; Bruno, E.; Bucalossi, J.; Buch, J.; Buchanan, J.; Buckley, M. A.; Budny, R.; Bufferand, H.; Bulman, M.; Bulmer, N.; Bunting, P.; Buratti, P.; Burckhart, A.; Buscarino, A.; Busse, A.; Butler, N. K.; Bykov, I.; Byrne, J.; Cahyna, P.; Calabrò, G.; Calvo, I.; Camenen, Y.; Camp, P.; Campling, D. C.; Cane, J.; Cannas, B.; Capel, A. J.; Card, P. J.; Cardinali, A.; Carman, P.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, I.; Carvalho, P.; Casson, F. J.; Castaldo, C.; Catarino, N.; Caumont, J.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavinato, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Cenedese, A.; Cesario, R.; Challis, C. D.; Chandler, M.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, S. C.; Chernyshova, M.; Chitarin, G.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, E.; Clark, M.; Clarkson, R.; Clatworthy, D.; Clements, C.; Cleverly, M.; Coad, J. P.; Coates, P. A.; Cobalt, A.; Coccorese, V.; Cocilovo, V.; Coda, S.; Coelho, R.; Coenen, J. W.; Coffey, I.; Colas, L.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Cortes, S.; Coster, D.; Couchman, A. S.; Cox, M. P.; Craciunescu, T.; Cramp, S.; Craven, R.; Crisanti, F.; Croci, G.; Croft, D.; Crombé, K.; Crowe, R.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curuia, M.; Czarnecka, A.; Dabirikhah, H.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; Davies, O.; Davis, W.; Day, C.; Day, I. E.; De Bock, M.; De Castro, A.; De La Cal, E.; De La Luna, E.; De Masi, G.; De Pablos, J. L.; De Temmerman, G.; De Tommasi, G.; De Vries, P.; Deakin, K.; Deane, J.; Degli Agostini, F.; Dejarnac, R.; Delabie, E.; Den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Di Maio, F.; Di Siena, A.; Di Troia, C.; Dinca, P.; D'Inca, R.; Ding, B.; Dittmar, T.; Doerk, H.; Doerner, R. P.; Donné, T.; Dorling, S. E.; Dormido-Canto, S.; Doswon, S.; Douai, D.; Doyle, P. T.; Drenik, A.; Drewelow, P.; Drews, P.; Duckworth, Ph; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; ĎUran, I.; Durodié, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Dzysiuk, N.; Edappala, P. V.; Edmond, J.; Edwards, A. M.; Edwards, J.; Eich, Th; Ekedahl, A.; El-Jorf, R.; Elsmore, C. G.; Enachescu, M.; Ericsson, G.; Eriksson, F.; Eriksson, J.; Eriksson, L. G.; Esposito, B.; Esquembri, S.; Esser, H. G.; Esteve, D.; Evans, B.; Evans, G. E.; Evison, G.; Ewart, G. D.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Fasoli, A.; Faustin, J. M.; Fawlk, N.; Fazendeiro, L.; Fedorczak, N.; Felton, R. C.; Fenton, K.; Fernades, A.; Fernandes, H.; Ferreira, J.; Fessey, J. A.; Février, O.; Ficker, O.; Field, A.; Fietz, S.; Figueiredo, A.; Figueiredo, J.; Fil, A.; Finburg, P.; Firdaouss, M.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Fleming, C.; Flinders, K.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fortuna-Zalesna, E.; Fortune, M.; Foster, S.; Franke, T.; Franklin, T.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Frigione, D.; Fuchs, V.; Fuller, D.; Futatani, S.; Fyvie, J.; Gál, K.; Galassi, D.; Gałazka, K.; Galdon-Quiroga, J.; Gallagher, J.; Gallart, D.; Galváo, R.; Gao, X.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; García-Muñoz, M.; Gardarein, J. L.; Garzotti, L.; Gaudio, P.; Gauthier, E.; Gear, D. F.; Gee, S. J.; Geiger, B.; Gelfusa, M.