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1. Introduction 

1.1 Background 

This work consists of applications of chemical thermodynamics in systems that involve 

aqueous electrolyte mixtures. The results of this research are important in 

hydrometallurgical processes such as nickel refining, the surface finishing of metals by 

electroplating, manganese ore leaching, and the pickling of stainless steels, in order to 

improve and develop the system and gain a better understanding of phenomena in the 

aqueous process solutions, which typically operate at temperatures between 50 and 300 

°C.

Acidic metal sulfate solutions are generated on a large scale in the hydro- and 

pyrometallurgical industries. They are also produced in the steel industry and titanium 

dioxide production. Acid mine drainage has long been a significant environmental 

problem in coal and metal sulfide mining. The demand for the recycling and reuse of 

materials has increased significantly, especially in the EU. The dumping and land-filling 

of a neutralised deposit are not an option any more. Thus, efficient techniques for the 

recycling and reuse of sulfuric acid and/or metal sulfates from the side streams are 

needed.

When alternative solutions are being developed, a better understanding of the 

thermodynamic behaviour of MeSO4–H2SO4–H2O (Me = Mn, Ni, Fe) systems is needed. 

The principles of chemical thermodynamics utilised in this work can be used to develop 

greener processes with safer chemicals. Consistent thermodynamic models like the one 

assessed in this work are generic and not specific to any process. These models can be 

used, for example, in waste water treatment, as well as the development of chemical 

processes in the extraction of minerals. 

1.2 Research problem 

The aim of this thesis was to create a generic and internally consistent thermodynamic 

model for acidic aqueous ferrous, nickel, and manganese sulfate solutions over a wide 

range of temperatures and concentrations that can be used in various applications from 

e.g. the design of hydrometallurgical processes to environmental systems. In order to 

ensure the internal consistency of the model, the CALPHAD (CALculation of PHAse 

Diagrams) method [1] was used. In short, that means that the model was built starting 
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from the unary data; then the binary systems were carefully modelled and after that 

ternary systems and so on. 

1.3 Method 

The thermodynamic model was obtained using the thermodynamic equilibrium 

calculation program MTDATA® (www.mtdata-software.com), which uses a global Gibbs 

energy minimisation routine and includes the Pitzer activity coefficient model [2, 3] for 

the excess Gibbs energy of the aqueous solutions. This program also includes an 

assessment module for thermodynamic optimisation, which was used to optimise the 

Pitzer parameters from the experimental observations.

1.4 Experimental data 

Experimental data, including solubilities, eutectic and peritectic points, water activities, 

mean activity coefficients, osmotic coefficients, EMF measurements, vapour pressures, 

decomposition pressures, freezing point depression temperatures, and enthalpies and 

heat capacities of solutions from the literature were reviewed and critically evaluated. 

1.5 Previous models 

The metal sulfate solutions presented in this thesis have previously been modelled in 

the literature using both the Pitzer model and other solutions models, such as NRTL

[4], UNIQUAC [5] and MSE [6]. However, many of these are limited to narrow ranges 

of either temperatures or concentrations. In this work all the previous model results 

were reviewed critically and compared to the results of this work and experimental data 

from the literature. 

1.5.1 FeSO4-H2SO4-H2O system 

In this work, only ferrous (+2 oxidation state) iron was considered. In aqueous sulfuric 

acid solutions, ferrous sulfate forms hydrates with 1, 4, 5, 6, and 7 molecules of 

crystalline water [7]. This chapter summarises the results of the other models. More 

details of the other models can be found in Publications II and IV. 

Reardon and Beckie [8] assessed the FeSO4-H2SO4-H2O system using the Pitzer model. 

For the FeSO4-H2O system they used mean activity coefficients and the heat capacity 

and enthalpy of solution data to optimise the temperature-dependent Pitzer 

parameters. The solubility data of FeSO4 in water were used to generate the 

temperature-dependent equations for the solubility products (Ksp) for FeSO4·7H2O(s) 

and FeSO4·H2O(s), which were then used with the ternary solubility data to generate 

Pitzer parameters for the FeSO4-H2SO4-H2O system. The Pitzer model of Reardon and 

Beckie is valid over a temperature range from 10 to 90 °C of the binary FeSO4-H2O

system and from 10 to 60 °C of the ternary system and up to 6 molal sulfuric acid using 

the second dissociation constant K2 from  Pitzer  et  al.  [9].  However,  the  enthalpy  of  
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solution values (�Hs) at infinite dilution of Reardon and Beckie are not internally 

consistent. �Hs calculated at 20 °C from the Pitzer parameters gives the value of 16.1 

kJ/mol, whereas the derivation of Ksp gives a value of about 21.2 kJ/mol [10]. 

