
9HSTFMG*aeebcf+

ISBN 978-952-60-4412-5
ISBN 978-952-60-4413-2 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Computer Science and Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 13

5
/2

011

Pair programming, where two persons
actively collaborate in the implementation
of software development tasks has been
proposed as a means to increasing software
quality, knowledge transfer and learning,
among other things. This research studied
the adoption, use, and effects of pair
programming through a literature study, two
industrial case studies and a student
experiment. The effects of pair
programming on software quality and
developers' knowledge were positive in all
three empirical studies, but the development
effort for individual tasks increased. The
increase in effort occurred mainly when
using pair programming for simple tasks or
during the beginning of a project, when the
developers were learning pair programming
and getting to know one another.

Jari V
anhanen

E
m

pirical assessm
ent of the adoption, use, and effects of pair program

m
ing

A
alto

 U
n
ive

rsity

Department of Computer Science and Engineering

Empirical
assessment of the
adoption, use, and
effects of pair
programming

Jari Vanhanen

DOCTORAL
DISSERTATIONS

Aalto University publication series
DOCTORAL DISSERTATIONS 135/2011

Empirical assessment of the adoption,
use, and effects of pair programming

Jari Vanhanen

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the School of
Science for public examination and debate in Auditorium T2 at the
Aalto University School of Science (Espoo, Finland) on the 2nd of
December 2011 at noon.

Aalto University
School of Science
Department of Computer Science and Engineering
Software Process Research Group

Supervisor
Professor Casper Lassenius

Preliminary examiners
Professor Laurie Williams
North Carolina State University, USA

Professor Markku Tukiainen
University of Eastern Finland, Finland

Opponents
Professor Emilia Mendes
Zayed University, Dubai

Aalto University publication series
DOCTORAL DISSERTATIONS 135/2011

© Jari Vanhanen

ISBN 978-952-60-4413-2 (pdf)
ISBN 978-952-60-4412-5 (printed)
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934 (printed)

Unigrafia Oy
Helsinki 2011

Finland

The dissertation can be read at http://lib.tkk.fi/Diss/

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Jari Vanhanen
Name of the doctoral dissertation
Empirical assessment of the adoption, use, and effects of pair programming
Publisher School of Science
Unit Department of Computer Science and Engineering

Series Aalto University publication series DOCTORAL DISSERTATIONS 135/2011

Field of research Software engineering

Manuscript submitted 14 June 2011 Manuscript revised 27 October 2011

Date of the defence 2 December 2011 Language English

Monograph Article dissertation (summary + original articles)

Abstract
Developing large software systems requires team work, which in turn calls for lots of
communication within the team. However, programming is typically conducted alone by
individual software developers. Pair programming, where two persons actively collaborate in
the implementation of a single task, is an alternative way of developing software. It has been
proposed as a means to increasing software quality, knowledge transfer and learning, among
other things.

This research studied the adoption, use, and effects of pair programming through a literature
study and three empirical studies. The literature study was a systematic mapping study of the
previous pair programming research in the industry. The empirical studies consisted of two
long industry case studies and an experiment where project teams consisting of experienced
students conducted a moderately large software development project.

The systematic mapping study analyzed the content of 154 papers. It identified industrially
relevant aspects of pair programming and organized them as a pair programming framework
containing additional and more detailed aspects of pair programming over the previously
published frameworks. The framework grouped all the identified aspects under eighteen
factors of pair programming, for which their state of research was analyzed. The analysis
showed that of many factors, only a few or no studies had been conducted using rigorous
research approaches and data collection methods.

The adoption and use of pair programming were analyzed in the two case studies. In the
larger, more established organization, there were issues with adoption, related to both
infrastructure and organizing of pair programming. A separate pair programming room was a
successful solution to the infrastructural issues. However, lack of time for pair programming
due to insufficient organizing of its use, remained an issue at the end of the study.

The effects of pair programming on software quality and developers' knowledge were
positive in all three empirical studies, but the development effort for individual tasks
increased. The increase in effort occurred mainly when using pair programming for simple
tasks or during the beginning of a project, when the developers were learning pair
programming and getting to know one another.

Keywords pair programming, empirical research, industry

ISBN (printed) 978-952-60-4412-5 ISBN (pdf) 978-952-60-4413-2

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Espoo Location of printing Helsinki Year 2011

Pages 132 The dissertation can be read at http://lib.tkk.fi/Diss/

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Jari Vanhanen
Väitöskirjan nimi
Pariohjelmoinnin käyttöönoton, käytön ja vaikutusten empiirinen arviointi
Julkaisija Perustieteiden korkeakoulu
Yksikkö Tietotekniikan laitos

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 135/2011

Tutkimusala Ohjelmistotuotanto

Käsikirjoituksen pvm 14.06.2011 Korjatun käsikirjoituksen pvm 27.10.2011

Väitöspäivä 02.12.2011 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Suurten ohjelmistojärjestelmien kehittäminen on ryhmätyötä, joka vaatii paljon
kommunikointia ryhmän sisällä. Ohjelmointityö tehdään kuitenkin tyypillisesti yksittäisten
ohjelmistokehittäjien toimesta. Pariohjelmointi, jossa kaksi henkilöä tekevät aktiivista
yhteistyötä saman tehtävän parissa, on vaihtoehtoinen tapa kehittää ohjelmistoja. Sen on
ehdotettu parantavan muun muassa ohjelmiston laatua, tiedon siirtoa ja oppimista.

Tässä tutkimuksessa tutkittiin pariohjelmoinnin käyttöönottoa, käyttöä ja vaikutuksia.
Tutkimus koostui yhdestä kirjallisuustutkimuksesta ja kolmesta empiirisestä tutkimuksesta.
Kirjallisuustutkimus oli systemaattinen kartoitustutkimus aiemmista teollisuudessa
tehdyistä pariohjelmointitutkimuksista. Empiiriset tutkimukset koostuivat kahdesta pitkästä
tapaustutkimuksesta teollisuudessa ja yhdestä kokeesta, jossa kokeneista opiskelijoista
koostetut ryhmät tekivät kukin kohtuullisen laajan ohjelmistokehitysprojektin.

Systemaattinen kartoitustutkimus analysoi 154 artikkelin sisällön. Siinä tunnistettiin
ohjelmistoteollisuuden näkökulmasta relevantit asiat pariohjelmointiin liittyen ja
organisoitiin ne pariohjelmoinnin viitekehykseksi, joka sisältää täydentäviä ja
yksityiskohtaisempia asioita pariohjelmoinnista verrattuna aiemmin julkaistuihin
viitekehyksiin. Viitekehys ryhmitteli tunnistetut asiat 18 tekijän alle. Kunkin tekijän osalta
analysointiin aiemman tutkimuksen tilaa. Moniin tekijöihin liittyen löytyi korkeintaan
muutamia tutkimuksia, jotka oli tehty kurinalaisia tutkimuksen lähestysmistapoja ja
tiedonkeruumenetelmiä käyttäen.

Pariohjelmoinnin käyttöönottoa ja käyttöä tutkittiin kahdessa tapaustutkimuksessa.
Suuremmassa ja vakiintuneemmassa organisaatiossa oli ongelmia sen käyttöönotossa.
Ongelmat liittyivät sekä pariohjelmoinnin organisointiin että infrastruktuuriin. Erillinen
pariohjelmointihuone ratkaisi infrastruktuuriin liittyvät ongelmat. Pariohjelmoinnin
puutteellisesta organisoinnista johtunut ajanpuute sen käyttämiseen jäi kuitenkin avoimeksi
ongelmaksi vielä tutkimuksen lopussa.

Pariohjelmoinnin vaikutukset ohjelmistojen laatuun ja kehittäjien tietämykseen olivat
positiivisia kaikissa kolmessa empiirisessä tutkimuksessa, mutta yksittäisiin tehtäviin
käytetty työmäärä lisääntyi. Työmäärän lisääntyminen esiintyi pääosin silloin, kun
pariohjelmointia käytettiin yksinkertaisiin tehtäviin ja projektien alussa, jolloin kehittäjät
vasta opettelivat käyttämään pariohjelmointia ja tuntemaan toisensa.

Avainsanat pariohjelmointi, empiirinen tutkimus, teollisuus

ISBN (painettu) 978-952-60-4412-5 ISBN (pdf) 978-952-60-4413-2

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942

Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2011

Sivumäärä 132 Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Acknowledgements
This research was done at SoberIT at the Department of Computer Science
and Engineering at Aalto University. There are many people I want to thank
for their contribution to this research.

First, I would like to thank my supervisor, Professor Casper Lassenius, for
his support and guidance in my research work. Over the years also all the
other members of the Software Process Research Group have participated
as co-authors or internal reviewers of my papers, or by commenting my
research in informal discussions. Especially, I want to mention Mika
Mäntylä, Kristian Rautiainen, Juha Itkonen, Jarno Vähäniitty and Timo
Lehtinen for their contributions.

Timo Rihtniemi, Harri Korpi and Tuomo Kähkönen had a crucial role in
making the data collection from the industrial case studies possible. Timo
Jalonen and Matti Kokkola made a huge contribution for the infrastructure
of the student experiment by developing the core system and use cases, and
by lecturing the related course. Mikko Rusama participated also in prepar-
ing the infrastructure for the experiment. I also want to thank the software
developers in the companies and the students in the experiment who
participated in my research as subjects.

It is difficult to recall the starting moment of my pair programming
research, but Asko Seeba and Priit Salumaa deserve to be mentioned as the
first persons with whom I had several, long discussions on planning a
“perfect” pair programming experiment during the XP 2003 conference.

I also wish to thank my preliminary examiners Professor Laurie Williams
and Professor Markku Tukiainen for their comments.

This research would not have been possible without the financial support
of the Finnish Funding Agency for Technology (Tekes) and the participating
companies for the SHAPE and ESPA projects, and the Graduate School for
Electronic Business and Software Industry (GEBSI).

I want to thank my wife Heidi for her love and support, my son Aapo for
forcing me regularly keep my thoughts away from all other things except
playing with him, and my newborn daughter Oona, who has brought me joy
in the last weeks of finalizing this thesis.

Espoo, October 2011

Jari Vanhanen

List of publications
This dissertation consists of this summary and the following publications
which are referred to in the text by their roman numerals.

I. J. Vanhanen and M.V. Mäntylä, "A systematic mapping study
of empirical studies on the use of pair programming by
professional developers," IEEE Transactions on Software
Engineering, submitted for review in March 2011, (17 pages + 15
appendix pages).

II. J. Vanhanen, C. Lassenius, and M.V. Mäntylä, "Issues and tac-
tics when adopting pair programming: A longitudinal
case study, " in Proceedings of the Second International Confer-
ence on Software Engineering Advances (ICSEA 2007), Cap Es-
terel, France, August 2007, pp. 70 (7 pages).

III. J. Vanhanen and C. Lassenius, "Perceived effects of pair pro-
gramming in an industrial context," in Proceedings of the
33rd EUROMICRO Conference on Software Engineering and Ad-
vanced Applications (EUROMICRO 2007), Lübeck, Germany, Au-
gust 2007, pp. 211–218.

IV. J. Vanhanen and H. Korpi, "Experiences of using pair pro-
gramming in an agile project," in Proceedings of Hawaii In-
ternational Conference on System Sciences (HICSS-40), Waiko-
loa, Hawaii, USA, January 2007, pp. 274b (10 pages).

V. J. Vanhanen and C. Lassenius, "Effects of pair programming
at the development team level: An experiment," in Pro-
ceedings of International Symposium on Empirical Software En-
gineering (ISESE 2005), Noosa, Australia, November 2005, pp.
336–345.

Author’s contribution
The author of this dissertation is the primary author of all the included
publications. For publications I, II, III and V, he was solely responsible for
the research design, data collection, data analysis and writing of the
publication. For publication IV, he was partially responsible for the data
collection, and solely responsible for the data analysis and writing.

