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Abstract

Speech technology is a field of technological research focusing on methods to process spoken
language. Work in the area has largely relied on a combination of domain-specific knowledge and
digital signal processing (DSP) algorithms, often combined with statistical (parametric) models.
In this context, machine learning (ML) has played a central role in estimating the parameters of
such models. Recently, better access to large quantities of data has opened the door to advanced
ML models that are less constrained by the assumptions necessary for the DSP models and are
potentially capable of achieving higher performance.

The goal of this thesis is to investigate the applicability of recent state-of-the-art (SoA)
developments in ML to the modelling and processing of speech at the so-called suprasegmental
level to tackle the following topical problems in speech research: 1) zero-resource speech processing
(ZS), which aims to learn language patterns from speech without access to annotated datasets, 2)
automatic word (WCE) and syllable (SCE) count estimation which focus on quantifying the amount
of linguistic content in audio recordings, and 3) speaking style conversion (SSC), which deals with
the conversion of the speaking style of an utterance while retaining the linguistic content, speaking
identity and quality. In contrast to the segmental level which consists of elementary speech units
known as phone(me)s, the suprasegmental level encodes more slowly varying characteristics of
speech such as the speaker identity, speaking style, prosody and emotion. The ML-approaches used
in the thesis are non-parametric Bayesian (NPB) models, which have a strong mathematical
foundation based on Bayesian statistics, and artificial neural networks (NNs), which are universal
function approximators capable of leveraging large quantities of training data. The NN variants
used include 1) end-to-end models that are capable of learning complicated mapping functions
without the need to explicitly model the intermediate steps, and 2) generative adversarial networks
(GANSs), which are based on training a minimax game between two competing NNs.

In ZS, NPB clustering methods were investigated for the discovery of syllabic clusters from speech
and were shown to eliminate the need for model selection. In the WCE/SCE task, a novel end-to-
end model was developed for automatic and language-independent syllable counting from speech.
The method improved the syllable counting accuracy by approximately 10 percentage points from
the previously published SoA method while relaxing the requirements of the data annotation used
for the model training. As for SSC, a new parametric approach was introduced for the task.
Bayesian models were first studied with parallel data, followed by GAN-based solutions for non-
parallel data. GAN-based models were shown to achieve SoA performance in terms of both
subjective and objective measures and without access to parallel data. Augmented CycleGANSs also
enable manual control of the degree of style conversion achieved in the SSC task.
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speech processing, word and syllable count estimation, speaking style conversion.
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1. Introduction

Communication through acoustic signals is widely observable among ani-
mals. Over the millennia, this acoustic communication has evolved into
a complex phenomenon in humans called speech. Spoken language has
taken on a variety of different forms in various human civilisations and
cultures (Lieberman and McCarthy, 2015). In order to communicate over
distances in space and time, several human societies have also developed
orthographic representations of the spoken language that come in many
forms and shapes, such as the Latin script or the Chinese writing system
(Poole, 1999). Speech, together with its orthographic representation, can
be considered as a central component to human intelligence and cultural
evolution (Lieberman and McCarthy, 2015; Smith and Kirby, 2008). The
speech signal is transmitted as vibrations in air, and is produced and
perceived in humans by highly complex physiological and neurological
systems. Speech encompasses several levels of linguistic structure, which
are not all transparent in the textual orthographic representation. At
the short time-scale, the rapidly varying characteristics of the signal are
largely related to phonetic categories, also known as phonetic segments.
These phonetic segments often have a direct correspondence to their sym-
bolic representation in written text. The suprasegmental level of speech,
on the other hand, encodes slower varying characteristics such as speaker
identity, speaking style, prosody, dialect, or other speaker states and traits
such as emotions. Paralinguistic aspects of this information are lost when
spoken language is represented in terms of symbols aimed at conveying
the linguistic content of the message, as the written symbols focus purely
on the lexical and syntactical contents. In other words, the speech signal
is packed with various levels of information that are partially absent from
written language.

The last several decades of research in the field of speech processing have
dealt with the problem of enhancing or computationally emulating different
aspects of the production or perception chains of speech. Speech processing
has several areas of research, including analysis, synthesis and conversion.
Analysis deals with the extraction of some of the modalities of information

19



Introduction

present in the speech signal, for example, automatic speech recognition
(ASR), speaker identity recognition, emotion classification etc. Synthesis
deals with the creation of a speech signal that contains some specified
information such as text-to-speech (TTS). Finally, conversion deals with
the change of some aspect of information in a given speech utterance while
the quality and the rest of the modalities of information remain unmodified,
for example, speaker identity conversion, style conversion etc.

Nearly all speech processing problems involve some type of processing
at both segmental and suprasegmental levels, be it implicit or explicit.
However, while applications such as ASR focus primarily on the linguistic
content of speech, others have a stronger emphasis on either analysing, con-
verting, or otherwise utilising the structure of speech beyond the linguistic
content. For instance, some studies and algorithms deal with the analysis
of prosodic cues in speech (e.g., Kalinli and Narayanan, 2009; Kakouros
and Rasdnen, 2016). Others deal with the analysis of paralinguistic fea-
tures such as speaker identity (e.g., Atal, 1976; Rosenberg, 1976; Campbell,
1997), emotion (e.g., Schuller, 2018; Ak¢ay and Oguz, 2020) and speech
disorders (e.g., Narendra and Alku, 2019). These aspects of suprasegmen-
tal information are also useful in the context of speech conversion and
synthesis. For example, the task could be one where a speech utterance
has to be generated not only with certain linguistic information but also
with a specific prosody or using a specific voice. While speech synthesis can
be controlled to generate speech with given characteristics (Wang et al.,
2018; Hsu et al., 2019), voice conversion (Stylianou, 2009; Lorenzo-Trueba
et al., 2018; Toda et al., 2016) and speaking style conversion can be applied
to modify one of these modalities of suprasegmental information when the
speech signal is already given.

As for the technology underlying the speech processing applications, data-
driven approaches called machine learning (ML) have played an important
role in the creation of statistical models aimed at solving speech processing
problems, including the analysis (e.g., Povey et al., 2011; Chiu et al., 2018;
Rouhe et al., 2020; Schmidt et al., 2014), synthesis (e.g., Taylor, 2009;
Airaksinen et al., 2016; van den Oord et al., 2018) and conversion (e.g.,
Stylianou et al., 1998; Mohammadi and Kain, 2017; Inanoglu and Young,
2009) listed above. The complexity of the ML models that can be reliably
trained is proportional to the amount of data available. Since speech is
such a complex phenomenon, the amount of data required to model sev-
eral of the problems listed above is quite large. Hence several speech
processing systems have relied on a combination of signal processing (DSP)
techniques and domain-specific knowledge in conjunction with statistical
ML models. Such systems are based on certain approximations that sim-
plify the real world phenomena, which ultimately sets an upper limit to
their performance. Recently, increasing access to large quantities of speech
data together with steady increases in computational power have made
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it possible to create advanced ML models that rely on fewer assumptions.
Such models are potentially capable of achieving higher performance than
their DSP-based counterparts.

The research topics studied in our department, when I joined in late
2014, included topics related to human language acquisition and speak-
ing style control. I was interested in the application of state-of-the-art
ML to suprasegmental solutions in these broad areas, which led to the
main topics of focus for the current thesis. This thesis therefore aims to
apply state-of-the-art ML to the modelling and processing of speech at
the suprasegmental level to tackle the following three topical problems in
speech research:

e Zero-resource speech processing (ZS): At a high level, ZS systems
aim to emulate several speech processing models without access to
annotated data. This field of research is primarily motivated by the
human learning of speech and language, which takes place without
access to annotated data. In this context, this thesis investigates
the use of syllabic patterns in speech as a gateway for unsupervised
vocabulary acquisition from speech data.

* Automatic word and syllable count estimation (WCE /SCE): These
systems aim to quantify the amount of linguistic content in real-world
audio recordings. For example, this could be used to quantify the
amount of speech in different social scenarios, as captured by wear-
able microphones, or to quantify the amount of speech that a child
is exposed to in different socio-economic scenarios, thereby enabling
the study of child-language acquisition using large-scale naturalistic
data. This thesis attempts to solve the WCE/SCE problem by focus-
ing on the analysis of units that occur at the rhythmic level, namely,
syllables.

® Speaking style conversion (SSC): SSC deals with the technology of
converting the speaking style of utterances from one style to another
while retaining the quality, speaker identity, and linguistic informa-
tion of the original utterance. This thesis focuses on vocal effort-based
SSC—an area where a large amount of training data is typically not
available—and uses the conversion between normal and Lombard
styles as a case study of the topic. This thesis proposes a parametric
framework for the SSC task combining parametric vocoders and ML
models, to investigate the extent that the problem can be solved using
both parallel and non-parallel training data.

In order to tackle these intricate problems, this thesis explores the use of
several ML methods. The major ML-approaches investigated are Bayesian
models and artificial neural networks (NNs). Bayesian models are proba-
bilistic models that are based on Bayesian statistics. The parameters in
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these models are random variables with their own distributions. NNs are
loosely based on the neurons in the brain. These are universal function
approximators that typically include several layers of non-linear transfor-
mations. Specifically, extensions of the NN that are used are 1) end-to-end
models that are capable of learning complicated mapping functions without
the need to explicitly model intermediate steps and representations within
the function, and 2) generative adversarial networks (GANSs), that are
powerful generative models based on training a minimax game between
two competing NNs.

This thesis is organised in two parts: 1) the introduction and 2) a collec-
tion of peer-reviewed articles published in speech technology journals and
conferences. The first part provides an introductory overview of the topics
covered in the thesis, comprising eight chapters. Specifically, Chapter 2
introduces the theoretical background of the production, perception, and
some basics of digital speech processing. Chapter 3 outlines the framework
for the Bayesian and NN-based ML models used in this thesis. Chapters
4, 5 and 6 describe the motivation and prior art in the speech processing
topics addressed in the thesis. Chapter 7 gives a short summary of the
publications in this thesis. Finally, Chapter 8 discusses the conclusions
and implications of the research carried out in the thesis.

Bayesian Neural
modelling Networks (NNs)

Zero resource
Speech (ZS) (1
processing

Speaker ()
clustering

Automatic
word/syllable count | (1) (Iv)
estimation (WCE/SCE)

Vocal effort-based

speaking style W) v ()
conversion (SSC)

Figure 1.1. Overview of the topics of the papers included in this thesis and the primary
machine learning approaches investigated in each of them. The Roman
numerals refer to the publication numbers, as listed in Chapter 7.

The second part consists of seven peer-reviewed publications that are
organised as shown in Figure 1.1. Publication I deals with the task of
linguistic pattern learning in the ZS setting. Non-parametric Bayesian
(NPB) methods were explored in the clustering of syllabic (rhythmic) units.
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Publication II deals with the task of speaker clustering using NPB methods.
Publications III and IV deal with WCE/SCE using recurrent NNs and end-
to-end NN, respectively, in order to achieve state-of-the art performance.
Publication V outlines a parametric system for vocal effort-based SSC. It
compares three different vocoders and three ML approaches for SSC with
parallel data. Publications VI and VII extend the work on the parametric
system developed in Publication V to non-parallel data with GAN-based
NN models. These models are able to solve the SSC problem without access
to speech data with the same linguistic content in the source and target
speaking styles while achieving manual control of the strength of the style
change during the conversion.
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2. Structure, production, and
perception of speech signals

This thesis deals with speech technology algorithms focusing on the pro-
cessing of speech signals at the suprasegmental level. This section will
briefly discuss the different aspects of the speech signal in general, its
structure and the principles of its production and perception. It also briefly
highlights speech processing models based on the mathematical approxi-
mations of these complex physical systems. Section 2.1 starts with a basic
description of the structure of speech signals and briefly discusses their
properties from the time-frequency perspective. Section 2.2 outlines the
principles of the human speech production system and the source-filter
model that is a commonly used approximation. Section 2.3 discusses the
principles of the human auditory perception system and some scales of
measurement that approximate its frequency sensitivity. Section 2.3 also
highlights the mel-frequency filter bank, which is a commonly used method
to approximate human auditory perception in technological applications.
The same section also examines vocoders, which are modules capable of
compressing a speech signal to a set of parameters and synthesising a
speech signal back from the same set of parameters that can be potentially
modified between the analysis and synthesis.