Sippola [10] assessed this ternary system with the Pitzer model using only solubility 

data. Instead of using solubility products he used the �fH°298.15, S°298.15 and cp(T) data 

and a simplified HKF model [11] for ions. The heat capacity data for FeSO4·7H2O(s) 

were taken from Lyon and Giauque [12], at 260.8-307.67 K. Sippola fitted and 

estimated FeSO4·4H2O(s) and FeSO4·H2O(s) heat capacity data from the literature 

values of MgSO4·4H2O(s) and MgSO4·H2O(s). Sippola was able to model the solubility of 

FeSO4 in water and up to 6 molal sulfuric acid, using the second dissociation constant 

K2 from Matsushima and Okuwaki [13], over a temperature range of 0-100°C. 

Kobylin  [14]  and  Kobylin  et  al.  [15]  assessed  the  H2O-FeSO4-H2SO4 system at 0-100 

°C, using the Pitzer model but excluding unsymmetrical mixing terms. Kobylin et al. 

followed  the  same  procedure  as  in  Sippola  [10],  using  solubility  data  only  in  the  

parameter optimisation. 

1.5.2 NiSO4-H2SO4-H2O system 

In aqueous sulfuric acid solutions, nickel (+2 oxidation state) sulfate forms hydrates with 
1,  2,  4,  5,  6  (� and �), and 7 molecules of crystalline water [16, 17]. This chapter 

summarises the results of the other models. More details of the other models can be 

found in Publications I and V. 

Reardon [18] assessed the NiSO4-H2SO4-H2O system using the Pitzer  model.  For  the 

NiSO4-H2O system he used mean activity coefficients and heat capacity and enthalpy of 

solution data to optimise the temperature-dependent Pitzer parameters. The solubility 

data of NiSO4 in water were used to generate the temperature-dependent equations for 

the solubility products (Ksp) for NiSO4·7H2O(s), �-NiSO4·6H2O(s), and �-

NiSO4·6H2O(s), which were used with the ternary solubility data to generate Pitzer 

parameters for the NiSO4-H2SO4-H2O system. The Pitzer model of Reardon is valid over 

a temperature range from 0 to 100 °C for the binary NiSO4-H2O system and from 0 to 

70  °C  for  the  ternary  system  and  up  to  6  molal  sulfuric  acid,  using  the  second  

dissociation constant K2 from  Pitzer  et  al.  [9].  The  Pitzer  model  of  Reardon  lacks  the  

monohydrate NiSO4·H2O(s)  phase  and  that  is  why  it  cannot  be  used  at  higher  

temperatures of nickel refining [19], where NiSO4·H2O(s) is the only stable solid phase. 

This model also exhibits a poor extrapolating behaviour of higher sulfuric acid 

concentrations. 

Kolhinen et al. [20, 21] modelled the NiSO4-H2O system using only solubility data from 

0 to 200 °C using �fH°298.15, S°298.15, and cp(T) data and a simplified HKF model for ions. 

The Pitzer model of Kolhinen et al. only seems to work at 0-100 °C. The model does not 

follow the experimental solubility data from the literature at temperatures above 100 °C 

where NiSO4·H2O(s) is the stable phase. Kolhinen et al. did not include H2SO4 in their 

assessment. 
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1.5.3 MnSO4-H2O system 

Manganese has oxidation states of +2, +3, +4, +6, and +7 but in this work only the most 
stable +2 state was considered [22]. In aqueous solutions, manganese sulfate forms 
hydrates with 1, 2, 4, 5, and 7 molecules of crystalline water [23, 24]. This chapter 

summarises the results of other models. More details of the other models can be found 

in Publication III. 

Przepiera [25] modelled this system as part of his MnSO4-H2SO4-H2O assessment from 

0 to 100 °C using the Pitzer model. Unfortunately, the paper of Przepiera [14] does not 

give thermodynamic data for the species included in the system and that is why it is not 

possible to recalculate his results. 

Azimi  et  al.  [26,  27]  modelled the system using the Mixed Solvent  Electrolyte  (MSE) 

model from 0 to 170 °C with the following experimental data from the literature: 

solubility of MnSO4, activity of water, mean activity coefficient, and heat capacity of 

solution data.  

Iliuta at al. [28] modelled the system using the extended UNIversal QUAsiChemical 

(UNIQUAC) model at -11.4 to 100 °C using solubility and osmotic coefficient data. 

1.6 Thermodynamic data 

The thermodynamic data (enthalpy, entropy, and heat capacity) of liquid water were 

first taken from the MTDATA® MTAQ/nplaq database (resource.npl.co.uk/mtdata/ 

aqueous.htm), but later it was found that the heat capacity data for water were not valid 

below 25 °C. Since freezing point depression data were used it was necessary to re-

evaluate the cp function of water in this thesis (Publications I and II). The 

thermodynamic data of the solids (MeSO4·nH2O(s), Me = Fe, Ni, Mn and n = number of 

crystalline water molecules) are not well known; that is why it was decided to optimise 

the �fH°298.15 and S°298.15 values for the solids in this work with the Pitzer parameters. 
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2. Theory 

2.1 Aqueous solutions 

Aqueous solutions consist of a solvent composed of water (H2O) and an electrolyte that 

in binary systems is MeSO4 dissolved in the electrolyte solution as the ions Me2+ + SO42-.