Table of contents
1 Introduction ..1

1.1 Motivation... 1
1.2 Definitions...2
1.3 Research goal and questions ..3
1.4 Structure of the thesis...4

2 Background .. 5
2.1 Local amount of pair programming...5
2.2 Targets of pair programming ...6
2.3 Infrastructure for pair programming...8
2.4 Managing pair programming ...8
2.5 Adoption of pair programming ..9
2.6 Productivity...10
2.7 Software quality ..10
2.8 Developer’s knowledge of work...11

3 Research design...13
3.1 Research methodologies... 13

3.1.1 Systematic mapping study.. 13
3.1.2 Case study.. 15
3.1.3 Experiment.. 16

3.2 Research environment.. 16
3.2.1 Study A .. 16
3.2.2 Study B .. 17
3.2.3 Study C... 17

3.3 Summary of the empirical studies ... 17
4 Results...19

4.1 Pair programming factors .. 19
4.2 Adoption and use of pair programming...22

4.2.1 Adoption of pair programming in Study A ..22
4.2.2 Adoption of pair programming in Study B ..24
4.2.3 Use of pair programming..24

4.3 Effects of pair programming ..25
4.3.1 Productivity ...25
4.3.2 Software quality ..25
4.3.3 Developer’s knowledge of work ..26

5 Discussion .. 28
5.1 Pair programming factors ..28
5.2 Adoption and use of pair programming...29

5.2.1 Adoption of pair programming ..29
5.2.2 Use of pair programming..30

5.3 Effects of pair programming .. 31
5.3.1 Productivity ... 31
5.3.2 Software quality ..32
5.3.3 Developer’s knowledge of work ..32

5.4 Evaluation of the research..33
5.4.1 Strengths ...33
5.4.2 Limitations ..34

5.5 Summary of the results...35
6 Conclusions .. 36

6.1 Contributions of the research...36
6.2 Future work...36

References.. 38
Publications...41

1 Introduction

1

1 Introduction

1.1 Motivation

Building large software systems requires the participation of large teams of
developers. Even though successful teamwork is likely to require lots of
communication between team members, programming is typically an
activity that is divided into separate tasks that are mostly implemented
alone by individual persons. Pair programming (PP), where two persons
actively collaborate in the implementation of a single task, is an alternative
way of developing software.

Pair programming became a better known practice when it was intro-
duced as part of the extreme programming (XP) (Beck, 1999) software
development methodology in the late 1990s. However, even though the
term “pair programming” was not commonly used before the introduction
of XP, anecdotal evidence of two programmers working together has been
reported all the way back to the 1950s (Williams and Kessler, 2002).
Nowadays, according to many surveys, pair programming is used to some
degree in many companies within the software industry (see e.g., Salo and
Abrahamsson, 2008; Schindler, 2008; Begel and Nagappan, 2008).

Pair programming is used because many benefits are expected to result
from using it instead of solo programming. In the context of XP, pair
programming is a mandatory practice for all development work because it is
expected to encourage communication and increase code quality, and it is
required by certain other practices (Beck, 1999). In a book solely devoted to
pair programming, Williams and Kessler (2002) describe pair program-
ming as an independent practice that may be incorporated into any
software development methodology. They propose many benefits from the
use of pair programming, including higher quality without increase in
effort, higher morale, trust and teamwork, and better knowledge transfer
and enhanced learning.

The empirical evidence on the realization of the proposed effects of pair
programming, including both its benefits and costs, is still inconclusive or
scarce, depending on the effect. Software quality and development effort
are the most frequently studied effects in pair programming experiments,
and the results of the main experiments have been analyzed in a meta-
analysis (Hannay et al., 2009). However, there is a large variance among
the results of the studies included in the meta-analysis, and scarcely studied
factors such as task complexity and developer’s experience seem to affect
the results (Hannay et al., 2009). Identifying any other factors that may
affect the effects of pair programming and studying their role are necessary
steps for advancing the state of pair programming research.

It is also important to study the adoption of pair programming. Various
difficulties related to the adoption have been reported in the literature, as
listed in Publication I. In addition, in a previous study, we found that even
in organizations that promote agile software development in general,
certain agile software development practices, pair programming included,
did not just emerge without explicit adoption (Vanhanen et al., 2003).

1 Introduction

2

1.2 Definitions

In this dissertation, we use the definition of pair programming given by
Williams and Kessler (2002). Their definition states that pair program-
ming is a software development practice where two persons design, code
and test software together at one computer, actively communicating with
each other. Thus, despite its name, the pair programming practice can also
be applied to other software development activities in addition to the
coding activity.

The definition above does not mandate using pair programming for all
development work, as is the case in the context of extreme programming.
We consider also occasional working in pairs as pair programming.
Distributed pair programming, where the pair is not physically collocated
but may share the same display using network collaboration tools, is not
considered pair programming in this dissertation.

We divide the analysis of pair programming into three viewpoints: effects,
use and adoption of pair programming. They are defined as follows:

� The effects of pair programming cover anything that is affected by
the use of pair programming, either positively or negatively, in-
cluding the developed software and the software development or-
ganization along with its people and processes.

� The use of pair programming covers anything that may affect the
realization of the effects of pair programming such as the way of
use, context of use, and amount of use.

� The adoption of pair programming considers both the effects and
use of pair programming, but in particular considering their role
in motivating the adoption of pair programming, or in preventing
or supporting the achievement of the desired use of pair pro-
gramming in an organization, especially when the application of
the pair programming practice has just begun.

Pair programming involves numerous aspects that may have relevance for
the practitioners and researchers of pair programming. In this dissertation
a factor of pair programming denotes a group of closely related aspects of
pair programming, which may include any effects of pair programming and
any aspects that may affect the realization of the effects. Certain factors can
be considered both as effects of pair programming and factors that affect
the realization of effects of pair programming on some other factors. For
example, pair programming may increase developer’s knowledge of work,
but developer’s knowledge of work may also affect, e.g., how strongly
quality is affected due to pair programming. The pair programming
framework denotes the structured presentation of the aspects and factors
of pair programming identified in the literature study reported in Publica-
tion I.

1 Introduction

3

1.3 Research goal and questions

The research goal is
to increase empirical knowledge of the adoption, use, and effects of
pair programming.

We focus on studying pair programming from those viewpoints that are
relevant to real-life software development (i.e., when software is developed
for real use). We scope out those viewpoints that are relevant only to the
application of pair programming for learning programming in university
courses, which has been a popular context in previous pair programming
studies.

The research questions of this dissertation are described below. They
summarize the more detailed research questions presented in Publica-
tions I–V. The relationships between the publications and the research
questions studied in them are shown in Table 1.

Research Question 1: What are the factors of pair programming and
how well have they been studied empirically?

We identify any potentially relevant aspects of pair programming and
group the related aspects to form a set of factors of pair programming. For
each factor, we analyze the previous empirical research through many
properties of research, such as research approach, data collection method,
discussion type, data type, and author’s role in the studies. The overall
relevance of each study discussing a factor and the number of these studies
are considered when evaluating how advanced the research is per factor.

The research focus on real-life software development scopes out aspects
that are relevant only in the educational context. An example of such an
aspect is the benefit of pair programming due to halving the number of
course assignments and thus saving the course arrangement effort.

We answer Research Question 1 through a systematic mapping study of
empirical studies on professional software developers using pair program-
ming published in scientific journals, conferences or workshops. We scope
out other literature such as studies of computer science students, non-
empirical studies and practitioner literature in order to keep the effort
realistic, even though other literature might contribute additional results
with regard to the research question.

Research Question 2: What issues and other experiences are confront-
ed in the adoption and use of pair programming in the industry and how
can the issues be resolved?

The issues can include anything that prevents reaching the desired use of
pair programming in an organization. Experiences can be negative or
positive observations that are relevant to the practitioners and researchers
of pair programming. Regarding the use of pair programming, we study in

1 Introduction

4

particular aspects related to the targets of pair programming, infrastructure
of pair programming, pair formation, and pair programming sessions.

We answer Research Question 2 by conducting two case studies—Study A
and Study B—in two organizations. The studies are conducted at a time
when the organizations are adopting pair programming.

Research Question 3: Does pair programming affect productivity,
software quality, and developer’s knowledge of work, and how much, if so?

We study in particular the effects of pair programming on productivity,
software quality, and developers’ knowledge. Certain other effects such as
enjoyment of pair programming, are studied with less emphasis in Publica-
tions II–V, and are not included in this summary.

We answer Research Question 3 by conducting an experiment where
several teams of experienced students each develop a moderately large
software system using either pair programming or solo programming and
through the same two case studies as Research Question 2. In the experi-
ment, the results are based on both objective measurements of and the
subjects’ perceptions of the effects of pair programming. In the case studies,
the results are mainly based on the developers’ perceptions of the effects of
pair programming.

Table 1 Research questions covered in each publication

Publication Context RQ 1 RQ 2 RQ 3

I a literature review of empirical studies X

II a case study in the industry (Study A) X

III a case study in the industry (Study A) X X

IV a case study in the industry (Study B) X X

V an experiment with student projects X

1.4 Structure of the thesis

Chapter 2 summarizes the previous literature on the areas of pair pro-
gramming studied in this dissertation. Chapter 3 introduces the utilized
research methodologies and the contexts where the empirical research was
conducted. Chapter 4 presents the results, and Chapter 5 discusses them
along with the evaluation of the research. Chapter 6 summarizes the
contributions of the dissertation and proposes future work.

2 Background

5

2 Background
This chapter summarizes the most relevant scientific literature related to
the research questions covered in this dissertation. The selection of the
literature is based on the results of the systematic mapping study reported
in Publication I. That study found 154 empirical papers discussing the use
of pair programming by professional developers, published before year
2010.

In the systematic mapping study, all the aspects of pair programming
discussed in the papers were extracted and organized under eighteen
factors of pair programming (see Table 4, page 20). Eight of these factors
were the main targets of research in Publications II–V. These included local
amount of PP, targets of PP, infrastructure for PP, managing PP, adoption
of PP, productivity, software quality, and developer’s knowledge.

In the systematic mapping study the content of each paper was classified
according to the overall relevance of research per factor. Based on this
classification each section below summarizes the results of the most
relevant empirical studies of each of the eight factors.

The systematic mapping study also identified but excluded more than 200
papers that discussed the use of pair programming by students or that were
non-empirical papers. Of those papers, the most relevant ones related to the
factors discussed below have been included in this chapter. The selection of
the most relevant papers was done based on the titles and abstracts of the
papers, instead of reading the full content of the papers, as was the case in
the systematic mapping study. Regarding the productivity and software
quality factors, most of the previous student experiments are included in
the meta-analysis by Hannay et al. (2009), whose results are discussed in
the corresponding sections below rather than discussing the individual
studies included in the meta-analysis.

2.1 Local amount of pair programming

The local amount of pair programming covers the amount of using the pair
programming practice in an organization. The perspectives of interest
include the realized and desired amounts of pair programming as well as
the absolute amount of pair programming and proportion of pair pro-
gramming of all the development work.

Fronza et al. (2009) studied a team that used customized XP where the
use of pair programming was not enforced but the developers we free to
implement it. During the year-long measurement period, the mean
proportion of pair programming was 34% of the total work-time, varying
between 21% and 56% on a monthly basis. Two of the 17 developers joined
the team at the start of the study, and they were studied in particular as
they represented novices in the team. For them, the mean proportion was
46% of the total work-time, varying between 3% and 100% per month.

Williams et al. (2004) studied a team developing a product at IBM. They
analyzed data from two consecutive release projects following the adoption
of XP. For the latter release, people were given a choice of pairing, inspect-

2 Background

6

ing, or justifying why code was written by one developer working alone.
Based on the entries in the source code file headers, the amount of modifi-
cations made using pair programming increased from 11% to 48% between
the releases. Based on a survey answered by the developers, the time spent
using pair programming increased from 32% to 68% between the two
releases.

Hulkko and Abrahamsson (2005) studied four different projects in close-
to-industry settings containing both students and professionals. The
projects lasted 5–8 weeks and contained 4–6 developers. The projects used
a development method based on XP and SCRUM, and the use of pair
programming was encouraged. In all cases, the proportion of pair pro-
gramming relative to all programming effort was 75–95% during the first
two weeks. Thereafter, it started to decrease, in two cases dropping to 40%
and 20% respectively, and in the other two cases fluctuating between 60%
and 100%.

