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Abstract

A code C C Z%, where Z» = {0,1}, has asymmetric covering
radius R if R is the smallest integer such that any word v € Z3' can
be obtained from at least one codeword ¢ € C' by replacing 1s by 0s
in at most R coordinates. The minimum cardinality of such a code
is denoted by D(n, R). In this paper we apply exhaustive search and
integer programiming to obtain several new lower bounds on D(n, R).
The best known lower bounds on D(n, R) for n < 13 and R < 10 are
tabulated.

1 Introduction

Covering codes have been studied extensively—see [4] and its references—
the main motivations being football pools and data compression. Recently
a variant of covering codes, asymmetric covering codes, has received some
attention [2,5,6,8,11]. A code C C Z3, where Z = {0, 1}, has asymmetric
covering radius R if R is the smallest integer such that for every word
v € Z3 there is a codeword ¢ € C, so that ¢ can be transformed into v
by changing at most R 1s into 0s (we say that ¢ covers v). The minimum
cardinality of such a code is denoted by D(n, R).

In this paper we mainly use techniques presented in [12]—integer pro-
gramming and exhaustive search—with minor modifications to obtain new
lower bounds on D(n, R).

Integer programming problems discussed in this paper were solved with
GLPK [7] and isomorphism computations were carried out using nauty [10].



2 Applied Techniques

Determining the minimum cardinality of asymmetric covering codes can be
formulated directly as an integer programming problem [2]:

2" 1
MinZ = > b
1=0
Subject To:
1 < > by, where 0<i< 2"
jes(
b; € {0,1}, where 0 <i <27,

where b; tells whether the word ¢ (in decimal form) is in the code or not
and S(i) is the set of all words that cover the word 7.

We need some results from [12] (see the reference for the proofs). Let
v(n, k,w,w") denote the maximum number of words in ZJ' that have weight
w’ and can be covered with k words of weight w. Note that, always assum-
ing that 0 < w —w' < R, this function does not depend on the asymmetric
covering radius R. Let A(n,d,w) denote the maximum number of code-
words in a code with length n, minimum distance d, and constant weight
w; see [1,3,9] for extensive results on this function.

Theorem 1 For 0 < k < A(n, 2(w—w'+1),w) we have v(n, k,w,w') = k-
v(n, L,w,w'), and for k = A(n, 2(w—w'+1),w)+1 we have v(n, k, w,w') <
E-vln, 1, w,w’).

Theorem 2 v(n, k + 1,w,w') < % co(nykyw,w') for0 < w <w < n
and k > 1.

Theorem 3 For 0 <w' <w < n, let k = A(n, 2(w — w' + 1), w) + ¢ with
i> 1. Then v(n,k,w,w’) <k vn,l,w,w) i

Exhaustive search, analogous to the search in [12], can be used both to
determine values of v(n, k, w,w") and to improve lower bounds on D(n, R),
providing the necessary computation is feasible.

Upper bounds on v(n, k, w,w’) can be obtained by Theorems 1-3. Exact
values for small parameters can be determined by generating all possible
constant weight codes with k codewords of weight w by adding one code-
word at a time—i.e., the codes with j codewords are generated from the
codes with j — 1 codewords—and pruning isomorphic codes.

Lower bounds on D(n, R) can be improved as follows: for a given car-
dinality of the code, all possible weight distributions are checked one by



one to see whether asymmetric covering codes corresponding to the weight
distributions exist. The cardinality is assumed to be the best known lower
bound on D(n, R), and hence the objective is to improve the bound by one.
The construction of codes is done again by adding one codeword at a time
according to the weight distribution under inspection. The search tree is
pruned if a generated code is isomorphic to a code generated earlier or if
it cannot lead—uv(n, k,w,w') can be used to get an upper bound on the
coverage of the unfixed codewords—to a desired asymmetric covering code.

An upper bound on the number of codewords with weight w' in an
asymmetric covering code with cardinality M, assuming that such a code
exists, can be obtained with the following integer programming problem
(analogous to IP; in [12]):

sphere
Max Z = sy
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M = isw,
w=0

where s,, represents the number of codewords with weight w. We shall use
the notation last(w') for s, in what follows.

A bound for asymmetric covering codes was obtained in [5, Proposi-
tion 16.1], which we restate here. Let ¢(n, R) denote the maximum total
number of zeroes the codewords of a code attaining D(n, R) can contain.

Theorem 4 D(n, R) > D(n ~ 1, R) + [¢(n, R)/n].

We can use the following integer programming problem for obtaining a
lower bound on the total number of zeros of the codewords with the further
assumption that M is the cardinality of the code:
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1, where 0 <w <n

where s,, 5 = 1 if there are exactly & codewords of weight w, and s, 5, =0
otherwise.

We introduce the notation ¢(n, R, M) for the maximum total number of
zeroes the codewords of a code with length n, asymmetric covering radius R,
and cardinality M can contain. If M < D(n, R), then we let ¢(n, R, M) =
oo. Obviously, ¢(n, R,D(n,R)) = &(n,R). The proof of the following
theorem follows that of [5, Proposition 16.1] (Theorem 4 here).

Theorem 5 If D(n — 1, R) + [¢(n, R, M)/n] > M, then D(n,R) > M.

For given values of n and R, we solve the integer programming problem
above with M being the best known lower bound on D(n, R). The result is
alower bound on ¢(n, R, M), which is applied to Theorem 5 to see if we can
improve the lower hound on D(n, R) by 1. If that is the case, we repeat the
process once again with M increased by 1. It is tempting to conjecture that
the result of the integer programming problem could be used to improve the
lower bound on D(n, R) by more than 1—with Theorem 5 in a form similar
to that of 4—hut monotonicity of the solutions of the integer programming
problem above with respect to the value of M is an open problem.

In the column New of Table 1, we list the lower bounds on
[¢(n, R, M)/n] obtained that can be used to get new lower bounds on
D(n, R) by Theorem 5. For comparison, the lower bounds on [¢(n, R)/n]
obtained by [5, Proposition 17] are shown in the column Old. As previously
discussed, in some cases the result builds on calculating lower bounds on
[¢(n, R, M)/n] for several consecutive values of M; only the entry for the
last M in this sequence is listed in the table.



n R M New Old| n R M New Ol
9 1 100 43 41 12 1 584 264 257
9 2 34 13 12 |12 2 155 63 61
9 3 17 6 b} 12 3 62 22 20
10 1 178 78 7512 5 16 5 4
10 2 56 22 20 | 13 1 1078 494 483
10 3 26 9 8 13 2 265 110 106
11 1 320 142 138 |13 3 97 35 33
1 2 92 36 35

11 3 40 14 12

11 4 19 6 5

Table 1: Results for the auxiliary function
3 Results

The best known lower bounds on D(n, R) for 1 <n < 13,1 < R < 10 are
tabulated in Table 2. An entry marked with a period is an exact value.
Unmarked entries were established in [5]—either directly or by Theorem 4
with [5, Proposition 17]. The subscripts have the following meanings: a)
the bound was obtained in [2]; b) the bound was obtained in this study by
solving the integer programming problem in the beginning of Section 2; ¢)
the bound was shown in this study by exhaustive search (Section 2); and
d) the bound follows from Theorem 5 and the results in Table 1.

As a conclusion, in total 26 new lower bounds on D(n, R) were obtained
with six of them being exact values.
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