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EXACT CONTROLS FOR THE
SUPERCONFORMAL VIA FILL PROCESS

Robert Tenno *! Antti Pohjoranta *

* Helsinki University of Technology (TKK), Control
Engineering, P.O. Box 5500, Espoo, Finland

Abstract: This paper reports a means for stabilizing the microvia fill ratio on a
desired level, using the total plating time and the system galvanostat setpoint
current density as optimal controls. Both control variables are solved as functions
of the process state as well as selected manufacturer preference variables that are
typical for the via fill technology applied in multilayered printed circuit board
production. The optimal controls are obtained as a system of two equations and
solved numerically with the gradient descent method. Results of the numerical

analysis are presented and discussed.
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Figure 1. A microvia cross-section SEM-
photograph. The letters indicate: B = yp,
V= yv, S=H.

1. INTRODUCTION

The microvia fill process is an electrochemical
process in which metallic copper interconnects
are made between adjacent layers of multilayered
printed circuit boards (MLBs) by first drilling
holes on an individual board layer and then filling
these holes with copper electrodeposition.

1 robert.tenno@tkk.fi

Superconformal deposit growth at the microvia
domain is obtained by adding specific growth in-
hibiting (suppressor) and enhancing (accelerator)
chemicals, whose concentrations must be well bal-
anced (Andricacos et al., 1998). In practice, these
are regulated at constant levels, while the plating
time and plating current density are operational
parameters, adjusted to obtain a good fill result.
A common measure for the via fill success is the
via fill ratio, r

yv (1)
= F+va0 100%. (1)
In (1) 7 is the plating time (s), y is the deposit
thickness (m) measured vertically in the via bot-
tom center point (yy) and on the level board
surface (yp). H is the thickness of the dielectric
board substrate (m). These are illustrated in Fig.
1. The subscripts V and B are used also further
in the text to denote the corresponding locations.

In MLB manufacturing, a common requirement is
r > 80% (denoted R—80% from here on). Also
a thin deposit on the level board is a good fill
characteristic as well as a short fill time, which
directly increases productivity of a plating bath,
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Figure 2. The control system architecture.

but, which also as a disadvantage increases the
risk of deposit failures caused by too high plating
current density. The mentioned requirements are
accounted for in the following cost function J

JI =[R(H +ys(r)) — yv (1)

ltarget

+ k1yp(7) + ko (2)

In (2) %y is the weight on aiming to obtain a thin
deposit on the level board surface and ko is the
weight on compromising mass-production against
risk of deposit failures. The weights are chosen
by the manufacturer (thus called the production
preferences).

Minimization of (2) includes two problems: (i) the
deposit growth control problem and (ii) the pro-
cess stopping control problem. In manual control,
these are solved by a process operator. A system
developed for automatic via fill control is shown in
Fig. 2; the controller minimizes the cost function
(2) with respect to a PDE system developed for
the via fill process.

The optimal controls (plating time and current
density) are evaluated upon the chosen target fill
ratio, the control preferences and the included
species’ concentrations. The optimal current den-
sity is limited with a hard restriction or soft limit,
to prevent failures caused by Cu(IT) ion depletion
inside the via. The optimal current density, on
which limits are applied is given to the system gal-
vanostat as current density setpoint to be realized
by adjusting the voltage between the plating bath
electrodes appropriately. The optimal cell voltage
and the optimal plating time yield the desired
fill ratio at the process output. These ideas along
with their mathematical formulation are discussed
further.

Thus far the related literature is mainly fo-
cused on experimental studies (Dow et al., 2003),
(Lefebvre et al., 2003) aiming for bottom-up fill
through a good choice additives. In microchip
manufacturing the process is extensively studied
and modelled (Moffat et al., 2005), (Vereecken et

al., 2005), (Akolkar and Landau, 2004), (Gabrielli
et al., 2005), (Wheeler et al., 2003) while similar
studies for microvias have been reported only few.
The via fill control literature is focused on process
monitoring and practical realization aspects (Dow
et al., 2006), (Dow and Liu, 2006) except for
(Tenno and Pohjoranta, 2007), where a simple
control method is developed.