2.1 Basic structure of speech

Speech constitutes one of the major modalities of human communication.
It is an auditory signal produced by the ~Auman speech production system
that carries information through vibrations in the air. These vibrations are
captured and decoded into meaningful information by the human auditory
perception system. From the perspective of linguistics, the speech signal
can be thought of as a collection of units called phones that are defined in
terms of their unique acoustic properties. A collection of one or more phones
make up rhythmic patterns known as syllables, and one or more syllables
make up units known as words. One or more words make up utterances,
which are the basic units of communicative acts in spoken language and are

25



Structure, production, and perception of speech signals

often separated by pauses. While words are the smallest meaning bearing
entities in a language as stand-alone units, another central concept is the
phoneme: an abstraction of a phone, defined in terms of its capability to
contrast meanings. In short, phonemes are the smallest unit of language
that, when changed from one to another, can also change the meaning
of the word they belong to. The structure of speech can also be viewed
in terms of the time-scale and phenomena of interest. The segmental
properties of a speech signal are those that change at the phonetic level,
that is, at the level of phone segments, and are therefore concerned with
the linguistic content of the spoken message. In contrast, suprasegmental
properties are the slower varying characteristics of the speech signal that
span beyond individual phone segments by modifying the intonation, stress
patterns and durational properties of the speech signal. Suprasegmentals
play a grammatical role in structuring the speech into constituent units
at various temporal scales, and also indirectly contribute to the meaning
of the spoken message by providing countless ways to express the same
phonemic content. The suprasegmental level is also largely affected by
paralinguistic factors (see below) such as the general speaking style or
the speaker’s emotional state. As examples of different time-scales of
suprasegmental phenomena, syllabic information varies at the syllable-
rhythm level, while style, emotion and prosodic information typically varies
at the level of one or more syllables or words. However, much slower
changes also take place in the characteristics of speech signals due to
factors such as the age and health state of the speaker that may change at
the time-scale of several days or even years.

The information present in the speech signal can also be categorised as
linguistic and paralinguistic. Linguistic information refers to the lexical
and syntactical content of speech, and can be represented in terms of
symbolic entities in phonetic or phonemic transcriptions or using letters
of written text. Paralinguistic information in speech includes all the
other types of information in a speech signal that cannot be captured
via its textual representation, such as prosody, speaker identity, style,
or emotion. Hence, paralinguistic information is largely conveyed at the
suprasegmental level of speech.

In terms of digital signal processing, a speech signal can be represented
as a time-varying discrete signal x(n) at a certain sampling frequency
representing the air pressure variation as a function of time. Another
very useful domain of representation for a speech signal is the frequency
domain. A given time domain speech signal of length N can be represented
in the frequency domain using the discrete Fourier transform (DFT) as

N-1 smin
X(k)=) x()e” v (2.1)

n=0

where X is the N-length frequency domain representation of the speech
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Figure 2.1. From top to bottom showing a) the time domain and b) log-magnitude spectro-
gram representations for the English utterance ‘Nice country to meet a lion in
face to face.” spoken by a female speaker sampled at 16kHz (taken from the
TIMIT corpus (Garofolo et al., 1993)). Positions of the phones [ey] and [s] are
highlighted.

signal. Since the spectrum is a complex valued vector, it can be represented
in terms of its magnitude and phase. Since speech is not stationary but
changes over time, speech signals are often analysed using a combina-
tion of time and frequency domains. In this case, the DFT is calculated
over a series of fixed length windows applied on the speech signal, result-
ing in a spectrogram representation. As an example, Figure 2.1 shows
the time-domain signal and log-magnitude spectrogram (calculated as
20 logo(IX(R)|) for each window) for an English utterance. The lighter
colours on the spectrogram indicate a higher energy at that time-frequency
position.

2.2 Principles of human speech production and its modelling

A schematic illustration of the human speech production system is shown
in Figure 2.2. Speech is produced by the movement of air from the lungs
that is first converted into a periodic pulse train in the vocal folds. This
pulse train is further modulated by the positioning of articulators in the
human speech production system and finally radiated through the lips
(and nose) into the surrounding air. In more detail, the movement of
the diaphragm constricts the lungs, pushing air upwards through the
trachea and larynx to the vocal folds. The vocal folds are composed of
twin infoldings of mucous membrane that control the opening between

27



Structure, production, and perception of speech signals
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Figure 2.2. Illustration of the human speech production system. Figure adapted from
Flanagan, 1972.

the larynx and pharynx. During voiced speech the vocal folds vibrate at a
certain frequency which is the fundamental frequency of speech. The vocal
tract modulates the frequency characteristics of the air flow by creating
resonances and antiresonances called formants. This is done by changing
the shape of the vocal tract and by potentially obstructing the flow of air
at certain points of the vocal tract. The air flow coming up the larynx can
also be directed to the nasal cavities with the help of a soft tissue called
the velum. The shape of the vocal tract can be voluntarily changed by
the movement and positioning of the pharynx, tongue, lips and jaw. Full
obstructions to the flow of air are mainly created by the upper and lower
lips and the contact of different parts of the tongue with the back of the
teeth, alveolar ridge, or with the top of the palate. The speech is finally
radiated through the lips and nostrils into the surrounding air.

Phones can be classified based on whether or not there is vibration of
the vocal folds as voiced sounds or unvoiced sounds, respectively. Phones
can also be classified based on the amount of obstruction in the vocal tract.
Vowels are high-energy speech sounds that are produced when there is
no obstruction to the flow of air through the vocal tract. The properties of
vowel sounds are primarily adjusted by the positioning of the tongue in
the mouth and potential rounding of the lips. As a result, each vowel is
characterised by a unique pattern of formants, and the first two formants
are the most central for the identification of the vowel. Consonants are
phones produced when there is some obstruction to the flow of air, and
come in many varieties. Speech is generally an alternating pattern of
vowels and consonants. This creates the rhythmic pattern in the energy of
the speech signal responsible for syllabic units.

Several of these structures can be observed in the log-magnitude spectro-
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Figure 2.3. From left to right the average power spectra in dB for a) the voiced sound [ey]
and b) unvoiced sound [s].

gram as shown in Figure 2.1. The fundamental frequency (~280Hz for this
speaker) and its harmonics (at multiples of the fundamental frequency)
are clearly visible. The formants can be seen as bands of high energy. For
example the vowel [ey] (separately marked in the waveform) has the first
and second formants at ~520 Hz and ~2240 Hz, respectively. The positions
of the formants largely determine the phoneme the vowel is associated
with. The unvoiced consonant [s] is also highlighted, where neither the
harmonic structure nor the formant patterns are visible due to lack of
voicing. Instead, high-frequency friction noise which is characteristic to
the sound can be seen at higher frequencies. The frequency characteristics
of the two sounds can be more clearly observed from the average spectra
calculated as a mean over time of the spectrogram for the sounds [ey] and
[s], as shown in Figure 2.3.

Speech production also differs in terms of different speaking styles. For
instance, a number of speaking styles can be placed on a continuum of
vocal effort needed to produce the speech, ranging from whispered speech
through normal and Lombard speech (Lombard, 1911; Lane and Tranel,
1971) to shouted speech. Whispered speech is produced when the vocal folds
do not achieve a complete closure, and thus the produced speech is lower in
energy and has an aperiodic component instead of regular voicing. Normal
speech is produced when the vocal folds oscillate in an efficient manner.
Lombard speech is the style of speech produced spontaneously by humans
under noisy acoustic conditions as a result of a modification of vocal effort.
Increased vocal effort in the production of loud speech signals, such as
Lombard speech, is brought about by the speaker using increased lung
pressure, the raising of the larynx and increased tension in the vocal folds
(Isshiki, 1964; Ladefoged and McKinney, 1963; Hertegard et al., 1995; Alku
et al., 2006). These phenomena increase the fundamental frequency (Lu
and Cooke, 2009a; Summers et al., 1988) and the sound intensity (Dreher
and O’Neill, 1957; Summers et al., 1988) of the produced speech signal.
The length of the vocal tract is also shortened, which raises the formants
and further increases the concentration of energy at higher frequencies
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and flattens the spectral tilt compared to normal speech (Hansen and
Varadarajan, 2009; Lu and Cooke, 2009a; Summers et al., 1988; Tartter
et al., 1993). In addition, the duration of the phonetic segments (Dreher
and O’Neill, 1957; Hansen and Varadarajan, 2009; Summers et al., 1988;
Tartter et al., 1993) in Lombard speech are also varied. The increase in
intelligibility in noisy surroundings obtained by Lombard speech is due to
a combination of several of these factors, especially the increase in vocal
intensity and the decrease in spectral tilt (Cooke and Lu, 2010; Cooke
et al., 2014; Lu and Cooke, 2009a). However, other effects of Lombard
speech, such as the increase in F0 and the lengthening of phone durations
have been shown not to increase speech intelligibility (Lu and Cooke,
2009a,b; Cooke et al., 2014). The increase of FO in the production of
loud speech (such as Lombard speech), for example, has been interpreted
to be a secondary effect caused by increasing lung pressure to raise the
vocal intensity, therefore the raising of FO per se does not improve speech
intelligibility in noise (Alku et al., 2002; Gramming et al., 1988; Lu and
Cooke, 2009a,b). Shouted speech can be considered the ultimate endpoint
of the vocal effort continuum and involves a much larger increase in the
overall energy of the speech signal (Rostolland, 1985; Raitio et al., 2013).
Shouted speech has decreased intelligibility (Pickett, 1956; Rostolland,
1985). Speaking styles may also be placed on a continuum based on the
degree of articulation (Lindblom, 1990) as clear speech (Bradlow and Bent,
2002; Baker and Hazan, 2009; Grynpas et al., 2011; Granlund et al., 2012;
Hazan et al., 2018) and casual speech (Manuel, 1992; Dilley et al., 2013).
Clear speech refers to a speaking style which is characterised by a slower
speaking rate and it is used in order to increase intelligibility, for example,
when communicating with hearing-impaired listeners (Bradlow and Bent,
2002). Casual speech refers to a speaking style that is used in normal
conversations and is similar to normal speech from the point of view of
vocal effort.

2.2.1 The source-filter model

Air from Glottal Vocal tract o|  Lio radiation sOuetg(l:J;
lungs excitation filter P ’ p
utterance
Turbulent
noise

Figure 2.4. Schematic of the source-filter model of human speech production.

The human speech production system can be mathematically approxi-
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mated by a simple model called the source-filter model that consists of three
independent components. This linear model can be simply represented in
the z-transform domain as

P(z)=U(2)T(2)R(2) (2.2)

where P(z), U(z), T(z) and R(z) are the z-transforms of the radiated speech
pressure waveform, the glottal flow excitation generated by the vocal
folds, the transfer function of the vocal tract filter, and the radiation
characteristics at the lips, respectively (Fant, 1970). A basic schematic of
the source-filter model is shown in Figure 2.4. The excitation block is a
combination of the glottal excitation, which models excitation of the voiced
segments, and a turbulent noise block that models the unvoiced segments.
The glottal excitation is a quasi-periodic excitation that is a sequence of air
volume velocity pulses in time. At the most basic level, it can be modelled
by a pulse train at the fundamental frequency. The turbulent noise block is
responsible for the aperiodic noise excitation characteristic of the unvoiced
segments and is modelled either as stationary turbulent noise or as sudden
noise bursts depending on the type of unvoiced segment they model. The
vocal fold excitation block usually has a spectral tilt of ~—12 dB/octave.
The vocal tract filter frequency response is dependent on the shape and
obstructions present in the vocal tract, giving rise to formant resonances
at certain frequencies. The lip radiation acts as a high-pass filter with the
spectral tilt of ~6 dB/octave. Hence, speech on average has a spectral tilt
of ~—6 dB/octave. In reality, the glottal excitation and the vocal tract are
not independent, nor is the vocal tract lossless. The source-filter model,
however, works very well for many applications such as speech synthesis,
speech coding and speech analysis, and provides a useful starting point for
more advanced models. For example it is fundamental to several vocoders
(see Section 2.3.2).

2.3 Principles of human auditory perception and its modelling

The human auditory perception system is responsible for decoding the
different aspects of information present in the sounds in the environment
of the listener. The peripheral human auditory system is shown in Figure
2.5. It consists of the outer, middle and inner-ear, and of the auditory
nervous system that connects the input from the two ears together and
with other parts of the central nervous system.

