
End-to-end named entity
recognition for spoken Finnish

Dejan Porjazovski

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 28.9.2020

Supervisor

Prof. Mikko Kurimo

Advisor

MSc Juho Leinonen

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Dejan Porjazovski
Title End-to-end named entity recognition for spoken Finnish
Degree programme Computer, Communication and Information Sciences
Major Machine Learning, Data Science and Artificial

Intelligence (Macadamia)
Code of major SCI3044

Supervisor Prof. Mikko Kurimo
Advisor MSc Juho Leinonen
Date 28.9.2020 Number of pages 57 Language English
Abstract
Named entity recognition is a natural language processing task in which the system
tries to find named entities and classify them in predefined categories. The categories
can vary, depending on the domain in which they are going to be used but some of
the most common include: person, location, organization, date and product. Named
entity recognition is an integral part of other large natural language processing tasks,
such as information retrieval, text summarization, machine translation, and question
answering.

Doing named entity recognition is a difficult task due to the lack of annotated
data for certain languages or domains. Named entity ambiguity is another challenging
aspect that arises when doing named entity recognition. Often times, a word can
represent a person, organization, product, or any other category, depending on the
context it appears in.

Spoken data, which can be the output of a speech recognition system, imposes
additional challenges to the named entity recognition system. Named entities are
often capitalized and the system learns to rely on capitalization in order to detect
the entities, which is neglected in the speech recognition output.

The standard way of doing named entity recognition from speech involves a
pipeline approach of two systems. First, a speech recognition system transcribes the
speech and generates the transcripts, after which a named entity recognition system
annotates the transcripts with the named entities. Since the speech recognition
system is not perfect and makes errors, those errors are propagated to the named
entity recognition system, which is hard to recover from.

In this thesis, we present two approaches of doing named entity recognition from
Finnish speech in an end-to-and manner, where one system generates the transcripts
and the annotations. We will explore the strengths and weaknesses of both approaches
and see how they compare to the standard pipeline approach.
Keywords named entity recognition, speech recognition, end-to-end, low-resource

iii

Preface
This thesis summarizes the most important work that I have done during my Master’s
studies at Aalto University. The process of doing this thesis taught me a lot about
speech recognition, named entity recognition and machine learning in general. More-
over, it taught me how to conduct meaningful research, develop various hypotheses
and test them.

I would like to thank my supervisor, Prof. Mikko Kurimo, for allowing me the
opportunity to be part of his team and allowing me to work on this exciting topic.
I would also like to thank my advisor, Juho Leinonen, for guiding me through the
process and giving me important technical and writing feedback, whenever needed. I
also thank the whole research group for giving me valuable feedback during the various
stages of the thesis. The computational resources were provided by Aalto Science-IT,
without which, doing the experiments would have been impossible. Finally, I would
like to thank every one of you that took the time to read this thesis. I hope that it
was as entertaining to you as it was to me.

Espoo, 7.9.2020

Dejan Porjazovski

iv

Contents
Abstract ii

Preface iii

Contents iv

Symbols and abbreviations viii

1 Introduction 1
1.1 Scope of the thesis . 1
1.2 Research questions . 2
1.3 Outline of the thesis . 2

2 Machine learning 3
2.1 Data in machine learning . 3
2.2 Types of machine learning methods 3
2.3 Conditional random fields . 4
2.4 Neural networks . 5

2.4.1 Recurrent neural networks . 6
2.5 Multi-task learning . 9

3 Automatic speech recognition 12
3.1 Importance of ASR . 12
3.2 Types of ASR systems . 12
3.3 Building blocks of conventional ASR systems 13