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Giacalone, J. C.; Giacomelli, L.; Gibson, C. S.; Giegerich, T.; Gil, C.; Gil, L.; Gilligan, S.; Gin, D.; Giovannozzi, E.; Girardo, J. B.; Giroud, C.; Giruzzi, G.; Glöggler, S.; Godwin, J.; Goff, J.; Gohil, P.; Goloborod'Ko, V.; Gomes, R.; Goncalves, B.; Goniche, M.; Goodliffe, M.; Goodyear, A.; Gorini, G.; Gosk, M.; Goulding, R.; Goussarov, A.; Gowland, R.; Graham, B.; Graham, M. E.; Graves, J. P.; Grazier, N.; Grazier, P.; Green, N. R.; Greuner, H.; Grierson, B.; Griph, F. S.; Grisolia, C.; Grist, D.; Groth, M.; Grove, R.; Grundy, C. N.; Grzonka, J.; Guard, D.; Guérard, C.; Guillemaut, C.; Guirlet, R.; Gurl, C.; Utoh, H. H.; Hackett, L. J.; Hacquin, S.; Hagar, A.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S. J.; Hallworth Cook, S. P.; Hamlyn-Harris, C.; Hammond, K.; Harrington, C.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T. D.V.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Haydon, P. W.; Hayter, N.; Hazel, S.; Heesterman, P. J.L.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O. N.; Hender, T. C.; Henderson, M.; Henderson, S. S.; Henriques, R.; Hepple, D.; Hermon, G.; Hertout, P.; Hidalgo, C.; Highcock, E. G.; Hill, M.; Hillairet, J.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Hobirk, J.; Hodille, E.; Hogben, C. H.A.; Hogeweij, G. M.D.; Hollingsworth, A.; Hollis, S.; Homfray, D. A.; Horáček, J.; Hornung, G.; Horton, A. R.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Hough, M. R.; Howarth, P. J.; Hubbard, A.; Huber, A.; Huber, V.; Huddleston, T. M.; Hughes, M.; Huijsmans, G. T.A.; Hunter, C. L.; Huynh, P.; Hynes, A. M.; Iglesias, D.; Imazawa, N.; Imbeaux, F.; Imríšek, M.; Incelli, M.; Innocente, P.; Irishkin, M.; Ivanova-Stanik, I.; Jachmich, S.; Jacobsen, A. S.; Jacquet, P.; Jansons, J.; Jardin, A.; Järvinen, A.; Jaulmes, F.; Jednoróg, S.; Jenkins, I.; Jeong, C.; Jepu, I.; Joffrin, E.; Johnson, R.; Johnson, Thomas; Johnston, Jane; Joita, L.; Jones, G.; Jones, T. T.C.; Hoshino, K. K.; Kallenbach, A.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Karnowska, I.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, T.; Keep, J.; Kempenaars, M.; Kennedy, C.; Kenny, D.; Kent, J.; Kent, O. N.; Khilkevich, E.; Kim, H. T.; Kim, H. S.; Kinch, A.; King, C.; King, D.; King, R. F.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klepper, C.; Klix, A.; Knight, P.; Knipe, S. J.; Knott, S.; Kobuchi, T.; Köchl, F.; Kocsis, G.; Kodeli, I.; Kogan, L.; Kogut, D.; Koivuranta, S.; Kominis, Y.; Köppen, M.; Kos, B.; Koskela, T.; Koslowski, H. R.; Koubiti, M.; Kovari, M.; Kowalska-Strzȩciwilk, E.; Krasilnikov, A.; Krasilnikov, V.; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Ksiażek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwiatkowski, R.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lam, N.; Lambertz, H. T.; Lane, C.; Lang, P. T.; Lanthaler, S.; Lapins, J.; Lasa, A.; Last, J. R.; Łaszyńska, E.; Lawless, R.; Lawson, A.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leddy, J.; Lee, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichtle, D.; Leichuer, P.; Leipold, F.; Lengar, I.; Lennholm, M.; Lerche, E.; Lescinskis, A.; Lesnoj, S.; Letellier, E.; Leyland, M.; Leysen, W.; Li, Li; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch; Lipschultz, B.; Liu, G.; Liu, Y.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lobel, R. C.; Lomanowski, B.; Lomas, P. J.; Lönnroth, J.; López, J. M.; López-Razola, J.; Lorenzini, R.; Losada, U.; Lovell, J. J.; Loving, A. B.; Lowry, C.; Luce, T.; Lucock, R. M.A.