Air pressure waves carrying the auditory information are first collected
and funnelled into the ear canal with the help of the pinna. This air
pressure wave excites the eardrum (also referred to as the tympanic mem-
brane). The eardrum transfers this excitation to the cochlea via three
bones, the malleus, incus and stapes. The tympanic cavity is a small cavity
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Figure 2.5. Illustration of the peripheral human auditory perception system. Adapted
from Chittka and Brockmann, 2005.

that houses these three bones. The eustachian tube connects the tympanic
cavity to the upper throat and the back of the nasal cavity equalising the air
pressure within the middle ear and outside the body. The cochlea is a coiled
tube containing a liquid membrane that is housed in a hard outer shell
(Schnupp et al., 2011). The basilar membrane (BM), which is located inside
the cochlea, is of gradually decreasing stiffness going from the rounded
coils to the far end of the cochlea. This allows for different locations of the
BM to vibrate in response to different frequencies of mechanical excitation
from the stapes. Hair cells positioned atop the BM transfer the vibrations
from different locations on the BM to mechanosensing organelles called
the stereocilia. The stereocilia transform the mechanical vibrations into
electrical signals. These electrical signals pass through the auditory ner-
vous system where various properties of the acoustic signal are extracted
before they are processed by the cerebral cortex in the brain (Moore, 2012).

Humans can perceive sounds that are 20 Hz—20 kHz in frequency. Human
speech is approximately in the range of 85 Hz to 8 kHz. Because of the
structure of the BM and the cochlea that it is housed in, the sensitivity of
the human auditory perception system to different speech sounds is non-
linearly dependent on its frequency. The perceived "height" of a tone—a
sound consisting of only one sinusoidal component at a specific frequency—
is referred to as pitch. The mel scale (Stevens et al., 1937) is one measure
of pitch on which equidistant tones are also perceptually at an equal
distance from each other. Mathematically, the relationship between the
frequency (Hz) f,, of an acoustic wave and the perceived pitch (mel) m can
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be approximated as

f
m = 2595 logyy (1+ 77’})) (2.3)
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Figure 2.6. Plot comparing the physical frequency of an audio signal (Hz) and the percep-
tual mel scale (mel) as defined by Equation 2.3 (O’Shaughnessy, 1987).

An illustration of the mel-scale vs the physical frequency is shown in
Figure 2.6. In addition to the logarithmic perception of tone heights, the
hearing system’s frequency selectivity—the capability to distinguish close-
frequency sounds from each other—differs as a function of the absolute
frequency of the sounds. Measures attempting to capture this phenomenon
include the Bark scale (Rossing et al., 2002) which is based on dividing the
frequency scale into 24 critical bands (Zwicker, 1961) with approximately
logarithmically increasing bandwidth as a function of the centre frequency
at above 500 Hz. Within each critical band, concurrent sounds (e.g., tones)
either merge into a unified percept of the sounds or louder sounds may
mask the less energetic sounds. Another similar perceptive scale is the
equivalent rectangular bandwidth (ERB, Moore and Glasberg, 1983; Glas-
berg and Moore, 1990) scale, which is also based on the concept of critical
bands, but uses another measurement principle to derive the bandwidths
of the critical bands.

2.3.1 Mel-frequency spectrum

Mel triangular filter banks
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Figure 2.7. Plot showing the 24 triangular filters of the mel filter bank.

The perceptual sensitivity of the human auditory system varies non-
linearly with frequency. It is hence useful to define a separate time-
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frequency scale where the frequency representation varies more closely
with the frequency selectivity of the human auditory system. A commonly
used, perceptually motivated, time-frequency feature space based on the
ERB scale is the mel-spectrum. The mel-spectrum is obtained by calculat-
ing the amount of energy present in a series of sub-bands called the mel
filter bank. The mel filter bank is typically represented in the frequency
domain using a series of overlapping, triangular filters as shown in Figure
2.7. The mel-spectrum (or its logarithm) has several commonly used exten-
sions based on different methods of compressing the filter outputs, such
as the mel-frequency cepstral coefficients (MFCC, Davis and Mermelstein,
1980) or the mel-generalised cepstrum (MGC, Tokuda et al., 1994).

The mel-spectrum and its extensions are used in Publications I and
III-VII to represent the time-frequency structure of speech before further
processing. It is used in Publication I as a starting point for discovering
fixed-dimensional time-frequency representations of syllable-rhythmic
units from running speech. In Publications III and IV, the mel frequency
spectra are used as the features the machine learning models (MLMs, see
Section 3) operate on for automatic syllabification. In Publications V-VII,
MGCs are used to represent the spectral envelope of speech in different
speaking styles as a part of several vocoder architectures (see Section 2.3.2).
These representations, among a number of other parameters describing
the speech, are then subjected to a mapping between speaking styles.

2.3.2 Vocoders

Speech Vocoder Parameters Vocoder Speech
waveform ’ Analysis ’ ’ Synthesis > waveform

Figure 2.8. Schematic of the analysis and synthesis blocks of a vocoder.

A vocoder is a key component in several areas of speech technology such
as text-to-speech (Zen et al., 2009), voice conversion (Stylianou, 2009)
and style conversion (see also Section 6). The main task of the vocoder
is to represent speech as a set of parameters in the analysis stage, and
to synthesise the speech waveform back from the parameter set in the
synthesis stage. Vocoders generate a more compact representation of the
speech signal compared to the original time-frequency content of the speech
signal (c.f.,, e.g., complex spectrogram). In addition, vocoders typically use
speech signal representations that are easy for humans to interpret and
also enable the manipulation of desired properties of the speech signal
without affecting the others. The basic schematic of a vocoder is shown in
Figure 2.8.

Several vocoders use signal processing (DSP) techniques for the design of
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the analysis and synthesis stages. Most classical vocoders are based on the
source-filter model (see Section 2.2.1). Examples of these vocoders include
glottal vocoders, which use waveforms computed from natural speech as the
excitation (e.g., Glott HMM (Raitio et al., 2010) and GlottDNN (Airaksinen
et al., 2016)). Mixed/impulse excited vocoders, such as STRAIGHT (Kawa-
hara et al., 1999) and WORLD (Morise et al., 2016), use simple impulse
trains or mixtures of impulse trains and noise as the excitation. In addition
to the differences in the generation of the excitation, source-filter vocoders
might also differ in terms of how the filter of the source-filter model is rep-
resented (e.g., line spectral frequencies in Glott HMM vs. mel-generalised
cepstrum in STRAIGHT). On the other hand, sinusoidal vocoders (e.g.,
quasiharmonic model (Erro et al., 2013) and dynamic sinusoidal model (Hu
et al., 2014)) represent speech as a sum of sinusoidal functions evolving
over time. Some vocoders use the source-filter model but use sinusoidal sig-
nal analysis as a measure of harmonicity (e.g., pulse model in log domain,
PML (Degottex et al., 2016)).

Particularly in text-to-speech synthesis, there is increasing interest in
vocoders called neural vocoders. These vocoders do not use a DSP-oriented
computation of the parameters of a simple speech signal model, but instead
take advantage of MLMs (typically NNs) to train a network to represent
the signal. These models typically produce better quality speech synthesis,
as they are not restricted by the assumptions (such as the source-filter
model) of the classical, DSP-motivated vocoders described in the previous
paragraph. Neural vocoders, however, have a much higher data require-
ment in training. The first neural vocoders were based on auto-regressive
MLMs, whose synthesis modules generate the speech signal sample by
sample (e.g., WaveNet (van den Oord et al., 2016) and WaveRNN (Kalch-
brenner et al., 2018)). Auto-regressive neural vocoders suffer from slow
signal generation. More recent research on neural vocoders has focused
on speeding up the generation time, resulting in new neural vocoders
such as parallel WaveNet (van den Oord et al., 2018), WaveGlow (Prenger
et al., 2019) and WaveGrad (Chen et al., 2020). Finally, hybrid vocoders
use both DSP-based assumptions as well as MLMs to get the best of both
approaches (Valin and Skoglund, 2019; Wang et al., 2019).

The GlottDNN, STRAIGHT and the PML vocoders are compared in
Publication V of this thesis for the task of speaking style conversion (SSC)
between normal and Lombard speaking styles. Given the findings of
Publication VI, the PML vocoder was chosen for use in Publications VI and
VII that focus on further developments of speaking style conversion.
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3. Machine learning methods

Machine learning is a field of technology that deals with finding recurring
patterns in data that are generalisable to new unseen data. These re-
curring patterns are represented by mathematical models called machine
learning models (MLMs) that contain a set of parameters that can be tuned.
Training is the process by which an MLM learns to find these recurring
patterns by adjusting the parameters based on the input data. Training
is usually done in such a way that the model parameters minimise some
appropriately chosen cost function using a chosen training algorithm. The
parameters of the MLM that cannot be optimised by the training algorithm
are called the hyper-parameters of the MLM. These hyper-parameters have
to be tuned separately by using model selection (Bishop, 2006). This can
be done, for example, by checking the fit of the model on a separate held-
out set not used by the training algorithm, referred to as the validation
set (Bishop, 2006), or by using some other metric such as the Bayesian
information criterion (Schwarz et al., 1978; Bishop, 2006). Once an MLM
has been trained, it can be used to make predictions on new unseen data
by inference. Probabilistic MLMs are MLMs whose predictions have a
probabilistic interpretation.

Listed below are some of the categories of MLMs that are referenced
throughout this thesis (this is by no means exhaustive of the topics covered
by ML as a whole.)

* Supervised MLMs - Supervised MLMs are predictive models that
learn a mapping function from inputs to certain outputs, both of
which are explicitly available in the training data (examples of such
methods include, support vector machines (SVMs, Cortes and Vapnik,
1995) and feed-forward neural networks (NNs)).

® Unsupervised MLMs - Unsupervised MLMs, on the other hand, aim
to model the inherent structure or distribution of the training data.
They are used in situations where the training data does not have
explicit output labels or targets, but where it would be desirable to
understand the structure of the data, such as in cluster analysis,
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data visualisation or where a model is pre-trained for later use in
supervised training with fewer labelled samples (examples include K-
means clustering (Lloyd, 1982; Bishop, 2006) and Gaussian mixture
models (GMMs, McLachlan and Basford, 1988; Bishop, 2006)).

¢ Semi-supervised MLMs - Annotating training data with appropri-
ate output labels can often be expensive or cumbersome. However,
large pools of unannotated data are often readily available. Semi-
supervised MLMs draw from concepts of both supervised and unsu-
pervised MLMs and are designed to handle scenarios where there
is access to a pool of data, where only a small subset of the data
is annotated. A typical semi-supervised method attempts to learn
an initial model from the labelled data and then uses its own label
inferences on the unlabelled data to further train the model.

This thesis aims to solve a variety of supervised and unsupervised prob-
lems in speech technology. This section provides the theoretic background
for the MLMs used in the thesis. It is organised as follows: Section 3.1
discusses and compares the modelling options and inference methodologies
of probabilistic MLMs with Bayesian and frequentist models. The GMM
which is used in Publications I, IT and VI, as an example illustrates these
differences between frequentist and Bayesian modelling, as well as the
different Bayesian modelling choices. Section 3.2 gives a brief overview
of artificial neural networks (NNs), specifically detailing the feed-forward
NN (used in Publication VI), recurrent neural networks (RNNs; used in
Publications III, IV and V), convolutional neural networks (CNNs; used in
Publications IV and V), end-to-end learning (used in Publications IV and
V) and generative adversarial networks (GANSs; used in Publications VI
and VII).

3.1 Bayesian modelling

Probabilistic MLLMs can be broadly categorised based on two major under-
lying philosophies - the Frequentist approach and the Bayesian approach.
These philosophies primarily differ in their definitions of probabilities.
Frequentist modelling assumes that probabilities make sense only in the
context of repeatable events whose frequencies can be recorded, for exam-
ple, the tossing of a coin or the roll of a die. In the Bayesian interpretation,
probabilities can more loosely be associated with events that are not nec-
essarily repeatable, for example, the probability of a certain politician
becoming the president or the probability of a certain team winning the
World Cup.