If the system is in saturation there is salt present with crystalline water MeSO4·nH2O(s),

where n = 1-7, depending on the temperature and metal sulfate. In ternary systems the 

third component in this work is H2SO4, which dissolves in water in two steps: 

H2SO4 = HSO4- + H+ (1)

HSO4- = SO42- + H+ K2 = a(SO42-) · a(H+) / a(HSO4-). (2)

The K2 value used in this thesis for reaction (2) is from Matsushima and Okuwaki [13]. 

24

10210

1037566.1283133.0

12717log01.246214.577),(log

TT
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TKTK
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�
(3)

The following equations [29] are needed to describe the properties of aqueous 

solutions. The Gibbs energy of the solvent, the standard state of which is pure water at 

the temperature and pressure of the solution is 

� �www aRTGG ln�� � . (4)

The Gibbs energy of the solute is 

� � � �iiii RTmRTGG �lnln ��� � , (5)

where the concentration unit mi is the molality that is used throughout this thesis 

(moles  of  solute  per  kg  of  water)  and  �i is the activity coefficient of the solute. The 

hypothetical standard state for the solute is 1 molal ideally diluted solution at the 

temperature and pressure of the solution. 

 The osmotic coefficient (�) is calculated from the activity of the water
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� �w
iw

a
mM

ln1000
�
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�

�
�
�
�

�

�

�
� , (6)

where Mw is  the  molecular  weight  of  water  (18.01528  g/mol).  The  dissociation  of  

electrolytes to ions in aqueous solutions is 






�
�
� �� zz

vv XMXM �� (7)

and the Gibbs energy of the electrolyte is equal to the sum of the Gibbs energies of the 

ions 

� � � � � �




�
�
� �� zz

vv XGMGXMG �� . (8) 

For any electrolyte, also in the case of incomplete dissociation, 

� � � � � �




�
�
� �� zz

vv XGMGXMG ��� �� (9)

using Equations (5), (8), and (9) we get  

� � � � 
�� �� ��� XXMMMXMX mmm . (10)

In the case of complete dissociation the molalities of the ions are 

MXM mm ��� (11) 

MXX mm 
�� . (12) 

Equations (10) and (5) are usually described with the mean activity coefficient (�±) so 

we get Equations (13) and (17), respectively. 

� � � ��� ��� ��� MXMXMX mm (13)


� �� ��� (14)

� � � � 




�
�� � ��� ��� (15)

� � � � 
�
� � ��� ��� XM

(16)

� ����� ��� iii mRTGG ln� (17)

2.2 General thermodynamic equations 

The total Gibbs energy of a system is constructed by writing the Gibbs energies for each 

species; see Equations (4) and (5). Thus we get 

� �� �i
o ln aRTGnGnG iiiitot ��� �� . (18)
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The Gi° term in Equation (18) is derived through the relation: 

)()()( iii TTSTHTG f
��� 
�� . (19)

The temperature dependencies of cp and G are 
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where A-D and AG-FG are constants. From the basic thermodynamic equations for 

enthalpy and entropy and Equation (19) we can derive the relations between those 

constants as. 

1
G

3
G

2
15298 15.298215.298215.29815.298 
�


� FEDCAH� GGG
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.f (22)
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The general temperature dependency for the Pitzer equation parameter (p), which is 

needed to calculate the activity (ai) of Equation (18), is, in this work 
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2.2.1 Solubility and dissociation reactions 

The solubility products of the solid phases in aqueous solutions are expressed by the 

following equations (27)-(28) 

)()()()( 2
2
4

2
24 lOHnaqSOaqMesOnHMeSO ����� 
�

(27)

n
w

sOnHMeSO

n
waqSOaqMe

SP am
a

aaa
K

n
���

��
� �

�


� 22

)(

)()(

24

2
4

2

� , (28)

where n = 1, 4, 5, 6, 7; Me = Fe, Ni, Mn and aw = the activity of water. 

The dissociation pressure of the gas-solid reaction for hydrates is 

� � )()()( 22424 gOyHsOHynMeSOsOnHMeSO �
��� , (29)
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where y is the stoichiometric number of H2O(g) in gas dissociation reactions. 

2.2.2 Heat capacity of ions 

The heat capacities of the ions were estimated using a simplified Helgeson-Kirkham-

Flowers (HKF) model [10]. According to the HKF model [11], the heat capacity of an ion 

can be calculated with Equation (30) 
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112

ln
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�
(30)

where T = temperature in Kelvins; P = pressure in bar; Pr = reference pressure in bar; c1,

c2, a3, a4 = ionic specific parameters; 
���Born coefficient of ion; � = dielectric constant; 

��� solvent specific parameter 228 K; 	 � solvent specific parameter 2600 bar. 