The control model applied here bases on the cur-
vature enhanced accelerator accumulation effects
(Moffat et al., 2007) documented as a predictive
model for the microvia fill process in (Tenno and
Pohjoranta, 2008), (Pohjoranta and Tenno, 2007).
Although many similar models have been pro-
posed (Moffat et al., 2005), (Vereecken et al.,
2005), (Akolkar and Landau, 2004), (Gabrielli et
al., 2005), (Wheeler et al., 2003), these are for mi-
crochip technology with ca. hundred times smaller
vias and significantly shorter plating times, which
make application of such models in the microvia
fill processes unfeasible.

2. PROBLEM FORMULATION

The control problem is to choose the optimal
stopping time to minimize the cost function in
(2) with respect to deposit growth on the level
board yp and inside the via yy. The process
is modelled with finite element model, in a 2D,
Cartesian changing geometry system, applying
the arbitrary Lagrange-Eulerian (ALE) method,
as documented thoroughly in (Tenno and Pohjo-
ranta, 2008), (Pohjoranta and Tenno, 2007).

The required deposit thickness value changes are
obtained as in (3)-(4).

{ dyp = [§dX + Gy .
yB(O) =0

oY

{ dyy = | SdX + g—’ng}v "

yv(0) = —H
The differentials (0y/0X, 0y/dY) in (3)-(4) are

components of the deformation gradient, essential
in the ALE method.

The spatial deformation field (i.e. the displace-
ments) is a velocity field solved from the Laplace
equation (in a vector form) V2u = 0, where u
(m/s) is the 2D velocity vector, u = [u,v]”, the

X-directional velocity being u = Z—f and the Y-
directional velocity v = %.

The model as well as the process behind the
control system, where the mentioned variables are
obtained from, are documented thoroughly in the
cited references and thus, for brevity, only a brief
walk through the relevant equations and terms is



given in this proceedings article. (For clarity, wide-
spanning equations are collected in Tbl. 1).

2.1 The process model equations

uen on the cathode is determined by the cath-
ode current density 4. (A/m?), obtained from
(7) with (8) in Thl. 1. Here p = 2Fpcy/Mcy,
(2.721 C/m?), where Mg, = 0.06355 kg/mol,
pcu = 8960 kg/m® and F = 96487 C/mol. n
is the cathode surface normal vector. ig is the
Cu(IT)/Cu(s) exchange current density (A/m?),
K = 77.85 V7, a; are apparent transfer coeffi-
cients (subscript a for anodic, ¢ for cathodic), F
is the driving potential for electrode reaction (V),
ka is the ratio between the anode and cathode
areas, j; are the proportional coverage of free
adsorption sites. ccy, is the Cu(II) ion concentra-
tion (mol/m?), ¢, is 1000 mol/m? and ci™ 3.5
mol/m?3.

i. is controlled by a galvanostat that sets E
upon a chosen if = dtarger (9). However, the
current density is limited by mass transfer, a
limit approximated here as iy, = ZFCZ’CUDCU/(S,
where cbcu is ¢y, in the electrolyte bulk, D¢y, is
Cu(IT) diffusivity (m?/s) and § the thickness of
the diffusion layer (m). The target current density
is admissible if i1arger < Kgliim, kg < 1. The
condition assures the upper limit current density
(time-variable) inside the via, given in (10).

In the bulk solution, mass transfer of species is
modelled with regular mass transfer equations
(diffusion and Nernst-Planck w/o electroneutral-
ity) (11) and on the cathode surface with surface
mass balance equations (12). Vo = LeV, where L
is a projection operator L = I — nn”, I being the
identity tensor. % = Tinc(1 — ), with ¢(0) =0
and Ti,e ~ 2000 s. kY is the the consumption
reaction rate coefficient for species ¢ (m/s), D; is
diffusivity (m?/s) and T'? is the maximum surface
coverage (mol/m?). D; is the surface diffusivity
for i (m?2/s), k¢ the adsorption rate (m®/mol/s),
k¢ the desorption rate (s~') and ¢; the additive
i’s concentration (mol/m?).

In (11), the electric potential ¢ satisfies —V e
oV¢ = 0, with a set voltage on the anodic
boundary and . on the cathodic boundary. o is
the electric conductivity of the electrolyte, S/m.