There are at least 7 more papers studying industrial settings (see Publica-
tion I) that report some kind of a figure regarding the realized total
proportion of pair programming. The figures vary between about 30% and
70%.

All the above studies report rather high levels of pair programming
application. However, it must be noted that the studies are heavily biased
toward XP-based contexts. The literature focuses mainly on reporting the
realized proportions of pair programming from all work. There are no good
studies of the desired amount of pair programming. Neither are there good
studies about the possible effect of the amount of pair programming on the
strength of the expected effects of pair programming, such as overall project
productivity.

2.2 Targets of pair programming

The targets of pair programming cover the activities and situations for
which pair programming is used. The perspectives that are of interest here
include the suitability and amount of pair programming for the various
targets. The targets can be classified by their type (e.g., programming or
testing) and by their characteristics (e.g., complex or easy work).

Arisholm et al. (2007) found that task complexity affects the effects of
pair programming on effort and quality. They conducted an experiment
where 295 professionals performed artificial programming tasks for eight
hours. The differences between pair programming and solo programming
were studied using two tasks of different complexity and junior-junior,
intermediate-intermediate, and senior-senior partner combinations as
moderating factors. For the more complex task, pair programming in-
creased the proportion of correct solutions by 48% and effort by 112% when
considering all subjects. Pair programming increased correctness consider-
ably for the junior and intermediate pairs, but did not affect it for the senior
pairs, even though the effort increased considerably for all types of pairs.
For the simpler task, there was no significant difference in correctness
between pair programming and solo programming, but the effort was 60%

2 Background

7

greater for pair programming when considering all subjects. Pair program-
ming increased correctness slightly for the junior pairs but took more than
twice the effort of solo programming. For the other pairs, pair program-
ming decreased correctness slightly for the simpler task, but still increased
effort.

The results of the experiment by Lui and Chan (2006) can be analyzed
from the viewpoint of task complexity. They compared individuals and
pairs who wrote the same program from scratch on four consecutive
weekends, each time requiring several hours of effort. The task of writing
the same program can be assumed to become easier every time it is
performed. The subjects were part-time students who also had full-time
programming jobs. The pairs practiced pair programming before the
experimental tasks were conducted. The effort increase due to pair pro-
gramming grew continuously from 29% for the first and most complex task
up to 91% for the last and easiest task. The result indicates that pair
programming is clearly less suitable for simple tasks than for complex
tasks.

Back et al. (2004) report on the distribution of pair programming be-
tween various activities in an XP project conducted by hired students. The
realized proportion of pair programming was 79% for programming, 77%
for refactoring, 27% for debugging.

Schindler (2008) surveyed 42 Austrian organizations. He found that of
those organizations that used pair programming, about half used it only for
complex tasks and about one tenth only for tutoring.

Bryant et al. (2006) found that task type affects the amount of mutual
participation in the pair programming sessions. They transcribed the
communication of experienced pair programmers in 36 pair programming
sessions in industrial settings; then, they split the communication into sub-
tasks and classified their type. The proportions of sub-tasks on which both
partners collaborated verbally varied between 81-95% among the sub-task
types. The collaboration by both partners was most typical for understand-
ing the problems or existing code (95% of all sub-tasks), corresponding with
a third party (95%), writing new code (95%), and refactoring (94%); it was
least typical for configuring the environment (81%) and commenting code
(83%).

Dozens of other papers studying industrial settings (see Publication I)
report anecdotal comments on suitable targets of pair programming. Use
for complex tasks is the most frequently mentioned target, and tutoring
new developers another frequently mentioned target.

Based on the fine study by Arisholm et al. (2007), it seems that task
complexity is an important context factor of pair programming. The
anecdotal evidence from numerous experience reports supports the
findings of Arisholm et al. (2007) that pair programming works better for
complex tasks. However, other rigorous studies concerning the role of
complexity or other characteristics of the targets do not exist.

2 Background

8

2.3 Infrastructure for pair programming

The infrastructure of pair programming is constituted by computer
hardware and software, furniture, office layout, and noise in the workspace.
The points of interest include the questions of how these aspects are
organized and how that organization affects the other factors of pair
programming.

There are no good studies concerning the infrastructure of pair program-
ming, either treating industry or academic settings, even though there are
dozens of papers (see Publication I) which describe shortly the infrastruc-
ture used in a certain organization in industrial settings. Sometimes, these
studies mention anecdotal negative or positive experiences related to the
used infrastructure. Negative experiences include, for example, inconven-
ient desks, small cubicles, small displays, and noise disturbing other people.
Noise is also often mentioned as a positive aspect improving information
exchange.

2.4 Managing pair programming

Managing pair programming concerns deciding on the use of pair pro-
gramming, assigning pair programming tasks, scheduling pair program-
ming, and degree of collaboration when using pair programming for a task.
The points of interest include how these aspects are organized and how that
affects any other factors of pair programming.

In an experience report, Belshee (2005) reported on an industrial XP
team where assumedly all tasks were done using pair programming. He
measured the effects of various task ownership, task assignment, and
partner rotation frequency alternatives to the velocity of each iteration.
Individually owned tasks (i.e., tasks where the owner stayed with a task
until it was finished) resulted in lower velocity than team-owned tasks,
where neither of the original partners needed to stay with the task. Tasks
assigned per iteration resulted in lower velocity than tasks assigned just-in-
time. Optimal partner rotation frequency was 90–120 minutes. Lacey
(2006) tried to replicate the results using team-owned tasks with 2-hour
partner rotation frequency in another industrial XP team, but in that
context the velocity dropped considerably and remained low up to the end
of a one-month observation period.

In a controlled experiment with a few dozen professional or student
subjects, Domino et al. (2007) studied, for instance, the effect of full or
partial collaboration in pair programming, or no collaboration at all, on
code accuracy and developers’ satisfaction with their work method. In
partial collaboration, the partners prepared for coding together, but coded
alone. The code accuracy was lower for full collaboration than for partial
collaboration or no collaboration. Satisfaction was highest for full collabo-
ration, next highest for partial collaboration, and worst for no collaboration.

Begel and Nagappan (2008) queried 487 developers at Microsoft about,
for example, the most common problems in pair programming. Two of the
top-10 problems were related to managing pair programming. Scheduling

2 Background

9

pair programming ranked second and difficulties in finding a partner
seventh.

Dozens of other papers from industrial settings (see Publication I) report
individual points of information on managing pair programming. They
propose, for instance, assigning tasks to pairs in a daily meeting, but
without more thorough evaluation on the mentioned aspects.

Managing pair programming is a broad topic that includes many practi-
cally relevant aspects whenever pair programming is used. Despite this,
good studies of this topic in industrial setting are scarce.

2.5 Adoption of pair programming

The adoption of pair programming analyzes all other aspects of pair
programming with reference to how they motivate the decision to start
using pair programming, or how they prevent or support the achievement
of the desired use of pair programming in an organization. In addition, an
interesting point to note is the general difficulty level of adopting pair
programming, as for example, compared to other practices.

Schindler (2008) surveyed 42 Austrian software development companies
and found that the most typical reasons for not using pair programming
were that there was no need (mentioned by 30% of respondents), that it
was too expensive (24%), that there was no time (21%), that it halved
productivity (15%), and that it was used only with complex code (15%).
These reasons indicate that many respondents believed that pair program-
ming increases effort and is not to be used at all or only for complex tasks.

An experience report by Sharifabdi and Grot (2002) presents instructions
for project managers who want to adopt pair programming despite team
resistance, as was the situation in their XP project, where pair program-
ming was to be used for all work. They propose using pair programming
first only for task planning, and once it is shown to work well, also for
programming. They propose, for instance, stressing the importance of
mutual feedback in pair programming sessions, giving personal feedback if
undesired behavior is observed, and coming in as a third wheel in pair
programming sessions if needed.

The general difficulty of adopting pair programming was studied in a
survey by Misic (2006), where 86 persons from different organizations
evaluated the difficulty of adopting XP practices. Pair programming was the
second most difficult one to adopt, but the mean difficulty level was not
higher than 3.18 on a 5-point scale, where three meant “neutral” and five
“very difficult”.

There are dozens of other papers containing some empirical information
on the adoption of pair programming (see Publication I). However, they are
mostly experience reports that mention individual difficulties in or aids for
adopting pair programming. Examples of difficulties and aids are listed in
Table 4, page 20. There is lack of good studies on, for example, evaluating
the effects of the aids in industry. Also, besides the survey by Misic (2006),
there are no broad studies about the general difficulty of adopting pair
programming in industry.

2 Background

10

2.6 Productivity

Productivity covers the development effort, duration and scope-related
effects of pair programming. The most interesting point here concerns the
effect of pair programming on any of these aspects of productivity.

Productivity is one of the two factors covered in the systematic literature
review of the pair programming experiments (Hannay et al., 2009). The
review analyzed 11 experiments that compared the required amount of
development effort between pair programming and solo programming.
Four of the experiments used professionals as subjects. The meta-analysis
showed a medium negative overall effect on effort. The result of the meta-
analysis is aligned with the broad survey by Begel and Nagappan (2008),
where cost efficiency was clearly the most frequently mentioned problem in
pair programming.

However, the meta-analysis concluded that inter-study variance was high
and proposed focusing on studying the possible moderating factors of the
effects of pair programming (Hannay et al., 2009). The experiment by
Arisholm et al. (2007), covered in the meta-analysis, found that task
complexity and partners’ experience level affected the effort differences
between pair programming and solo programming. Moderating factors
related to managing pair programming were studied by Belshee (2005), as
discussed already in section 2.4. Learning-time as a further moderating
factor of productivity can be analyzed based on the results of the student
experiments by Williams (2000) and by Nawrocki and Wojciechowski
(2001). In both of these experiments, the effort increase due to pair
programming compared to solo programming decreased as the pairs had
gained experience in the use of pair programming and worked together for
a longer time.

A few dozen other papers from industrial settings (see Publication I)
report anecdotal productivity-related comments. Both positive and negative
comments are equally presented in the different papers.

It seems that there is increase in the required amount of development
effort due to using pair programming in the context of individual tasks. This
is probably the main reason threatening the overall utility of pair program-
ming. If the effort increase cannot be compensated for by the various
proposed benefits of pair programming in the long run, the usefulness of
pair programming is questionable. However, rigorous studies of industrial
settings evaluating these long-term effects do not exist.

2.7 Software quality

Software quality covers all quality-related effects of pair programming, such
as defects in code and maintainability of code and design. The most
interesting point is the effect of pair programming on any aspect of software
quality.

Software quality is the other factor analyzed in the systematic literature
review by Hannay et al. (2009). The review analyzed 14 experiments that
compared quality between pair programming and solo programming. Four

2 Background

11

of them used professionals as subjects. The meta-analysis showed a small
positive overall effect on quality. The result of the meta-analysis is aligned
with the surveys by Begel and Nagappan (2008) and by Schindler (2008)
where quality-related benefits where the most frequently mentioned
benefits.

However, as mentioned above, the meta-analysis concluded that inter-
study variance was high, and the results by Arisholm et al. (2007) regarding
the role of task complexity and partners’ experience level also applied to
quality. Similarly, a multiple case study by Hulkko and Abrahamsson
(2005) reported mixed results, where code written using pair programming
had a higher comment ratio but more deviations from coding standards,
and the results regarding the defects were inconclusive.

Dozens of other papers from industrial settings (see Publication I) report
anecdotal quality-related comments. Most of them mention a positive effect
on some quality-related aspect.

Based on the meta-analysis of the pair programming experiments (Han-
nay et al, 2009) and the general trend of the results from the less rigorous
studies, it seems that pair programming has a positive effect on quality.
However, there may be moderating factors that affect the effects of pair
programming on quality.

2.8 Developer’s knowledge of work

The developer’s knowledge of work covers all work-related aspects of
knowledge such as the developed software, problem domain, development
tools, and work practices. The most interesting point to observe here is the
effect of pair programming on the changes in a developer’s knowledge
compared to solo programming.

