Arttu Polojarvi and Jukka Tuhkuri. Velocity effects in laboratory scale punch through experiments. *Cold Regions Science and Technology,* 70, 81-93, 2012.

© 2012 Elsevier B.V.
Reprinted with permission.
Velocity effects in laboratory scale punch through experiments

Arttu Polojarvi *, Jukka Tuhkuri

Aalto University, School of Engineering, Department of Applied Mechanics, P.O.Box 14300, FI-00076 Aalto, Finland

A R T I C L E I N F O

Article history:
Received 6 May 2011
Accepted 10 September 2011

Keywords:
Model scale experiments
Punch through tests
Rubble shear strength measures
Loading rate effects

A B S T R A C T

Laboratory scale punch through tests on floating rubble consisting of plastic blocks were conducted. The motivation of using plastic blocks was to simplify the interpretation of results as the plastic blocks do not freeze together. The emphasis was on the methods used to derive the rubble material properties from results. In the experiments, a flat indenter plate penetrated the rubble. The indenter force as a function of its penetration was recorded. Different indenter velocities were used. The behavior of the rubble was related to the measured indenter force records. The results were compared with earlier laboratory scale punch through tests. The experiments showed, that punch through tests give results, that in some cases are difficult to interpret. The reason for this is mainly in the hydrodynamical effects arising with high indenter velocities. The results showed, that the existence of the rubble in the basin could change the hydrodynamical effects from the tests earlier used to capture them. It is shown that these effects can partly explain the shear rate dependency of the ice rubble observed in earlier work on punch through tests.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Punch through tests are used in the development of material models for ice rubble. In a punch through test, a flat indenter moves down and penetrates into the rubble. As one result, the indenter force \(F \) is achieved during the penetration. From the dimensions of the experimental set-up, and the rubble deformation and failure mechanism during the penetration, some material properties can be derived for the rubble.

For engineering purposes, often the shear strength \(\tau \) of the ice rubble is of interest. A common practice in load limit calculations for ice ridge keels has been to use soil mechanics analog and Mohr–Coulomb yield criterion, in which \(\tau \) is linearly dependent on the effective compressive stress \(\sigma' \) through relation

\[
\tau = c + \sigma' \tan \varphi ,
\]

where \(c \) is the cohesion and \(\varphi \) is the friction angle. For the derivation of \(c \) and \(\varphi \) from a punch through test, an assumption of \(F - \tau \) relation has to be made. This assumption should take into account the problem geometry and the failure mechanism of the rubble. Hence, the derivation of the material properties from the experimental data is not a straightforward task.

First punch through tests were conducted by Leppäranta and Hakala (1992) in the Baltic Sea with a loading platform and concrete blocks. Later more sophisticated equipment for measuring ice rubble strength has been used by e.g. Bruneau et al. (1998) and Croasdale et al. (2001). Heinonen and Määttänen performed a series of experiments during five winters (1998–2003) in the Baltic Sea (Heinonen, 2004; Heinonen and Määttänen, 2000, 2001a,b). In field tests, underwater cameras and measurements on displacements within the keel and keel bottom have been used (Croasdale et al., 2001; Heinonen, 2004), but the possibility to observe the actual failure mechanisms of ice rubble has been rather limited.

To study the failure mechanism of the rubble in more detail, punch through tests in laboratory scale have been performed (Azarnejad and Brown, September, 2001; Azarnejad et al., 1999; Bruneau et al., 1998; Jensen et al., 2001; Lemee and Brown, 2002; Leppäranta and Hakala, 1992). While results from laboratory tests have brought some understanding on the failure mechanisms, the laboratory experiments have also lead to results that partly differ from field tests (Croasdale et al., 2001; Liferov and Bonnemaire, 2005). These differences include the loading rate dependencies of \(\tau \) and the failure mode, as first reported by Azarnejad and Brown (2000).

In addition to obtaining the material parameters of the ice rubble, the understanding on failure mechanisms is important for the modeling efforts of ice rubble. The modeling has been performed using soil mechanics models (Ettema and Urroz, 1989), continuum models (Heinonen, 2004; Heinonen and Määttänen, 2001b; Liferov et al., 2002, 2003), discrete models (Polojarvi and Tuhkuri, 2009; Tuhkuri and Polojarvi, 2005) and pseudo-discrete models (Liferov, 2005).

In the work presented in this paper, laboratory scale punch through tests were performed with rubble consisting of plastic blocks. The motivation of using plastic blocks was to simplify the studied phenomena by avoiding bonding due to e.g. freezing and sintering of ice blocks (Ettema and Schaefer, 1986; Kuroiwa, 1961). This type of bonding typically
occurs in laboratory scale punch through tests if the rubble is left in the basin for a period of time. Even time periods of a few minutes have been reported causing bonding of ice blocks (Ettema and Schaefer, 1986). With the plastic blocks, this type of bonding does not occur.

The experiments were performed in a test basin illustrated in Fig. 1. In the figure, the rubble is not shown for clarity. The tests were pseudo 2D with the indentor platen reaching though the shortest dimension of the basin. The experimental set-up is similar to the laboratory punch through tests with ice rubble described in Azarnejad and Brown (2001). Hence, $F_I - \tau$ relation from their work was adopted for reference. This relation is given by

$$\tau = \frac{F_{Im} - F_I - F_A}{2bh} \tag{2}$$

where F_{Im} is the maximum force measured during an experiment, F_I is the residual force in the end of the indentor stroke and F_A is the inertial force needed to accelerate the rubble. The terms in the previous sentence are those used by Azarnejad and Brown (2001). Further in Eq. (2), b and h are the indentor platen length (see Fig. 1) and the rubble thickness, respectively. Platen length b multiplied by two is used in Eq. (2), as the experiments were pseudo 2D with the platen covering the length of the basin.