2.2 The controls

The optimal current density should be limited
before applied as a setpoint for a galvanostat by
either of the following modifications:

(1) A hard restriction based on a constant mass
transfer limit approximation

Iset = Min (itargeh kglﬁm) (5)

(2) A soft limit, approximated by using a ccy,
measurement on the via bottom (c%,)

v
CCu

& + 2, /100

) . . -B
Iget = min (Ztarget7 kgllim)

(6)
In (5) and (6) %¢arget is the optimal current density
without limitation (A/m?), i, is the setpoint for
galvanostat with limitation (A/m?) and cf., is the

concentration of Cu(II) ions in the via bottom,
(mol/m?).

The former current density is¢ (in (5)) is recalled
further as the hard-limited current and the latter
one (in (6)) as the soft-limited current density.
The unrestricted current density 4sqrger Will be
found as the optimal control in Section 3.

3. OPTIMAL CONTROLS

The target current density and plating time are
fixed constants for a galvanostat. In practice, they
are found experimentally for each MLB product;
here they are found from the model using either
the exhaustive search or a faster iterative method
explained below.

The deposition thickness on the level board and
in via is expressed with the applied controls by
using Faraday’s law

(i) = S w(ri) = / "oyt (18)

In (18) ¢ and 7 are the applied controls, the sub-
script indices from iiarget, Trarger being omitted
from here on to shorten the further formulae. ¢(t)
is the via fill function on the level board and on
the via bottom (V and B, respectively) (15).

Minimizing the cost function (2) with respect
to the growth processes (18) gives the optimal
controls in the following semi-explicit form (19)-
(21).

i(1) = pw(r), (19)
with the auxiliary function (20)
w(r) = —HR— =20 (20)

(TR — 2(7))2 + ky7’
where z(7) is a solution of the equation (21)

az _ o(t),

i z(0) = 0. (21)

The plating time satisfies the nonlinear equation
(16).

The solution of (19)-(21) can be found iteratively
using a simple gradient descent (GD) method
(17).



Table 1. List of wide-spanning equations.
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In (17) A = [7 i]T is the optimal control, sim-
ilarly as in (18), limited with the hard (5) or
soft limit (6). The other functions are standard
components of the GD algorithm, i.e. functions
(19) and (16) designated here as f and g along
with their derivatives, all approximated upon the
iterated controls 7 = 7,, ¢ = 1,, as given below.

F(Tnyin) = (Rry — 2,) [R(H + w, ) — wi2n]
+ kl'w"’rs
9(Tnsin) =in (R — @n) [R(H 4+ wpTy) — Wy 2n)

+ Thp (kg + klwi)

4. NUMERICAL ANALYSIS RESULTS

In this section, the optimal controls are discussed
and experimented along with hard and soft limits.
The target fill ratio was chosen R = 96%.

Above a gradient descent based method was given
to find the optimal controls. An exhaustive search
method to complete the same is simpler but
much more time consuming than the GD method.
An interesting result provided by the exhaustive
search, however, is the possibility to visualize

the cost function (1) in the neighborhood of the
optimal control values. The visualization shows,
that the cost function has an "optimum valley",
which has a rather level bottom. The GD method
finds the valley bottom quickly (5-10 iterations)
but in order to locate the exact optimum, several
(15-20) more iterations are required to proceed
along the valley bottom. If the exact optimum is
sought for, an exhaustive search may be feasible.
Both methods are applied in this section.

4.1 Optimal controls restricted with hard limits

The fill ratio obtained in simulations depends on
plating time as well as applied target current
density as shown in Fig. 3(a). The target end-time
fill ratio of 96% was reached with all examined
plating times. Naturally, the target was reached
faster if a larger current density was applied.

In Fig. 3(c) the colors indicate levels of equal
cost function value and the four markers show
four different optimal controls. The effect of pro-
duction preferences is evident. For example, if
ki = 1077, ky = 2-1077 (Case 2 in Thl. 2)
then the optimal controls are Ty4,.ger = 4220 s and
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(a) End-time Fill ratio as function hard-limited applied
current density, with various plating times.
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(¢) The "optimum valley" of control cost, in terms of
plating time and hard-limited applied current density.
The marked optimal controls are those listed in Table 2.