In the survey by Schindler (2008), “knowledge transfer” was the second
most commonly mentioned advantage of pair programming just behind
“permanent reviews” but before “increased code quality.” In the survey by
Begel and Nagappan (2008), two of the four most commonly mentioned
advantages of pair programming were related to increases in developers’
knowledge and the other two to increases in code quality. In the survey by
Williams (2004), the respondents estimated that pair programming can
more than halve the time lost to assimilate a new employee.

Auvinen et al. (2006) measured the developers’ knowledge of the devel-
oped software using subjective evaluation and a short quiz before and after
piloting pair programming for three months in a team. The knowledge of all
developers improved considerably after that period, but the data did not
allow evaluating how much of the improvement was due to pair program-
ming.

Dozens of other papers from industrial settings (see Publication I) report
anecdotal experiences from individual projects of the effects of pair
programming on the developers’ knowledge of work. Typically they
mention some positive effects on developer’s knowledge of the developed
software or on general knowledge transfer.

2 Background

12

In an experiment by Bellini et al. (2005), dozens of students conducted a
small software design task as pairs or individually. The students who
worked in pairs improved their knowledge of the design more than those
who worked alone.

In addition to the experiment by Bellini et al. (2005), there are no rigor-
ous studies from industry or academia on the effect of pair programming on
increasing developers’ knowledge. However, the developers’ perceptions
reported in the studies above all seem to be aligned with the view that pair
programming has a positive effect on developers’ knowledge of work.

3 Research design

13

3 Research design
In this chapter, we present the utilized research methodologies on a general
level, and their application in our study. In the research environment
section, we introduce the two organizations where the case studies were
conducted and the context of the student experiment.

3.1 Research methodologies

We used three research methodologies, each of which is described in a
separate section below. The systematic mapping study methodology is a
type of literature research, and the case study and experiment are method-
ologies for empirical research.

3.1.1 Systematic mapping study

The purpose of a systematic mapping study is to give an overview of a
research area (Petersen et al., 2008). It identifies the quantity and type of
research, as well as the results available within the research area; it also
often shows yearly publication trends and identifies used publication
forums (Petersen et al., 2008).

Systematic mapping studies are similar to systematic literature reviews in
the sense that both aim at providing a trustworthy, rigorous and auditable
methodology to identify and analyze all available research relevant to a
particular research topic (Kitchenham and Charters, 2007). However,
systematic mapping studies generally present a larger number of research
questions, which also tend to be broader (Kitchenham and Charters, 2007).
Systematic mapping studies also cover more studies and present results as
summaries of classifications of the included studies instead of synthesizing
their results (Kitchenham and Charters, 2007). A systematic mapping study
may also go deeper into the papers, as for instance, due to poor abstracts,
and thus become more like a systematic literature review (Petersen et al.,
2008).

We used the systematic mapping study method in Publication I. Our
systematic mapping study was rather deep as we analyzed the full content
of the papers. However, it was not a systematic literature review because we
did not interpret or synthesize the results presented in the included papers.

The review protocol presented in detail in Publication I followed the
guidelines for performing systematic literature reviews by Kitchenham and
Charters (2007), with reference to the steps for searching and selecting
studies. Comprehensive searches of seven databases, resulting in 1749 hits,
were complemented with certain manual searches. All scientific papers
containing empirical data on pair programming used by professional
developers were included in the study, resulting in a total of 154 papers. No
quality criteria were applied when selecting the papers.

The guidelines by Kitchenham and Charters (2007) give very little advice
on how to undertake data extraction and analysis for a systematic mapping
study in place of a systematic literature review, and their methods needed

3 Research design

14

to be adapted for our purposes. We created a tentative list of pair pro-
gramming factors based on a subset of the included papers and previous
pair programming frameworks (Gallis et al., 2003; Ally et al., 2005). We
modified and refined the list slightly during the data extraction from all the
included papers.

During the data extraction, all pair programming-related data in each
paper was classified according to the factors of pair programming (Table 4,
page 20) and numerous predefined categories of the research properties to
be analyzed (Table 2). Certain research properties, such as “publication
forum,” are common to all pair programming data in a paper, but certain
others, such as “data collection method,” are specific to each factor dis-
cussed in a paper.

After the classification, we analyzed the distributions of data among the
factors and among the various categories of each research property. We also
summarized the most relevant studies related to each factor.

Table 2 Main research properties used in the classification of research

Property Level Categories

publication
forum

paper � journal
� conference/workshop

paper focus paper
� pair programming (is one of the main focuses)
� other

authors’
role

paper
� internal (i.e., at least one author worked in the same

organization as the studied subjects)
� external, includes also visitors who worked at most a

month in the studied organization

research
approach

paper

� experiment
� survey
� case study (i.e., an in-depth, possibly multi-method study

of one or a few cases)
� experience report (i.e., personal experiences from some

case(s) without reporting the use of any scientific data
collection method)

data
collection
method

factor

� measurement (i.e., data collection where the error caused
by subjectivity is small)

� rigorous observation (e.g., audio/video tapes, or
someone making rigorous notes on-site)

� interview
� questionnaire
� informal observation (e.g., an author was present, but the

use of any data collection method is not reported)
� defined, fixed by the authors (e.g., controlled variables in

experiments)

data type factor
� quantitative
� qualitative

discussion
type

factor

� comparative (i.e., evaluates how this factor was affected
by some variation, or how variation in this factor affected
some other factor). Comparative claims based on infor-
mal observation only are classified as descriptive.

� descriptive

3 Research design

15

3.1.2 Case study

A commonly proposed definition for a case study is that it is an empirical
method aimed at investigating contemporary phenomena in their context
(Runeson and Höst, 2009). Even though case studies were originally used
primarily for exploratory purposes, they can be used for four types or
purposes of research: exploratory, descriptive, explanatory and improving
(Runeson and Höst, 2009).

We used the case study methodology in two different studies, referred to
hereafter as Study A and Study B. By the term “case,” we refer to the
application of the pair programming practice in the corresponding organi-
zation. In both cases, we used triangulation to increase the precision of the
research. We used several data collection methods, including question-
naires answered by the developers, interviews and observations of the
developers, and the measurement of the work products. We collected data
from many subjects, and in the questionnaires we collected both qualitative
and quantitative data about the same topics. In Study B, two researchers
participated in collecting the data.

In Study A, the main data collection method was a questionnaire contain-
ing both open and closed questions targeted at all developers in the case
organization. The questionnaire was used four times during a 2-year period,
with slightly modified questions. The questionnaire inquired on the
developers’ perceptions of the effects of pair programming, and the
developers’ experiences of various aspects of the use of pair programming.

Lots of preparations were done to ask insightful questions in the ques-
tionnaires. The preparations included studying literature on pair program-
ming, an interview of a team that had piloted pair programming in the
organization before the study, informal discussions during the study with
the person responsible for the adoption of pair programming, and three
observations of pair programming sessions combined with interviews of the
involved pairs.

We also measured defects found in code reviews to evaluate the effects of
pair programming on quality, but there were too many factors affecting the
defect count and the information could not be used for the intended
purpose. Other measurements were not conducted, as the case organization
was not willing to add overhead to the developers, and the existing report-
ing system did not provide relevant data, such as the effort spent using pair
programming.

In Study B, the second researcher acted also as a developer in the studied
project, which allowed more detailed data collection. He had first-hand
information on basically everything that occurred in the project. He
ensured that the effort and quality data was collected in a timely way, and
he collected the developers’ perceptions on various topics by conducting
surveys with closed questions at the end of each two-week iteration, and at
the end of the project. At the end of the project, the author of this disserta-
tion conducted a team interview complemented with a questionnaire
containing closed questions about feelings on and effects of pair program-
ming.

3 Research design

16

3.1.3 Experiment

In an experiment, the objective is to manipulate one or more factors and
control all other factors at a fixed level (Wohlin et al., 2000). Manipulation
involves at least two different treatments to compare their effect on the
outcome (Wohlin et al., 2000).

We used the experiment research methodology with student subjects on a
university course, where adequate control over the factors is easier and
cheaper to arrange than in industrial settings. The subjects were assigned
randomly to five four-person teams, which were the experimental units of
the experiment. We used a randomized one-factor design (Juristo and
Moreno, 2001). The treatment used either pair programming or solo
programming as the programming method. The treatment was assigned
randomly for each team. All the other factors, such as other development
practices and tasks to be conducted, were fixed as rigorously as possible.

We analyzed several outcome variables, including effort, software quality,
developers’ knowledge of the developed system, and developers’ enjoyment
of the programming method. The data was collected using many different
methods. The teams reported manually the effort spent per use-case or
other type of task, and defects found in their systems. We tested the final
systems and counted the number of successfully implemented use-cases
and the defects we found. We measured various source code metrics of the
final systems. At the conclusion of the project, the developers answered an
online questionnaire covering their understanding of each module in the
system and their enjoyment of the used programming method.

3.2 Research environment

We conducted the empirical studies both in a realistic software develop-
ment context, where professional developers were doing their daily work in
industrial settings (Study A and Study B), and in an artificial context, where
students conducted course exercises (Study C). The contexts of these
studies are described in more detail below.

3.2.1 Study A

Study A took place in a medium-sized software company in a department
developing a large, over ten-year-old software product. The adoption, use,
and effects of pair programming were studied in the whole department. The
data collection period spanned two years.

The department had about 30 developers divided into four independent
teams, each having a senior developer acting as a team leader. All teams sat
in cubicles in a large open office.

The department had an established development process, which was quite
traditional rather than utilizing broadly any agile practices. Before the
study, some of the developers had already informally used pair program-
ming to a limited extent, and one team had done a small informal pilot
study on pair programming, which produced positive experiences concern-
ing its effects on knowledge transfer and software quality.

3 Research design

17

3.2.2 Study B

Study B took place in a research department of a large telecommunications
company. The adoption, use, and effects of pair programming were studied
in a project whose goals were to develop an internal reporting system and to
pilot agile practices. The project successfully delivered software featuring
20,000 lines of code. The data collection period spanned the whole 3-
month duration of the project, consisting of six delivery iterations.

The project was carried out by a newly hired four-person team. The
willingness to use agile practices was ensured when recruiting the develop-
ers. All the developers were equal in terms of responsibilities, except that
one of them acted also as a team leader who took care of, for instance,
arranging the daily meetings. All developers sat in the same open office.

The team decided on which process to use, eventually settling on a collec-
tion of practices from several agile methodologies. Three of the developers
had not used pair programming before the project and one had used it for
about a month.

3.2.3 Study C

Study C took place within the context of a university course that focused on
teaching Java 2 Platform, Enterprise Edition (J2EE). After 15 hours of
lectures on J2EE, the students applied it in large team projects lasting nine
weeks. The projects had identical goals and working methods, with the
exception of the use of pair programming in half of the teams, and solo
programming in the other teams. The effects of pair programming were
studied.

The projects aimed at implementing as many of the specified use-cases as
possible with a minimal number of defects, within a budget of 400 hours.
All the teams had to work at least 75% of the time together in the same
room.

There were five four-person teams. The teams were formed randomly, but
in such a way that the members’ average skill level was equal between the
teams. The students had on average 5 years of programming experience.
Three random teams were required to use pair programming for all of their
development work, and two teams were not allowed to use pair program-
ming at all. Pair programming was taught in a lecture.

3.3 Summary of the empirical studies

The industry-based organizations studied in the case studies were chosen
from among organizations that engaged in research collaboration with our
research group. Both of the industry-based organizations took the initiative
to adopt pair programming on their own. After that, the author of this
dissertation took the role of an objective observer rather than a person who
was responsible for the adoption of pair programming. However, in Study
A, we gave some instructions for using pair programming based on our
experiences, and presented intermediate results of the study, which could
have affected the adoption and use of pair programming.

3 Research design

18

The subjects of the experiment were selected by including all students
who took an optional software development project course. All participants
of the course knew in advance that half of them must use pair programming
in their project.