X and Y are Born functions depending on the dielectric constant of water 

� �
PT

Y �
�
�

�
�
�

�
�


�
�/1

(31)

PT
YX �

�
�

�
�
�
�
�

� . (32)

The Born coefficient for an ion is essentially constant below 170 °C [11]. Thus, at the 

reference pressure, i.e., neglecting pressure effects, Equation (30) simplifies to [10]: 

CT�X
(T-�

c cco
P  !���

�
�� 170,2

2
1 
 . (33)
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3. Pitzer model 

The  Pitzer  model  is  one  of  the  most  commonly  used  activity  coefficient  models  for  

aqueous solutions. The original approach assumes that the aqueous solution consists 

only of ions, and no ion complexes are formed. The model was also validated and its 

ability to extrapolate to other conditions than those used in the parameter optimisations 

was tested in this work. 

In 1973 Pitzer introduced an interaction model for the excess Gibbs energy of an 

aqueous solution, which is based on virial coefficients [2, 3]: 

����� ���
i j k

kjiijk
i j w

jiij
w

w

E

nnn
n

nn
n

Ifn
RT
G �� 2

11)( , (34) 

where nw is the amount of water in moles, �ij and �ijk are the second and third virial 

coefficients, and ni, nj, and nk are the amounts of species in solution. 

f(I) is a function of ionic strength, temperature, and solvent properties and describes 

the long-range electrostatic forces. Pitzer assumed that the � and � coefficients are 

symmetrical, i.e., �ij =�ji and ignored all short-range interactions between three cations 

or three anions. 

By combining virial coefficients and changing moles to molalities we get: 
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(35) 

where the sums are over the various cations c,c', anions a,a' and neutral n species. Bca,

Cca, �cc', �aa',	cc’a, and 	aa’c are interaction parameters between cations and anions and 

�nc and �na are parameters for interactions between an electrically neutral species and a 

cation or an anion, respectively. Following the notation of Sippola [29] – note the 

corrections made to Equations (43) and (44) of this thesis – the osmotic and activity 

coefficients of species can be derived from Equation (35), assuming that � and 	
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are independent of concentration and Cca
� is concentration-dependent. 
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where Z and the parameters with osmotic coefficients are 
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The activity coefficient of a cation M is. 
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The activity coefficient of an anion X is. 
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The activity coefficient of a neutral species N is 
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3.1 Concentration dependence of second and third virial coefficients 

This chapter follows the paper by Sippola [29] – note the corrections made to Equations 

(50),  (51),  (57),  (58)  and  (59a)  of  this  thesis.  Pitzer  [2]  tried  different  Debye-Hückel  

functions and chose the best, which was 

Ib
IA

If
�



�

1
)( �� , (46)

where A� is the temperature- and solvent-dependent Debye-Hückel constant and b is a 

constant with the value 1.2. Solving f and f' from Equation (38) yields 

� �Ib
b
IAf �
� 1ln4

� (47)

� ���
�

�
��
�
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�

� Ib

bIb
IAf 1ln2

1
' � . (48) 

Pitzer used the following concentration dependency for the parameter B�
ca

)exp()exp( 2
)2(

1
)1()0( IIBca ������ 
�
�� . (49)

�(0), �(1), and �(2) are electrolyte-specific Pitzer parameters and �1 and �2 are 

electrolyte-dependent constants. Combining Equations (39) and (49) we get: 

)()( 2
)2(

1
)1()0( IgIgBca ����� ��� (50)

)(')(' 2
)2(

1
)1(' IgIgBca ���� �� , (51)

where the g(x) and g'(x) functions are 
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Pitzer [30] compared the calculated and experimental data and ended up with the 

following values for the electrolyte-dependent constants �1 and �2 listed in Table 1. 

Table 1. Internal parameters (b = 1.2) of the original Pitzer model. 

Electrolyte type �1 �2

1-1, 1-2, 1-3, 1-4 2.0 -

2-2 1.4 12

2-3 and higher valence 2.0 50

Applying the ionic solution theory, Pitzer concluded that the concentration 

dependency for the interaction parameter for ions with the same sign is: 

)(Iij
E

ijij �� ��� , (53) 

where �ij and E�ij are the Pitzer parameters for the short- and long-range interactions 

between two ions with the same sign, respectively [31]. Using Equations (41) or (42) we 

get 

)()( ' III
ij

E
ij

E
ijij ���� ���� (54)

)('' I
ij

E
ij ��� . (55)

E�ij terms are zero for ions with an equal charge and for ions that are unequal but have 

same charge these terms can be calculated numerically. Pitzer tested experimental data 

for 15 different ternary systems and concluded that the E�ij terms can be omitted [31]. 

Later, Harvie et al. [32, 33] included E�ij terms in their modification of the Pitzer 

model, which was shown to improve the fit in multicomponent brine systems. E�ij terms 

can be included in the Pitzer model either by direct numerical integration or by the 

Pitzer derived analytical approximation method [31]. 

In the original work Pitzer assumed that the Cca, 	cc’a, and 	aa’c parameters are 

independent of the concentration. However, Archer [34] introduced the following 

concentration dependency of Cca
�

)exp()1()0( ICCC cacaca 
� 
�� , (56) 

where Cca
(0) and Cca

(1) are electrolyte-dependent parameters and 
 is usually constant (= 

2.5) for all electrolytes. From Equation (40) we get: 
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where the h(x) and h'(x) functions are 
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It should be noticed that the concentration-dependent Cca
� parameter in Equations 

(40) and (56) has a different interpretation than in the original Pitzer model [2] but it 

reduces to C� if the parameter Cca
(1) is set to zero. 