3.3.1 Feature extraction . 14
3.3.2 Lexicon . 16
3.3.3 Acoustic model . 16
3.3.4 Language model . 16

3.4 End-to-end ASR . 17
3.4.1 Connectionist temporal classification 17
3.4.2 Attention-based encoder-decoder 18

3.5 Challenges in ASR . 18
3.6 Speech recognition assessment . 19

3.6.1 Word error rate . 19
3.6.2 Processing time . 20

3.7 Previous research on ASR . 20

4 Named entity recognition 23
4.1 Importance of NER . 23
4.2 Types of NER systems . 24
4.3 BLSTM-CRF architecture for NER 25
4.4 Challenges in NER . 25
4.5 Assessment of named entity recognition systems 26

v

4.5.1 Precision, recall and F1 . 26
4.6 Previous research on NER . 27

5 Language modeling 30
5.1 N-gram language models . 30
5.2 Neural network language models . 31
5.3 Language models in E2E ASR . 32

6 Methods 33
6.1 Baseline NER system . 33
6.2 ASR with augmented labels . 34
6.3 Attention mechanism . 36

6.3.1 Luong attention . 36
6.3.2 Bahdanau attention . 37

6.4 Multi-task learning . 38
6.5 Decoding . 39

6.5.1 Greedy decoding . 39
6.5.2 Beam search decoding . 39

7 Experiments 40
7.1 Data . 40
7.2 Experimental setup . 41
7.3 Results . 43
7.4 Analysis of the results . 45

8 Conclusion 49
8.1 Conclusion . 49

vi

List of Figures
1 Conditional random field. 4
2 Neural network where circles represent the neurons and the rectangles

represent the layers. 5
3 Single layer perceptron. 6
4 Bidirectional recurrent neural network. 7
5 Pyramidal BLSTM network. 9
6 Multi-task learning with hard parameter sharing. 10
7 Multi-task learning with soft parameter sharing. 10
8 Conventional ASR components. 13
9 15 Mel-filter banks. 15
10 CTC algorithm . 17
11 Pipeline NER system. 29
12 E2E NER system with augmented labels. 33
13 E2E NER system with multi-task learning. 33
14 Baseline NER system architecture. 34
15 Model architecture for ASR with augmented labels. 35
16 Model architecture for multi task learning. 38

vii

List of Tables
1 Data distribution for the whole and the subset datasets. 40
2 Class distribution in Digitoday and Wikipedia. 41
3 Class distribution in Turku NER. 41
4 Model parameters for the baseline NER system. 42
5 Model parameters for augmented labels approach. 43
6 Model parameters for multi-task approach. 43
7 F1 score for the Digitoday and Wikipedia test sets, evaluated using

the baseline NER system trained on lowercase data. 44
8 WER on the parliament subset data. 44
9 WER on the parliament whole data. 44
10 Precision, recall and F1 score for the subset and whole parliament

data, using the multi-task approach. 44
11 F1 score for the whole and subset parliament dataset using the multi-

task approach where the ASR branch is disabled. 45
12 F1 score for the whole parliament dataset using the multi-task ap-

proach, where NER is done on the transcripts generated by the ASR
branch. 45

13 F1 score for the whole parliament dataset using the augmented labels
approach, where NER is done on the transcripts generated by the E2E
system. 45

14 WER and F1 scores for sample sentences using the multi-task approach. 47
15 WER for sample sentences using the augmented labels approach. Here,

the named entity tags are included in the WER calculation. 48

viii

Symbols and abbreviations

Symbols
e Euler’s number, a mathematical constant
tanh Hyperbolic tangent function
argmax Argument with the highest probability
cos Cosine function
π Pi, a mathematical constant∑︁ Summation∏︁ Product
P (y|x) Probability of y given x
PLM Language model probability
⟨⟩ Dot product
exp Exponential function
L Multi-task loss
Lasr Automatic speech recognition loss
Lner Named entity recognition loss
λ Weighting factor for multi-task loss
β Weighting factor during shallow fusion
θ Model parameters

