Browsing by Author "Ali, A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X(IOP Publishing Ltd., 2022-04-01) Pedersen, Thomas Sunn; Abramovic, Ivana; Agostinetti, P.; Torres, M. Agredano; Aekaeslompolo, S.; Belloso, J. Alcuson; Aleynikov, P.; Aleynikova, K.; Alhashimi, M.; Ali, A.; Allen, N.; Alonso, A.; Anda, G.; Andreeva, T.; Angioni, C.; Arkhipov, A.; Arnold, A.; Asad, W.; Ascasibar, E.; Aumeunier, M-H; Avramidis, K.; Aymerich, E.; Baek, S-G; Baehner, J.; Baillod, A.; Balden, M.; Baldzuhn, J.; Ballinger, S.; Banduch, M.; Bannmann, S.; Navarro, A. Banon; Barbui, T.; Beidler, C.; Belafdil, C.; Bencze, A.; Benndorf, A.; Beurskens, M.; Biedermann, C.; Biletskyi, O.; Blackwell, B.; Blatzheim, M.; Bluhm, T.; Boeckenhoff, D.; Bongiovi, G.; Borchardt, M.; Borodin, D.; Boscary, J.; Bosch, H.; Bosmann, T.; Boeswirth, B.; Boettger, L.; Bottino, A.; Bozhenkov, S.; Brakel, R.; Brandt, C.; Braeuer, T.; Braune, H.; Brezinsek, S.; Brunner, K.; Buller, S.; Burhenn, R.; Bussiahn, R.; Buttenschoen, B.; Buzas, A.; Bykov, Yuri; Calvo, Ivan; Mata, K. Camacho; Caminal; Cannas, B.; Cappa, A.; Carls, A.; Carovani, F.; Carr, M.; Carralero, D.; Carvalho, B.; Casas, J.; Castano-Bardawil, D.; Castejon, F.; Chaudhary, N.; Chelis; Chomiczewska, A.; Coenen, J. W.; Cole, M.; Cordella, F.; Corre, Y.; Crombe, K.; Cseh, G.; Csillag, B.; Damm, H.; Day, C.; de Baar, M.; De la Cal, E.; Degenkolbe, S.; Demby, A.; Denk, S.; Dhard, C.; Di Siena, A.; Dinklage, A.; Dittmar, T.; Dreval, M.; Drevlak, M.; Drewelow, P.; Drews, P.; Dunai, D.; Edlund, E.; Effenberg, F.; Ehrke, G.; Endler, M.; Ennis, D. A.; Escoto, F. J.; Estrada, T.; Fable, E.; Fahrenkamp, N.; Fanni, A.; Faustin, J.; Fellinger, J.; Feng, Y.; Figacz, W.; Flom, E.; Ford, O.; Fornal, T.; Frerichs, H.; Freundt, S.; Fuchert, G.; Fukuyama, M.; Fullenbach, F.; Gantenbein, G.; Gao, Y.; Garcia, K.; Regana, J. M. Garcia; Garcia-Cortes; Gaspar, J.; Gates, D. A.; Geiger, J.; Geiger, B.; Giudicotti, L.; Gonzalez, A.; Goriaev, A.; Gradic, D.; Grahl, M.; Graves, J. P.; Green, J.; Grelier, E.; Greuner, H.; Gross, S.; Grote, H.; Groth, M.; Gruca, M.; Grulke, O.; Gruen, M.; Arnaiz, J. Guerrero; Guenter, S.; Haak; Haas, M.; Hacker, P.; Hakola, A.; Hallenbert, A.; Hammond, K.; Han, X.; Hansen, S. K.; Harris, J. H.; Hartfuss, H.; Hartmann, D.; Hathiramani, D.; Hatzky, R.; Hawke, J.; Hegedus, S.; Hein, B.; Heinemann, B.; Helander, P.; Henneberg, S.; Hergenhahn, U.; Hidalgo, C.; Hindenlang, F.; Hirsch, M.; Hoefel, U.; Hollfeld, K. P.; Holtz, A.; Hopf, D.; Hoeschen, D.; Houry, M.; Howard, J.; Huang, X.; Hubeny, M.; Hudson, S.; Ida, K.; Igitkhanov, Y.; Igochine, Valentin; Illy, S.; Ionita-Schrittwieser, C.; Isobe, M.; Jablonski, S.; Jagielski, B.; Jakubowski, M.; Jansen van