More formally, let us assume a given dataset X = {x1,Xs,...,xy} such that
{17! ~ Ppata With dimensionality d is modelled with a frequentist model
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parameterised by 8, which are assumed to be fixed-valued unknowns. The
goal of frequentist modelling is to find the best estimate of these parameter
values 0 so that the likelihood of the data is maximised. This is called the
maximum likelihood (MLE) estimate of 8, and can be formulated as

Oy = argmax p(X;0) (3.1)
0

Let us now consider that the dataset X is modelled by a Bayesian model.
In this case, the model parameters 6 are considered to be random variables,
and their distributions are governed by Bayes’ rule (Gelman et al., 2013;

Bishop, 2006):

X|0)p(0
p(orx) = LXI0P©) }l ())(l))( ) (3.2)

where p(0) is the prior distribution of the parameters, representing our

belief of the potential values of the parameters before any data is observed
and p(X|0) is once again the likelihood of the datal. p(X) is the evidence
of the data that can be represented as the marginal over the different
values of 6 as p(X) = [ p(X|0)p(8)d0. p(0X) is the posterior distribution
of the parameters representing our updated belief of the distribution
of the parameters after the data X has been observed under the prior
model. Learning in the Bayesian setting corresponds to finding the set of
parameter values that have the highest probability value in the posterior
distribution, called the maximum a posteriori (MAP) estimate, defined as

Oyap = argmax p(0|X)
0
- argmax X000 ©3)
o [ pX0)p@6)do

Let us consider the Gaussian mixture model (GMM) as an example to
better understand the frequentist and Bayesian modelling perspectives
in practice. A GMM is a generative model consisting of a collection of K
different Gaussians that can be used to model arbitrary-shaped uni- or
multivariate data distributions. The £th Gaussian (% € [1,K]) has two types
of parameters: the mean p, and covariance Z;, that define the position
and shape of the Gaussian in the input space. In addition, each Gaussian
has a weight (3, such that Zleé » =1, which describes the relative con-
tribution of that Gaussian to the overall mixture of distributions. In the
frequentist interpretation of the GMM (referred to here as the standard
GMM or SGMM), the parameters are considered to be fixed values, and

INote that the known variables in the probability distribution are represented here
to the right of the ‘|’ symbol, representing that they are also random variables with a
particular value, whereas for the previous case of frequentist modelling in Equation 3.1
they were represented by a ‘" signifying that they are constant.
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the likelihood can be written as

K
p(x;¢, 1, 2) = ZCk/\/(x;yk,Zk)
k=1 (3.4)

1 -
where, N(x;p, %) = ﬁe—%(x—uﬂz x—p)
2m)2|Z|2

In the Bayesian interpretation, the parameters are considered as random
variables and hence have prior distributions. The Bayesian extension of
the GMM is referred to as the Bayesian GMM (BGMM) in this thesis.
We choose the prior distributions over the parameters of the GMMs to be
conjugate priors (Bishop, 2006; Murphy, 2012). This will ensure that the
posterior distributions will be from the same family of distributions as the
priors, and hence make analytical inference easier (see Section 3.1.2 for
further details). In practice, of course, any prior distribution can be chosen.
In our example of a BGMM, we could set the prior of the weights (; to a
Dirichlet distribution (DD) of dimensionality K as ¢ ~ DD(ag). This will
ensure that the posteriors are also from a DD. The prior distribution over
the weights can then be written as

p(&;a0) =DD(S; ap)
(3.5)

. _ F(zle ak) X ap—1
where, DD((; a) = Ta(ay).... F(aK)kl:[le

where ag = [a1,a9,....,ax] is the hyper-parameter of the DD. Intuitively,

the higher the value of a;, the greater is the probability that the weight
over the kth Gaussian (; is higher. Similarly the priors of the means,
1, and covariances, X of Gaussians are chosen to be conjugate priors
of a Gaussian distribution, which is the Normal-inverse Wishart (NIW)
distribution, denoted as {u;, 21} ~ NIW(my, Bo, Vo, vo).

p(Z;Wo,vo) = WL(Z; Vo, vo)

>
p(plZ;mg, Bo) = N (;mo, —)
Bo (3.6)

Yo
where, W™1(Z;Vy,vo) = 73"’2 Pl O
2Y02T4(g)

where my, By, Vo and v are the hyper-parameters of the NIW distribution
(see Bishop, 2006; Murphy, 2012, 2007 for further details). Intuitively
my represents our belief of the expected value of the means p, of each
of the & Gaussians, ¢ represents how strongly we believe the prior my,
V) is proportional to the expected value of the covariances of each of the
k Gaussians, X, and vy controls how strongly we believe the prior V,
(Murphy, 2012).
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We can now write the likelihood very similarly to Equation 3.4, with
the only difference being that the parameters are represented as random
variables.

K
p&IE, D) =Y (N &lpk, Zx) (3.7
k=1
my, Bo
o7 Wo,vo

G, e, Zrdio, CCD @%X
S [
N N

Figure 3.1. Probabilistic graphs showing from left to right, the generative process for (a)
the SGMM and (b) the BGMM respectively. The random variables are shown
in circular blocks and plates represent repeated variables.

In order to simplify the mathematical treatment of the generative process
of both the SGMM and BGMM, we introduce a 1-of-K binary latent variable
z that encodes the identity of the Gaussian that each of the data x is
associated with, as shown in Figure 3.1. See Section 3.1.2 to see how
z also helps with the inference process by defining the responsibilities,
p(zr =1|x,), of each Gaussian component in explaining each data point x.
We can write

K
p@ =[]
k=1
(3.8)

K
pxlz) = [ [Ny, 20
k=1
The generative process from both the SGMM and BGMM can now be
represented as shown in Figure 3.1. Section 3.1.1 details the parametric
and non-parametric modelling options for Bayesian models. Section 3.1.2
details the inference methodologies used in Bayesian modelling and con-
trasts them to the frequentist approach continuing with the GMM as an
example.

3.1.1 Parametric and non-parametric modelling
Bayesian models can be categorised as parametric and non-parametric.

Parametric Bayesian models are those whose parameter space is bounded
to be finite dimensional. The example mentioned earlier of a BGMM
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with a DD prior (DDGMM) on the weights is an example of a parametric
Bayesian model as the number of parameters with regards to the weights
is fixed to K, the number of Gaussians in the model. Typically, model
selection (as mentioned at the beginning of Section 3), involves comparing
different variants of the model while varying the hyper-parameters. In the
training of a parametric Bayes model, an important characteristic of the
MLM that has to be varied during model selection is its complexity, that
is, the number of parameters. For instance, in the case of the DDGMM,
model selection needs to be performed not just on the hyper-parameters
of the model, such as ag, mg, By, Vo and vq for the DDGMM, but also for
the number of Gaussian components, K. This often makes the training
of parametric Bayesian models cumbersome. Moreover, it also makes
parametric Bayesian models difficult to adapt to new data after their
initial optimisation, as one would have to re-estimate the ideal model
complexity. There are also many scenarios, as in the case of training
unsupervised MLMs, where it may be difficult to come up with appropriate
criteria for model selection.

Non-parametric Bayesian (NPB) models are a class of Bayesian models
(Hjort et al., 2010) that are able to vary their complexity depending on that
of the dataset. These are models that have an infinite number of param-
eters, that is, the prior distribution of the parameters lies on an infinite
dimensional space. The main advantage of these models is that they theo-
retically eliminate the need for model selection for the hyper-parameters
controlling the model complexity. One way of extending our example of
the BGMM model to the non-parametric case is by using a special class of
priors referred to as the Dirichlet Process (DP, Antoniak, 1974; Gershman
and Blei, 2012; Ferguson, 1973), which is a non-parametric extension of the
DD. A DP is uniquely defined by a distribution H on the model parameter
values {u, 2} and a positive scalar called the concentration hyperparameter
y, the distribution being denoted as G ~ DP(y,H). The weights {{z}32, on
the Gaussians decrease exponentially and their generation can be defined
by the stick-breaking process (Sethuraman, 1994) (see also Chinese restau-
rant process (Aldous, 1985; Pitman, 1995; Pitman et al., 2002) or Pélya
urn scheme (Hoppe, 1984)). In the stick-breaking process, we assume to
have a unit-length stick from which we break off pieces one at a time. The
length of the stick broken off at time % represents the weight on the £th
Gaussian component, {5, and hence the weights of the new Gaussians
follow exponential decay. The stick-breaking process-based construction of
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the DP weights can be formulated as shown below

k-1
Go=u [Ja-v)
i=1

where, v, ~ Beta(l,y) (3.9)

with, Beta(ug; 1,y) = (1-ve) ™ Iy

where vy, is the proportion of the stick broken off at time % and Hf;ll 1-vy)

represent the length of the stick left after the (2 — 1)th break. This process
is continued until £ — co for the infinite Gaussian components of the
DPGMM.

Publication I compares both parametric (DDGMM) and non-parametric
(DPGMM and PYPGMM) Bayesian models for the zero resource speech
processing (ZS) task. Publication IT uses NPB models, that is, the DPGMM
and DPVMM (the DP mixture model using the Von-Mises Fischer distribu-
tion) for the task of clustering speech data by speaker identity when the
number of speakers is unknown. Finally, Publication V uses the parametric
Bayesian DDGMM for the task of modelling the mapping functions for the
speaking style conversion (SSC) system.

3.1.2 Model inference

In the context of Bayesian learning, model inference is the process of ob-
taining the best possible set of parameters for a given model structure with
a given input dataset. As an example of model inference with frequentist
modelling, let us first consider the SGMM. These models can be solved
with maximum likelihood as shown in Equation 3.1 as

{CMLE BMLE SMLE) = arg;naxp(X;C N

o (3.10)
= arg;naxZZCkN(Xn;ﬂk,zk)

n=1k=1

This leads to the iterative expectation maximisation (EM) algorithm as
shown below. The EM-algorithm alternates between the expectation-step
(E-step) and the maximisation-step (M-step). The E-step involves the
calculation of the responsibilities x(z,;) which represent the contribution
of each of the £th Gaussian in ‘explaining’ the data point x,, for the current
set of models (Bishop, 2006).

Ck./\/'(Xn;Ilkyzk)
S LGN G, Z))

k(zp) = pzp = 11x,) = (3.11)
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The M-step uses the current set of responsibilities, x(z,:), to update the
model parameters, u,, 2 and {; in order to maximise the likelihood as
shown in Equation 3.10. The optimal model parameters can be calculated
as

K
" 1
M, MLE = N, E K(2p1)Xy
n=1

K
x 1 3.12
2k MLE = N, ZK (Znk)(Xn — )0 — )" (3.12)
n=1
* Nk
CRMLE = v

where N, is defined as the amount of data that the kth Gaussian is
responsible for ‘explaining’, defined as Nj, = Zﬁ’zlx(znk). Note that this
value does not have to be an integer as the responsibilities, x(z,z), are
probabilistic associations of each data point x,, to the 2th Gaussian.
Model inference in the case of Bayesian modelling involves the estimation
of the posterior distribution over the parameters of the model given by
Equation 3.2. The problem, however, is that the evidence term p(X) in the
denominator is often intractable, and hence in most cases the posterior does
not have an analytic solution. Sampling-based inference and variational
approximation provide two avenues where the posterior can be estimated.

Sampling methods

Generally, the aim of inference is not to obtain the posterior distribution
over the parameter, but rather to estimate some value based on the pos-
terior distribution. For example, in Equation 3.3, the goal is to estimate
the parameters that maximise the posterior distribution. Sampling-based
inference methods aim to approximate a certain function f() over the an-
alytically intractable posterior, p(0X), by drawing a set of independent
samples, {rm}%zl, from it as r,, ~ p(0|1X). Now expectations with the func-
tion f() over the posterior may be calculated as

[Ee|x[f(0)]=/ [£(@)pOX)do
LM (3.13)
m=1

Sampling-based approaches rely on the fact that we can very easily esti-
mate the probability of a certain data point from the posterior distribution
up to a certain normalising constant, even if we do not know its exact
analytical form. The simplest sampling-based approaches such as rejection
sampling and importance sampling (Gelman et al., 2013; Bishop, 2006)
are based on using another distribution called the proposal distribution
from which samples can be easily drawn. A choice is then made whether
to accept or reject that sample based on some acceptance criterion.
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An extension of this simple approach is to sample from the proposal
distribution in a Markovian process where the current sample depends on
the previous sample. This gives rise to Markov chain Monte Carlo MCMC,
Gelman et al., 2013; Bishop, 2006) methods. The samples drawn using
MCMC will of course be highly correlated, and hence much of these samples
have to be rejected before calculating the approximated expectations as in
Equation 3.13. MCMC-based methods, such as the Metropolis Hastings
(MH) and Gibbs sampling (which is an extension of MH (Gelman et al.,
2013; Bishop, 2006)), have the advantage of working better at drawing
samples in high-dimensional distributions than the simpler sampling
methods.

The advantage of sampling-based approaches is that we are able to get
samples from the true posterior distribution, while the disadvantage is that
they are often slow to converge and to draw enough samples M. Moreover,
several of the accepted samples have to be rejected if a method like MCMC
is used in order to ensure that the samples drawn are independent.