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lupelli, I.; Lyssoivan, A.; Macdonald, N.; Macheta, P.; Maczewa, K.; Magesh, B.; Maget, P.; Maggi, C.; Maier, H.; Mailloux, J.; Makkonen, T.; Makwana, R.; Malaquias, A.; Malizia, A.; Manas, P.; Manning, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marinelli, M.; Marinucci, M.; Markovič, T.; Marocco, D.; Marot, L.; Marren, C. A.; Marshal, R.; Martin, A.; Martin, Y.; Martín De Aguilera, A.; Martínez, F. J.; Martín-Solís, J. R.; Martynova, Y.; Maruyama, So; Masiello, A.; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Maviglia, F.; Mayer, M.; Mayoral, M. L.; May-Smith, T.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McIntosh, S.; McKean, R.; McKehon, J.; Meadows, R. C.; Meakins, A.; Medina, F.; Medland, M.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merrigan, I. R.; Mertens, Ph; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Mianowski, S.; Michling, R.; Middleton-Gear, D.; Miettunen, J.; Militello, F.; Militello-Asp, E.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miyoshi, Y.; Mlynář, J.; Molina, D.; Monakhov, I.; Moneti, M.; Mooney, R.; Moradi, S.; Mordijck, S.; Moreira, L.; Moreno, R.; Moro, F.; Morris, A. W.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Murari, A.; Muraro, A.; Murphy, S.; Asakura, N. N.; Na, Y. S.; Nabais, F.; Naish, R.; Nakano, T.; Nardon, E.; Naulin, V.; Nave, M. F.F.; Nedzelski, I.; Nemtsev, G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Nicholls, K. J.; Nicolas, T.; Nielsen, A. H.; Nielsen, P.; Nilsson, E.; Nishijima, D.; Noble, C.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Nouailletas, R.; Nunes, I.; Oberkofler, M.; Odupitan, T.; Ogawa, M. T.; O'Gorman, T.; Okabayashi, M.; Olney, R.; Omolayo, O.; O'Mullane, M.; Ongena, J.; Orsitto, F.; Orszagh, J.; Oswuigwe, B. I.; Otin, R.; Owen, A.; Paccagnella, R.; Pace, N.; Pacella, D.; Packer, L. W.; Page, A.; Pajuste, E.; Palazzo, S.; Pamela, S.; Panja, S.; Papp, P.; Paprok, R.; Parail, V.; Park, M.; Parra Diaz, F.; Parsons, M.; Pasqualotto, R.; Patel, A.; Pathak, S.; Paton, D.; Patten, H.; Pau, A.; Pawelec, E.; Paz Soldan, C.; Peackoc, A.; Pearson, I. J.; Pehkonen, S. P.; Peluso, E.; Penot, C.; Pereira, A.; Pereira, R.; Pereira Puglia, P. P.; Perez Von Thun, C.; Peruzzo, S.; Peschanyi, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrella, N.; Petržilka, V.; Peysson, Y.; Pfefferlé, D.; Philipps, V.; Pillon, M.; Pintsuk, G.; Piovesan, P.; Pires Dos Reis, A.; Piron, L.; Pironti, A.; Pisano, F.; Pitts, R.; Pizzo, F.; Plyusnin, V.; Pomaro, N.; Pompilian, O. G.; Pool, P. J.; Popovichev, S.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Powell, T.; Pozzi, J.; Prajapati, V.; Prakash, R.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Prior, P.; Proudfoot, R.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Pulley, D.; Purahoo, K.; Pütterich, Th; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M. S.J.; Rakha, A.; Ramogida, G.; Ranjan, S.; Rapson, C. J.; Rasmussen, J. J.; Rathod, K.; Rattá, G.; Ratynskaia, S.; Ravera, G.; Rayner, C.; Rebai, M.; Reece, D.; Reed, A.; Réfy, D.; Regan, B.; Regaña, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Reyes Cortes, S. D.A.; Reynolds, S.; Riccardo, V.; Richardson, N.; Riddle, K.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Roach, C.; Robins, R. J.; Robinson, S. A.; Robinson, T.; Robson, D. W.; Roccella, R.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, V.; Romanelli, F.; Romanelli, M.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruiz, M.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Safi, E.; Sagar, P.; Saibene, G.