With the students, we could enforce many different subjects to conduct
the same tasks, using either pair programming or solo programming, and
make objective measurements on the effects. In the industry, this would
have been too expensive. Thus, in our industry-based studies, the evalua-
tion of the effects of pair programming is based on the perceptions of the
subjects who used both pair programming and solo programming in their
work, but never for the same tasks by the same or different subjects.

The attributes of the empirical studies are summarized in Table 3. These
include attributes related to the research methodologies and research
environment.

Table 3 Summary of the empirical studies

Attribute Study A Study B Study C

publications II, III IV V

environment industry industry academia

research
methodology

case study case study experiment

duration of
the study

2 years 3 months 9 weeks

data
collection
methods

questionnaires,
interviews,
observations

questionnaires,
interviews,
measurements,
participation

questionnaires,
measurements

unit of
analysis

a department with
about 30 persons in
six teams

a four-person
project team

five four-person
project teams

history of the
organization

an established
organization
developing an old
software product

a new team
developing new
software

new teams
developing new
software

process

established,
traditional
development
process

new, agile develop-
ment process

new, rather agile
development
process

amount of
pair
programming

little pair program-
ming

lots of pair
programming

lots of pair
programming / no
pair programming

4 Results

19

4 Results
This chapter presents the main results related to each of the research
questions. The results include the summary of the potentially relevant
factors of pair programming organized as a pair programming framework
(Research Question 1), empirical results of the adoption and use of pair
programming (Research Question 2), and empirical results of the effects of
pair programming (Research Question 3). The discussion on the results and
the limitations of the studies are presented in the next chapter.

4.1 Pair programming factors

We answered Research Question 1 by conducting a broad systematic
mapping study of empirical studies on the use of pair programming by
professional software developers. We identified dozens of aspects of pair
programming from the 154 papers and organized them into a pair pro-
gramming framework. The framework contains eighteen factors of pair
programming that are further described in more detail through numerous
examples of aspects of pair programming, as shown in Table 4.

The factors are grouped under six themes. The factors under the theme
preparations for PP are related to the adoption of pair programming and to
the recurrent preparations required when performing pair programming.
The environment factors involve the software and hardware infrastructure,
and the surrounding software development process with all of its practices.
The developer factors are related to the properties of a developer. The PP
session factors cover working in pair programming sessions. The utilization
rate factors are related to the amount of using the pair programming
practice, either locally within a single case or generally. The main effects
contain two typically affected project attributes, productivity and software
quality, whereas other affected factors are listed under the other themes.

The factors are non-overlapping with two exceptions. Firstly, adoption of
PP overlaps with many other factors because difficulties in, aids for, and
reasons for adoption are often related to other factors. Secondly, feelings on
PP is actually only a part of feelings on work, but it is analyzed separately
due to its importance for pair programming.

We classified the research done on each factor using many properties of
research (Table 2). Only 18% of the papers were published in journals, and
well-known XP/agile conferences were the most common forums. Only 7%
of the data on the factors came from experiments, whereas 44% came from
the least rigorous research approach used in our classification (i.e.,
experience reports).

Communication in pair programming sessions was the most thoroughly
studied factor. The next most thoroughly studied factors were the common-
ly proposed effects of pair programming: developer’s knowledge of work,
productivity and software quality. For many factors, there were no or
almost no comparative data, let alone data from reliable data collection
methods such as measurement or rigorous observation. Further results of
the classification are presented in Publication I.

4 Results

20

Table 4 Pair programming framework

Theme Factor Examplesa

Prepara-
tions for
PP

Adoption
of PP

Difficulty level: compared to other (XP) practices,
length of learning time.
Difficulties: organizational culture, management
resistance, evaluation of personal contribution, lack of
partners due to 1) different work schedules, 2) small
team, or 3) distributed team.
Aids: PP guidelines, PP training, PP champion,
alternative for reviews, enforcement, limited number of
workstations.
Reasons: many of the expected benefits listed under
other factors.

Managing
PP

Deciding on PP use: mandatory to use, who decides,
when decided.
Assigning PP tasks: practices such as a pair chooses
in daily meeting; task ownership options such as
“individual/pair” or “owned by workstation”; task
ownership problems such as lack of accountability.
Scheduling PP: practices such as allocating time for
PP, problems such as experts working alone before DLs,
common time not found or working away from office,
accuracy of estimating PP tasks.
Degree of collaboration: whole task together
(default case), a task is split and both developers work
alone for a while, only one person works for a while,
synchronization after working alone.

Pair
formation

Initial pair formation: organized by managers, self-
selected, ad-hoc, based on required skill set.
Partner rotation: frequency, who continues with an
unfinished task.

Targets of
PP

Activities: programming (default case), specification,
design, refactoring, TDD, debugging.
Situations: project initiation phase, new developers
join the team, evaluating employee candidates.
Characteristics of targets: task complexity.

Environ-
ment

Infrastruc-
ture for PP

Hardware: big screen, dual keyboard, two work-
stations, whiteboard, white noise generator.
Software: large fonts, standardized tools.
Furniture: shape of desks, whiteboard.
Office layout: separate PP room, open office, cubicles.
Noise in workspace: awareness, disturbance.

Develop-
ment
process

PP facilitates other practices: TDD, coding
standard, refactoring, collective ownership.
PP replaces other practices: code review.
PP disturbs other practices: individual performance
evaluation.
Other practices facilitate PP: such as test-driven
approach, collective ownership, planning game.
Discipline within the process: process conform-
ance, concentration on work.

4 Results

21

Table 4 (continued)

Theme Factor Examples

Developer

Feelings on
PP

Feelings: resistance, satisfaction, enjoyment,
“general” feelings.

Feelings on
work

PP affects feelings about work: team spirit,
enjoyment, enthusiasm, exhausting, threatening, peer
pressure.
PP is affected by feelings about work.

Knowledge
of work

PP affects knowledge of work: developed
software, tools, work practices, or domain, general
knowledge of a new developer.
PP is affected by knowledge of work: PP ability,
work experience.

Characteris-
tics

Demographics: nationality.
Psychosocial factors: personality, self-esteem,
communication skills, conflict-handling style.

PP session

Partner
combina-
tions

Combinations: personality, work expertise, PP
experience, age.
Viewpoints: frequency of combinations.

Partners’
roles

Characteristics of roles: one leader, keyboard
possession, level of thinking.
Switching the roles: frequency.

Communica-
tion

Content: abstraction level, representations used,
value (such as usefulness).
Quantity: number of utterances.
Issues: solving disagreements, flow and mental
blocks, speed of work such as slow enough for the
junior pair or typing speed.
Partners’ relationship: getting to know the partner,
courage to criticize the partner’s work.

Breaks
Types of breaks: intrusions, distractions and breaks
Viewpoints: number of breaks, reasons.

Utilization
rate

Local
amount of
PP

Dimensions: realized share of development work,
realized rate, proposed rate, desired rate.

Prevalence
of PP

Breadth of use: worldwide, nationally, embedded
software domain, departments of a global company.
Depth of use: use on an ordinal scale (systematical-
ly–never), used vs. not used, using or planning to use.

Main
effects

Productivity Dimensions: effort/duration, scope, lines of code.

Software
quality

Code: defects, readability, comment ratio.
Design: understandability, quality.
General: confidence in results.

a) A reference to each example can be found in Publication I.

4 Results

22

4.2 Adoption and use of pair programming

The adoption and use of pair programming are somewhat inter-related
topics and were both studied in Research Question 2. In this section, we
present first the results related to the adoption of pair programming and
those aspects of the use of pair programming that were closely related to
adoption. After that, we present the results related to other aspects of the
use of pair programming.

The adoption and use of pair programming were studied in both case
studies (Study A and Study B). Both the issues faced and their solutions
when adopting pair programming were studied. In Study B, the adoption of
pair programming was straightforward, and therefore most of the identified
issues are from Study A.

4.2.1 Adoption of pair programming in Study A

In Study A, the motivation for adopting pair programming was to improve
knowledge transfer between the developer’s and software quality. Most of
the developers had little or no pair programming experience. Pair pro-
gramming had been used informally by a few developers with promising
results. The official use of pair programming was launched by giving a
lecture to all developers about pair programming in general and about the
guidelines for its use in the organization specifically. One of the team
leaders was in charge of the guidelines. The use of pair programming was
voluntary, and the goal was to use it in situations when it was expected to be
particularly beneficial, such as for knowledge transfer purposes or with
difficult tasks.

The amount of pair programming remained at a very low level during the
first year after the official adoption. During the second year, the amount
increased by about 150%, but was still only about 10% of all development
work.

Based on the data from the questionnaires, the developers’ attitudes to
pair programming were not a reason for the slow adoption. In the begin-
ning of the second year, 60% of the developers desired more pair program-
ming, and nobody wanted less. Despite the increase in the amount of pair
programming during the second year, the developers’ desire to use it more
remained at the same level. The developers’ initial feelings on pair pro-
gramming were mainly on the positive side (median 5.01), even though the
responses of a few developers were on the negative side. By the beginning of
the second year, all the responses were at or above neutral. By the end of
the second year, the median of the developers’ feelings of pair programming
increased to 6.0 surpassing the median of the feelings of solo programming,
which actually decreased from 6.0 to 5.0 by the end of the study.

The developers’ perceptions of the effects of pair programming were not
the reason for the slow adoption of pair programming, either, given that the

1 In Study A, the developers’ feelings on various topics were inquired about, on a scale of 1–7,
where 1=negative, 4=neutral, and 7=positive.

4 Results

23

perceptions were generally positive, as will be discussed in Section 4.3.
Other possible reasons for the slow adoption were studied in more detail in
the third questionnaire in the beginning of the second year. The questions
focused on the organizing and infrastructure of pair programming, which
had been somewhat problematic areas during the first year. The organizing
referred to pair formation, finding common time for pair programming, etc.
The infrastructure referred to the physical setting of the company, such as
equipment and rooms.

In the beginning of the second year, the developers’ feelings about the
organizing for pair programming were on the positive side (median 5.0) but
a few responses were on the negative side. The issues were mainly related to
the resourcing of pair programming, for instance, being too busy to use pair
programming relative to the other developers’ tasks, difficulties in finding
common time, lack of encouragement from team leaders, and lack of
considering pair programming in project planning.

Based on the findings, the pair programming guidelines were updated to
create a more encouraging and more positive atmosphere for pair pro-
gramming. To ensure the presence of enough resources for pair program-
ming, its use was to be planned well in advance, including for which tasks it
would be used, by whom and for how large a proportion of a task’s various
activities, such as specification or programming. In addition, the team
leaders should encourage using the planned proportion of pair program-
ming for the selected tasks. By the end of the year, no developer had
negative feelings about organizing for pair programming anymore, but
otherwise the change in the feelings was small and the median remained
the same (5.0). The developers’ comments in the last questionnaire
indicated that the issues had not been completely removed.

In the beginning of the second year, the developers’ feelings on the infra-
structure of pair programming were only neutral (median 4.0) and many
developers had negative feelings. A frequently mentioned problem was that
the noise from pair programming disturbs the other developers in the open
office. Therefore, pair programming was sometimes done in a meeting
room using a developer’s laptop. Other problems were inconvenient,
cramped desks and small displays.

Based on the findings, a separate pair programming room was adopted
for use at the beginning of the second year. It contained a desk with two
computers having large displays, a long, straight table, rolling chairs, and a
whiteboard. The pair programming room could be reserved in advance. By
the end of the second year, 89% of the developers considered the pair
programming room as the preferred place for pair programming. According
to the developers, the reasons for its popularity were the avoidance of noise
and better infrastructure for pair programming. The only benefits of doing
pair programming in the open office instead of in the pair programming
room were the simplicity of doing ad-hoc pair programming sessions, and
being closer to the other developers if help was needed. By the end of the
year the median of the developers’ feelings about the infrastructure
increased from 4.0 to 6.0.

4 Results

24

4.2.2 Adoption of pair programming in Study B

In Study B, the motivation for adopting pair programming was related to
the goal of experimenting with agile practices in the studied project. At the
beginning of the project, the developers’ attitudes towards pair program-
ming varied from slightly negative to quite positive.