Variational methods

As opposed to sampling-based solutions, variational approximation-based
models approximate the analytically intractable posterior p(6X) with a
tractable distribution ¢,(0), with hyperparameters A, so that the Kull-
back—Leibler divergence (KLD, Kullback and Leibler, 1951) between the
true posterior and the approximate distribution is minimised, formally
denoted as

Mariational = @rgmin KLD(g2(0)||p(01X))
A

(3.14)
where, KLD(qIIp):/q log(%)d(e)
]

By using Equation 3.2, and the fact that the evidence p(X) is constant for
a given dataset X, Equation 3.14 can be shown to be equivalent to

A{’ariational = argmax [Ey,[log p(X|0)]+KLD(q(0)||p(0)) (3.15)
A

where the term on the right to be maximised is the evidence lower bound
(ELBO), ELBO =Eg,[log p(X|8)]1+KLD(q(0)l|p(8)), as it represents a lower
bound on the evidence, p(X). The first term of the ELBO represents the
likelihood of the data over the variational distribution. The second term
is a measure of the distance between the variational distribution and
the prior, which can be intuitively viewed as a regularisation term to the
standard likelihood cost function (Bishop, 2006).

Let us consider the variational inference-based posterior for a BGMM.
The posterior p(z,{, u, Z|x) is approximated by the distribution ¢(z,{, u, %)
which we assume to be factorisable as

q(z,8,1,2)=q@2)q &, 1, %) (3.16)
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This simple assumption (Bishop, 2006) along with our choice of conjugate
priors (see Equation 3.5) will enable us to write the variational posteriors
by maximising the ELBO as

q(8)=DD(|)
q([lk,zk) =NIW(my, Br,Vr,v)) where, k€[1,K]

3.17)

where the hyperparameters a,{my, 8;,Vy, vy }fz ; can be analytically calcu-
lated similar to the EM algorithm in the SGMM inference with an E-step
that calculates the responsibilities of each component in explaining the
data and an M-step that updates the model parameters based on the
responsibilities (see Bishop, 2006 for details). If a non-parametric prior
distribution is used, the theoretically infinite number of components K
is truncated to a truncation limit T for practical computations (Blei and
Jordan, 2006).

The advantage of variational approximation-based methods is that they
are generally much faster to compute than sampling-based approaches.
The disadvantage is that, since they are based on an approximation of
the true posterior, there is a theoretical upper limit to their performance.
Bayesian models were used in Publications I, IT and V of this thesis, where
they are trained using variational inference.

3.2 Artificial neural networks

Artificial neural networks are a class of MLMs that are loosely based on
the functioning of neurons in the human brain. In an NN, a neuron is a
simple mapping function from a D dimensional input, x = [x1,%e,...,x4] to a

1-D output, y.
D

y= g(xdwd +bd)
dz=1 (3.18)

=g(xw+b)

where w = [w1,ws,...,wy]is a d-dimensional weight parameter, b =[b1, b9, ...,b4]
is a bias term, and g() is the activation function. Activation functions are
typically non-linear functions, such as the sigmoid, hyperbolic tangent, or
rectified linear units (Goodfellow et al., 2016). The schematic of a single
neuron of an NN is shown in Figure 3.2.

NN are structured in general as graphs with layers of neurons through
which information propagates from input to output. An NN with just a
single hidden layer with a sufficiently large finite number of neurons can
be proven to be a universal approximator of any function (Cybenko, 1989;
Hornik, 1991; Hornik et al., 1989; Lu et al., 2017). However the number of
neurons required could be exponentially larger than the dimensionality of
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Xd

Inputs

Figure 3.2. Basic structure of a neuron in an NN. The inputs are shown in red and the
output in green. The bias term b is omitted for clarity.

the input. In addition, the training of a real network might not converge on
the correct solution. Hence it is often more efficient to train a network with
several layers (with fewer neurons each). Deep neural networks, or DNNs
(Goodfellow et al., 2016), are such NN architectures with many layers.
NNss are trained so that their parameters W are tuned to minimise the
cost function L:
W= arg‘{’nin Lt,y) (3.19)

The cost function is some function of the outputs y of the NN and its
expected outputs t, as defined by the task being solved. Examples of
the most commonly used cost function include the L1 and L2 distances
(for regression problems, where the targets, t, are continuous variables)
and cross entropy (for classification problems, where the targets t are
categorical variables) (Goodfellow et al., 2016).

Another important aspect to training NN is regularisation, which aims
to reduce the effects of overfitting. This is usually an additional term
added to the cost function £, such as the L1 or L2 norm of the parameters
W. Other methods include modifications of the training algorithm. An
example of such a modification is dropout, where random neurons of a given
layer are disabled during each forward and backward cycle of the training
procedure, forcing the network to find solutions that are not dependent
on individual neurons (Hinton et al., 2012; Goodfellow et al., 2016). The
primary method of training an NN is backpropagation and is explained in
detail for the example of feed-forward NNs in the next sub-section. A few
of the commonly used NN architectures are also described below.

Feed-forward neural networks
Feed-forward neural networks, also called multi-layer perceptrons (MLPs),
are the simplest variant of artificial neural networks. Let us consider an L
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Figure 3.3. Basic structure of an MLP with L —1 hidden layers. The input, output and
hidden layers are shown in red, green and blue respectively.

layer MLP as shown in Figure 3.3 with dy dimensional inputs {xn}nN=1 ~X
with corresponding d;, dimensional outputs {yn}fy:l. Each of the layers has
weights {WZ}{“=1 that are {d;_1 x dl}lL=1 dimensional with activation functions
{g1}f7}. The flow of information from the inputs to the calculation of the
output is called the forward pass. During the forward pass, let the outputs
of layer [ — 1 be represented as &;_;. The forward pass from layer / -1 to
layer I can then be written as follows?

$1=81(&§_1Wp)
(3.20)
where, §y =xand &;, =y

Training is done using an iterative method called gradient descent
(Cauchy, 1847) (or its variations such as stochastic gradient descent (SGD)
or mini batch gradient descent (Robbins and Monro, 1951; Kiefer et al.,
1952; Goodfellow et al., 2016)) where the weights W; are modified at itera-

tion ¢ as follows
oL

Wi=Wi oy

(3.21)
where ¢ is the learning rate and a"—vﬁ is the gradient of the cost function £
with respect to the weights W; at layer /. The training is usually continued
until there is no longer any significant change in the cost function L.
The gradients, aaT%,’ can be calculated efficiently by keeping track of the
derivatives with respect to the outputs at that layer g—fl from Equation 3.20

2The bias term has been omitted in the following equations for notational simplicity.
In practice, the bias term can be incorporated to the given notation if a constant of 1 is
always concatenated to each §;.
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as
oL _oL oy
oW, 0&; OW
R (3.22)
_% / E
aflgl -1

where g'; is the derivative of the activation function. The mechanism of
training where the gradient is propagated backwards through the layers
of the NN from the outputs to the inputs is called backpropagation. Feed-
forward NNs were used in Publication V as one of the several mapping
function candidates for the speaking style conversion (SSC) system.

Convolutional neural networks (CNN)
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Figure 3.4. Basic structure of a CNN. A convolution operation is applied at each layer
with a set of filters. The time axis is shown here vertically. The connections
between neurons are not shown for simplicity.

When the inputs to an NN are signals such as speech or images where the
same recurring patterns can be expected at different positions of the input,
an MLP is not the most efficient NN architecture for modelling. This is
because an MLP will have to separately learn to detect the same patterns
at each possible position. Creating an MLP that has such a high modelling
capacity also has a high risk of overfitting. An ideal architecture would be
one where the detection of patterns is translation (“position”) invariant.
One way to achieve this is to replace the hidden layer of an MLP with a
bank of convolution operations as shown in Figure 3.4. The dy dimensional
input of an MLP is replaced by a time varying T x dy dimensional input
(note that T could also correspond to the spatial dimensions of an image).
The convolution operation is performed across time at layer [ with d;,q
filters of length K;. Such an NN is referred to as a convolutional neural
network (CNN, LeCun et al., 1998, 1990; Goodfellow et al., 2016).

49



Machine learning methods

The receptive field of a CNN is the length of input across the temporal or
spatial dimension that directly influences the value of any given output
frame. This value signifies how much temporal context the NN is able to
keep track of in order to make a prediction for a particular frame of the
output.

CNNs are one of the major NN architectural units in the novel SylNet
architecture developed for the syllable count estimation task in Publica-
tion IV. CNNs are also used for the mapping function of the SSC system
described in Publications VI and VII.

Recurrent neural networks (RNN)

h; ;
Wy,

X

Figure 3.5. Basic structure of an RNN. At time ¢ an RNN takes as input the current frame
from the input, x;, and the previous hidden state value, h;_1.

In applications such as natural language processing and speech process-
ing, there is often a need for the model to be able to retain information over
time, such as earlier parts of a sentence or audio snippet given as input.
Such a scenario would once again be sub-optimally modelled by an MLP.
In principle, this can be achieved by a CNN that has a receptive field up to
the required temporal distance. However, once a CNN is trained and its
receptive field length is fixed and this property would no longer be satisfied
for longer inputs. Another NN architecture that has a theoretically infinite
receptive field is the recurrent neural network (RNN, Rumelhart et al.,
1986; Goodfellow et al., 2016). The basic schematic of an RNN is shown in
Figure 3.5, and can be summarised as

h; =g, 1 W;, +x,W,)

(3.23)
y: =Woh;

where W;, W, and W, are the parameters of the RNN, h;, x; and y;, the
hidden state, inputs, and outputs of the RNN respectively at time ¢, and g
is the activation function.

The basic RNN architecture described above faces a problem during
back-propagation-based training, since the gradients coming from the end
of the signal decay quickly in time and may therefore become negligible
before reaching the earlier parts of the input sequence. This is because the
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gradients are calculated as a series of products of gradients (see Equation
3.22) from the end of the network to the beginning. When the gradients
are lower than 1, this series of products becomes very close to zero. This
problem is referred to as the vanishing gradient problem. Because of this
issue, RNNs take a very long time to train. A long-short term memory
network (LSTM, Hochreiter and Schmidhuber, 1997; Gers et al., 1999;
Goodfellow et al., 2016), an extension of the RNN, handles the vanishing
gradient problem by having a separate cell state in addition to the hidden
state, h;, through which information runs through time with only small
modifications being made with separate gates called the forget gate and add
gate respectively. Other extensions such as gated recurrent unit networks
(GRUs, Cho et al., 2014; Chung et al., 2014; Goodfellow et al., 2014) avoid
the use of a separate cell state by using a similar gating mechanism as the
LSTMs directly on the hidden state, h;.

Bidirectional LSTMs, a combination of two LSTM layers that operate in
both the forward and backward directions, were used for the word count
estimation (WCE) task in Publication III. LSTMs are also used in the final
layer of the novel SylNet architecture used in the syllable count estimation
(SCE) task in Publication IV.

3.2.1 End-to-end models

The traditional approach to solving complicated problems with MLMs
would be to split the task into smaller easier-to-model sub-tasks. These
sub-tasks are created by leveraging domain-specific expertise and making
a set of assumptions between multiple modules of a larger system, such as
intermediate phone-level representations used in classical ASR systems.
A separate set of training data and training criteria are then required to
train each of these sub-tasks. The advantage of this approach is that the
individual sub-tasks often do not necessarily require as much data to train
as it would take to train the entire task as a whole, or some sub-tasks may
potentially have more training data available than others which would be
beneficial to utilise fully. Let us consider the example of an ASR system.
The task of ASR can be summarised as finding the best sequence of words
j, given audio input, x, that maximises the probability p(j|x) as

j* =argmax p(j|x)
J

(3.24)

= argmax p[HHpQG)
j

Equation 3.24 can be re-written based on the assumption that each of
the words in j can be broken up into a sequence of sub-word units (such as
phones or context dependent units such as tri-phones)

j* = arg.liaax pxDpdljpG) (3.25)
3
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where 11is the sequence of sub-word units. The simplified pipeline of an
ASR system is shown in Figure 3.6.

Feature X Acoustic
—> .
extraction model

(1) .
P L Lexical pdlj) Language

model model

—p@)

Figure 3.6. A simplified schematic of an ASR pipeline, where the acoustic model, the
lexical model (also called the pronunciation model) and language model (also
called the grammar model) model the terms p(x|1), p(1lw) and p(w) respectively.

The disadvantage of the sub-task approach is mainly the level of domain
expertise required. Expertise is required first and foremost to be able to
split the complicated task into sub-tasks without a loss of relevant infor-
mation in the interfacing of the task-specific modules, and to determine
the MLMs and cost functions that best solve these sub-tasks. Furthermore,
each of the sub-tasks need to be trained independently and hence require
training data for each of them, which once again requires expert annota-
tion which is expensive and often very domain-specific. For instance the
training data for the lexical model shown in Figure 3.6 should contain the
possible sub-word (phoneme) sequences for different pronunciations of all
the words in a particular language/dialect, whereas training of the acoustic
model would require audio data with aligned phonetic transcriptions.