Azarnejad and Brown (2001) based Eq. (2) on their indentor force–displacement ($F_I - y_I$) records and observations on the failure mechanism of the rubble. Fig. 2 shows an illustration of a $F_I - y_I$ record from Azarnejad and Brown (2001) with high indentor velocity v_I. The maximum force F_{Im} assumed to be due to breakage of the freeze bonds within the rubble. Further, F_I was assumed to be the load due to buoyancy of the rubble moving under the indentor after the failure. F_A was defined from the measured F_I records using the part where F_I remained approximately constant until the end of the stroke.

Instead of actual punch through tests, Azarnejad and Brown (2001) measured the inertial force F_A from two other types of experiments called here reference experiments. The reference experiments included experiments where the indentor moved into open water and experiments where the indentor moved with a single ice block under it. Similar reference experiments to achieve F_A were also performed here and are in the further text referred to as open water and block experiments, respectively. Even if F_A was called the inertial component by Azarnejad and Brown (2001), it evidently has components other than inertia included in it (Liferov and Bonne-maire, 2005). The experiments performed here showed, that one is due to water in the basin and is here further called hydrodynamic force F_{Hy}.

The main focus of this paper is on the study of a punch through test as a method for measuring rubble properties. Hence, the reference experiments have two-fold significance: (1) they should enable the division of the measured F_I records into factors due to rubble and due to other sources and (2) they should give insight on the applicability of the reference experiments in the interpretation of the punch through tests in general.

The results suggest that analysis of punch through tests based on reference experiments is not straightforward. The division of measured indentor force into components as in Eq. (2) might lead to overestimation of rubble strength with high loading rates. It is shown that the rate dependency may have been overestimated in earlier experiments, i.e. increase in indentor velocity could lead to an overestimation of the ice rubble shear strength. Further, the results suggest that the boundary conditions could affect the results in experiments with high indentor velocities. This could lead to an overestimation of the strength of ice rubble freeze bonds.

The paper is organized as follows. First the experimental set-up is described in detail and then the results are introduced and analyzed. Emphasis in the analysis is on the estimation of rubble strength from punch through tests. After this, the results are discussed and compared with earlier work. The emphasis in the discussion is on the findings that could have affected the results in previous studies. Finally, conclusions are presented.

2. Experiments

In this section, the experiments are described in detail. First the experimental set-up is described. After this the experiment types are described in detail and the summary of the testing program is given.

2.1. Experimental set-up

The test basin illustrated in Fig. 1 was made of transparent acrylic glass (PMMA) and was supported by a steel frame. The basin dimensions were $2.5 \times 0.5 \times 1.0$ m. The indentor platen was $0.5 \times 0.49 \times 0.01$ m and made of polyethylene (PE). With the load levels in the experiments, the indentor platen can be considered as rigid. A small gap was left between platen and the basin walls to avoid friction. The platen was attached from its center line to an aluminum shaft. The shaft was attached from its other end to a force transducer further attached to a hydraulic ram. Indentor displacement was measured from the top end of the aluminum shaft using a displacement transducer. The stroke length of the hydraulic ram was 300 mm. The basin had movable walls which enabled to change its width w_b. Movable walls were made out of PE and were attached to the basin frame.

![Fig. 1. Experimental set up. Direction of the indentor motion y_I. The coordinate system (x, y, z) has its origin in the indentor centroid in its initial position.](image-url)
The main properties of the rubble blocks are given in Table 1. The rubble consisted of blocks made out of PE. Due to the material and the forces during the experiments, the deformation of individual blocks is expected to be negligible. The blocks were homogeneous in size with a shape of an elongated parallelepiped. Blocks were sawn out of a PE plate of thickness 0.02 m by the supplier of the material. The plate used in manufacturing the blocks had different surface roughness on its opposing faces. The sliding friction coefficient μ of the blocks was measured for each combination of contacting faces. In the measurements a block was pulled on top of a PE plate with a constant force. From the motion of the block, frictional resistance was derived. A thin layer of water was added to the top of the plate hence the surfaces were wet during a test. The friction was assumed to follow Coulomb friction model. The measured minimum and maximum values of μ were 0.04 and 0.12 depending on the pair of contacting surfaces.

Most of the experiments were recorded with a video camera. The video recordings were used in analyses of the force records and rubble deformation during experiments.

2.2. Description of experiment types

Table 2 gives the summary of the testing program. All experiments were repeated with each set-up and found to be well repeatable as will be shown by the results in Section 3.

In the preparation of an experiment, the rubble blocks were added into the basin until desired rubble thickness h was achieved. After mixing, the rubble was left to settle before conducting an experiment. The time for rubble settling did not affect the results and was only needed to avoid waves in the basin. For another experiment, the rubble was not taken out of the basin but was mixed. This ensured random initial configuration for each experiment.

In the experiments, indentor velocities $v_I = 2.5, 5, 10, 20, 30,$ and 40 mm/s and basin widths 2.3 m and 1.5 m were used. With all v_I used, the indentor velocity remained constant during the indentor stroke as will be shown in Section 2.2. It is believed that with the lowest velocities a case of quasi static loading of the rubble was obtained and the effect of the water could be reliably analyzed. On the other hand, with the highest velocities the hydrodynamic forces were clearly affecting results. Further, with the highest v_I values used, ice rubble has been in earlier laboratory punch through experiments reported to change its failure mode (Azarnejad and Brown, September, 2001). The values of v_I are in the slow regime when compared with the experiments by Azarnejad and Brown (2001), who used indentor velocities up to approximately 120 mm/s. The values of v_I were not chosen to correspond to any full scale ice rubble processes, but to study the experimental method.

In addition to punch through experiments, Table 2 shows the two types of reference experiments: open water and block experiments. The motivation for these was given in Section 1. In the open water and block experiments there was no rubble in the basin and the experiments were performed with the same indentor velocities as the punch though experiments.