3.2 First derivative enthalpy 

The temperature derivative of the excess Gibbs energy is called the apparent molal 

enthalpy of the solution (�L). The relationship between �L and the measured enthalpy of 

the solution �Hs(T) is calculated using Equation (61). The Pitzer model equation for �L

is in Equation (62) 
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where the symbol AL refer to

P

L

T
A

T
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�
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�
� �4 (63)

and the Pitzer parameters are temperature derivatives of the activity coefficient 

parameters  
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3.3 Second derivative heat capacity 

The apperent molal heat capacity (�cp) is a temperature derivative of �L according to 

Equation  (66),  where  cp2° is  the  heat  capacity  of  a  solution  at  infinite  dilution.  The  

relationship between the apparent molal heat capacity (�cp) of the solution and the 

measured heat capacity of the solution cp2 is calculated using Equation (67), where cpw°

is the heat capacity of the pure solvent i.e. water. The Pitzer model equation for �cp is in 

Equation (68) 
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where the symbol AJ refer to 

P

L
J T

AA �
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� (69)

and the Pitzer parameters are the second temperature derivatives of the activity 

coefficient parameters 
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The values of the Debye-Hückel parameters used in this work are A� = 0.39147, AL = 

1985.287, and AJ = 32.64 at 25 °C. 
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4. Assessment 

Evaluation of the thermodynamic properties of the aqueous phase, as well as the 

condensed metal sulfate hydrates, was carried out using the MTDATA® assessment 

module, version 4.81, and MTDATA Studio 5.03, using Harvie’s modification of the 

Pitzer equation [32, 33]. The assessment module minimises the weighted sum of 

squares of errors between the measured and fitted values, according to Equation (72). 

Thus, the objective function (OF) to be minimised in the parameter optimisation can be 

written as 

2

1
�
�

��
�

�
��
�

� 

�

n

i i

ii
i U

ECWOF , (72)

where n is the number of properties (data items) to be reproduced, Ci and Ei are the 

calculated and experimental values of the property i, Ui is the uncertainty associated 

with the value Ei, and Wi is the weight assigned to the property i; in this work Wi = 1 or 

0.

Figure 1 shows schematically the work flow of this assessment procedure. First, the 

experimental data are collected from the literature and then they are critically 

evaluated. After that the standard thermodynamic data of each species are collected in a 

database as �fH°298.15, S°298.15, and cp(T) or G(T); see Equations (19)-(25). An excess 

Gibbs energy model is also needed, which is the Pitzer model in this work. Finally, the 

objective function is minimised when optimising the Pitzer parameters and possibly the 

thermodynamic properties of unknown or not-so-well-known species. If that is done 

successfully, the result is an internally consistent thermodynamic database.  

The most important part is the critical evaluation of the experimental data. It is also 

important to keep the number of optimised parameters low enough. The objective 

function is sensitive to the given experimental errors or weights of each data point. In 

this thesis the weight of each point is 1 with the exception of rejected values, where 0
was used. An important part after optimisation is the validation of the model using data 

that were not included in the optimisation. 
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Figure 1. The assessment procedure. 
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5. Results and discussion 

As the CALPHAD method [1] was used in order to build an internally consistent 

thermodynamic model, the results are divided into unary, binary, and ternary chapters. 

Metal sulfate systems have also been compared in this thesis, showing the results from 

Publications I-V in a somewhat different way. 

5.1 Unary data 

It was found out that the heat capacity data of H2O at a temperature lower than room 

temperature were not accurate in the MTDATA® MTAQ/nplaq (resource.npl.co.uk/ 

mtdata/aqueous.htm) database. So a recalculation of the properties of H2O was needed. 

The data for ions were taken from a simplified Helgeson-Kirkham-Flowers (HKF)

model from Sippola [10]. Since no proper data for solid phases which include crystalline 

waters were available, (CODATA [35] does not include these values), the enthalpy of the 

formation and entropy of species were optimised in this work with Pitzer model 

parameters using cp data  from  DeKock  [36]  for  the  solids.  The  results  are  shown  in  

Tables 2 and 3 with reference to Publications I-III (PI,  PII,  or  PIII), together with the 

other data used, which were taken from the literature. 
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Table 2. Heat capacity of species. 