The back-propagation-based training of DNNs, as well as the access to
greater computing resources and larger datasets, gives us an opportunity
to model the entire complicated task with a single DNN. For an ASR model,
this would correspond to the schematic shown in Figure 3.7, where the
acoustic model, lexical model, and the language model are replaced by a
single DNN-based end-to-end model. The input to such a model would
just be the acoustic waveform (or sometimes spectral features extracted
from the waveform) and the output would consist of the most likely string
of words, given the input. Such an approach can also potentially lead
to better results as no assumptions about the internal processing steps
and representations of the system need to be made beyond specifying the
overall network architecture. In this context, end-to-end modelling has the
benefit of not requiring phone level annotations of speech used to train the
model. The disadvantages, however, are the need for much larger datasets,
computational cost, and, difficulty to adapt to domains differing from that
of the training data, and, naturally, the definition of network architectures
that are suitable to solve the problem at hand.

Several end-to-end modelling alternatives were explored for the SCE
task in Publication IV, including bidirectional LSTMs and the SylNet.

52



Machine learning methods

End-to-end .
- ASR —p()

Figure 3.7. Schematic of an end-to-end ASR system.

3.2.2 Generative adversarial networks (GANs)

As explained in the beginning of Section 3, cost functions do the job of
judging how well an MLM fits the data during training. For the task of
sample generation, the cost function should capture the distance between
the training data distribution, Ppata, and the generated data distribution,
PuLm, from the generated samples, x ~ Pym. Explicit cost functions such
as the L1, L2, binary cross entropy etc. discussed earlier work well for
simple regression and classification tasks. However, these are often too
simplistic for the task of sample generation, especially when dealing with
complex multi-modal distributions such as speech and images. One simple
idea is to replace the explicit cost function with another DNN to judge
the quality of the solution, which is exactly what a generative adversarial
network (GAN, Goodfellow et al., 2014) does.

The basic structure of a GAN is shown in Figure 3.8. An NN called
the generator, G, is fed with samples w drawn from a known distribution
(such as the standard Gaussian e.g., w ~ N(0,1I)), which it transforms into
samples %, as X = G(w), that should be from the same distribution as that
of the true data x ~ Pp,t,. Another NN, called the discriminator, D, does
the job of classifying the real, x and fake samples, %.

W —» G X
_|_>
D Real/

x - Fake

Figure 3.8. Basic schematic of the generative adversarial network (GAN).

The standard GAN (as introduced in Goodfellow et al., 2014) can be
trained using the minimax equations as shown below, where the discrim-
inator D has a sigmoid unit in the last layer. For a fixed generator G,
this corresponds to the Jenson Shannon divergence (JSD, Lin, 1991)— a
symmetric extension of the KLD— between the true (Pp,t,) and generated
(PyvLy) data distributions:

D;pt = argmax Ex[log(D(x))] + Eg[log(1 - D(x))]
D
(3.26)

G

spt = argmin Eg[log(1—D(%))]
G

The problem with the JSD is that it is constant when the two distributions
do not have overlapping support, which is often the case in the early part of
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the training. This slows down the training and reduces the performance of
GANSs. Several studies have therefore explored the use of a variety of other
loss functions based on different metrics to measure the distance between
the true data Pp,t, and generated data Py distributions. These include
approaches such as the least squares GAN (LSGAN, Mao et al., 2017) that
minimises the Pearson X2 divergence (Pearson, 1900) and the Wasser-
stein GAN (WGAN, Arjovsky et al., 2017) that minimises the Wasserstein
distance (Kolouri et al., 2017; Villani, 2003). The WGAN, for instance,
requires that the discriminator D is K-Lipschitz continuous (O’Searcoid,
2006). In order to enforce this constraint, different regularisation schemes
have been proposed, such as weight clipping (Arjovsky et al., 2017), gradi-
ent penalty (Gulrajani et al., 2017), and spectral normalisation (Miyato
et al., 2018). The usage of GAN-based models in style conversion is briefly
explained below.

Style conversion using GANs

Style conversion aims to train a mapping function for data from one style
(“domain”) to another. The kind of data available for training has a major
impact on the approach used to tackle this problem. Parallel training
data is data that is available from both the source and target domains
with all other modalities of variation being constant. For example, in the
task of speaking style conversion from normal to Lombard styles, parallel
data would include utterances from both styles spoken by the same person
with the same linguistic content and signal quality. This kind of data is
relatively tedious to collect. In contrast, non-parallel data does not impose
this restriction and is hence much easier to come by. A style conversion
system can be trained relatively simply using parallel data, but training
on non-parallel data requires a more complicated approach (see Erro et al.,
2009a for a commonly used approach to training style conversion systems
using non-parallel data).

G,

”

Do Ds

, G,

Figure 3.9. Block diagram of a CycleGAN with mapping functions G and G , and discrim-
inators Dy and Dg.The forward cycle, backward cycle, and identity mapping
are indicated with red and blue respectively.

GAN-based training can be used for style conversion with non-parallel
data by using models called cycle-consistent adversarial networks (Cycle-
GAN, Zhu et al., 2017). Let us consider domains O and S (e.g., utterances
in normal and Lombard-style speech, respectively), given non-aligned
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training samples o ~ p(0) and s ~ p(S). The basic structure of a CycleGAN
is shown in Figure 3.9. A CycleGAN contains two mapping functions G
and Gg that map the training data from style domains O — S and S — O
respectively. It also contains two discriminators Do and Dg, which de-
termine whether the data is from the true distributions P(O) and P(S),
respectively. During training, data flows in two directions: the forward
cycle o G1, ¢ %, o/ and the backward cycle s G2, o 1 ¢ as indicated by
the blue and red arrows, respectively, in Figure 3.9.

The loss function of a CycleGAN consists mainly of two terms. The
first one, adversarial loss, measures distance of the mapped data to the
true target distribution and can be represented as in Equation 3.26. A
cyclic reconstruction loss term is also defined to ensure that data passing
through both G; and Gs (or in the backward direction) results in an identity
mapping, denoted as

Ecyc(Gl,G%O,S): [EO)[||G2(G1(0))—0||1]

o~p(

+ E [IG1(Ga(s)) —sll1]
s~p(S)

(3.27)

Other GAN-based architectures such as the DiscoGAN (Kim et al., 2017),
DualGAN (Yi et al., 2017) and XGAN (Royer et al., 2020) have also been
used for style conversion with non-parallel data. CycleGANs were used
for modelling the mapping function in an SSC system in Publication VI.
Augmented CycleGANs, another variant of the CycleGAN, simultaneously
learn a latent space through which the degree of mapping from one domain
to another can be controlled. Augmented CycleGANs are explored in
Publication VII.
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4. Zero resource speech processing

Human infants do not learn speech and language with annotated datasets.
Motivated by this observation, zero-resource speech processing (Zero re-
source speech processing initiative!, Glass, 2012; Versteegh et al., 2015;
Dunbar et al., 2017, 2019) systems aim to unsupervisedly learn structural
representations of speech without access to annotated data. This is a
very challenging problem. Firstly, speech signals have enormous acoustic
variability, arising from factors other than just the linguistic variation,
such as speaker identity, speaking styles, background noises, and various
other factors. This means, for example, that the same word never occurs
twice in exactly the same acoustic form. Moreover, human infants have
access to other modalities of information such as visual, touch etc., and not
just the speech inputs (Lerner et al., 2015; Johnson, 2010). Despite this
difference, breakthroughs in ZS technology could potentially shed some
light on infant language acquisition (Dupoux, 2018; Riasinen, 2012), as
well as produce algorithms for low-resource speech processing scenarios
(Kamper et al., 2016, 2017). ZS research! has so far primarily focused
on the unsupervised discovery of linguistic units from raw speech in an
unknown language. This task can be addressed from two perspectives
of linguistic structure: subword representations and word (spoken term)
units, respectively. Another avenue of ZS research has been the so-called
text-to-speech without text task (Dunbar et al., 2019). This task explores
the capability of discrete unsupervisedly learned subword unit representa-
tions in speech synthesis that operates without transcribed training data
or input texts. These research tracks are discussed below.

® Unsupervised sub-word modelling (USM): This task aims to construct
a phonemic representation of speech sounds which support word iden-
tification while being robust to within- and between-talker variation.
This problem can be approached from a purely signal processing
perspective or based on clustering (or some extension) of frame-level
speech features using MLMs. Some examples of the latter include,

1http ://zerospeech.com/
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for example, Chen et al., 2015 who used a DPGMM for unsupervised
modelling of speech frames. Badino et al., 2015, on the other hand,
used binarized autoencoders (Goodfellow et al., 2016) and hidden
Markov models (HMMs) to obtain a 1-of-K representation for each
frame of speech. Kamper et al., 2015; Renshaw et al., 2015 used
a DNN architecture known as the correspondence autoencoder to
learn nonlinear mappings from MFCCs to latent distributed feature
representations. Thiolliere et al., 2015 used DTW to find clusters
of repeating fragments in speech, and a Siamese DNN architecture
(Bromley et al., 1994) was then trained to find a vector representation
of the speech sounds from the frames of the DTW-aligned fragments.

* Unsupervised spoken term discovery (UTD): This task deals with the
unsupervised discovery of recurring patterns in speech, correspond-
ing to, for example, syllables, words or phrases. This process can be
broken down into three steps — 1) parsing, where matching pairs of
speech fragments are found on the basis of their global similarity,
2) clustering of these speech fragments, thereby building a library
of classes with potentially many instances, and, finally, 3) matching
where the acquired classes are used to parse the speech into can-
didate tokens and boundaries. UTD has been primarily tackled in
existing research using DTW-based approaches (for example Park
and Glass, 2006; ten Bosch and Cranen, 2007; Aimetti, 2009; Jansen
and Van Durme, 2011) and acoustic word embedding (AWE)-based
approaches. The latter approach maps speech fragments into an
embedding space where pattern clustering is then performed (for
example (Rdsdnen et al., 2015; Kamper et al., 2017; Kamper et al.,
2017)). In addition, there are recent models that attempt to solve
both the USM and UTD tasks at the same time (Chen et al., 2019) or
in a sequence (Last et al., 2020).

* Text-to-speech without text: This task aims to build a speech synthe-
siser without any text or phonetic labels, but using unsupervisedly
discovered discrete sub-word units (similar to the USM task). Other
modalities that are necessary for synthesis, but which are not en-
coded by the the discovered sub-word units, such as speaker identity
and speaking style, are fed directly to the synthesis module (see Liu
et al., 2019; Tjandra et al., 2019; Karthik and Murthy, 2019; Eloff
et al., 2019; Yusuf et al., 2019; Feng et al., 2019).

In this thesis, Publication I addresses the problem of unsupervised discov-
ery of word units using syllable-like representations as an intermediate
step. Syllabic units provide a good starting point for ZS systems as the char-
acteristics of these units are largely determined by the rhythmic properties
of speech (e.g., Ridsédnen et al., 2015; Lyzinski et al., 2015). Therefore, they
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could potentially be extracted, reliably and unsupervisedly, in a language
independent manner.
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5. Automatic word and syllable count
estimation

Automatic syllable and word count estimation (SCE and WCE) are the
technologies of quantifying the amount of linguistic activity present in
realistic daylong recordings such as those from a wearable microphone
(Ziaei et al., 2013). This technology can be used to investigate vocal activity
and social interaction as a function of the recording time and location (Ziaei
et al., 2015, 2016). Such methodologies are also useful in the field of child
language acquisition, where researchers investigate the language experi-
ences of children using child-centred daylong audio recordings (Bergelson
et al.). Such tools are required to analyse large-scale datasets by provid-
ing the necessary information to answer questions such as 1) how much
speech do children hear in their lives in different contexts (Bergelson et al.,
2019), and 2) how does this speech input map to developmental outcomes
(Weisleder and Fernald, 2013; Ramirez-Esparza et al., 2014). A closely
related problem is speaking rate estimation (Morgan and Fosler-Lussier,
1998; Wang and Narayanan, 2007), where the goal is to estimate the
amount of linguistic content per unit time.

The task of WCE and SCE would be trivial if there were an ASR system
that was language independent and robust to the heavy noise and cross-
speaker talk present in realistic daylong recordings. Since training such
high-quality ASR models requires a large quantity of training data that
is not possible for all languages, a separate set of techniques needs to be
explored for the task of WCE and SCE.