Vuuren, Anton; Jelonnek, J.; Jenko, F.; Jensen, T.; Jenzsch, H.; Junghanns, P.; Kaczmarczyk, J.; Kallmeyer, J.; Kamionka, U.; Kandler, M.; Kasilov, S.; Kazakov, Y.; Kennedy, D.; Kharwandikar, A.; Khokhlov, M.; Kiefer, C.; Killer, C.; Kirschner, A.; Kleiber, R.; Klinger, T.; Klose, S.; Knauer, J.; Knieps, A.; Koechl, F.; Kocsis, G.; Kolesnichenko, Ya; Koenies, A.; Koenig, R.; Kontula, J.; Kornejew, P.; Koschinsky, J.; Kozulia, M. M.; Kraemer-Flecken, A.; Krampitz, R.; Krause, M.; Krawczyk, N.; Kremeyer, T.; Krier, L.; Kriete, D. M.; Krychowiak, M.; Ksiazek, I.; Kubkowska, M.; Kuczynski, M.; Kuehner, G.; Kumar, A.; Kurki-Suonio, T.; Kwak, S.; Landreman, M.; Lang, P. T.; Langenberg, A.; Laqua, H. P.; Laqua, H.; Laube, R.; Lazerson, S.; Lewerentz, M.; Li, C.; Liang, Y.; Linsmeier, Ch; Lion, J.; Litnovsky, A.; Liu, S.; Lobsien, J.; Loizu, J.; Lore, J.; Lorenz, A.; Losada, U.; Louche, F.; Lunsford, R.; Lutsenko, VN; Machielsen, M.; Mackel, F.; Maisano-Brown, J.; Maj, O.; Makowski, D.; Manduchi, G.; Maragkoudakis, E.; Marchuk, O.; Marsen, S.; Martines, E.; Martinez-Fernandez, J.; Marushchenko, M.; Masuzaki, S.; Maurer, D.; Mayer, M.; McCarthy, K. J.; Mccormack, O.; McNeely, P.; Meister, H.; Mendelevitch, B.; Mendes, S.; Merlo, A.; Messian, A.; Mielczarek, A.; Mishchenko, O.; Missal, B.; Mitteau, R.; Moiseenko, V. E.; Mollen, A.; Moncada, Victor; Moennich, T.; Morisaki, T.; Moseev, D.; Motojima, G.; Mulas, S.; Mulsow, M.; Nagel, M.; Naujoks, D.; Naulin, Volker; Neelis, T.; Neilson, H.; Neu, R.; Neubauer, O.; Neuner, U.; Nicolai, D.; Nielsen, S. K.; Niemann, H.; Nishiza, T.; Nishizawa, T.; Nuehrenberg, C.; Ochoukov, R.; Oelmann, J.; Offermanns, G.; Ogawa, K.; Okamura, S.; Oelmanns, J.; Ongena, J.; Oosterbeek, J.; Otte, M.; Pablant, N.; Panadero Alvarez, N.; Pandey, A.; Pasch, E.; Pavlichenko, R.; Pavone, A.; Pawelec, E.; Pechstein, G.; Pelka, G.; Perseo, Valeria; Peterson, B.; Pilopp, D.; Pingel, S.; Pisano, F.; Plockl, B.; Plunk, G.; Poloskei, P.; Pompe, B.; Popov, A.; Porkolab, M.; Proll, J.; Pueschel, M. J.; Puiatti, M-E; Sitjes, A. Puig; Purps, F.; Rahbarnia, K.; Rasmussen, J.; Reiman, A.; Reimold, F.; Reisner, M.; Reiter, D.; Richou, M.; Riedl, R.; Riemann, J.; Risse, K.; Roberg-Clark, G.; Rohde, Volker; Romazanov, J.; Rondeshagen, D.; Rong, P.; Rudischhauser, L.; Rummel, T.; Rummel, K.; Runov, A.; Rust, N.; Ryc, L.; Salembier, P.; Salewski, M.; Sanchez, E.; Satake, S.; Satheeswaran, G.; Schacht, J.; Scharff, E.; Schauer, F.; Schilling, J.; Schlisio, G.; Schmid, K.; Schmitt, J.; Schmitz, O.; Schneider, W.; Schneider, M.; Schneider, P.; Schrittwieser, R.; Schroeder, T.; Schroeder, M.; Schroeder, R.; Schweer, B.; Schwoerer, D.; Scott, E.; Shanahan, B.; Sias, G.; Sichta, P.; Singer, M.; Sinha, P.; Sipilä, S.; Slaby, C.; Sleczka, M.; Smith, H.; Smoniewski, J.; Sonnendrucker, E.; Spolaore, M.; Spring, A.; Stadler, R.; Stange, T.; Stepanov, A.Y.; Stephey, L.; Stober, J.; Stroth, U.; Strumberger, E.; Suzuki, C.; Suzuki, Y.; Svensson, J.; Szabolics, T.; Szepesi, T.; Szucs, M.; Tabares, F. L.; Tamura, N.; Tancetti, A.; Tantos, C.; Terry, J.; Thienpondt, H.; Thomsen, H.; Thumm, M.; Travere, J. M.; Traverso, P.; Tretter, J.; Trier, E.; Mora, H. Trimino; Tsujimura, T.; Turkin, Y.; Tykhyi, A.; Unterberg, B.; van