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samaddar, D.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I.K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schlummer, T.; Schmid, K.; Schmidt, V.; Schmuck, S.; Schneider, Mireille; Schöpf, K.; Schwörer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Shaw, R.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, A.; Silva, C.; Simmons, P. A.; Simpson, J.; Simpson-Hutchinson, J.; Sinha, A.; Sipilä, S. K.; Sips, A. C.C.; Sirén, P.; Sirinelli, A.; Sjöstrand, H.; Skiba, M.; Skilton, R.; Slabkowska, K.; Slade, B.; Smith, N.; Smith, P. G.; Smith, R.; Smith, T. J.; Smithies, M.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sopplesa, A.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Spelzini, T.; Spineanu, F.; Stables, G.; Stamatelatos, I.; Stamp, M. F.; Staniec, P.; Stankūnas, G.; Stan-Sion, C.; Stead, M. J.; Stefanikova, E.; Stepanov, I.; Stephen, A. V.; Stephen, M.; Stevens, A.; Stevens, B. D.; Strachan, J.; Strand, P.; Strauss, H. R.; Ström, P.; Stubbs, G.; Studholme, W.; Subba, F.; Summers, H. P.; Svensson, J.; Świderski; Szabolics, T.; Szawlowski, M.; Szepesi, G.; Suzuki, T. T.; Tál, B.; Tala, T.; Talbot, A. R.; Talebzadeh, S.; Taliercio, C.; Tamain, P.; Tame, C.; Tang, W.; Tardocchi, M.; Taroni, L.; Taylor, D.; Taylor, K. A.; Tegnered, D.; Telesca, G.; Teplova, N.; Terranova, D.; Testa, D.; Tholerus, E.; Thomas, J. D.; Thomas, P.; Thompson, A.; Thompson, C. A.; Thompson, V. K.; Thorne, L.; Thornton, A.; Thrysøe, A. S.; Tigwell, P. A.; Tipton, N.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomeš, M.; Tonner, P.; Towndrow, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Tskhakaya Jun, D.; Turner, I.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyrrell, S. G.J.; Uccello, A.; Ul-Abidin, Z.; Uljanovs, J.; Ulyatt, D.; Urano, H.; Uytdenhouwen, I.; Vadgama, A. P.; Valcarcel, D.; Valentinuzzi, M.; Valisa, M.; Vallejos Olivares, P.; Valovic, M.; Van De Mortel, M.; Van Eester, D.; Van Renterghem, W.; Van Rooij, G. J.; Varje, J.; Varoutis, S.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vega, J.; Verdoolaege, G.; Verhoeven, R.; Verona, C.; Verona Rinati, G.; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Vondráček, P.; Vora, N.; Vu, T.; Pires De Sa, W. W.; Wakeling, B.; Waldon, C. W.F.; Walkden, N.; Walker, M.; Walker, R.; Walsh, M.; Wang, E.; Wang, N.; Warder, S.; Warren, R. J.; Waterhouse, J.; Watkins, N. W.; Watts, C.; Wauters, T.; Weckmann, A.; Weiland, J.; Weisen, H.; Weiszflog, M.; Wellstood, C.; West, A. T.; Wheatley, M. R.; Whetham, S.; Whitehead, A. M.; Whitehead, B. D.; Widdowson, A. M.; Wiesen, S.; Wilkinson, J.; Williams, J.; Williams, M.; Wilson, A. R.; Wilson, D. J.; Wilson, H. R.; Wilson, J.; Wischmeier, M.; Withenshaw, G.; Withycombe, A.; Witts, D. M.; Wood, D.; Wood, R.; Woodley, C.; Wray, S.; Wright, J.; Wright, J. C.; Wu, J.; Wukitch, S.; Wynn, A.; Xu, T.; Yadikin, D.; Yanling, W.; Yao, Lieming; Yavorskij, V.; Yoo, M. G.; Young, C.; Young, D.; Young, I. D.; Young, R.