Tmax, K A B C·10-3 D·105

550 106.688 0.8655 0 0 NiSO4·7H2O(s) [37]

550 69.435 0.867 0 0 �-NiSO4·6H2O(s) [37] 

550 147.458 0.6283 0 0 �-NiSO4·6H2O(s) [36] 

550 24.200 0.3763 0 0 NiSO4·H2O(s) [36]

398 379.822 0.3619 0 -82.245 FeSO4·7H2O(s) [10]

398 76.078 0.6435 0 0 FeSO4·4H2O(s) [10]

398 55.293 0.2798 0 0 FeSO4·H2O(s) [10]

550 81.372 1.0041 0 0 MnSO4·7H2O(s) [36]

550 101.823 0.7531 0 0 MnSO4·5H2O(s) [36]

550 25.784 0.3766 0 0 MnSO4·H2O(s) [36]

323.15 16343.10 -66.3614 75.6890 -2964.29 Ni2+(aq) [38]

403.15 -586.04 3.6087 -5.7300 -18.4188

448.15 2790.51 -5.0510 0 -1345.28

328.15 14279.40 -57.8948 65.9339 -2588.70 Fe2+(aq) [10]

413.15 -1363.44 6.4203 -8.5393 165.15

448.15 3170.88 -5.6005 0 -1585.87

323.15 13234.90 -53.9590 61.8370 -2365.61 Mn2+(aq) [11]

398.15 -414.06 2.8850 -4.8000 -27.90

448.15 2737.52 -4.9020 0 -1314.44

328.15 46200.60 -186.8004 211.9290 -8546.29 SO42-(aq) [10]

403.15 1080.77 -0.7188 -3.9917 -676.58

448.15 5857.78 -10.7722 0 -2907.89

343.15 21245.30 -84.1929 93.5145 -4083.14 OH-(aq) [10]

448.15 -5250.28 20.4720 -23.0421 985.66

328.15 48246.05 -197.6415 227.7310 -8546.29 HSO4-(aq) [10]

403.15 3126.22 -11.5599 11.8103 -676.58

448.15 7903.23 -21.6133 15.8020 -2907.89

273.15 2.113 0.1305 0 0 H2O(s) [PI]

298.15 134.400 -0.3859 0.6294 0 H2O(l) [PI]

373.15 89.810 -0.0943 0.1530 0

500 311.953 -0.8588 0.8951 -55.991

1100 28.409 0.0125 0.0004 1.283 H2O(g)a [PII]

aMTDATA® MTAQ/nplaq 1.0 database.
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Table 3. Standard enthalpy and entropy of species. 

�fH°298.15, kJ/mol S°298.15, J/molK

-2976.61 379.16 NiSO4·7H2O(s) [PI]

-2683.73 331.96 �-NiSO4·6H2O(s)      [PI]

-2676.56 353.85 �-NiSO4·6H2O(s)      [PI]�
-1193.71 140.4 NiSO4·H2O(s) [PI]

-3017.51 395.30 FeSO4·7H2O(s) [PII]

-2131.06 270.60a FeSO4·4H2O(s)          [PII]

-1245.65 141.66 FeSO4·H2O(s)            [PII]

-3135.92 449.18 MnSO4·7H2O(s)        [PIII]

-2551.23 352.48 MnSO4·5H2O(s)        [PIII]

-1375.75 175.02 MnSO4·H2O(s)          [PIII]

0.0 0.00 H+(aq)                         By definition

-53974 -128.87 Ni2+ [11, 38]

-92260.0 -105.90 Fe2+(aq) [10, 11]

-220597.2 -73.64 Mn2+(aq) [11]

-909340.0 18.50 SO42-(aq) [35]

-230015.0 -10.90 OH-(aq) [35]

-885200.0 137.50 HSO4-(aq) [10]

-292.74 44.78 H2O(s) [39]

-285.83 69.95 H2O(aq) [35]

-241.83 188.73 H2O(g) [35]
aSippola [10] entropy value was used.

5.2 Binary systems 

NiSO4-H2O, FeSO4-H2O and MnSO4-H2O systems were modelled in Publications I-III, 

respectively. The H2SO4-H2O data from Sippola [29] were used to build ternary systems 

in this work. The primary data used in the parameter optimisation in this work were 

taken from the solubility and water activity measurements, which represent the primary 

water vapour pressure data without any assumptions. The data for the enthalpy and 

heat capacity of solution were also reproduced well. Figures 2-4 (below) summarise 

some of the results. Since plotting the activity of water as a function of MeSO4 would not 

show the difference between the metals in Figure 2, the osmotic coefficient of each 

binary is shown instead at 25 °C. It can be seen from the figure that the minimum value 

of the osmotic coefficient for FeSO4 is about 0.4 mol/kg, while for NiSO4 and MnSO4 it 

is  close  to  0.9  mol/kg.  Figure  3  shows  the  enthalpy  of  dilution  (�Hdil =  �Hs(m)-

�Hs(1.11)) to a reference solution of 1 mol of MeSO4 per 50 moles of H2O (1.11 mol/kg) 

at 25 °C. In that way it is possible to compare the enthalpy of dilution of the different 

binaries, which is not possible from the figures in Publications I-III because of the 

different ordinate values. Figure 4 shows the solubility of each metal sulfate in water. 

The freezing point depression is also shown in the figure. The eutectic temperatures 

according to the model are -11.4 °C (MnSO4),  -3.18 °C (NiSO4), and -1.96 °C (FeSO4). 