Eeten, P.; van Milligen, B. Ph; van Schoor, M.; Vano, L.; Varoutis, S.; Vecsei, M.; Vela, L.; Velasco, J. L.; Vervier, M.; Vianello, N.; Viebke, H.; Vilbrandt, R.; Vogt, N.; Volkhausen, C.; von Stechow, A.; Wagner, F.; Wang, E.; Wang, H.; Warmer, F.; Wauters, T.; Wegener, L.; Wegner, T.; Weir, G.; Wenzel, U.; White, A.; Wilde, F.; Wilms, F.; Windisch, T.; Winkler, M.; Winter, A.; Winters, Victoria; Wolf, R.; Wright, A. M.; Wurden, G. A.; Xanthopoulos, P.; Xu, S.; Yamada, H.; Yamaguchi, H.; Yokoyama, M.; Yoshinuma, M.; Yu, Q.; Zamanov, M.; Zanini, M.; Zarnstorff, M.; Zhang, D.; Zhou, S.; Zhu, J.; Zhu, C.; Zilker, M.; Zocco, A.; Zohm, H.; Zoletnik, S.; Zsuga, L.; Vogel, G.; Department of Applied Physics; Fusion and Plasma Physics; National Institute for Fusion ScienceWe present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.Item Optimized Design and Thermal Analysis of Printed Magnetorquer for Attitude Control of Reconfigurable Nanosatellites(IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2020-02) Mughal, M. R.; Ali, H.; Ali, A.; Praks, J.; Reyneri, L. M.; Jaan Praks Group; Institute of Space Technology, Islamabad; Zhejiang University of Science and Technology; Department of Electronics and Nanoengineering; Politecnico di TorinoAn attitude control system (ACS) is one of the critical subsystems of any spacecraft and typically is in charge of de-tumbling, controlling, and orienting the satellite after initial deployment and during the satellite operations. The magnetorquer is a core magnetic attitude control actuator and, therefore, a good choice for nanosatellite attitude stabilization. There are various methods to achieve control torque using the magnetorquer. An innovative design of a printed magnetorquer has been proposed for the nanosatellites, which is modular, scalable, cost effective, less prone to failure, with reduce harness and power consumption since the traces are printed either on the top layer or inner layers of the printed circuit board. The analysis in terms of generated torque with a range of input applied voltages, trace widths, outer and inner-most trace lengths is presented to achieve the optimized design. The optimum operating voltage is selected to generate the desired torque while optimizing the torque to the power ratio. The results of the analysis in terms of the selection of optimized parameters, including torque to power ratio, generated magnetic dipole moment, and power consumption, have been validated practically on a CubeSat panel. The printed magnetorquer configuration is modular which is useful to achieve mission level stabilization requirements. For spin-stabilized satellites, the rotation time analysis has been performed using the printed magnetorquer.Item Overview of first Wendelstein 7-X high-performance operation(IOP PUBLISHING LTD, 