In the open water experiments, the indentor with the initial position above the waterline, moved into the basin filled with water only. In the block experiments, a single block with cross sectional size of the indentor and thickness of 0.18 m was placed under the indentor. During an experiment, the block was moving with the indentor. The block was prepared by tightly taping together similar PE blocks as used in the punch through experiments. The block and the indentor platen were initially not in contact. Instead, the block was floating in the basin under the indentor. It is believed that the deformation of the block in the experiments was negligible and the block can be

Table 1

Properties of the rubble blocks.

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>$-$</td>
<td>mm</td>
<td>90</td>
</tr>
<tr>
<td>Width</td>
<td>$-$</td>
<td>mm</td>
<td>50</td>
</tr>
<tr>
<td>Thickness</td>
<td>$-$</td>
<td>mm</td>
<td>20</td>
</tr>
<tr>
<td>Material density</td>
<td>ρ</td>
<td>kg m$^{-3}$</td>
<td>940 ± 7834</td>
</tr>
<tr>
<td>Friction coefficient</td>
<td>μ</td>
<td></td>
<td>0.04–0.12</td>
</tr>
</tbody>
</table>

Table 2

Summary of the testing program showing number of conducted experiments. In the table h is the rubble thickness, w_b the basin width, v_I the indentor velocity and N.A. stands for not applicable.

<table>
<thead>
<tr>
<th>Test type</th>
<th>w_b [m]</th>
<th>h [m]</th>
<th>v_I [mm/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punch through</td>
<td>1.5</td>
<td>0.3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>0.3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Open water</td>
<td>2.3</td>
<td>N.A.</td>
<td>3</td>
</tr>
<tr>
<td>Block</td>
<td>2.3</td>
<td>N.A.</td>
<td>2</td>
</tr>
</tbody>
</table>

* Reference experiment.

Fig. 3. Typical indentor force F_I records (a) and the effect of indentor velocity v_I (b). In (a) F_I^m is the maximum measured indentor force, F_I^r the residual load, and $F_H = F_I^m - F_I^r$ is the hydrodynamic force defined from the results of the open water experiments are illustrated. As (b) shows, increase in v_I caused an increase in F_H and the displacement at which F_H was reached y_f^m increased in punch through, open water and block experiments.
considered rigid. Further, the same assumption is believed to apply if the block material was changed to ice.

3. Results and analysis

In this section, the indentor force–displacement \((F_I - y_I)\) and the indentor force–time \((F_I - t)\) records from the experiments are described and analyzed. Fig. 3 a illustrates typical \(F_I\) records from a punch through and an open water experiment. In addition, the figure shows how the terms in Eq. (2) were derived from the \(F_I\) records.

As Fig. 3 a shows, \(F_I^m\) refers to the maximum measured indentor force and \(F_I^r\) to the force at the end of an experiment. \(F_I^m\) occurs at time \(T_m\) and with indentor displacement \(y_I^m\) as indicated. The hydrodynamic force \(F_H\) was derived from \(F_I\) records of the open water experiments as \(F_H = F_I^m - F_I^r\). The derivation of the inertial force \(F_A\) in Eq. (2) was similar to \(F_H\) with the exception, that \(F_I\) records of block experiments were used.

As illustrated in Fig. 3 b, the indentor velocity \(v_I\) changed the \(F_I\) records. An increase in \(v_I\) caused an increase in \(F_I^m\) and in \(y_I^m\). However, \(T_m\) decreased with increasing \(v_I\). This occurred in all punch through, open water and block experiments with increasing \(v_I\). As will be shown below, changes in \(F_I\) records with \(v_I\) are largely due to hydrodynamic forces.

In the following analysis, the mean force records and values are used. These were derived using \(F_I\) records from all of the experiments with the same set up. The mean force records in the text are indicated by bar symbol, e.g. \(F_I\) records refer to \(F_I\) records averaged over the experiments with the same set up.

![Fig. 4. Mean indentor force-displacement \((F_I - y_I)\) records from (a) open water and (b) block tests with all values of indentor velocity \(v_I\).](image)

3.1. Hydrodynamic and inertial force

As shown in Fig. 4, the open water and block experiments resulted to \(F_I - y_I\) records with very similar shape close to the maximum indentor load \(F_I^m\) with all \(v_I\). The difference in the value of \(F_I^m\) in open water and block experiments was approximately equal to the block buoyancy \(F_B^b\). In both experiments the residual force \(F_I^r\) was due to buoyancy; in open water experiments due to the indentor buoyancy \(F_B^b\) and in block experiments due to the sum of indentor buoyancy and block buoyancy.

![Fig. 5. The hydrodynamic force \(F_H\) and inertial force \(F_A\) as function of indentor velocity \(v_I\).](image)

![Fig. 6. The division of \(F_I - t\) records from open water experiments into five parts (1)–(5): (a) measured \(F_I - t\) from three open water experiment with \(v_I = 20\) mm/s and (b) division of \(F_I - t\) records into five parts. Further, (b) shows the definition for each part. The observations related to the parts (1)–(5) are described in Fig. 6.](image)
The transient peak in the beginning (\(v_I \approx 5 \text{ mm/s} \)) of the block experiments with high \(v_I \) seen in Fig. 4 was likely due to block inertia.

Before analyzing the \(F_I \) records in more detail, the values of hydrodynamic force \(F_I \) obtained from the open water experiments and inertial force \(F_I \) obtained from the block experiments are shown in Fig. 5 as a function of indentor velocity \(v_I \). In addition, the figure shows linear fits for both data sets. It can be seen, that the values of \(F_I \) and \(F_I \) somewhat differ with low \(v_I \) and the rate \(\partial F_I / \partial v_I \) is slightly higher than \(\partial F_I / \partial v_I \). Anyhow, as will be shown in next section, these differences in force values are small when compared to the results of punch through experiments.

The similar shapes of \(F_I \) records close to the maximum indentor force \(F_I^m \) suggest that the increase in \(F_I^m \) with increasing \(v_I \) was likely due to same reason in the open water and the block experiments. For clarity, the \(F_I \) records from open water experiments and \(F_I \) are considered here but the same analysis applies for block experiments and \(F_I \).