The problem of quantification of linguistic content in speech could be
approached from at least two different angles—a segmental approach that
looks for phonemic units (cf., language-independent acoustic models) and a
suprasegmental approach that focuses on rhythmic units such as syllables.
As an example of the segmental approach, the popular LENA™ gystem?!
uses a pre-trained English ASR model to track the number of vowels and
consonants (Gilkerson and Richards, 2009; Xu et al., 2008). The works by
Morgan and Fosler-Lussier, 1998; Wang and Narayanan, 2007; Yarra et al.,

1The LENA™ gystem is developed by the LENA research organisation (http://www.
lena.org).
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2016 are examples of the suprasegmental approach that keep track of the
rhythmic envelope.

The LENA system has been the go-to option for language researchers as
it is designed for infant directed audio, and it includes a compact wearable
recorder worn by the child and proprietary software that analyses various
aspects of the recorded audio. Apart from WCE, this system also measures
other aspects of the recorded audio, including conversational turns and
segmentation of adult speech and infant vocalisations. Despite being the
previous state of the art, LENA as a software solution has a few issues.
Firstly, the software is proprietary and expensive. Secondly, only audio
captured with the LENA recorder can be analysed with the software, that
is, other audio files cannot be run through the same software. Moreover,
the included algorithms are likely to be outdated (the basic building blocks
having been introduced nearly 10 years ago e.g., Xu et al., 2008, see also
Cristia et al., 2020 for an evaluation of the performance of LENA). Finally,
LENA speech processing algorithms, including the WCE module, have
been optimised for American English, causing its accuracy for different
populations and languages to be inconsistent. Given this background,
there is an increasing demand from the research community to develop an
alternative to LENA that would be 1) open source and free of charge, 2)
compatible with audio data obtained using a variety of recorders, and 3)
robustly applicable to a variety of languages.

A collaborative project called Analysing Child Language Experiences
Around the World (ACLEW?) aims at developing an open-source software
package that would address the mentioned shortcomings of LENA. As a
part of the work carried out in that project, this thesis explores data-driven
syllable-based approaches to the SCE and WCE problems using recent
developments in RNNs and end-to-end MLMs. Publication III focuses
on the problem of WCE using LSTM-based models that are trained on
datasets with phone level annotations. Publication IV introduces a novel
end-to-end NN model for the task of SCE.

2ht’cps ://sites.google.com/view/aclewdid/home
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6. Speaking style conversion

The paralinguistic conversion of speech is the technology of converting
one or more modalities of paralinguistic information in natural speech
utterances, such as speaker identity (Stylianou, 2009; Lorenzo-Trueba
et al., 2018; Toda et al., 2016) and style. It is important that the linguistic
information, signal quality as well as the rest of the paralinguistic modali-
ties of information of the original speech signal remain unmodified in this
process. Speaking style conversion (SSC), then, is the technology of con-
verting utterances from one style to another. SSC is related to other areas
of speech technology such as statistical parametric speech synthesis (SPSS)
(Zen et al., 2009), voice/speaker identity conversion (VC) (Stylianou, 2009),
and speech intelligibility enhancement in speech transmission (Loizou,
2013). However, SSC can be considered as a distinct area of research as
it differs in one way or another to those mentioned. For instance, there
is no linguistic-to-acoustic mapping as there is in SPSS. Intelligibility
enhancement in speech transmission (ITU-T, 2003), on the other hand, has
strict latency requirements of speech which are not necessarily present
in SSC, where offline processing is also possible for several potential use
scenarios.

The speaking style of an utterance itself includes several modalities of
paralinguistic information including emotion (e.g., Inanoglu and Young,
2009; Erro et al., 2009b; Wang et al., 2012), and vocal effort (e.g., Konno
et al., 2016; Meenakshi and Ghosh, 2018 who studied whispered to normal
conversion and Nathwani et al., 2017; Calzada and Socoré, 2011; Gentet
et al., 2020 who focused on other aspects of vocal effort-based SSC). Certain
aspects of style information in speech can be directly converted from the
original speech waveform using a mapping function derived from signal
processing theory. For example, Nordstrom et al., 2008 used adaptive pre-
emphasis linear prediction to transform the speech utterance in terms of
its vocal effort and breathiness. Alternatively, in the data-driven approach
(e.g., Meenakshi and Ghosh, 2018) the mapping function is a learnt MLM
from training data that includes the style variation that we wish to capture.
Figure 6.1 shows a basic schematic of an SSC system.

63



Speaking style conversion
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Figure 6.1. Basic schematic of an SSC system. The mapping function could be based on
signal processing operations or an MLM trained on data.

This thesis focuses on vocal effort-based SSC, such as the conversion be-
tween normal, Lombard, whispered or shouted speech. Vocal effort-based
SSC has multiple potential applications where it can be used to personalise
speech to the needs of the end-listener. For instance, enhancement and
maintenance of speech intelligibility is an important topic in speech tech-
nology (see, e.g., Loizou, 2013; Tang et al., 2018; PV et al., 2018). In this
context, SSC could be used to adapt the signal in such a way that the signal
becomes more intelligible in adverse listening conditions. While there has
already been work on whispered-to-normal speech conversion (e.g., Konno
et al., 2016; Tao et al., 2010; Meenakshi and Ghosh, 2018; Janke et al.,
2014; Morris and Clements, 2002), SSC for other aspects of vocal effort has
only been studied in a small number of previous works (Nathwani et al.,
2017; Calzada and Socoré, 2011; Huang et al., 2010; Nordstrom et al., 2008;
d’Alessandro and Doval, 1998). Another factor to consider for an MLM-
based SSC system is the amount of data required to train the mapping
function. For speaking styles such as Lombard speech or shouting, the
collection of a large quantity of data is laborious and potentially injurious
to the health of the speakers. This thesis introduces a parametric speaking
style conversion system. In such a system, rather than working directly on
the speech signal, a parametric vocoder (see Section 2.3.2) could be used to
extract speech features. A subset of these features that are considered to
be important to the mapping are then mapped using the mapping function.
The vocoder can then be used to synthesise the speech waveform in the
target style from the mapped and unmodified features. Figure 6.2 shows a
basic schematic of a parametric SSC system. When the mapping function
of a parametric SSC system is trained using an MLM the amount of data
required is considerably lower.

Input Feature Mappin Output
speech extraction > fun%?ior? > Vocoder speech
utterance utterance

Figure 6.2. Basic schematic of a parametric SSC system.

In this thesis, Publication V explains the parametric SSC systems and
compares several vocoders (see Section 2.3.2) and MLMs (see Section 3).
Publications VI and VII focus on GAN-based (see Section 3.2.2) solutions
for the same task.
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7. Summary of publications

7.1 Publication I: "Comparison of non-parametric Bayesian
mixture models for syllable clustering and zero-resource
speech processing”
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Figure 7.1. The Bayesian graph of the generative process of a BMM G with K mixture
components. The kth component, with % € [1,K], has weights 7}, and param-
eters 6;, that are sampled from the prior distributions @ and H respectively.
The mixture component that the observed data x;, with i € [1,N1], is associated
with is represented by the latent variable z;. Finally, x; is then sampled from
the model F(6;,).

Zero-resource speech processing (ZS) systems aim to unsupervisedly
learn structural representations of speech to build speech technology ap-
plications without labelled training data. This conference article tackles
the ZS problem of learning recurring linguistic patterns in speech. One
previously proposed approach to tackle this problem has been the extrac-
tion and clustering of syllabic units. Simple N-gram models built on these
clustered units are then tested against typical units of linguistic content
such as words or phonemes. Traditional clustering algorithms require a hy-
perparameter to be set which is the number of clusters to be learnt, which
is highly dataset dependent for the present task. This paper explores the
use of non-parametric Bayesian (NPB) methods using Bayesian mixture
models (BMMs) to cluster the syllabic units represented as unit-normalised

65



Summary of publications

MFCC-based features. Figure 7.1 shows the Bayesian graph for a BMM.
These models are capable of learning the cluster models as well as their
number based on the properties of a dataset. The article compares several
BMM variants of priors over the weights such as the Dirichlet distribu-
tion (DD), the Dirichlet process (DP) and the Pitmann-Yor process (PYP),
with the latter two being designed for exponential and power-law-based
distributions respectively. Since the distribution of words in different lan-
guages follows a Zipfian (power law) distribution (Piantadosi, 2014), and
since syllables are expected to follow a similar distribution, a PYP prior is
more theoretically motivated than DP for the syllable clustering problem.
Also explored are the variants of the cluster component models such as
Gaussian and Von-Mises Fischer (VMF), which are designed for Euclidean
and unit-nonnmalised data respectively. Since the syllabic features used
here are unit-normalised, the VMF prior is theoretically more motivated.
These methods are studied using conversational speech from several lan-
guages. The models are first evaluated in a separate syllable clustering
task and then as a part of a full ZS system. The experiments show that
non-parametric methods clustering syllable-rhythmic units perform con-
sistently across several data sets for the ZS task. The PYPVMM gave
the best performance among the methods compared, as expected from the
theoretical considerations.

7.2 Publication II: "Dirichlet process mixture models for clustering
i-vector data"
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Figure 7.2. Speaker clustering performance for different numbers of speakers based on
accuracy (shown as bars) and adjusted rand index (ARI) (shown as -).

The methodological framework of NPB methods used in Publication I
was also explored for another task, namely, speaker clustering that in-
volves suprasegmental speech processing in Publication II. This conference
article explores the problem of clustering utterances based on the speaker
identity when the number of speakers is not known. As in Publication I,
the applicability of NPB methods is explored for their ability to implicitly
infer the number of clusters. The utterances are represented as i-vectors,
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a standard in speaker diarisation/verification—corresponding to a GMM
mean supervector mapped into a lower-dimensional factor domain, captur-
ing differences between speakers in the vector direction. These features
are typically unit-normalised and are hence best compared using measures
such as the cosine distance. This article explores the use of the VMF
distribution, which is designed to work with unit-normalised data, as the
component distribution of the BMM. It is compared to the much more
commonly used Gaussian, which is designed to work with Euclidean data.
A DP is used as a prior over the weights of the mixture models. The results
in terms of cluster purity are shown in Figure 7.2. It can be seen that
the Dirichlet process von Mises-Fisher mixture model (DPVMM) can pro-
duce more accurate speaker clusters than the Dirichlet process Gaussian
mixture model (DPGMM), demonstrating the importance of choosing the
correct distributions and distance metrics for the given data and problem.

7.3 Publication llI: "Automatic word count estimation from daylong
child-centered recordings in various language environments
using language-independent syllabification of speech”
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Figure 7.3. Block diagram of the WCE system. Input audio is first passed through a speech
activity detector (SAD), followed by speech enhancement. A syllabification
algorithm is then used to calculate syllable counts using peak picking from
a syllable envelope. These syllable counts along with a number of other
statistical descriptors are fed to a linear mapping for an estimate of the word
counts.

Automatic word count estimation (WCE) is the technology of quantifying
the amount of linguistic content present in realistic audio data in the form
of word counts. WCE can be used on datasets such as recordings from
wearable sensors to investigate vocal activity and social interaction as a
function of the recording time and location. In the context of child language
acquisition, WCE is an essential tool for answering questions such as how
language exposure varies between families with different socioeconomic
and cultural environments, and how this language input maps to later de-
velopmental outcomes. This journal article presents an open source WCE
pipeline that is based on language-independent syllabification of speech,
followed by a language-dependent mapping from several suprasegmental
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speech features such as syllable counts to the corresponding word count
estimates. A block diagram of the system is shown in Figure 7.3. The pre-
vious state-of-the-art solution, the LENA system, was based on proprietary
software and has only been optimised for American English, limiting its
applicability. In the experiments, the proposed WCE system was shown
to have consistent accuracy across multiple corpora and languages and
compares well to the LENA system.

7.4 Publication IV: "SyINet: An adaptable end-to-end syllable count
estimator for speech”

| | = SyINet (L1)

—— SylNet (ordinal)
reference count
® target count

syllable count

- o -
bt

0 05 1 15
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Figure 7.4. An example of SylNet PostNet output accumulation.