Pair programming was used a lot straight from the beginning of the
project, and its total share of all the programming work during the project
was 72%. There was a simple tactic for the adoption: The four person team
was given only two high-end workstations to work with along with two low-
end ones. All of the developers considered the adoption of pair program-
ming easy, both absolutely and relative to the other practices used in the
project, such as writing unit tests or test-driven development.

4.2.3 Use of pair programming

Regarding the targets of pair programming, the developers in both case
studies found pair programming most suitable for complex tasks. In Study
A, the developers were surveyed on the percentage of pair programming
that should be used for the various activities. For the planning and design
activities, the average was 70–80%, whereas for coding it was 60% and for
testing 50%.

Regarding the infrastructure of pair programming, the default setting was
to have one workstation for a pair, in both case studies. However, the
introduction of the pair programming room in Study A allowed using two
workstations side-by-side. On the other hand, the developers evaluated that
they still spent 85% of the time working together at the same workstation,
and the other workstation was used, for example, for browsing specifica-
tions or code, finding information, testing and debugging.

Regarding the pair formation, the developers in Study A had mixed
opinions on the best way to do it. Many developers considered that the
developers should have the final decision on the choice of the partner. On
the other hand, some developers wanted the team leaders to be more
involved in pair formation and supervising the performance of planned pair
programming. In Study B, the pairs were formed in a daily meeting, and at
first, the pairs remained together the next day if their tasks were unfin-
ished. Later, the pair formation was done by casting a lot in every daily
meeting to ensure frequent pair rotation, which was expected to increase
knowledge transfer.

Regarding the pair programming sessions, the developers in Study A
considered 1.5–4 hours a suitable duration. Shorter sessions were consid-
ered inefficient due to the set-up time required, and longer sessions were
considered too exhausting. In Study A, only half of the developers switched
keyboard possession during a pair programming session. Preferring
different development environments was mentioned as a reason for not
switching keyboard possession. In Study B, a pair could spend the whole
day using pair programming, and keyboard possession was switched 2–3
times per day, typically after having a lunch or some other break.

4 Results

25

4.3 Effects of pair programming

Below, we present the main results of our empirical studies related to the
effects of pair programming compared to solo programming (Research
Question 3). The results cover the effects to productivity, software quality,
and developer’s knowledge of work. All of these effects were studied both in
the experiment (Study C) and in the case studies (Study A and Study B).
Additional results related to certain other effects of pair programming, such
as enjoyment of pair programming, are presented in Publications II–V.

4.3.1 Productivity

In Study C, the pair programming teams had 29% lower project productivi-
ty than the solo programming teams on the average, when considering the
amount of the delivered functionality within the fixed project effort. When
the effort spent for implementing the individual use-cases was considered,
the pair programming teams spent 107% more effort, i.e. over double effort,
on the first four use-cases than solo programming teams. However, for the
next six use-cases pair programming teams spent 5% less effort than solo
programming teams. The effort difference per use-case between the pair
programming and solo programming teams was not affected by the
perceived complexity of a use-case.

In Study A, the developers’ perceptions of the effect of pair programming
on the total development effort of individual tasks varied a lot among the
developers. The answers were distributed between 2 and 7 on a 7-point
scale, and the median was 5.02, indicating that pair programming takes
somewhat more effort than solo programming.

Also in Study B, the developers’ perceptions of the effect of pair pro-
gramming on the development effort varied among the developers on both
sides of neutral, and based on the median, pair programming took some-
what more effort than solo programming. However, the developers chose
pair programming among all practices used in the project as the practice
that most improved the productivity of the project. The developers com-
mented that for complex tasks, the use of pair programming may even
lower the total effort, but for simpler task it takes more effort than solo
programming.

4.3.2 Software quality

In Study C, two defect counts were analyzed. The first defect count con-
tained the defects found by the team related to the use-cases that the
corresponding developer/pair already considered ready. These defects were
found by the team during the development of the further use-cases or in the
system testing conducted by the team. The second defect count contained
the defects found by the researcher, who conducted system testing after the

2 In Study A, the developers’ perceptions of the various effects of pair programming
compared to solo programming were inquired about, on a scale of 1–7, where 1=lower,
4=same, and 7=higher.

4 Results

26

team had fixed the defects found by the team members themselves and
delivered the system. The sum of both defect counts is an estimate for the
number of defects that existed in code that was considered ready by its
developer(s). The defect densities (i.e., the defect counts normalized by the
number of implemented use-cases per team) were compared between the
pair programming and solo programming teams.

The defect density calculated based on the sum of both defect counts was
8% lower for the pair programming teams (i.e., in the pair programming
teams, there were fewer defects in code that the corresponding developers
considered ready). However, the solo programming teams found more of
their defects during further development and system testing, fixed them,
and finally delivered systems with a lower defect density. The defect counts
after the delivery were generally very low: only 1–6 defects per system in
each team.

Code metrics were calculated from the source code of each delivered
system. The pair programming teams had slightly better design quality
based on the method size and complexity metrics.

In Study B, the developers perceived that pair programming decreased
the number of defects in code and increased the understandability of
design. The average number of defects found in the production use of the
system was less than one defect per thousand lines of code per release, thus
supporting the perception of high quality. The developers considered pair
programming as the second most important practice after test-driven
development for increasing the quality of the system and its design.
However, the developers commented that the navigator (i.e., the person
without possession of the keyboard) did not spot many defects during the
pair programming sessions.

In Study A, the developers perceived that pair programming had a small
positive effect on decreasing defects in code, understandability and
maintainability of code, and customer satisfaction. The median of the
perceptions for each quality aspects was 4.5–5.0 on the 7-point scale, and
there were no answers on the negative side for any of the quality aspects.

4.3.3 Developer’s knowledge of work

In Study C, all developers evaluated their level of understanding of each of
the ten source code packages at the conclusion of the project, on a 5-point
scale, where “5 - very much” indicated the deepest level of understanding.
In the pair programming teams, the developers understood at least “4 -
quite a lot” of 4.5 modules on the average compared to 3.4 modules in the
solo programming teams. At the other levels of understanding, there were
practically no differences between the pair programming and solo pro-
gramming teams.

In Study B, each developer evaluated his knowledge of each module after
each of the first three iterations on a 5-point scale. The developers’
knowledge remained at a high level in all iterations even though the system
grew and became more complex. The average of all evaluations per iteration
was 3.7–3.9 of the maximum of 5. The differences in the understanding of

4 Results

27

each module were rather small among the developers and decreased even
more in the third iteration, probably due to the higher frequency of rotating
pairs in that iteration.

In Study B, all developers perceived that pair programming increased
their knowledge of the system. The developers also ranked pair program-
ming as the most important practice for increasing team communication.

In Study A, all developers perceived that pair programming had a positive
effect on learning about the developed system compared to solo program-
ming. The median was 6.0 on the 7-point scale and there were no answers
below 5.

5 Discussion

28

5 Discussion
This chapter discusses the main results of each research question in the
separate sections. Then the research is evaluated considering both its main
strengths and limitations.

5.1 Pair programming factors

Research Question 1 covers the identification of the factors of pair pro-
gramming, and analysis of the properties of the previous empirical research
regarding the identified factors. These points of view are discussed below.

Our pair programming framework (see Table 4) includes the content of
the existing pair programming frameworks (Gallis et al., 2003; Ally et al.,
2005), with some changes in the naming and grouping. For example, the
role of pair programming in decreasing software development project risks
is not explicitly mentioned in our framework because almost any benefit of
pair programming can also be seen as a way to avoid some risk. In our
framework, breaks and prevalence are new factors compared to the
previous frameworks. Also, the examples in our framework include many
additional or more detailed aspects of pair programming over the previous
frameworks. However, our framework may still lack some aspects of pair
programming relevant to industry, given that in the systematic mapping
study we scoped out papers treating the educational context, as well as
theoretical papers and non-scientific practitioner literature.

Our analysis of the research reported in the empirical papers showed that
there is scarcity of data in the categories that indicate high-relevance
research. These categories include experiments as the research approach,
data collected using measurements or rigorous observations, and data of
comparative type. However, reacting to at least some of these gaps should
not be too difficult. We believe that the lack of good data on certain factors
may be also due to not considering them in the study designs in addition to
the difficulty of studying them (e.g., due to the high costs of conducting
experiments in industrial settings). For example, changes in developers’
knowledge of work have not been measured even though it would not be
very difficult to test the changes before and after using pair programming.
Some previous studies’ designs, with small improvements in their data
collection, could be used to fill some gaps. For example, more information
on developer characteristics and previous experience, partner combina-
tions, and characteristics of the tasks could have been collected rather easily
in many studies. New studies that would be realistic to conduct could
include, for example, experiments on the effects of infrastructure, such as
displays of different size, one vs. two displays or keyboards, or different
desks.

5 Discussion

29

5.2 Adoption and use of pair programming

5.2.1 Adoption of pair programming

The survey by Schindler (2008) mentions “no time” and costs as the most
typical problems preventing the use of pair programming. The former
aligns with the resourcing problem in Study A. The latter was not men-
tioned as a problem in Study A, even though many developers perceived
that pair programming takes somewhat more effort per task. Because the
developers perceived many benefits from pair programming, the increase in
the task-level effort probably was not a significant issue, considering overall
productivity.

The problem with noise, as identified in Study A, is not mentioned in the
papers discussing the adoption of pair programming identified in Publica-
tion I, a study by Fitzgerald et al. (2006) being an exception. However, most
of the papers discussing the adoption of pair programming are from the XP
context, where a single team shares a room and all developers use lots of
pair programming. Thus, in XP, overhearing in the room is considered a
valuable communication channel. By contrast, in Study A, the typical way of
working was to work alone, and several different teams were working in the
same open office. A single team working with inter-related tasks may
consider the noise as useful information, but for the other teams this no
longer applies. The problems with the noise and cramped desks were solved
in a rather straightforward way by adopting the pair programming room,
where one pair at a time could work together without disturbing the other
developers.

In Study A, the problem with resourcing pair programming (i.e., the lack
of time for pair programming due to insufficient organizing of its use)
partially remained at the conclusion of the case study. It is a more difficult
problem than those related to infrastructure because it has tight dependen-
cies to established processes such as work planning. It also has political
aspects, such as whether a developer prioritizes his or her own tasks over
helping other developers with their tasks in a situation where a developer’s
performance may be evaluated based on her or his own tasks instead of the
team’s overall productivity.

It has been proposed (e.g., Cockburn, 2000; Johansen, 2001) that people
must try pair programming before they accept it. In Study B, the tactic of
adopting pair programming by limiting the number of work stations clearly
solved this potential problem by practically enforcing its use. However, in
Study A, the problem actually was not with the developers’ attitudes
towards pair programming, and similar enforcement could not be used in
any case because the goal was not to use pair programming for everything.

In Study A, based on the developers’ evaluations of and comments on the
infrastructure and organizing of pair programming, it is likely that the pair
programming room was the main reason for the 150% increase in the
amount of pair programming. Similarly, it is likely that the main reasons
preventing many developers using pair programming to the extent they
desired were the remaining problems in resourcing pair programming.

5 Discussion

30

The contexts for Study A and Study B were very different with regard to
adoption of pair programming. In a new team with no existing development
process and with a mindset of experimenting with new agile practices, the
adoption of pair programming was very easy. In an established develop-
ment organization, implementing any change is likely to prove more
challenging, even when the attitudes towards the change are positive.
Therefore, carefully considering the potential difficulties in the adoption of
pair programming is highly important in such as context.

5.2.2 Use of pair programming

The recommendations from both case studies for using pair programming
for complex tasks and design activities are in line with the results from
other industry-based studies (Arisholm et al., 2007; Schindler, 2008).
However, in Section 5.3.1, we discuss our experiment, where the task
complexity did not affect the differences in effort between pair program-
ming and solo programming.