For the analysis of \(F_I \), Fig. 6 a and b shows \(F_I - t \) records from three open water experiments and an illustration of the same data, respectively. Fig. 6 b shows that the division of \(F_I - t \) graph is into five parts.

Fig. 7. Observations from the open water experiments divided into parts (1)–(5). In the illustrations indentor platen is moving downwards with velocity \(v_I \). The \(F_I - t \) record with the same parts indicated are given in Fig. 6 b.

\[\begin{align*}
(1) & \text{ wave propagates with high } v_I \\
(2) & \text{ water flowing on top of the platen} \\
(3) & \text{ water reaching platen center line} \\
(4) & \text{ volume above platen fills} \\
(5) & \text{ surface waves appeared}
\end{align*} \]

Fig. 8. Time interval \(T^m \) to maximum load \(F_I^m \) in open water experiments. Also the time interval \(T_H \) during which \(F_H \) occurs is shown.

\[\begin{align*}
F_I^m & = \frac{2n \bar{h}_c}{g} \left[\tanh \left(\frac{2n \bar{h}_c}{h_W} \right) \right]^{-1}.
\end{align*} \]

Fig. 9. The second mode of stationary wave in the basin with width \(w_b \). In the figure the indentor excites the wave at \(t = 0 \). During \(t = T_{b/4} \), water mass under the indentor moves upwards.

To further describe parts (1)–(5), the observations made during experiments are related to them by a sequence of illustrations in Fig. 7. In Fig. 6 a, the data is from experiments with \(v_I = 20 \text{ mm/s} \), but the division of \(F_I - t \) records in Fig. 6 b applies for all \(v_I \). It should be noticed, that the same division of \(F_I \) records applies to block experiment results. The only exception is that block buoyancy \(F_{b}^0 \) has to be taken account when defining parts (1)–(5) in Fig. 6 b.

As Figs. 6 and 7 show, during (1) \(F_I \) increases due to indentor buoyancy as it starts its entry to the water. The observations on experiments with high \(v_I \) showed, that a small surface wave could start propagating during (1) as shown in Fig. 7. When \(F_I < F_I^m \), the rate \(\partial F_I / \partial v_I \) increased only slightly with \(v_I \), indicating that the load increase was mostly due to buoyancy during (1) with all \(v_I \).

During stage (2), the rate \(\partial F_I / \partial t \) decreased but \(F_I \) still increased with all \(v_I \). The observations showed, that during (2) the water flowed on top of the indentor towards its center line. Hence, the platen was under the initial water surface, but not instantly covered by water. As \(F_I^m \) at (3) was reached, the water had reached indentor center line. After this, during (4), \(F_I \) decreased towards its residual value and the volume above indentor was filling with water. As \(F_I = F_I^r \) at the beginning of (5), surface waves with short wave length appeared on top of the indentor if \(v_I \) was high.

The maximum force \(F_I^m \) in open water and block experiments was not due stationary waves in the basin. To show this, the time to maximum load \(T^m \) illustrated in Fig. 8 was derived from the data. Similarly to \(T^m \), time interval \(T_{b/2}^m \) to reach \(F_I^m \) in block experiments was derived. \(T^m \) and \(T_{b/2}^m \) were compared to the periods of the stationary waves in the basin \(T_h \). The solution for \(T_h \) given in e.g. Faltinsen [1990] is

\[T_h = \frac{2n \bar{h}_c}{g} \left[\tanh \left(\frac{2n \bar{h}_c}{h_W} \right) \right]^{-1}. \]
where \(\lambda_0 \) is the wave length of mode \(n \), \(g \) the gravitational acceleration, and \(h_{w} \) the water depth. The stationary waves have relation between \(\lambda_0 \) and basin width: \(\lambda_0 = 2w_0/n \).

Based on observations, the second mode \((n = 2)\) as illustrated in Fig. 9 with \(\lambda_2 = w_0 \) m is of interest. As illustrated in the figure, from \(T_2/4 < t < T_2/2 \) the water mass under the indentor is moving towards it. Hence, if \(F_H \) was due to stationary wave, it should occur with \(t < T_2/2 \). By substitution of \(w_0 = 2.3 \) m, \(h_{w} = 0.6 \) m, \(g = 9.81 \) ms\(^{-2}\) into Eq. (3) value \(t < T_2/2 < 0.63 \) s is achieved. It should be noticed, that \(T_2 \) decreases with increase in \(h_{w} \) and water depth in the basin was always more than 0.6 m i.e. \(T_2/2 \) in the experiments would have been even shorter.

Time periods \(T^m \) and \(T^b \) are shown against \(v \) in Fig. 10 a with \(T_2/2 \). The figure shows, that \(T^m \) and \(T^b \) are not constant, but decrease with \(v \). If the surface waves were to cause \(F_H \) or \(F_v \), this would not be expected. Further, \(T^m \) (\(T^b \)) is too long for a wave to cause \(F_H \) (\(F_v \)). Hence, the water mass moving towards the indentor due to stationary wave does not cause \(F_H \) (see Fig. 9). Anyhow, the wave that started to propagate horizontally away from the indentor at \(t \) in Fig. 7 could partly lead to instantaneous \(F_H \) in fast experiments. In case they reflect back from the basin walls, they could help the water flow on top of the indentor.

As will be shown in the next section, the \(F_I \) records from the punch through tests showed a peak corresponding to \(F_I \). To compare the \(F_I - t \) records from the open water and punch through experiments, a least squares fit on the open water experiments data was defined. For the fit, first the time interval \(T_m \) of \(F_I - t \) shown in Fig. 8 was derived from \(F_I - t \) records of open water experiments. As the figure shows, \(T_m \) is the time interval during which \(F_H \) occurs in the open water experiments.