2019-11) Klinger, T.; Andreeva, T.; Bozhenkov, S.; Brandt, C.; Burhenn, R.; Buttenschoen, B.; Fuchert, G.; Geiger, B.; Grulke, O.; Laqua, H. P.; Pablant, N.; Rahbarnia, K.; Stange, T.; von Stechow, A.; Tamura, N.; Thomsen, H.; Turkin, Y.; Wegner, T.; Abramovic, Ivana; Aekaeslompolo, S.; Alcuson, J.; Aleynikov, P.; Aleynikova, K.; Ali, A.; Alonso, A.; Anda, G.; Ascasibar, E.; Baehner, J. P.; Baek, S. G.; Balden, M.; Baldzuhn, J.; Banduch, M.; Barbui, T.; Behr, W.; Beidler, C.; Benndorf, A.; Biedermann, C.; Biel, W.; Blackwell, B.; Blanco, E.; Blatzheim, M.; Ballinger, S.; Bluhm, T.; Boeckenhoff, D.; Boeswirth, B.; Boettger, L-G; Borchardt, M.; Borsuk, Mark; Boscary, J.; Bosch, H-S; Beurskens, M.; Brakel, R.; Brand, H.; Braeuer, T.; Braune, H.; Brezinsek, S.; Brunner, K-J; Bussiahn, R.; Bykov, I.; Cai, J.; Calvo, Iván; Cannas, B.; Cappa, A.; Carls, A.; Carralero, D.; Carraro, L.; Carvalho, B.; Castejon, F.; Charl, A.; Chaudhary, N.; Chauvin, D.; Chernyshev, F.; Cianciosa, M.; Citarella, R.; Claps, G.; Coenen, J.; Cole, M. J.; Cordella, F.; Cseh, G.; Czarnecka, A.; Czerski, K.; Czerwinski, M.; Czymek, G.; da Molin, A.; da Silva, A.; Damm, H.; de la Pena, A.; Degenkolbe, S.; Dhard, C. P.; Dibon, M.; Dinklage, A.; Dittmar, T.; Drevlak, M.; Drewelow, P.; Drews, P.; Durodie, F.; Edlund, E.; van Eeten, P.; Effenberg, F.; Ehrke, G.; Elgeti, S.; Endler, M.; Ennis, D.; Esteban, H.; Estrada, T.; Fellinger, J.; Feng, Y.; Flom, E.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fontdecaba, J.; Ford, O.; Fornal, T.; Frerichs, H.; Freund, A.; Funaba, T.; Galkowski, A.; Gantenbein, G.; Gao, Y.; Garcia Regana, J.; Gates, D.; Geiger, J.; Giannella, R.; Gogoleva, A.; Goncalves, B.; Goriaev, A.; Gradic, D.; Grahl, M.; Green, J.; Greuner, H.; Grosman, A.; Grote, H.; Gruca, M.; Guerard, C.; Hacker, P.; Han, X.; Harris, J. H.; Hartmann, D.; Hathiramani, D.; Hein, B.; Heinemann, B.; Helander, P.; Henneberg, S.; Henkel, M.; Hernandez Sanchez, J.; Hidalgo, C.; Hirsch, M.; Hollfeld, K. P.; Hoefel, U.; Hoelting, A.; Hoeschen, D.; Houry, M.; Howard, J.; Huang, X.; Huang, Z.; Hubeny, M.; Huber, M.; Hunger, H.; Ida, K.; Ilkei, T.; Illy, S.; Israeli, B.; Jablonski, S.; Jakubowski, M.; Jelonnek, J.; Jenzsch, H.; Jesche, T.; Jia, M.; Junghanns, P.; Kacmarczyk, J.; Kallmeyer, J-P; Kamionka, U.; Kasahara, H.; Kasparek, W.; Kazakov, Y. O.; Kenmochi, N.; Killer, C.; Kirschner, A.; Kleiber, R.; Knauer, J.; Knaup, M.; Knieps, A.; Kobarg, T.; Kocsis, G.; Koechl, F.; Kolesnichenko, Y.; Koenies, A.; Koenig, R.; Kornejew, P.; Koschinsky, J-P; Koester, F.; Kraemer, M.; Krampitz, R.; Kraemer-Flecken, A.; Krawczyk, N.; Kremeyer, T.; Krom, J.; Krychowiak, M.; Ksiazek, I.; Kubkowska, M.; Kuehner, G.; Kurki-Suonio, T.; Kurz, P. A.; Kwak, S.; Landreman, M.; Lang, P.; Lang, R.; Langenberg, A.; Langish, S.; Laqua, H.; Laube, R.; Lazerson, S.; Lechte, C.; Lennartz, M.; Leonhardt, W.; Li, C.; Li, Y.; Liang, Y.; Linsmeier, C.; Liu, S. C.; Lobsien, J-F; Loesser, D.; Cisquella, J. Loizu; Lore, J.; Lorenz, A.; Losert, M.; Lucke, A.; Lumsdaine, A.; Lutsenko, VN; Maassberg, H.; Marchuk, O.; Matthew, J. H.; Marsen, S.; Marushchenko, M.; Masuzaki, S.; Maurer, D.; Mayer, M.; McCarthy, K.; McNeely, P.; Meier, A.; Mellein, D.; Mendelevitch, B.; Mertens, P.