The WCE pipeline from Publication III relied on the use of syllable
counts as one of the features used for word count prediction. The majority
of the previously studied syllable count estimators (SCE) (also those used
in Publication III) are based on a syllable envelope detector, followed by
peak picking and counting. These SCEs have mainly relied on heuristic
digital signal processing (DSP) methods, and only a small number of these
use mordern data-driven machine learning approaches. Publication IV
proposes a novel data-driven end-to-end method neural network model
called SylNet for the SCE task. This model directly optimises the syllable
counts without the need for training data with annotations aligned at
the syllable level. Experiments on several languages reveal that SylNet
generalises to languages beyond its training data and further improves
with adaptation. It also outperforms several previously proposed methods
for syllabification and end-to-end BLSTMs tested in the study. Figure 7.4
shows an example of the output of SylNet with different loss functions.
It can be seen that even though the only information fed during training
is the total number of syllables in each utterance, SylNet is still capable
of detecting the syllable boundaries in addition to estimating the total
syllable counts in the input utterances.
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7.5 Publication V: "Vocal effort based speaking style conversion
using vocoder features and parallel learning"

FO, energy H
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H processing model H
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speech analysis ' modification

Remaining features

Vocoder-
synthesis
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Figure 7.5. Block diagram of the normal-to-Lombard SSC system. Prior to the conversion,
the mapping models are trained using DTW-aligned pairs of normal and
Lombard speech utterances.

Publication V proposes a parametric speaking style conversion (SSC)
system for converting speech utterances from one style to another with
varying vocal effort. This study focuses on normal-to-Lombard conversion
as a case study of this problem. Figure 7.5 shows a block diagram of the
normal-to-Lombard SSC system. The proposed parametric model uses a
vocoder to extract frame-level speech features from the input normal-style
utterance. These features are then mapped using parallelly trained frame-
level machine learning models (MLMs) to the corresponding features of
the target Lombard speech. Finally, the mapped features are converted
to a Lombard speech waveform with the same vocoder. A total of three
vocoders—GlottDNN, STRAIGHT, and Pulse model in log domain (PML);
and three MLMs—standard GMM, Bayesian GMM, and feed-forward
DNN, were compared in the proposed normal-to-Lombard style conversion
system. The SSC system was evaluated using subjective listening tests
that measured the perceived Lombardness and quality of the converted
speech utterances. An instrumental measure called speech intelligibility
in bits (SIIB) was also used to evaluate the intelligibility of the converted
Lombard utterances under various noise conditions. The results show that
the system is able to convert normal speech into Lombard speech. While
comparing the different design choices used, we see that there is a trade-off
between the quality and Lombardness of the mapped utterances.

7.6 Publication VI: "Cycle-consistent adversarial networks for
non-parallel vocal effort based speaking style conversion”

The MLMs used in Publication V are based on parallel learning mecha-
nisms. SSC systems trained with these models are restricted to training
data that have linguistically identical utterances from both the source and
target styles from the same speaker. This kind of data is especially difficult
to obtain for speech produced with a varied vocal effort, especially in large
quantities. This conference article uses a DNN-based non-parallel learning
scheme called the cycle-consistent adversarial network (CycleGAN) for the
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Figure 7.6. Results of the subjective Lombardness (top) and quality (bottom) tests for the
Lombard-to-normal (left) and normal-to-Lombard (right) style conversions.
For the Lombardness tests a higher value indicates a greater degree of Lom-
bardness and for the quality tests a lower value indicates a better quality.
Standard errors are shown in red. Significant difference values as measured
using the Student’s t-test and the Mann-Whitney U-test for the Lombard-
ness tests and the quality tests respectively with Bonferroni correction are
highlighted.

task of SSC. The block diagram of the CycleGAN is shown in Figure 3.9.
The same parametric system used in Publication V was used here with
the PML as the vocoder. However, a more descriptive set of features were
used here (FO0, voicing decisions (V/UV), and the first 10 MGC coefficients)
as opposed to Publication V (which included F0, energy, and spectral tilt),
since the amount of data available for training the MLMs was larger. The
CycleGAN is compared with the parallelly trained standard GMM (one
of the MLMs used in publication V) as a baseline as well as the iterative
combination of a nearest neighbour search step and a conversion step align-
ment method (INCA), which is a standard technique used in non-parallel
learning for related problems such as voice conversion. The systems were
evaluated for both normal-to-Lombard as well as Lombard-to-normal con-
versions using subjective listening tests for quality and Lombardness (the
same as used in Publication V). The results are shown in Figure 7.6. It
can be seen in the normal-to-Lombard conversion that the CycleGAN pro-
duces the highest Lombardness, whereas both INCA and CycleGAN both
performed well in terms of quality in comparison to the parallel GMM. For
the Lombard-to-normal mapping, the Lombardness of the three methods
is almost indistinguishable, with the CycleGAN being the best in terms of
quality.
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7.7 Publication VII: "Augmented CycleGANSs for continuous scale
normal-to-Lombard speaking style conversion”
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Figure 7.7. Block diagrams showing the augmented CycleGAN with mapping functions G,
F and E, and discriminators Dy, Dy and Dy. The forward cycle, backward
cycle, and identity mapping are indicated in blue, red, and green respectively.
The parts shown in the lighter shade form the CycleGAN (used in Publication
VI), and the parts shown in the darker shade are additional blocks used for
the augmented CycleGAN.

The CycleGAN used in Publication VI is only capable of a deterministic
mapping from one style to another, such as in the normal-to-Lombard case
studied in the publication. However, increasing the level of Lombardness
beyond what is required in a given environment may result in an undesired
mismatch between communicative expectations and the resulting vocal
expression in the given situation. In contrast, not increasing the level of
Lombardness enough would result in an insufficient improvement in intel-
ligibility. Hence, it would be desirable to have an SSC system capable of
converting speech from one style to another where the degree of conversion
is controllable. In this conference article, we propose the use of recently
developed augmented CycleGAN for conversion from normal-to-Lombard
speech. The block diagram of the augmented CycleGAN is shown in Figure
7.7. This MLM unsupervisedly learns a latent space that encodes miss-
ing information about the target style utterance that is not present in
the source style utterance. As in Publication VI, the PML is used as the
vocoder. The augmented CycleGAN model is trained on multi-language
data. The effectiveness of the model is compared to a standard CycleGAN
using subjective experiments for the intelligibility and quality of mapped
speech, as well as using the instrumental SIIB intelligibility score.
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8. Conclusions

This thesis set out to explore the application of state-of-art ML methods
to selected applications in the field of speech processing. The recurring
theme in the studies was that the methodology focused on analysis or
conversion of speech at the level of suprasegmental units. The main aim of
the work was to improve performance in the existing tasks of zero resource
speech processing and word/syllable count estimation with new ML-based
techniques (Publications I-IV) and to introduce a new parametric sys-
tem—a system that is based on the extraction and transformation of key
features followed by synthesis using vocoders—for the task of speaking
style conversion and to propose a number of technical solutions to tackle
the transformation problem (Publications V-VII).

In more detail, Publication I explored the use of NPB mixture models
for the task of clustering syllable-rhythmic units that correspond to lin-
guistic units in the ZS setting. Several families of prior distributions
were compared. It was shown that NPB methods performed consistently
across several data sets without requiring manual specification of the total
number of clusters. Comparing the priors used, it was found that the
Pitman-Yor process—a model that best fits the assumed distributional
structure of linguistic data (i.e., Zipf’s law)—was the best performing prior
distribution among all compared variants. Additionally, the Von Mises-
Fisher distribution, which is based on the cosine distance, was found to be
more suited for clustering unit-normalised feature vectors than the widely
utilised Gaussian distribution, which is based on the Euclidean distance.
Publication II further explored the applicability of NPB clustering methods
to the task of speaker clustering, in which the utterances were represented
using i-vector features. Once again, in line with the theory that the Von
Mises-Fisher distribution is more suited for clustering unit-normalised
units than the Gaussian, it was observed that the DPVMM had better
performance than the DPGMM. The performance of the DPVMM was also
close to that of parametric methods when the true number of clusters is
known by those models. Overall, Publications I and II show that NPB
methods provide a potential alternative to more traditional parametric
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methods for speech processing applications where data clustering is re-
quired, especially when the number of clusters is not known. Practically,
however, some level of task-specific tuning is required to find the best set of
hyper-parameters for the NPB models. Further, Publications I and II show
that the influence of the choice of the priors for these models can largely
be predicted based on some theoretical considerations related to the data,
such as the Zipfian distributional properties of lexical data (Piantadosi,
2014).

Publication III dealt with the task of WCE in the context of realistic
day-long infant-directed recordings from wearable microphones. In this
context, the automatic syllabification of speech was used as a processing
step to obtain estimated word counts in different languages. A number
of unsupervised DSP-based methods and a supervised RNN-based ML
model were compared for this purpose. The RNN-based model was found
to be the best performing alternative over several realistic data sets. How-
ever, a disadvantage of this approach is the requirement of phone-level
annotations for training the syllable envelope detector within the model.
This shortcoming was addressed in Publication IV with an end-to-end
model called SylNet that directly predicts the syllable count from input
speech. The training of the SylNet only requires the true syllable count
per utterance, but not any alignment between the linguistic information
and the underlying speech data. Publication IV compared the SylNet with
the envelope detection-based methods used in Publication III, as well as
an alternative RNN-based end-to-end model. It was found that the SylNet
had the best performance across the different test datasets in different
languages and recording conditions, all differing from the training set.
Moreover, it was shown that SylNet was easily adaptable to new domains,
with the performance of the model substantially improving with just a few
minutes of adaptation data from the target domain.

The last three publications focused on the problem of automatic speaking
style conversion. Publication V laid down the basic problem formulation
and proposed a parametric system for vocal effort-based SSC. Several para-
metric vocoders and ML methods were compared for the task of normal
to Lombard conversion in a parallel learning setting. Based on subjective
listening tests and instrumental measurements, it was observed that all
methods achieved a significant shift in speaking style towards Lombard
speech, however, with some degradation in the perceived quality. In order
to better use non-parallel data, which, is more readily available, Pub-
lication VI compared a GAN-based non-parallel learning scheme called
the CycleGAN with a more standard approach for non-parallel learning
called INCA as well as the parallel learning methods. Listening tests
indicated that the CycleGAN produced encouraging results compared to
the other methods. It has to be noted that the results were obtained with
the CycleGAN trained with a combination of parallel and non-parallel

74



Conclusions

data. Therefore, the performance of the SSC system studied might drop
slightly if the training of CycleGAN was conducted only using non-parallel
data. Publication VII extended the CycleGAN approach to a method called
augmented CycleGAN that allows simultaneous learning of a latent space
which enables the parameterisation of information about the target style
not present in the source style. This latent space can then be utilised dur-
ing inference to achieve a controllable degree of style conversion, thereby
allowing the adaptation of the conversion process to different use cases
and listening conditions.

To summarise, the thesis shows that ML-based solutions are capable
of tackling and providing state-of-the-art performance in a number of
problems focused on the broad topics of speech analysis and conversion.
In addition, some of these methods help to lessen the amount of a priori
assumptions required for successful modelling of the data (such as in the
case of NPB models for data clustering), or reduce the requirements for
the type of data required for model training (such as enabling the use of
non-parallel data for speaking style conversion or the need for phonetic
annotations for syllable count estimation). This thesis shows that NPB
models can be used for clustering in the ZS task eliminating the need
for model selection. A novel end-to-end architecture developed for the
WCE/SCE task outperformed the state-of-the art LENA solution, and is
available as an open-source solution. The topic of speaking style conversion
was also studied in the thesis in more depth. The thesis introduced a new
parametric system for SSC as well as a number of technical solutions
to tackle the SSC problem. The systems developed in this thesis enable
the conversion of speech utterances from normal to Lombard style with
a controllable degree of conversion. Overall, the thesis work has shown
that state-of-the-art ML models can be used to tackle a variety of speech
processing problems with a competitive performance when focusing on
suprasegmental signal structures, and that good quality speaking style
conversion can be achieved with both parallel and non-parallel datasets.
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Errata

Publication VI

In Figure 1, for the forwards cycle the mapping F should be from y’ to x”
and not from y’ to y”. Similarly, for the backward cycle, the mapping G

should be from x’ to y” and not from x' to x”.
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Speech technology is a field of technological research focusing on
methods to process spoken language. Work in the area has largely relied
on a combination of domain-specific knowledge and digital signal
processing algorithms, often also combined with statistical (parametric)
models to develop applications. In this context, machine learning (ML)
has played a central role in estimating the parameters of such models.
The goal of this thesis is to investigate the applicability of recent state-
of-the-art developments in ML to the modelling and processing of
speech at the so-called suprasegmental level to tackle the following
topical problems in speech research: 1) zero-resource speech processing,
where the aim is to learn language patterns from speech without access
to annotated datasets, 2) automatic word and syllable count estimation
which focus on quantifying the amount of linguistic content in audio
recordings, and 3) speaking style conversion, which deals with the
conversion of the speaking style of an utterance while retaining the

linguistic content, speaking identity and quality.
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