For period \(T_m \) with each \(v \) a curve was fitted using MATLAB® and fminsearch function (MATLAB, 2009). Here, a sinusoidal fit was chosen and MATLAB was used to find constants \(C_I, C_2 \) and \(C_3 \) for function

\[
F_H(t) = C_1 \sin \left(\frac{2 \pi t}{C_2} \right) + C_3. \tag{4}
\]

MATLAB’s fminsearch solves constants \(C_I \) by finding the least squares fit based on the data. At the start of the iteration an initial guess for the constants has to be given. Here initial guesses \(C_I = F_1^m - F_I^r, C_2 = 2T_I \) and \(C_3 = F_I^r \) were used. Fig. 11 a and b shows the fits on top of the original data from the open water experiments with two values \(v \).

For further use, \(F_I^m \) is translated for each experiment. The idea of the translation is illustrated in Fig. 12. Briefly, translation aligns \(F_I^m \) with the maximum indentor force \(F_{I_{max}} \) of experiment \(j \) and for the comparison of punch through and open water experiments. For experiment \(j \), the fit after translation is

\[
F_{I_{trans}}(t) = F_I^m \left(t + \frac{t_{j_{max}} - t_{j_{max}}(F_{I_{max}})}{t_{j_{max}} - t_{j_{max}}(F_{I_{max}})} \right), \tag{5}
\]

Fig. 11. Fitting function \(f_{trans} \) given by MATLAB (see Eq. (4)) shown on top of the original data from three open water experiments: in (a) \(v = 10 \) mm/s and in (b) \(v = 40 \) mm/s. In both cases \(f_{trans} \) gives a good estimate for \(T_m \).

Fig. 12. Eq. (5) translating \(f_{trans} \) to \(F_{I_{trans}} \) according with \(F_I - t \) record of experiment \(j \) (FHF). The load record \(F_{I_{trans}} \) does not move due to Eq. (5).
where t^m and T_j^m are the time instants of maximum indentor forces F_{Ij}^m and F_{Ij}^m in open water and punch through experiment j, respectively.

3.2. Force records in punch through experiments

Fig. 13 shows the indentor force F_I and indentor displacement y_I from four repeated slow punch through experiments with basin width $w_b = 1.5$ m and rubble thickness $h = 0.5$ m. As illustrated by the F_I records, the experiments were well repeatable. Indentor displacement y_I records show that the indentor velocity v_I remained constant during the experiments. The data in the figures was used to derive the mean indentor force record F_I for $w_b = 1.5$ m shown in Fig. 14 a and b. Fig. 14 a shows the mean indentor force displacement y_I records from the punch through experiments with both w_b. As shown by the figure, both w_b yielded to similar F_I–y_I records.

In the beginning of an experiment, F_I starts to increase due to resistance and buoyancy of the rubble as shown in Fig. 14 a. It should be noticed that, due to rubble buoyancy, F_I starts to increase before the indentor begins to submerge. With increasing y_I, first the rate $\partial F_I / \partial y_I$ changes and then F_I reaches its maximum F_{Ij}^m.

The change in $\partial F_I / \partial y_I$ and F_{Ij}^m is explained by the results from the open water experiments. For this, F_I–t records close to the peak for the same experiments are shown in Fig. 14 b. In addition to F_I, the figure shows the fit F_{HF} (see Fig. 12) from the open water experiments with the same indentor velocity v_I.

As Fig. 14 b shows, the peak giving F_{Ij}^m matches with T_m shown in Fig. 8. This suggests that maximum indentor force F_{Ij}^m is related to the hydrodynamic force F_{HF}. The change in the rate $\partial F_I / \partial y_I$ (and thus in $\partial F_{Ij}^m / \partial y_I$ in Fig. 14 a at $y_I \approx 50$ mm) occurred due to increase in buoyant load as the indentor started its entry into the water.

After the peak related to F_I in Fig. 14 a, F_I corresponds to the rubble resistance and to the combined load of the rubble and indentor platen buoyancies. It can be noticed, that F_I slowly decreases until y_I reaches its maximum y_{Ij}^m or F_I–t records close to maximum indentor force with the fit F_{HF} from the open water experiments (see Fig. 12). Number of experiments for each set up shown is given in Table 2.

![Figure 13](image_url) Fig. 13. The measured indentor force F_I and displacement y_I plotted against time t from four repeated experiments with $v_I = 5$ mm/s, $h = 0.5$ m and $w_b = 1.5$ m. The records shown in the figures were used to derive the mean indentor force F_I record shown in Fig. 14.

![Figure 14](image_url) Fig. 14. Mean indentor force F_I records from punch through experiments with $v_I = 5$ mm/s, $h = 0.5$ m, and with both basin widths w_b: (a) F_I–y_I records and (b) F_I–t records close to maximum indentor force with the fit F_{HF} from the open water experiments (see Fig. 12). Number of experiments for each set up shown is given in Table 2.
the end of the experiment. Hence, no constant residual force F_r was measured in the experiments.

As was already illustrated in Fig. 3 b, the F_t records changed with indentor velocity v, Fig. 15 shows the measured F_t and y from four repeated fast ($v = 40$ mm/s) punch through experiments with basin width $w_b = 1.5$ m and rubble thickness $h = 0.5$ m. The fast experiments were well repeatable, and the indentor velocity stayed constant during each experiment as shown by the figures. The data in the figures was used to derive the mean indentor force F_t record for $w_b = 1.5$ m shown together with the F_t record for $w_b = 2.3$ m in Fig. 16 a. The basin width w_b did not have major effect on the F_t–y records.

Fig. 16 a shows that F_t increased with high rate $\partial F_t/\partial y$ from the beginning of the experiment. The rate $\partial F_t/\partial y$ in the fast experiments was higher than in their slow counterparts (see Fig. 14 a). Close to the maximum force F_{HF}, the shape of the F_t records again corresponded to F_{HF} obtained from the open water experiments with same indentor velocity v. This is seen from Fig. 16 b, which shows F_t–t records close to F_{HF} with the fit F_{HF} (see Fig. 12). As observed from the figure, F_t continued to decrease fast even after F_{HF} unlike in the slow experiments (see Fig. 14 b).