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zanino, R.; Zarins, A.; Zastrow, K. D.; Zerbini, M.; Zhou, Y.; Zhang, Wei; Zilli, E.; Zoita, V.; Zoletnik, S.; Zychor, I.; Department of Applied Physics; Fusion and Plasma Physics; Culham Science Centre; Jülich Research Centre; Institute for Plasma Research; Instituto Superior Técnico Lisboa; Queen's University Belfast; University of Helsinki; French Alternative Energies and Atomic Energy Commission; National Institutes for Quantum and Radiological Science and Technology; VTT Technical Research Centre of Finland; University of Naples Federico II; National Distance Education University; National Research Council of Italy; ITER; Russian Research Centre Kurchatov Institute; University of Naples Parthenope; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; Troitsk Institute for Innovation and Fusion Research; Uppsala University; National Institute for Cryogenics and Isotopic Technology; Max Planck Institute for Plasma Physics; University of Catania; Fusion for Energy; National Institute for Fusion Science; Massachusetts Institute of Technology; University of Latvia; Imperial College London; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; University of Oxford; EUROfusion Programme Management Unit; Oak Ridge National Laboratory; Karlsruhe Institute of Technology; University of York; KTH Royal Institute of Technology; Maritime University Of Szczecin; Institute of Nuclear Physics of the Polish Academy of Sciences; Czech Academy of Sciences; University of Trento; Swiss Federal Institute of Technology Lausanne; Wigner Research Centre for Physics; Comenius University Bratislava; Lviv Polytechnic National University; University of Milano-Bicocca; National Institute for Optoelectronics; Fourth State Research in Austin; University of Texas at Austin; Belgian Nuclear Research Centre; National Centre for Nuclear Research; Princeton University; CNRS; University of Cagliari; University of Warwick; Soltan Institute for Nuclear Studies; Dutch Institute for Fundamental Energy Research; National Institute for Laser, Plasma and Radiation Physics; Ghent University; Jožef Stefan Institute; CAS - Institute of Plasma Physics; University of California, San Diego; Royal Military Academy; Horia Hulubei National Institute of Physics and Nuclear Engineering; Chalmers University of Technology; Technical University of Madrid; University of Campania Luigi Vanvitelli; Warsaw University of Technology; University of Basilicata; Barcelona Supercomputing Center; University of Seville; Centro Brasileiro de Pesquisas Físicas; University of Rome Tor Vergata; Ioffe Institute; General Atomics; University of Innsbruck; University of Toyama; University of Strathclyde; National Technical University of Athens; European Commission; Tuscia University; Technical University of Denmark; Korea Advanced Institute of Science and Technology; Seoul National University; University College Cork; Vienna University of Technology; University of Opole; Daegu University; National Fusion Research Institute; Dublin City University; Forschungszentrum Jülich; PELIN LLC; Arizona State University; Complutense University of Madrid; University of Basel; Universidad Carlos III de Madrid; Consorzio CREATE; Demokritos National Centre for Scientific Research; Purdue University; Université libre de Bruxelles; University of California; Universidade de São Paulo; Lithuanian Energy Institute; HRS Fusion; Polytechnic University of Turin; University of Cassino and Southern Lazio; University of Electronic Science and Technology of ChinaThe 2014-2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L-H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at β N ∼ 1.8 and n/n GW ∼ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D-T campaign and 14 MeV neutron calibration strategy are