ix

Abbreviations
O "Other" entity tag
PER "Person" entity tag
LOC "Location" entity tag
ORG "Organization" entity tag
PRO "Product" entity tag
EVENT "Event" entity tag
DATE "Date" entity tag
<UNK> Unknown token
<sos> Start of string
<eos> End of string
ML Machine learning
NN Neural network
NER Named entity recognition
NLP Natural language processing
NLU Natural language understanding
SLU Spoken language understanding
E2E End-to-end
ASR Automatic speech recognition
SD Speaker dependent
SI Speaker independent
CD Context dependent
MFCC Mel-frequency cepstral coefficient
DFT Discrete Fourier transform
DCT Discrete cosine transform
OOV Out of vocabulary
HMM Hidden Markov model
GMM Gaussian mixture model
DNN Deep neural network
CTC Connectionist temporal classification
RNN Recurrent neural network
ME Maximum entropy
MENE Maximum entropy named entity
CRF Conditional random field
GRU Gated recurrent unit
LSTM Long short-term memory
BLSTM Bidirectional long short-term memory
WER Word error rate
AED Attention-based encoder-decoder
LM Language model

1 Introduction
Named entity recognition (NER) is one of the main natural language processing
(NLP) tasks. The goal of this task is to find entities and classify them in predefined
categories. These categories can vary depending on the area they are used in but
the most common ones include person, location, date, and organization.

Named entity recognition systems have a wide variety of applications. They are
integral part of other larger areas such as: text summarization [1], machine translation
[2] and information extraction [3, 4]. Text summarization usually contains people,
dates, and locations, which can be detected using a named entity recognition system.
When doing machine translation, it is important to detect the named entities in
the source language so that they won’t be excluded when doing the translation to
the target language. The search queries usually contain named entities, which are
important to detect in order to retrieve the relevant documents. Named entities are
also heavily used in natural language understanding (NLU) and spoken language
understanding (SLU) areas, which are essential for personal assistants in home
automation and smartphone devices. These personal assistants usually use speech as
input, in which case the named entities need to be recognized from spoken data.

Doing named entity recognition from speech imposes several challenges for the
system. There is far less annotated data for spoken language than for textual data.
The speech can be informal, not following the conventional syntax of the language,
which can cause difficulties in detecting the entities. The generated transcripts from
a speech recognition system usually don’t contain capitalization and punctuation,
which can cause the system to miss the entities.

This thesis will focus on end-to-end (E2E) named entity recognition for spoken
Finnish. End-to-end in this sense means that the named entities will be learned
directly from speech, without relying on an external speech recognition system to
generate the transcripts. The conventional methods for extracting named entities
from speech are done in a pipeline approach where first a speech recognizer generates
transcripts and then named entity recognition is done on those transcripts. Even
though this approach can work well, the speech recognition systems are not perfect
and they make errors. The generated transcripts can have misspelled or missing
words, that can have an impact on the performance of the named entity recognition
system. To mitigate this, in the thesis we will explore ways of directly extracting
named entities from speech and see how well they perform compared to the standard
pipeline approach.

1.1 Scope of the thesis
The scope of this thesis is to explore ways of extracting named entities from spoken
Finnish in an end-to-end manner. We will explore two methods of doing that:
augment the labels with named entity tags, meaning that we will add the named
entity tags to the original transcripts and a multi-task approach by learning both to
transcribe speech and recognize named entities.

2

1.2 Research questions
The main research questions that this thesis is going to answer are:

1. Can the named entity tags be learned directly from acoustic features?

2. Does doing automatic speech recognition help in learning the named entities?

3. How well these approaches perform, compared to the named entity annotations
produced by the pipeline approach?

1.3 Outline of the thesis
In Chapter 2 we will talk about what machine learning is and the data needed for
training a machine learning model. Furthermore, we will talk about the different
types of machine learning algorithms and focus on the ones that are most relevant
to our problem, the neural networks, and conditional random fields.

In Chapter 3 we will familiarize ourselves with what automatic speech recognition
is, why is it important, as well as different types of speech recognition systems. Later,
we will go into the building blocks of speech recognition systems and explore ways of
assessing their performance. Moreover, we will explore various research that was done
in the automatic speech recognition field and see their strengths and weaknesses.