The maximum indentor force F_{HF} increased with v as shown by Fig. 17 a and b. In addition to F_{HF} from punch through experiments, the figure shows F_{HF} from the open water and block experiments. Further, Table 3 shows the mean values of F_{HF} for all experimental set ups with their standard deviations. As shown by the table, the standard deviations were relatively small indicating good repeatability of the experiments.

As Fig. 17 a and b show, in punch through experiments, $\partial F_{HF}/\partial v$ was clearly higher than in open water and block experiments. The difference between rates $\partial F_{HF}/\partial v$ in open water and block experiments was small, when compared to the rate $\partial F_{HF}/\partial v$ from punch through experiments.

The results in Fig. 17 a and b show some increase in $\partial F_{HF}/\partial v$ with h, but the increase is small when compared to total change in F_{HF} with v. Further, the basin width w_b did not have major effect on maximum

Fig. 15. The measured indentor force F_t and displacement y plotted against time t from four repeated experiments with $v = 40$ mm/s, $h = 0.5$ m and $w_b = 1.5$ m. The records shown in the figures were used to derive the mean indentor force F_t record shown in Fig. 16.

Fig. 16. Mean indentor force F_t records from punch through experiments with $v = 40$ mm/s, $h = 0.5$ m, and with both basin widths w_b: (a) F_t–y records and (b) F_t–t records close to maximum indentor force with the fit F_{HF} from the open water experiments (see Fig. 12). Number of experiments for each set up shown is given in Table 2.
force F_{res}. Accounting all experimental set ups, on average 5% higher values of F_{res} were measured with $w_b = 1.5 \text{ m}$.

3.3. Indentor velocity induced effects in experiments

3.3.1. Deformation patterns and velocity

The rubble behavior in the experiments was affected by the experimental set up and hydrodynamic forces. To show this, the F_{res} records from a slow and fast experiment and sequences of snapshots from the same two experiments are shown in Figs. 18 and 19, respectively. The snapshots in Fig. 19 show the experiments at four different indentor displacements v_I. Further in the snapshots, the typical deformation patterns of the rubble are described.

Before discussing the deformation of the rubble in more detail, the rubble mass moving down with the indentor until the end of the experiment is considered. This mass is indicated in Fig. 19 (1b) and (2a) for the fast and the slow experiment, respectively, and has a shape of upward opening trapezoid. This trapezoidal volume evolved early in the experiment from a mass with a shape of an upward opening wedge.

As observed from Fig. 19, the rubble mass moving down with the indentor remained similar irrespective of v_I. In the end of an experiment, major part of F_{res} is expected to consist of rubble and indentor buoyancies. The similarity of the rubble mass moving down with the indentor in slow and fast experiment explains the similarity of the indentor load at the end of the experiments (see Fig. 18).

At (1a) and (1b) in Figs. 18 and 19, the indentor has just submerged in both experiments. The slow experiment reached maximum indentor load F_{res} at this point of the experiment as (1a) in Fig. 18 a shows. As in open water experiments (see (2) in Fig. 7), in slow experiments F_{res} occurred after indentor submergence, but at the stage, when the indentor platen was not yet totally covered by water.

As already mentioned, in the fast experiments F_{res} occurred at higher indentor displacement than in the slow experiments. The instance of F_{res} in the fast experiment is indicated by (2b) in Fig. 18 b and shown in the snapshot in Fig. 19 (2b). The occurrence of F_{res} in fast experiments was accompanied with rapid flow of water through the rubble mass towards the indentor center line. However, at (2b) in Fig. 19 the rubble mass restricts the flow of water on top of the indentor. Hence the force needed to enable the flow is higher than in the open water experiments. Simultaneously, the movement of the blocks over the indentor is obstructed by the indentor platen. This can be seen from (2b) in Fig. 19, where virtually no rubble blocks are observed moving over the indentor with the water flow. The indentor platen obstructing the movement of rubble blocks with the

<table>
<thead>
<tr>
<th>$w_b \text{ [m]}$</th>
<th>$h \text{ [m]}$</th>
<th>$v_I \text{ [mm/s]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>0.3</td>
<td>81 ± 1</td>
</tr>
<tr>
<td>2.3</td>
<td>0.4</td>
<td>89 ± 3</td>
</tr>
<tr>
<td>2.3</td>
<td>0.5</td>
<td>96 ± 3</td>
</tr>
<tr>
<td>1.5</td>
<td>0.3</td>
<td>71 ± 2</td>
</tr>
<tr>
<td>1.5</td>
<td>0.4</td>
<td>85 ± 2</td>
</tr>
<tr>
<td>1.5</td>
<td>0.5</td>
<td>96 ± 3</td>
</tr>
</tbody>
</table>

Table 3

Mean values of maximum values indentor force F_{res} with their standard deviations from the punch through experiments. Data from the experiments with all rubble thicknesses h and indentor velocities v_I and both basin widths w_b used is given.
water can lead to an increase in F_I, not only due the rubble properties, but also due to the set up of the experiment.

After (2b) in the fast experiment, the rubble started to move over indenter as indicated by arrows marked with (A) in Fig. 19 (3b). This movement of rubble started immediately after F_I was reached and continued during the fast decrease in F_I records between (2b) and (3b) in Fig. 18 b. By stage (3b) in Figs. 18 and 19, movement of the rubble upwards indicated by arrows marked with (B) had started. As observed from Fig. 19 (3a), similar movement occurred also in the slow experiment, but was considerably slower and involved less rubble.

The rubble motion in fast experiment as indicated in Fig. 19 (3b) inevitably leads to a change in rubble configuration in the vicinity of the indenter. This movement depends on the experimental set up, as the movement is enabled by the indenter platen moving down i.e. the boundary conditions for the rubble change during the experiment. Once the rubble moves towards the platen center line, the flow of water on top of the indenter becomes less restricted. This likely partly causes the fast decrease in F_I between (2b) and (3b) fast experiments seen in Fig. 18 b.