reviewed.Item Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification(2017-08-18) Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; Schmid, K.; Kirschner, A.; Hakola, A.; Tabares, F. L.; Van Der Meiden, H. J.; Mayoral, M. L.; Reinhart, M.; Tsitrone, E.; Ahlgren, T.; Aints, M.; Airila, M.; Almaviva, S.; Alves, E.; Angot, T.; Anita, V.; Arredondo Parra, R.; Aumayr, F.; Balden, M.; Bauer, J.; Ben Yaala, M.; Berger, B. M.; Bisson, R.; Björkas, C.; Bogdanovic Radovic, I.; Borodin, D.; Bucalossi, J.; Butikova, J.; Butoi, B.; Čadež, I.; Caniello, R.; Caneve, L.; Cartry, G.; Catarino, N.; Čekada, M.; Ciraolo, G.; Ciupinski, L.; Colao, F.; Corre, Y.; Costin, C.; Craciunescu, T.; Cremona, A.; De Angeli, M.; De Castro, A.; Dejarnac, R.; Dellasega, D.; Dinca, P.; Dittmar, T.; Dobrea, C.; Hansen, P.; Drenik, A.; Eich, T.; Elgeti, S.; Falie, D.; Fedorczak, N.; Ferro, Y.; Fornal, T.; Fortuna-Zalesna, E.; Gao, L.; Gasior, P.; Gherendi, M.; Ghezzi, F.; Gosar; Greuner, H.; Grigore, E.; Grisolia, C.; Groth, M.; Gruca, M.; Grzonka, J.; Gunn, J. P.; Hassouni, K.; Heinola, K.; Höschen, T.; Huber, S.; Jacob, W.; Jepu, I.; Jiang, X.; Jogi, I.; Kaiser, A.; Karhunen, J.; Kelemen, M.; Köppen, M.; Koslowski, H. R.; Kreter, A.; Kubkowska, M.; Laan, M.; Laguardia, L.; Lahtinen, A.; Lasa, A.; Lazic, V.; Lemahieu, N.; Likonen, J.; Linke, J.; Litnovsky, A.; Linsmeier, Ch; Loewenhoff, T.; Lungu, C.; Lungu, M.; Maddaluno, G.; Maier, H.; Makkonen, T.; Manhard, A.; Marandet, Y.; Markelj, S.; Marot, L.; Martin, C.; Martin-Rojo, A. B.; Martynova, Y.; Mateus, R.; Matveev, D.; Mayer, M.; Meisl, G.; Mellet, N.; Michau, A.; Miettunen, J.; Möller, Sören; Morgan, T. W.; Mougenot, J.; Mozetič, M.; Nemanič, V.; Neu, R.; Nordlund, K.; Oberkofler, M.; Oyarzabal, E.; Panjan, M.; Pardanaud, C.; Paris, P.; Passoni, M.; Pegourie, B.; Pelicon, P.; Petersson, P.; Piip, K.; Pintsuk, G.; Pompilian, G. O.; Popa, G.; Porosnicu, C.; Primc, G.; Probst, M.; Räisänen, J.; Rasinski, M.; Ratynskaia, S.; Reiser, D.; Ricci, D.; Richou, M.; Riesch, J.; Riva, G.; Rosinski, M.; Roubin, P.; Rubel, M.; Ruset, C.; Safi, E.; Sergienko, G.; Siketic, Z.; Sima, A.; Spilker, B.; Stadlmayr, R.; Steudel, I.; Ström, P.; Tadic, T.; Tafalla, D.; Tale, I.; Terentyev, D.; Terra, A.; Tiron, V.; Tiseanu, I.; Tolias, P.; Tskhakaya, D.; Uccello, A.; Unterberg, B.; Uytdenhoven, I.; Vassallo, E.; Vavpetič, P.; Veis, P.; Velicu, I. L.; Vernimmen, J. W.M.; Voitkans, A.; Von Toussaint, U.; Weckmann, A.; Wirtz, M.; Založnik, A.; Zaplotnik, R.; Department of Applied Physics; Fusion and Plasma Physics; Jülich Research Centre; Max Planck Institute for Plasma Physics; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; Dutch Institute for Fundamental Energy Research; Culham Science Centre; French Alternative Energies and Atomic Energy Commission; University of Helsinki; University of Tartu; VTT Technical Research Centre of Finland; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; Instituto Superior Técnico Lisboa; CNRS; Al. I. Cuza University; Vienna University of Technology; Swiss Federal Institute of Technology Lausanne; Ruder Boskovic Institute; University of Latvia; National Institute for Laser, Plasma and Radiation Physics; Jožef Stefan Institute; National Research Council of Italy; Warsaw University of Technology; Czech Academy of Sciences; Polytechnic University of Milan; Soltan Institute for Nuclear Studies; University of Innsbruck; KTH Royal Institute of Technology; Belgian Nuclear Research Centre; Comenius University BratislavaThe provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.