Chapter 4 explains the basic principles of named entity recognition. We will
explore why named entity recognition is one of the main NLP tasks and see different
approaches of constructing a named entity recognition system. Further, we will
explore the challenges that arise when doing NER, as well as different ways of
measuring the performance of the system. We will also familiarize ourselves with
previous research done in this area and see various applications that benefit from
NER system.

Chapter 5 explains what a language model is. Furthermore, it covers the most
widely used language model types and how they are used in the end-to-end speech
recognition systems.

Chapter 6 explains the two approaches of doing an end-to-end named entity
recognition. It covers the augmented labels approach, as well as the multi-task
learning approach and their mathematical foundations. Furthermore, it covers the
baseline named entity recognition system that was used for annotating the training
data.

Chapter 7 starts with explanation of the data that was used in the experiments.
Further, it shows the experimental setup that we used, as well as the results ob-
tained for the various experiments. At the end, we analyze the results and give an
interpretation of them.

Chapter 8 talks about the conclusion of the thesis and the lessons leaned
throughout the experiments. Furthermore, it explores ways of improving the existing
approaches and building upon this work.

3

2 Machine learning
The standard paradigm of programming is to make a set of instructions that the
computer will follow to achieve a specific goal. In contrast to that, machine learning
(ML) algorithms provide an ability for the system to learn and improve without
being explicitly programmed to do so. These algorithms similarly perform the tasks
as humans. When we hear someone talking, we immediately understand what has
been said, even though we often don’t know how that is done.

2.1 Data in machine learning
The machine learning methods typically rely on large amounts of data, so that they
can learn the patterns that emerge from it. The dataset that is used to train the
machine learning model is called a training set. Depending on the content of the
training set, the machine learning algorithm will be biased towards it. For example, if
we are training a speech recognition system using a training set consisting of medical
talks, the model will be good at recognizing that data but bad at recognizing other
speech that is not part of the training set. In other words, it will not be able to
generalize. To overcome that, it is a good practice to have a separate development
(also known as evaluation) set that will be used to assess the model’s performance
during training. Since, the development set can also impose some bias to the model,
if we want to assess the performance of the trained model, we need to use a separate
test set. The test set is typically used only for measuring the performance of the
trained model.

2.2 Types of machine learning methods
There are many different types of machine learning algorithms and choosing which
one to use is not always trivial. Depending on the way the ML algorithms are trained,
they are divided into several categories: supervised, unsupervised, semi-supervised,
and reinforcement learning.

Supervised machine learning algorithms require labeled data (usually by humans)
to learn from so that they can apply that knowledge to unseen data and predict
the correct labels. The training data for these algorithms usually consists of input
features and corresponding labels. The supervised machine learning methods are
divided into classification and regression algorithms. The classification algorithms
deal with problems where the output value is a category, whereas the regression
algorithms deal with outputs containing continuous values.

Unsupervised machine learning algorithms, in contrast to the supervised ones, do
not have corresponding labels and only rely on the input features. These algorithms
try to model the distribution of the data to learn more about it and be able to
predict new examples. The clustering algorithms, which try to divide the data into
subgroups based on similarities, fall into this category.

Semi-supervised machine learning algorithms fall between the supervised and
the unsupervised ones. They are usually applied in applications where there is both

4

labeled and unlabeled data.
Reinforcement learning algorithms typically involve an agent that interacts with

the environment and tries to learn from it. The agent learns through trial and error
by getting a positive reward for good actions and negative reward for undesired
actions.

Many types of machine learning algorithms fall in one of the categories mentioned
above and each one of them has its uses-cases. In this thesis, we will mostly focus on
conditional random fields (CRFs) and neural networks, since they are most relevant
to our problem that we are trying to solve.

2.3 Conditional random fields
Conditional random fields are a discriminative model, which means that they try
to learn a decision boundary between the classes. This model is well suited for
tasks where there is a dependency between the current and the previous predictions.
This makes them a good candidate for sequence tagging tasks, like named entity
recognition, part of speech tagging, and gene prediction.