There is an interesting area close to the peritectic temperature (56.5 °C) of FeSO4 where 

all the sulfates seem to have roughly the same solubility (3.6 mol/kg) in water, as shown 

in Figure 4. 
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Figure 2. Osmotic coefficient at 25 °C. —FeSO4-H2O, - - -MnSO4-H2O and ···NiSO4-H2O according to this 

assessment. 

Figure 3. The  calculated  enthalpy  of  dilution  (Hs(m)-Hs(1.11);  the  reference  solution  is  thus  1  mol  of  

MeSO4 per  50  moles  H2O) at 25 °C. —FeSO4-H2O, -  -  -MnSO4-H2O and ···NiSO4-H2O according to this 

work. 
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Figure 4. The assessed solubilities of metal sulfate systems. —FeSO4-H2O, ---MnSO4-H2O and ···NiSO4-

H2O obtained in this work. 

5.3 Ternary systems   

The FeSO4-H2SO4-H2O  (Publication  IV)  and  NiSO4-H2SO4-H2O (Publication V) 

ternaries were modelled using solubility data at 0-100 °C and 0-90 °C, respectively. The 

model was also validated using the solubility measurements available for dilute sulfuric 

acid solutions at 160-220 °C and 200-250 °C, respectively. Figures 5-6 show the 

solubilities of FeSO4 and  NiSO4 in sulfuric acid at 25 °C. Also shown are stable solid 

phases and experimental data from the literature. A comparison of the solubility of iron 

and nickel in sulfuric acid is presented in Figure 7. As can be seen, there are areas where 

one sulfate is fully dissolved (a homogeneous aqueous solution), while the other sulfate 

also  forms  a  solid  phase.  Note  that  if  we  add  all  the  components  to  one  solution  (the  

NiSO4-FeSO4-H2SO4-H2O system) there will be new interactions between the ions and 

the solution may behave in a different way from that shown in Figure 7. Similar 

comparisons can easily be calculated at other temperatures using this model. The Pitzer 

parameters evaluated in this work are shown in Table 4. 
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Figure 5. Solubility of ferrous sulfate in sulfuric acid at 298.15 K. The experimental data are from Cameron 

[40], Bullough et al. [41], and Belopol’skii and Urusov [42]. 

Figure 6. Solubility of NiSO4 in sulfuric acid at 298.15 K. The experimental data are from Addlestone [43], 

Shkodina et al. [44], and Rohmer [45]. Ni7 = NiSO4·7H2O(s) and Ni1 = NiSO4·H2O(s).
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Figure 7. A comparison of the solubilities of the —FeSO4-H2SO4-H2O and ···NiSO4-H2SO4-H2O system at 

298.15 K. Fe7 = FeSO4·7H2O(s), Fe1 = FeSO4·H2O(s), Ni7 = NiSO4·7H2O(s), �-Ni6 = �-NiSO4·6H2O(s) and 

Ni1 = NiSO4·H2O(s).

Table 4. Assessed Pitzer parameters used in this work. The Pitzer parameters CPitz and EPitz were found 

unnecessary; see Equation (26). 

APitz BPitz DPitz·10-4 FPitz p(25 °C)

�(0)Ni-SO4 0.40892 -75.73582 0.15490

�(1)Ni-SO4 7.02089 -1192.39972 3.02156

�(2)Ni-SO4 595.45536 -1.23307 -79106.27192 -37.50820

C�
Ni-SO4 -0.09686 41.08029 0.04092

�(0)Ni-HSO4 0.28304 0.28304

�(1)Ni-HSO4 -1.79329 2565.11390 6.81015

C�
Ni-HSO4 0.01270 0.01270

�(0)Fe-SO4 5.19343 -0.01609 0.18349 -508.26086 0.32107

�(1)Fe-SO4 15.85143 0.00845 -0.60442 -3205.27313 2.24836

�(2)Fe-SO4 -16.21420 -16.21420

C�
Fe-SO4 -0.05882 12.80119 -0.01588

�(0)Fe-HSO4 0.75865 -96.89215 0.43367

�(1)Fe-HSO4 -14.45279 5787.61444 4.95897

C�
Fe-HSO4 -3.20972 -0.01077

�(0)Mn-SO4 0.52459 -97.41705 0.19785

�(1)Mn-SO4 92.13163 -0.23483 1.99205 -10896.79701 3.27560

�(2)Mn-SO4 -182.79334 33186.70657 -71.48458

C�
Mn-SO4 -0.18843 61.95017 0.01935

	Fe-HSO4-SO4� -0.25247 71.40747 -0.01297

�(0)H-SO4 -0.04083 20.48760 0.02789

C�
H-SO4 0.18522 -42.79400 0.04169

�(0)H-HSO4 0.02808 54.14100 0.20967

�(1)H-HSO4 -0.00516 147.75900 0.49043
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There are still missing ternaries in this aqueous solution database, including MnSO4-

H2SO4-H2O, NiSO4-FeSO4-H2O, NiSO4-MnSO4-H2O, and FeSO4-MnSO4-H2O systems; 

those should be modelled in the future. Figures 8-10 show how this model estimates 

selected metal sulfate water ternaries. In Figure 8 it can be seen that there is need for an 

interaction parameter (�Fe-Ni) between Fe2+ and Ni2+ ions at 25 °C. It was found that with 

�Fe-Ni = 0.1137 the experimental measurements of Oikova and Panaiotov [46] are well 

represented.  