With an increase in indenter velocity v_I, an increase in the rubble mass moving on top of the indenter occurred as comparison of Fig. 19 (4a) and (4b) shows. This is again due to flow of water enforced by higher v_I.

3.3.2. Other velocity related effects

The above discussion on deformation patterns and their relation to indenter force F_I records suggest that the experimental set up effects the results: the drop in the indenter force from F_I to residual value F_{II} is likely related to the change in boundary conditions for the rubble during the experiment (see (3b) in Fig. 19) rather than material properties of the rubble. However, it is clear that with fast loading rates, F_I records and values of maximum indenter force F_{II} could also increase due to other reasons. The reasons considered here are: (1) inertial force of the accelerating rubble mass, (2) the permeability of the rubble mass, and (3) the force F_F induced by pore pressure within the deforming rubble.

The inertial force of the accelerating rubble mass can be considered as follows. If inertia had a considerable effect on F_I, an increase in h would be expected to lead to an increase in $\partial F_I/\partial v_I$ as the rubble mass increases with h. As was already mentioned, the change in rate $\partial F_I/\partial v_I$ with h was small when compared to the total change in F_I with v_I (see Fig. 17). Hence it appears, that the inertia does not have a major effect on the value of F_I.

It should also be noticed that in the block experiments, the inertia of the block had virtually no effect on F_I (see Section 3.1).

The permeability of the rubble evidently affects the load. In addition to its relation to the force induced by pore pressure F_F, it has an effect on the flow of water through the rubble mass into the volume on top of the indenter. As was observed from Fig. 19 (2b), this flow was restricted by the porous rubble mass as F_{II} was reached in fast experiments. After F_{II} was reached, rubble blocks moved with the water flow above the indenter platen as was shown in Fig. 19 (3b). This movement of rubble likely causes a change in the permeability of the rubble mass in the vicinity of the indenter. Hence, the effect of permeability is likely also related to the experimental set up.

Whether the force due to pore pressure, F_F, affects F_I is difficult to estimate. If it does, it is likely related to experimental set up in similar way as rubble permeability. Anyhow, if F_F does increase the maximum indenter force F_{II}, its effect would be expected to increase with rubble thickness h. As in the case of inertia, the relatively small change in the rate $\partial F_I/\partial v_I$ with h compared to the total change in F_I with v_I indicates, that F_F had no major effect on F_{II} in the experiments.

3.4. Estimation of rubble shear strength τ

The rubble shear strength τ defined in Eq. (2) can be derived from the indenter force F_I records of the experiments. It should be noticed, that in these experiments, no peak load corresponding to breakage of a network of cohesive bonds was observed. Instead, the peak observed in F_I records was related to the hydrodynamic load F_H (see Figs. 14 and 16). Rationale for deriving τ is thus to investigate the relation of F_I records and τ given in Eq. (2).

Derivation of maximum force F_{II} (see Eq. (2)) from F_I records of the experiments was presented above. Here F_{II} was used instead of F_F in Eq. (2). This was done as the difference in F_F obtained from block experiments and F_{II} obtained from open water experiments (see Fig. 5) was negligible when compared to difference in F_{II} and F_I in punch through experiments with high indenter velocities v_I: with $v_I>10$ mm/s, the difference in F_F and F_{II} was less than 5% when compared to the difference in F_{II} and F_I from all experiments. For the residual force F_{II} in punch through experiments, the mean value of F_I after the fast decrease in F_I was used.

Eq. (2) yielded rubble shear strength τ values on the range of 30...150 Pa with τ increasing linearly with indenter velocity v_I. With low v_I, F_I after the peak (which is related to hydrodynamic load F_{II}) corresponded to the rubble resistance and the combined load due to rubble and indenter buoyances. As illustrated by Fig. 20 a, once $F_I=F_{II}=F_H$ is reached after the peak, F_I gradually decreases towards its residual value F_{II}.

The rubble shear strength τ, as defined in Eq. (2), corresponds to this decrease, or the difference between $F_{II}−F_H$ and F_I. The problem with this definition of rubble shear strength τ is that the load levels F_{II} and F_I are not measured for the same experimental set up. The load $F_{II}−F_I$ is obtained in the beginning of an experiment while the load F_I is measured during the experiment.
F_I is measured at a much later stage, where the amount of rubble below the indentor has decreased, as shown in Fig. 19. In other words, the rubble thickness h in Eq. (2) cannot be unambiguously defined, and the value of rubble shear strength τ is related to a change in the experimental set up. Disturbingly, this means also that the value of τ depends on how far the indentor moves (see Fig. 20).

The features described above are much more pronounced in high speed tests than in slow speed tests. In high speed tests the change in rubble configuration during an experiment is more remarkable (see Fig. 19), the hydrodynamic load component F_H is higher, and an even less clear residual force level F_I was observed (see Fig. 20). As the hydrodynamic force F_H is obtained from the reference experiments with no rubble, the more the rubble effects the water flow, the more F_I may differ from the hydrodynamical effects during a punch through test.

In these experiments, the rubble shear strength τ, as defined in Eq. (2), was observed to increase with velocity. This result is similar with laboratory experiments with ice rubble. However, with all the above mentioned problems in the definition of τ and the strong effect of velocity on the behavior of rubble and water, it is possible that the measured loading rate dependency of τ is caused by the test set up and not by the rubble.

4. Discussion

4.1. Comparison to earlier laboratory experiments

In these experiments, the shear strength values of the rubble were compared to those from the earlier laboratory scale punch through on ice rubble by Azarnejad and Brown (2001). In their work, series of experiments were performed...
on ice rubble that was stirred few minutes before the experiments. In these experiments, it could be expected that the effect of freeze bonds was small, thus they were used for comparison. In Azarnejad and Brown (2001), shear strength values \(\tau \approx 30\ldots100 \) Pa were achieved with the indentor velocities used here. These values are on the same range with the values achieved here (30\ldots150 Pa).