CRFs work in a way that they try to model the conditional distribution as:

˜︁y = argmaxyP (y|x) (2.1)

The model uses feature functions to model the dependencies between the history
and the current prediction. The feature function is defined as:

f(X, i, li−1, li) (2.2)

where, X is the input, i is the index of the data point that we are predicting, li−1
is the label of the data point i − 1 and li is the label of the data point i.

Each feature function returns either 0 or 1, depending on the current label and
the label of the previous data point. They do the decision based on a set of weights
that are learned during training, using maximum likelihood estimation. An example
of a CRF is shown in figure 1.

Figure 1: Conditional random field.

5

2.4 Neural networks
Neural networks (NNs) are a family of machine learning algorithms that are vaguely
inspired by the neural network in our brain. The basic idea behind neural networks
is shown in figure 2.

Figure 2: Neural network where circles represent the neurons and the rectangles represent
the layers.

The network consists of layers and neurons. The input layers consist of the input
features, which get passed to a set of hidden layers. The architecture works in a way
that each neuron passes its output to the next neuron. A single layer is also called a
perceptron and the way neurons work in a perceptron is shown in figure 3. Each
neuron contains weight, which is a learnable parameter. The inputs are weighted and
summed together with a bias term, which is also a learnable parameter. In the end,
the weighted sum gets passed to a nonlinearity function. The nonlinearity function
is important because that way the network can learn nonlinear representations. The
number of layers and neurons is a design choice that has to be taken carefully into
consideration.

The networks are usually trained with the backpropagation algorithm by propa-
gating the errors from the end to the beginning of the network. That way the neural
network can minimize an objective function and adjust the parameters in a way that
yields optimal results. The network training and the backpropagation algorithm are
beyond the scope of this thesis, so they won’t be covered.

6

Figure 3: Single layer perceptron.

The neural networks play a vital role in many applications such as image recog-
nition, fraud detection, speech recognition, and natural language processing tasks.
They are a family of algorithms that differ between themselves in the way they do
their computations. The most common architecture types include: feed-forward
neural networks, convolutional neural networks, and recurrent neural networks. Some
neural networks are better suited for processing images, whereas some work better
for processing sequential data. Our models rely heavily on recurrent neural networks,
so we will explore them in more detail in the following part of the thesis.

2.4.1 Recurrent neural networks

The standard neural networks, like the feed-forward one, assume that all the inputs
and outputs are independent of each other. For some types of data, the independence
assumption is correct but for others, such as time-series and signal data, this can
be misleading. If we want to predict the next word in a sentence, it is important to
keep track of the preceding words, since they may contain information relevant to
the current prediction.

Recurrent neural networks (RNNs) are specialized at dealing with sequential data,
where there is a dependence between the current and the previous predictions. This
means that the previous predictions can impact future ones. In comparison to the
standard feed-forward networks, where each input has its own weight, the recurrent
neural networks do a parameter sharing, by sharing the weights across the inputs.

Often times, the future elements can also have an impact on the current predictions.
In the sequence tagging tasks, like named entity recognition, the future words can
have as much impact on the current prediction, as the past ones.

To capture the past and future information, bidirectional recurrent neural networks
were developed. They work similarly as standard RNNs but they simultaneously
process the input from the beginning and the end. An example of bidirectional RNN
is shown in figure 4.

7

Figure 4: Bidirectional recurrent neural network.

In a standard RNN, the hidden state h, for each timestep t, is computed as:

h[t] = g(Whhht−1 + Wxhxt) (2.3)

where, Whh and Wxh are learnable weights, ht−1 is the hidden state of the previous
timestep, xt is the input at the current timestep and g is a non-linear activation
function.

The output y at timestep t is then computed as:

y[t] = Wyhht (2.4)

where, Wyh is a learnable parameter and ht is the hidden state of the current
timestep.

Training the standard RNNs has two big issues, the vanishing, and exploding
gradient problems, explored in [5, 6]. As a solution to these problems, two RNN
variants became most popular: gated recurrent unit (GRU) [7] and long short-term
memory (LSTM) [8]. In our experiments, we will use LSTM, so we will focus on that
variant.