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mittelstaedt, J.; Mizuuchi, T.; Mollen, A.; Moncada, Victor; Moennich, T.; Morisaki, T.; Moseev, D.; Murakami, S.; Nafradi, G.; Nagel, M.; Naujoks, D.; Neilson, H.; Neu, R.; Neubauer, O.; Neuner, U.; Ngo, T.; Nicolai, D.; Nielsen, S. K.; Niemann, H.; Nishizawa, T.; Nocentini, R.; Nuehrenberg, C.; Nuehrenberg, J.; Obermayer, S.; Offermanns, G.; Ogawa, K.; Oelmanns, J.; Ongena, J.; Oosterbeek, J. W.; Orozco, G.; Otte, M.; Pacios Rodriguez, L.; Panadero, N.; Panadero Alvarez, N.; Papenfuss, D.; Paqay, S.; Pasch, E.; Pavone, A.; Pawelec, E.; Pedersen, T. S.; Pelka, G.; Perseo, Valeria; Peterson, B.; Pilopp, D.; Pingel, S.; Pisano, F.; Plaum, B.; Plunk, G.; Poeloeskei, P.; Porkolab, M.; Proll, J.; Puiatti, M-E; Sitjes, A. Puig; Purps, F.; Rack, M.; Recsei, S.; Reiman, A.; Reimold, F.; Reiter, D.; Remppel, F.; Renard, S.; Riedl, R.; Riemann, J.; Risse, K.; Rohde, Volker; Roehlinger, H.; Rome, M.; Rondeshagen, D.; Rong, P.; Roth, B.; Rudischhauser, L.; Rummel, K.; Rummel, T.; Runov, A.; Rust, N.; Ryc, L.; Ryosuke, S.; Sakamoto, R.; Salewski, M.; Samartsev, A.; Sanchez, E.; Sano, F.; Satake, S.; Schacht, J.; Satheeswaran, G.; Schauer, F.; Scherer, T.; Schilling, J.; Schlaich, A.; Schlisio, G.; Schluck, F.; Schlueter, K-H; Schmitt, J.; Schmitz, H.; Schmitz, O.; Schmuck, S.; Schneider, M.; Schneider, W.; Scholz, P.; Schrittwieser, R.; Schröder, Michael; Schroeder, T.; Schroeder, R.; Schumacher, H.; Schweer, B.; Scott, E.; Sereda, S.; Shanahan, B.; Sibilia, M.; Sinha, P.; Siplia, S.; Slaby, C.; Sleczka, M.; Smith, H.; Spiess, W.; Spong, D. A.; Spring, A.; Stadler, R.; Stejner, M.; Stephey, L.; Stridde, U.; Suzuki, C.; Svensson, J.; Szabo, Susanne J.; Szabolics, T.; Szepesi, T.; Szokefalvi-Nagy, Z.; Tancetti, A.; Terry, J.; Thomas, J.; Thumm, M.; Travere, J. M.; Traverso, P.; Tretter, J.; Mora, H. Trimino; Tsuchiya, H.; Tsujimura, T.; Tulipan, S.; Unterberg, B.; Vakulchyk, I.; Valet, S.; Vano, L.; van Milligen, B.; van Vuuren, A. J.; Vela, L.; Velasco, J-L; Vergote, M.; Vervier, M.; Vianello, N.; Viebke, H.; Vilbrandt, R.; Vorkoeper, A.; Wadle, S.; Wagner, F.; Wang, E.; Wang, N.; Wang, Z.; Warmer, F.; Wauters, T.; Wegener, L.; Weggen, J.; Wei, Y.; Weir, G.; Wendorf, J.; Wenzel, U.; Werner, A.; White, A.; Wiegel, B.; Wilde, F.; Windisch, T.; Winkler, M.; Winter, A.; Winters, Victoria; Wolf, S.; Wolf, R. C.; Wright, A.; Wurden, G.; Xanthopoulos, P.; Yamada, H.; Yamada, Ichihiro; Yasuhara, R.; Yokoyama, M.; Zanini, M.; Zarnstorff, M.; Zeitler, A.; Zhang, D.; Zhang, H.; Zhu, J.; Zilker, M.; Zocco, A.; Zoletnik, S.; Zuin, M.; Department of Applied