To derive \(\tau \) in the Mohr–Coulomb model (see Eq. (1)), the failure process of the rubble has to fit the assumptions of the model. With ice rubble, it is assumed that the failure occurs on distinct shear planes which reach through the rubble thickness. This type of failure is called Mohr–Coulomb type (Azarnejad and Brown, 2000) and has been observed in laboratory scale ice rubble punch through experiments with low \(v_I \). Clearly, the Mohr–Coulomb type of failure did not occur in the experiments here.

Anyhow, in laboratory punch through experiments with ice, the failure mode has been found to change with increasing \(v_I \) (Azarnejad and Brown, 2001). As \(v_I \) increased, the Mohr–Coulomb type failure did not occur (Azarnejad and Brown, 2000, 2001; Brown and Lemee, 2002; Lemee and Brown, 2002). Instead, with high \(v_I \) so called progressive failure occurs (Azarnejad and Brown, 2000). In progressive failure a volume of rubble with the shape of a wedge moves down with the indentor (Azarnejad and Brown, 2000). The change in the failure pattern has been reported occurring with indentor velocities 25\ldots50 mm/s depending on the rubble type (Azarnejad and Brown, 2000; Brown and Lemee, 2002; Lemee and Brown, 2002). It should be noticed, that the progressive failure occurred with high \(v_I \) even in rubble with freeze bonds.

The deformation pattern of the rubble described in Section 3.3.1 showed similar features with progressive failure with all \(v_I \). In the experiments here, indentor load records did not show peak force corresponding to a breakage of a cohesive network. The similarity in the failure process suggests that the ice rubble in a punch through experiment with high \(v_I \) might start to behave similarly to a rubble with no cohesion.

In the case of rubble with freeze bonds, the deformation of the rubble described in Section 3.3.1 would be expected to somewhat change. In this case, the rubble movement on top of the indentor (see (3b) in Fig. 19) would diminish due to the cohesion of the rubble.

4.2. Full scale vs. laboratory

In full scale experiments on ice, the effects due to experimental set up observed here do not occur. This is due to the typical preparation of a full scale test described in e.g. Heinonen (2004). As the illustration of a full scale experiment in Fig. 21 shows, a cut through the frozen layer of ice on top of the rubble has to be made to perform the punch through experiment on the rubble under the frozen layer. This procedure leads to a plug of ice moving down with the indentor during the experiment as illustrated in Fig. 21 b. The plug makes the effective indentor platen thickness to be related to the thickness of refrozen layer. In full scale, the maximum load \(F^m \) is generally achieved with indentor displacements \(y_I^m \), which are a fraction of the thickness of the plug.

Further in full scale, the displacement at submergence of the indentor platen is depended on the free board thickness shown in Fig. 21 a. If the free board thickness is larger than \(y_I^m \), the effects related to indentor submergence reported here do not affect the value of the maximum load \(F^m \). The value of \(F^m \) in full scale is reached with relatively small \(y_I^m \) and is believed to be dominated by the strength of the cohesive skeleton formed by freeze bond network between the blocks within the keel (see e.g. Heinonen, 2004).

For example, in full scale punch through experiments by Heinonen (2004), the plug of refrozen ice had thickness of 0.8\ldots1.6 m, whereas the maximum force was achieved with less than 0.04 m of penetration. In those experiments, the free board was generally larger than...
Maximum indentor load F_l^n (the only exception was one experiment, in which they report that no free board existed). Hence, F_l^n was generally achieved before indentor submergence, and consequently, F_l^n does not include effects due to the indentor submergence.

The experimental set up in laboratory experiments could be changed to better represent the set up in full scale. A simple enhancement would be to use thicker indentor platen to avoid the submergence of its total volume. It should be noted that the thickness of the indentor platen is likely related to both, the value of maximum load and the behavior of the rubble after the maximum load.

5. Conclusions

Laboratory scale punch through experiments on floating rubble consisting of plastic blocks were conducted. The motivation of using plastic blocks was to simplify the interpretation of results. In addition to the punch through experiments, a series of experiments with no rubble in the basin were performed. These experiments were conducted to estimate the hydrodynamic force F_h induced by the experimental set up.

The effect of indentor velocity v_i and the experimental set up on measured indentor force F_l records were studied. Further, the derivation of material response and rubble shear strength (see Eq. (2)) from measured load histories were investigated. The main findings presented in the paper are:

- Maximum indentor load F_l^n was always measured after the indentor had moved under the initial water level and was related to the hydrodynamic load acting on the indentor.
- With low indentor velocity v_i, the peak force in indentor force records was explained by hydrodynamic force F_h measured from the open water experiments. Close to maximum indentor force F_l^n in punch through experiments, the similarity of F_l records was clear when compared to open water experiments.
- With high v_i, F_l records also showed behavior related to F_h close to F_l^n. However, fast decrease in F_l after F_l^n in punch through experiments continued even after the peak due to F_h. With increasing indentor displacement, the rate of decrease changed. This behavior together with the observations on the rubble deformation (see Fig. 19 and Section 3.3.1) suggest that the F_l records could be affected by the experimental set up.
- Due to effect of experimental set up, in fast experiments the rubble shear strength τ could become incorrectly estimated by Eq. (2).

The results thus suggest that the loading rate dependency observed in earlier laboratory punch through experiments with ice rubble could have been at least partly induced by the experimental set up instead of the rubble. In full scale, the experimental set up is very different from that in laboratory experiments. This could partly explain the differences in results of full scale and laboratory punch through experiments.

Acknowledgments

The financial support from the Ministry of Education of Finland through the National Graduate School in Engineering Mechanics and from the Graduate Program of Aalto University, School of Engineering, is gratefully acknowledged. Authors would also like to thank Aalto University student Juhanne Pennanen for his help in conducting the experiments.

References