Figure 9 shows that there seems to be no need for an interaction parameter (�Mn-Ni)

between Mn2+ and Ni2+ at 75 °C since this model calculates well the experimental points 

of Shevchuk et al. [47]. Figure 10 shows the experimental values of Soroka et al. [48] at 

100.6 °C.  This is the temperature where the experimental measurements deviate a lot 

for both FeSO4-H2O and MnSO4-H2O; see the MnSO4 = 0 and FeSO4 = 0 values in Figure 

10. Since these were the only data found for the MnSO4-FeSO4-H2O ternary system it is 

difficult to say whether the model or the experiments are more reliable. What is evident 

is that data of this kind cannot be modelled using only the �Mn-Fe parameter. This kind of 

validation of the model shows its quality further. 

Figure 8. Validation of the model: solubility of the NiSO4-FeSO4-H2O  system  at  298.15  K  with  

experimental data by (�) Oikova and Panaiotov [46], (�) Linke and Seidell [49, 50] and model calculations 

··· with and — without the �Fe-Ni Pitzer parameter; also shown is the transformation line where the 

crystalline phase of nickel sulfate hydrate will change according to the model. 
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Figure 9. Validation of the model: solubility of the NiSO4-MnSO4-H2O  system  at  348.15  K  with  

experimental data by (�) Shevchuk et al. [47], (�) Krepelka and Rejha [51], Linke and Seidell [50] and — 

model calculations, without the Pitzer parameter �Mn-Ni.

Figure 10. Validation of the model: solubility of the FeSO4-MnSO4-H2O  system  at  373.75  K  with  

experimental data by (�) Soroka et al. [48], (�) Bullough et al. [41], (�) Eddy et al. [52], and Krepelka and 

Rejha [51] and — model calculations. 
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6. Conclusions  

In this thesis the thermodynamics of FeSO4-H2SO4-H2O, NiSO4-H2SO4-H2O, and 

MnSO4-H2O systems were carefully assessed from the available experimental data 

(solubilities, eutectic and peritectic points, water activities, mean activity coefficients, 

osmotic coefficients, EMF data, vapour pressures, decomposition pressures, freezing 

point depression temperatures, and enthalpies and heat capacities of solution), 

published in the literature from 1855 to today. Previous thermodynamic models were 

also critically reviewed.  

The current model presents the experimental data available on binary MeSO4-H2O

systems with a good accuracy and consistently over temperature intervals of -2–220 °C 

(FeSO4), -3–220 °C (NiSO4), and -11–175 °C (MnSO4) and in concentrations from pure 

water to the solubility limit of metal sulfate hydrates, but the model has limitations at 

temperatures higher than 100 °C as a result of the lack of experimental data. The 

experimental data available for FeSO4-H2SO4-H2O and NiSO4-H2SO4-H2O systems are 

presented with a good accuracy and consistently up to 100 and 90 °C, respectively and 

sulfuric acid concentrations up to 10 mol/kg. The model also predicts well the solubility 

measurements available in dilute sulfuric acid solutions at 160-250 °C.  

The thermodynamic database created in this thesis still lacks proper assessments of 

the FeSO4-NiSO4-H2O, FeSO4-MnSO4-H2O, MnSO4-NiSO4-H2O, and MnSO4-H2SO4-

H2O ternary systems. The method used in this thesis can be used for other metal 

sulfates and other anions in order to further expand this aqueous database. It is 

suggested that the next system to be added to the database should be ferric iron 

Fe2(SO4)3-H2SO4-H2O. Interactions in four-component systems should also be checked. 

It is assumed that only a small adjustment will be needed in four-component systems if 

the binary and ternary systems have been well modelled. 

In the modelling of this database the need for experimental work arose. Because of the 

lack of experimental data, the heat capacity of crystalline MeSO4·nH2O(s) should be 

measured over a wide temperature range, preferably from 0-500 K. More solubility 

measurements of MeSO4 in sulfuric acid solutions at higher temperatures, above 90 °C, 

are also needed to ensure the correct solubilities. 
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There is also a need to make water activity and vapour pressure measurements at 

moderate to high temperatures to improve the current model in the area of industrial 

processes. Since the thermodynamic properties of the crystalline phases evaluated in 

Publications  I,  II,  and  III  are  related  to  the  chosen  values  of  metal  ions,  it  would  be  

more convenient to use �fH°298.15, S°298.15, and cp values of Fe2+, Ni2+, and Mn2+ ions that 

are well evaluated and generally accepted.  

This  database  for  aqueous  solutions  can  be  updated  in  the  future  if  new  and  more  

reliable measurements are found. Those new experiments can easily be added to the 

experimental files of MTDATA® and the new parameters of the model will be optimised 

quickly to improve the model further. 
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