Physics; Fusion and Plasma Physics; University of Greifswald; Max Planck Institute for Plasma Physics; Technical University of Denmark; Princeton University; National Institute for Fusion Science; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; EURATOM HAS; Massachusetts Institute of Technology; University of Wisconsin-Madison; Jülich Research Centre; Australian National University; Eindhoven University of Technology; University of Cagliari; Consorzio RFX; Universidade de Lisboa; CEA Cadarache; St. Petersburg Scientific Centre; Oak Ridge National Laboratory; University of Salerno; ENEA Frascati Research Center; Institute of Plasma Physics and Laser Microfusion; University of Szczecin; University of Milano-Bicocca; Auburn University; Karlsruhe Institute of Technology; Universidad Carlos III de Madrid; University of Stuttgart; Austrian Academy of Sciences; National Academy of Sciences of Ukraine; Technical University of Berlin; Opole University of Technology; University of Maryland, College Park; Consiglio Nazionale delle Ricerche (CNR); Kyoto University; Culham Centre for Fusion Energy; Physikalisch-Technische Bundesanstalt; Los Alamos National LaboratoryThe optimized superconducting stellarator device Wendelstein 7-X (with major radius R = 5.5 m, minor radius a = 0.5 m, and 30 m(3) plasma volume) restarted operation after the assembly of a graphite heat shield and 10 inertially cooled island divertor modules. This paper reports on the results from the first high-performance plasma operation. Glow discharge conditioning and ECRH conditioning discharges in helium turned out to be important for density and edge radiation control. Plasma densities of 1-4.5 x 10(19) m(-3) with central electron temperatures 5-10 keV were routinely achieved with hydrogen gas fueling, frequently terminated by a radiative collapse. In a first stage, plasma densities up to 1.4 x 10(20) m(-3) were reached with hydrogen pellet injection and helium gas fueling. Here, the ions are indirectly heated, and at a central density of 8 . 10(19 )m(-3) a temperature of 3.4 keV with T-e/T-i = 1 was transiently accomplished, which corresponds to nT(i)(0)tau(E) = 6.4 x 10(19) keV s m(-3) with a peak diamagnetic energy of 1.1 MJ and volume-averaged normalized plasma pressure = 1.2%. The routine access to high plasma densities was opened with boronization of the first wall. After boronization, the oxygen impurity content was reduced by a factor of 10, the carbon impurity content by a factor of 5. The reduced (edge) plasma radiation level gives routinely access to higher densities without radiation collapse, e.g. well above 1 x 10(20) m(-2) line integrated density and T-e = T-i = 2 keV central temperatures at moderate ECRH power. Both X2 and O2 mode ECRH schemes were successfully applied. Core turbulence was measured with a phase contrast imaging diagnostic and suppression of turbulence during pellet injection was observed.