Table 2. Optimal controls with hard-
limited current.

Case Preferences Ttarget  ftarget ~ Marker
n:o k1 ko (s) (A/m?)

1 107 0 4480 173.1 A

2 107 2.10710 4220 184.0 O

3 0 0 3860 211.3 O

4 0 2-107Y 3620 252.2 O

Ttarget = 184 A/m2, correspondingly denoted in
the cost function behavior plot in Fig. 3(c) with
a square marker. Other points marked in the cost
function "optimum valley" are optimal controls
corresponding to other preferences k1 and ko (as
listed in Thl. 2).

Tf ky = 1077, ko = 0 (case 1 in Table 2), then a
relatively low current density of 173 A/m? and a
long plating time of 4480 s are optimal. If &1 = 0,
ko = 2-1077 the situation is opposite and (i,7) —
(252 A /m2, 3620 s).

If k; = ko = 0, the optimal controls 211 A /m? and
3860 sec are not well defined as we will be seen
later. The cost function shape is the same for all
preferences but the extremum point depends on
the chosen preferences.
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(b) End-point fill ratio as function soft-limited applied
current density, with various plating times.
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(d) The "optimum valley" of control cost, in terms of
plating time and soft-limited applied current density.
The marked optimal controls are those listed in Table 3.

4.2 Optimal controls restricted with soft limits

Similar results as for hard-limited control current
density can be found for the soft-limited control
current density. The desired fill ratio of 96% is
achieved for all controls as shown in Fig. 3(b).

Table 3. Optimal controls with soft-
limited current.

Case Preferences Ttarget itarget Marker
n:o k1 ko (s) (A/m?)

1 1077 0 4500 175.8 N

2 1077 2-10710 4180 189.4 O

3 0 0 3980 203.1 O

4 0 2.10—° 3640 252.2 &

Because the soft limitation (6) yields lower current
densities than the hard limit, (5) the cost function
and its "valley bottom" (Fig. 3(d)) is slightly
shifted to the direction of higher current densities
and longer plaiting time, compared to that with
hard limits (Fig. 3(c)). Generally, also the optimal
controls are only slightly shifted but for k =
ko = 0 (case 3) the shift is large, probably due to
computational instability created by the, in this
case, ill-posed cost function.



Generally, the soft limit increases optimal current
density and decreases plating time compared to
the hard restriction, the end-time fill ratio remain-
ing nearly the same.

It is known that the microvia fill process behavior
is strongly dependent on plating bath conditions.
Therefore also optimal controls depend on process
variables such as all the species’ bulk solution con-
centrations, which should thus be either stabilized
at a chosen setpoint or if not, the optimal controls
should be periodically recalculated. Verification of
the reported model against practical, empirical
data is given in (Pohjoranta and Tenno, 2007),
(Tenno and Pohjoranta, 2008) where also a sim-
ulation of how the bulk solution Cu(IT) ions’,
suppressor and accelerator additives’ concentra-
tion affects the fill process output is given. It is
shown that the model is adequate in respect to
the measured data.

5. CONCLUSION

Though the via fill process along with its model
are complex, optimal selections for plating time
and system galvanostat setpoint current density
can be found. These are controls, coupled with a
nonlinear relationship and whose exact location in
the time-current plane depend on the production
preferences, specifically how important is a thin
thickness of deposit on the level board and how
important is a short plating period compared to
the risk of deposition failures caused by too high
plating current density. Without predefined pref-
erences the controls are not well posed; a desired
end-time fill ratio alone does not properly define
the optimal controls. The performed simulations
convince that by running the process with opti-
mally, the target fill ratio is reached at a predicted
optimal plating time for each of chosen production
preferences.

A hard restriction and soft limit can both be used
to prevent Cu(II) ion depletion inside the via, as
was tested in the performed experiments. The soft
limit moves the increases optimal current density
and shortens optimal plating time compared to
a hard restriction on current density. The op-
timal controls depend on the process state and
on species’ concentrations, whereby these should
either be regulated at chosen levels or if not, the
optimal controls should be periodically recalcu-
lated.
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