The infrastructure of pair programming was already discussed under the
adoption of pair programming, as it contained issues that were so serious
that they hindered using pair programming to the extent desired. An
additional result related to the infrastructure was the finding in Study A
that despite having two workstations side-by-side available for a pair in the
pair programming room, the partners still spent most of the time working
together at the same workstation. Thus, the other workstation did not lead
to abandoning pair programming, but was utilized sometimes for certain
specific tasks such as finding some information related to the task being
performed together.

In Study A, the developers had mixed opinions on the responsibilities of
forming the pairs regarding whether that was to be accomplished by the
developers themselves or by the team leaders. It may be that, for instance,
junior developers would appreciate the participation of the team leaders in
assigning senior developers as partners for junior developers. In Study B,
the self-formation of the pairs among developers was replaced by a random
pair formation every morning in order to increase knowledge transfer
within the team through the balanced use of different pairs.

In Study B, the developers switched keyboard possession 2–3 times per
day, but in Study A, half of the developers did not switch at all during the
pair programming sessions. However, the potentially resulting passivity
from this did not take place, based on the developers’ comments or our
observations of the pair programming sessions. The small proportion of
pair programming and short pair programming sessions could be an
explanation for this.

5 Discussion

31

5.3 Effects of pair programming

5.3.1 Productivity

In Study C, the worse total productivity of the pair programming teams
compared to the solo programming teams resulted from the huge effort
expended on the first four use-cases by the pair programming teams. This
phase can be considered as a necessary learning period, which can be due
to, for example, being unfamiliar with the partner or with the pair pro-
gramming practice. In the student experiments by Williams (2000) and by
Nawrocki and Wojciechowski (2001), the increase in effort due to pair
programming also decreased in later tasks, but not as much as in Study C.
However, in those experiments, the total duration of the conducted tasks
was shorter than the duration of implementing the first four use-cases in
Study C, which may mean that in those experiments the effort increase
could have decreased further if they had lasted longer.

In the long run, in a typical software development organization, the costs
of the learning period can usually be neglected. After the learning period,
the effort spent for each use-case in Study C was almost equal between the
pair programming and solo programming teams. However, it must be noted
that the double effort spent with the first use-cases may have decreased the
effort spent for the next use-cases, because the pair programming teams
may have gained deeper understanding of the core system while spending
more time with the first use cases.

In Study A and Study B, the large variation in the developers’ perceptions
on the effect of pair programming on task efforts suggests that there are
some context factors that affect the effect. For example, a senior and a
junior developer may perceive opposite effects for the task they are working
on together, if they compare the realized effort to what the task would have
required from them alone. In addition, at least the type and complexity of a
task, and the proportion of pair programming used for a task, may affect
the effect on effort.

In Study A and Study B, the developers commented that pair program-
ming is more suitable for complex tasks. However, in Study C, the meas-
ured effort differences between pair programming and solo programming
did not correlate with the task complexity. One reason for the inconsistent
results may be that in Study C, all the use-cases may have been rather
complex for the subjects who were just learning the new J2EE technology.
On the other hand, in the real projects conducted in Study A and Study B,
there were also very simple tasks, at least from the senior developers’ point
of view, such as implementing cosmetic changes or fixing trivial bugs.

When considering the results of all three studies as a whole, it can be
concluded that at the level of individual tasks, pair programming either
takes the same or greater effort than solo programming. When working
with unfamiliar partners and while learning pair programming, the effort
may even double, but after the learning period, the effort increase due to
pair programming may decrease considerably. It seems also that the effort

5 Discussion

32

increase from pair programming is lower when it is used for tasks that are
perceived complex by the developers conducting the tasks.

Our results are aligned with the meta-analysis that concluded pair pro-
gramming has a medium effect on increasing effort compared to solo
programming (Hannay et al. 2009). In many of the experiments included in
the meta-analysis, the duration of using pair programming was at most a
day, which means that the effort differences were analyzed at the level of
individual tasks and that the learning time may also have affected the effort
differences.

5.3.2 Software quality

Considering the defects in code, the results from all our studies point in the
direction that pair programming decreases defects compared to solo
programming. However, in Study C the benefit of writing better code in pair
programming sessions was lost because system testing was performed
worse in the pair programming teams. A reason may be that the developers
performing system testing in the pair programming teams may have relied
too much on the expected positive effect of pair programming on quality.

In Study B, the developers were somewhat uncertain about the mecha-
nism that decreases the number of defects when using pair programming,
considering that the partner did not spot many defects during the pair
programming sessions. It may be that pair programming prevents the
defects before they are even written and therefore the partner no longer
needs to point them out. The mechanism could be that the pair brainstorms
the design and writes unit tests together and thus has already thought about
the solution more thoroughly before writing the actual code.

Considering the design quality, in both case studies the developers per-
ceived that pair programming improves the design compared to solo
programming. The source code metrics from Study C also support this, even
though the measured differences between pair programming and solo
programming were small. The reliability of the source code metrics in Study
C is threatened by the potential correlation between the used metrics and
software size, as the solo programming teams delivered larger systems with
more functionality.

Our results indicating improvements in quality are aligned with the meta-
analysis that concluded that pair programming has a small positive effect
on quality compared to solo programming (Hannay et al. 2009).

5.3.3 Developer’s knowledge of work

In all our studies, the results show that pair programming improved the
developers’ knowledge of the developed system compared to solo pro-
gramming. The developers’ positive perceptions of the effect of pair
programming on increasing knowledge in Study A and Study B were
supported by the developers’ evaluation of their knowledge of the individual
system modules in Study B and Study C.

Based on Study B, more frequent rotation of partners can even out
knowledge differences among developers. However, it seems to decrease

5 Discussion

33

productivity in the short term as the developers work more with modules
unfamiliar to them and probably spend more time learning new things.

In addition to our studies, there are no rigorous empirical studies on the
effects of pair programming on developers’ knowledge. However, the
previous results of two surveys (Schindler, 2008; Begel and Nagappan,
2008), a student experiment (Bellini et al., 2005), and anecdotal comments
from numerous experience reports (see Publication I) are aligned with our
result that pair programming has a positive effect on increasing developer’s
knowledge on various work related topics.

5.4 Evaluation of the research

Below, we discuss the main strengths and limitations regarding the
research presented in this dissertation. More detailed discussion on the
limitations of each study can be found in the included publications.

5.4.1 Strengths

The systematic mapping study of empirical, industry-based pair program-
ming studies used numerous ways to ensure as high a level of coverage of all
scientific papers as possible. These methods included searching seven
databases, searching manually certain proceedings missing from the
databases, checking the reference lists of the included papers, and applying
searches to the full text of the papers whenever possible. The study was also
an exceptionally deep mapping study in the sense that it analyzed the full
content of all 154 included papers.

The empirical studies included in this dissertation used both the experi-
ment and case study approaches. They both have strengths that justify their
parallel use. The experiment allowed the measurement of the effects of
manipulating the programming method between pair programming and
solo programming in an otherwise similar context. Arranging experiments
in industrial settings is very difficult and expensive, but the case studies
indeed allowed us to obtain data on pair programming also from industrial
settings. In addition, the case studies allowed studying the topic more
broadly than measuring a set of outcome variables defined in advance.

The experiment has several distinctive features compared to those con-
ducted before it or even as of today. The subjects were experienced develop-
ers, even though they were students. The project was rather extensive
instead of being composed of artificial, small tasks worth a few hours of
work. We studied project teams working in a realistic, collocated team
setting instead of studying isolated developers or pairs. The project teams
were formed randomly, while still ensuring their equal average skill level.

Based on our literature review (Publication I), our case studies are among
the most relevant studies conducted in industrial settings for many pair
programming factors. The case studies covered the topic broadly and
provided data from two very different industry contexts regarding the
development organization and the used software development process.

The author of this dissertation has no vested interests in pair program-
ming. The possible bias from the attitudes and beliefs of the researcher can

5 Discussion

34

be expected to have been smaller than in software engineering studies
where the researchers evaluate their own constructs.

5.4.2 Limitations

Research Question 1, regarding the pair programming factors, was studied
in the systematic mapping study. The identified potentially relevant factors
of pair programming are limited to those that were discussed in the
empirical, scientific papers from contexts where professional developers
used pair programming. There may be additional relevant factors that have
been discussed in other types of papers. However, based on an unsystemat-
ic review of the remaining pair programming literature and on the factors
identified in our own empirical studies, the set of identified factors seems to
be rather complete.

Research Question 2, regarding the use and adoption of pair program-
ming, was studied in the case studies. In Study B, one of the main goals of
the project was to pilot new agile practices, and a new team was hired
having this in mind. Therefore, it may not be possible to generalize the
results from that study to more established software development contexts.
In Study A, there were issues remaining by the conclusion of the study,
meaning that additional tactics were still needed for the successful adoption
of pair programming.

Research Question 3, regarding the effects of pair programming, was
studied both in the case studies and in the experiment. In the case studies,
asking the developers about the perceived effects of pair programming was
not as reliable as the objective measurement of the effects would have been.
However, in the industrial setting, we could not measure most of the
potential effects of pair programming directly due to the additional costs
involved, and even when we could, we could not separate the effects of pair
programming from other affecting factors.

In the experiment, the sample size was only five teams, making the tests
of statistical significance irrelevant. This was the price of studying five
teams instead of 20 individuals, and of having a realistically sized project
instead of small tasks, which could have enticed many more voluntary
subjects.

In the experiment, the productivity of the teams correlated with the skill
level of their best developer. Therefore, despite balancing the average skill
level between the teams, individual differences between the subjects may
have affected the differences between the pair programming and solo
programming teams.

In the experiment, the pair programming teams were required to use pair
programming for all the development work. In the industry, the proportion
of pair programming of all the development work is typically lower, and the
optimal proportion, considering the cost-benefit ratio, may be anywhere
between full use of pair programming and no use at all. We did not have
strict control over the students regarding their process conformance
including the use of pair programming, and can only trust that they
followed the given instructions.

5 Discussion

35

5.5 Summary of the results

The main results and implications related to each research question are
summarized in Table 5.

Table 5 Main results and their implications

RQ Result Implications

1

Eighteen factors and dozens of
detailed aspects of PP were
identified and organized as the PP
framework.

The PP framework acts as a
checklist of factors that may need
attention when studying or
practicing PP.

1

There is general scarcity of good
empirical research data of PP from
industrial settings. For example,
measured or rigorously collected
data, or comparative data is scarce,
and for half of the factors there was
no data in the highest overall
relevance category used in our
classification.

The results show the main gaps in
the current research and allow
future research focus on the areas
with the most serious gaps.

2

Depending on the context, the
adoption of PP may be an easy or
challenging endeavor. Issues were
identified related to both organizing
and infrastructure of PP. The PP
room was a working tactic for
solving the infrastructure issues, but
organizing of PP was a more
challenging issue to solve.

Infrastructure and organizing of PP,
especially ensuring that developers
have enough time to do PP, require
careful planning.

3

PP increases software quality and
developers’ knowledge on work-
related topics compared to solo
programming.

PP is a suitable practice especially
when an organization aims at
improving software quality and
developers’ knowledge level.

3

PP increases the effort spent on
individual development tasks
compared to solo programming,
especially if tasks are simple or
when people are learning to do PP
or to know each other.

When adopting PP, at least at first,
additional effort needs to be
invested. The potential productivity
gains due to, for instance, increases
in software quality and developers’
knowledge, do not realize immedi-
ately.

6 Conclusions

36

6 Conclusions

6.1 Contributions of the research

There are three main contributions in this dissertation. Firstly, we reviewed
systematically the previous empirical pair programming research involving
professional software developers, in order to identify the potentially
relevant factors of pair programming. We also characterized the previous
research through many properties of research and identified gaps in the
research of many of the identified factors.

Secondly, we studied empirically the adoption and use of pair program-
ming in industrial settings. We reported about both a fluent and a challeng-
ing case of adoption. In the challenging case, there were issues related to
both organizing of and infrastructure for pair programming. The pair
programming room was presented as a successful solution to the infrastruc-
tural issues.

Thirdly, we reported additional empirical evidence on the effects of pair
programming both in the industry and in large projects conducted by teams
of experienced students, which are contexts where previous high-quality
research of pair programming is quite scarce. The effects of pair program-
ming on software quality and developers' knowledge were positive in all
three empirical studies, but the development effort required for individual
tasks increased. The increase in effort occurred mainly when using pair
programming for simple tasks or at the beginning of the project, when the
developers were learning pair programming and getting to know each
other.

The contributions are valuable to both practitioners and researchers. They
help practitioners evaluate whether pair programming could be useful in
their context, and to take into account the potentially relevant aspects of
pair programming when adopting and using it. The contributions help the
research community by providing more empirical evidence on the effects of
pair programming. They also help researchers take better into account
possibly relevant factors of pair programming and focus on factors that
have not been studied adequately. The results of the studies were also
directly utilizable in the two companies participating in this study.

6.2 Future work

The literature review reported in Publication I identified many gaps in the
previous empirical research of professional developers. It showed that there
are still many factors of pair programming that need to be studied better in
order to understand their moderating effect on the effects of pair program-
ming. Even though our studies provided more empirical data related to
some of these gaps, no single study or even a small set of studies can
provide definite answers. Further empirical studies are still needed,
especially experiments that consider better the potential moderating factors
of the effects. For example, studying professional developers who have at
least a few days of pair programming experience and who know their pair

6 Conclusions

37

programming partner would provide more practically relevant and possibly
also different results with regard to the effects than using subjects with no
pair programming experience and who are not familiar with each other.

We also studied the adoption of pair programming in industry-based
cases. We identified issues in adoption, and were able to identify partial
solutions to them. However, there remained issues related to organizing for
pair programming, particularly with regard to ensuring that developers had
enough time to do pair programming. More studies on adopting pair
programming are needed to provide guidelines for fluent adoption in
different circumstances.

38

References
M. Ally, F. Darroch, and M. Toleman, "A framework for understanding the
factors influencing pair programming success," Proc. 6th Int’l Conf.
Extreme Programming and Agile Processes in Software Eng. (XP 2005),
2005, pp. 82-91.

E. Arisholm, H. Gallis, T. Dybå and D.I.K. Sjoberg, "Evaluating pair
programming with respect to system complexity and programmer exper-
tise," IEEE Trans. Software Eng., vol. 33, no. 2, 2007, pp. 65-86.

J. Auvinen, R. Back, J. Heidenberg, P. Hirkman, and L. Milovanov,
"Software process improvement with agile practices in a large telecom
company," Proc. 7th Int’l Conf. Product-Focused Software Process Im-
provement (PROFES), 2006, pp. 79-93.

R.J. Back, P. Hirkman, and L. Milovanov, "Evaluating the XP customer
model and design by contract," Proc. 30th Euromicro Conf., 2004, pp. 318-
325.

K. Beck, Extreme Programming Explained: Embrace Change, Addison-
Wesley, 1999.

A. Begel and N. Nagappan, "Pair programming: What's in it for me?" Proc.
2nd Int’l Symposium on Empirical Software Eng. and Measurement
(ESEM '08), 2008, pp. 120-128.

E. Bellini, G. Canfora, F. García, M. Piattini, C.A. Visaggio, "Pair designing
as practice for enforcing and diffusing design knowledge", J. Software
Maintenance and Evolution: Research and Practice, vol.17, no.6, 2005, pp.
401-423.

A. Belshee, "Promiscuous pairing and Beginner's mind: Embrace inexperi-
ence," Proc. AGILE, 2005, pp. 125-131.

S. Bryant, P. Romero, and B. Du Boulay, "The collaborative nature of pair
programming," Proc. 7th Int’l Conf. Extreme Programming and Agile
Processes in Software Eng. (XP 2006), 2006, pp. 53-64.

A. Cockburn and L. Williams, "The costs and benefits of pair program-
ming," Proc. 1st Int’l Conf. Extreme Programming and Flexible Processes
in Software Eng. (XP 2000), 2000.

M.A. Domino, R.W. Collins, and A.R. Hevner, "Controlled experimentation
on adaptations of pair programming," Information Technology and
Management, vol. 8, no. 4, 2007, pp. 297-312.

B. Fitzgerald, G. Hartnett, and K. Conboy, "Customising agile methods to
software practices at Intel Shannon," European J. Information Systems,
vol. 15, no. 2, 2006, pp. 200-213.

I. Fronza, A. Sillitti, and G. Succi, "An interpretation of the results of the
analysis of pair programming during novices integration in a team," Proc.

39

3rd Int’l Symposium on Empirical Software Eng. and Measurement
(ESEM '09), 2009, pp. 225-235.

H. Gallis, E. Arisholm, and T. Dybå, "An initial framework for research on
pair programming," Proc. Int'l Symp. Empirical Software Eng.
(ISESE '03), 2003, pp. 132-142.

J.E. Hannay, T. Dybå, E. Arisholm, and D.I.K. Sjøberg, "The effectiveness of
pair programming: A meta-analysis," Information and Software Technolo-
gy, vol. 51, no. 7, 2009, pp. 1110-1122.

H. Hulkko and P. Abrahamsson, "A multiple case study on the impact of
pair programming on product quality," Proc. 27th Int’l Conf. Software Eng.
(ICSE '05), 2005, pp. 495-504.

K. Johansen, R. Stauffer, and D. Turner, "Learning by doing: Why XP
doesn’t sell," Proc. 1st XP Universe Conf., 2001.

N. Juristo and A.M. Moreno, Basics of Software Engineering Experimenta-
tion, Kluwer Academic Publishers, 2001.

B. Kitchenham and S. Charters, "Guidelines for performing systematic
literature reviews in software engineering (version 2.3)," Keele University
and University of Durham., Technical Report EBSE-2007-01, 2007.

M. Lacey, "Adventures in promiscuous pairing: Seeking beginner's mind,"
Proc. AGILE, 2006, pp. 263-269.

G. Luck, "Subclassing XP: Breaking its rules the right way," Proc. Agile
Development Conf. (ADC '04), 2004, pp. 114-119.

K.M. Lui and K.C.C. Chan, "Pair programming productivity: Novice-novice
vs. expert-expert," Int'l J. Human-Computer Studies, vol. 64, no.9, 2006,
pp. 915-925.

V.B. Mišic, "Perceptions of extreme programming: an exploratory study,"
SIGSOFT Software Eng. Notes, vol. 31, no. 2, 2006, pp. 1-8.

J. Nawrocki and A. Wojciechowski, "Experimental Evaluation of pair
programming," Proc. European Software Control and Metrics Conf.
(ESCOM 2001), 2001, pp. 269-276.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic mapping
studies in software engineering," Proc. 12th Int'l Conf. Evaluation and
Assessment in Software Eng. (EASE '08), 2008, pp. 71-80.

P. Runeson and M. Höst, "Guidelines for conducting and reporting case
study research in software engineering," Empirical Software Eng., vol. 14,
no. 2, 2009, pp. 131-164.

O. Salo and P. Abrahamsson, "Agile methods in European embedded
software development organisations: A survey on the actual use and
usefulness of Extreme Programming and Scrum," IET Software, vol. 2, no.
1, 2008, pp. 58-64.

40

C. Schindler, "Agile software development methods and practices in
Austrian IT-industry: results of an empirical study," Proc. Int'l Conf.
Computational Intelligence for Modelling, Control and Automation
(CIMCA ’08), 2008, pp. 321-326.

K. Sharifabdi and C. Grot, "Team development and pair programming –
tasks and challenges of the XP coach," Proc. 3rd Int'l Conf. Extreme
Programming and Agile Processes in Software Eng. (XP 2002), 2002.

J. Vanhanen and M. Mäntylä, "A systematic mapping study of empirical
studies on the use of pair programming by professional developers," IEEE
Trans. Software Eng., submitted for review.

J. Vanhanen and H. Korpi, "Experiences of using pair programming in an
agile project," Proc. 40th Ann. Hawaii Int'l Conf. System Sciences
(HICSS-40), 2007, pp. 274b.

J. Vanhanen and C. Lassenius, "Perceived effects of pair programming in an
industrial context," Proc. 33rd Euromicro Conf. Software Eng. and
Advanced Applications, 2007, pp. 211-218.

J. Vanhanen, C. Lassenius, and M.V. Mäntylä, "Issues and tactics when
adopting pair programming: A longitudinal case study," Proc. Int'l Conf.
Software Eng. Advances (ICSEA '07), 2007, pp. 70.

J. Vanhanen and C. Lassenius, "Effects of pair programming at the devel-
opment team level: An experiment," Proc. Int'l Symp. Empirical Software
Eng. (ISESE '05), 2005, pp. 336-345.

J. Vanhanen, J. Jartti, and T. Kähkönen, "Practical experiences of agility in
the telecom industry," Proc. 4th Int'l Conf. Extreme Programming and
Agile Processes in Software Eng. (XP 2003), 2003, pp. 279-287.

L. Williams, W. Krebs, L. Layman, A.I. Anton, and P. Abrahamsson,
"Toward a framework for evaluating extreme programming," Proc. 8th Int'l
Conf. Empirical Assessment in Software Eng. (EASE '04), 2004, pp. 11-20.

L. Williams, A. Shukla, and A.I. Antón, "An initial exploration of the
relationship between pair programming and Brooks’ law," Proc. Agile
Software Development Conf. (ADC '04), 2004, pp. 11-20.

L. Williams and R. Kessler, Pair Programming Illuminated, Addison-
Wesley, 2002.

L. Williams, The Collaborative Software Process, Ph.D. dissertation,
University of Utah, 2000.

C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering: An Introduction, Kluwer
Academic Publishers, 2000.

41

Publications
The appendix contains the five publications included in the dissertation.

I. J. Vanhanen and M.V. Mäntylä, "A systematic mapping study
of empirical studies on the use of pair programming by
professional developers," IEEE Transactions on Software
Engineering, submitted for review in March 2011, (17 pages + 15
appendix pages).

II. J. Vanhanen, C. Lassenius, and M.V. Mäntylä, "Issues and tac-
tics when adopting pair programming: A longitudinal
case study, " in Proceedings of the Second International Confer-
ence on Software Engineering Advances (ICSEA 2007), Cap Es-
terel, France, August 2007, pp. 70 (7 pages).

III. J. Vanhanen and C. Lassenius, "Perceived effects of pair pro-
gramming in an industrial context," in Proceedings of the
33rd EUROMICRO Conference on Software Engineering and Ad-
vanced Applications (EUROMICRO 2007), Lübeck, Germany, Au-
gust 2007, pp. 211–218.

IV. J. Vanhanen and H. Korpi, "Experiences of using pair pro-
gramming in an agile project," in Proceedings of Hawaii In-
ternational Conference on System Sciences (HICSS-40), Waiko-
loa, Hawaii, USA, January 2007, pp. 274b (10 pages).

V. J. Vanhanen and C. Lassenius, "Effects of pair programming
at the development team level: An experiment," in Pro-
ceedings of International Symposium on Empirical Software En-
gineering (ISESE 2005), Noosa, Australia, November 2005, pp.
336–345.

42

9HSTFMG*aeebcf+

ISBN 978-952-60-4412-5
ISBN 978-952-60-4413-2 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Computer Science and Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 13

5
/2

011

Pair programming, where two persons
actively collaborate in the implementation
of software development tasks has been
proposed as a means to increasing software
quality, knowledge transfer and learning,
among other things. This research studied
the adoption, use, and effects of pair
programming through a literature study, two
industrial case studies and a student
experiment. The effects of pair
programming on software quality and
developers' knowledge were positive in all
three empirical studies, but the development
effort for individual tasks increased. The
increase in effort occurred mainly when
using pair programming for simple tasks or
during the beginning of a project, when the
developers were learning pair programming
and getting to know one another.

Jari V
anhanen

E
m

pirical assessm
ent of the adoption, use, and effects of pair program

m
ing

A
alto

 U
n
ive

rsity

Department of Computer Science and Engineering

Empirical
assessment of the
adoption, use, and
effects of pair
programming

Jari Vanhanen

DOCTORAL
DISSERTATIONS