The LSTM neural network introduces three gates that determine the amount of
information that passes through. The three gates are: forget gate, input gate, and
output gate. The gates allow the neural network to remember longer contexts and
deal with the vanishing and exploding gradient problems.

The forget gate determines how much of the past information is kept in the cell
state Ct. That is done using a sigmoid function, defined as:

ft = σ(Wf [ht−1, xt] + bf) (2.5)

where, Wf is a learnable weight associated with the gate, bf is a bias term, which
is also a learnable parameter, ht−1 is the hidden state of the previous timestep, xt is
the input at the current timestep and σ is a sigmoid function defined as:

σ(x) = 1
1 + e−x

(2.6)

8

The output value of the gate is between 0 and 1, where 0 means that the gate is
blocking all the information and 1 means that the gate is letting all the information
pass through.

The input gate determines what new information is stored in the cell state. This
gate also uses a sigmoid function and returns a value between 0, and 1. The input
gate is defined as:

it = σ(Wi[ht−1, xt] + bi) (2.7)

The output gate, similarly to the other gates, outputs values between 0 and 1.
This gate decides which information from the current cell is passed to the output.
The output gate is defined as:

ot = σ(Wo[ht−1, xt] + bo) (2.8)

After we have the three gates, we can calculate the cell input activation vector˜︁ct, similarly as we calculated the gates but instead of the sigmoid function, we have
tanh:

˜︁ct = tanh(Wc[ht−1, xt] + bc) (2.9)

The cell state ct, also known as the memory, can then be computed as:

ct = ft ◦ ct−1 + it ◦ ˜︁ct (2.10)

where, "◦" represents element-wise multiplication.
Finally, the new hidden state h at timestep t can be computed as:

ht = ot ◦ tanh(ct) (2.11)

Often, the input can be large and contain a lot of timesteps. This is especially
the case when processing signals, such as speech. In that case, the number of
computations becomes large and the training time is increased significantly. This
can cause problems when dealing with large amounts of data, especially when the
neural network has many layers. To overcome that, it is common to use a pyramidal
LSTM architecture. This architecture reduces the time resolution by half in each
consecutive layer. The reduction in resolution is usually done by taking every other
timestep in each consecutive layer or averaging every two consecutive time steps. An
example of a pyramidal bidirectional LSTM architecture is shown in figure 5.

9

Figure 5: Pyramidal BLSTM network.

2.5 Multi-task learning
Multi-task learning involves optimization of more than one loss function. The
motivation for doing multi-task learning can be taken from human life in general.
When kids are young, they often start with learning smaller tasks that will help them
later in learning other tasks. Walking can be seen as a task that needs to be learned
first, for the person to learn how to run. Similarly, in basketball, if the main goal is
to score, it can be helpful to learn also how to navigate with the ball, shoot, etc.

The above examples can be applied to machine learning as well. Often, an
additional (auxiliary) task can be learned, which helps in achieving the main task.
It is common for the additional task to just help with learning the main task, but
that is not always the case. Sometimes, the additional task can be seen as equally
important for the system, as we will see when constructing our multi-task learning
model.

One big advantage of multi-task learning approaches is that they often involve
parameter sharing. That can be helpful if we have a big system since it will reduce
the computational time, in comparison to having two separate systems. In terms of
parameter sharing, the multi-task learning approaches are divided into two categories:
hard parameter sharing and soft parameter sharing approaches.

Hard parameter sharing is done by sharing some of the hidden layers, usually the
lower ones, and having separate output layers for all the different tasks. This is the
most commonly used approach. Since some of the layers are shared, this approach
reduces the parameters of the model, in comparison to having to train separate
models for all the specific tasks. This approach can also help with overfitting since it
needs to find a good representation of all the tasks and not just focusing on one. In
our experiments, we will be using a hard parameter sharing multi-task approach by
learning to transcribe speech and annotate it with named entities. An example of
hard parameter sharing can be seen in figure 6.

10

Figure 6: Multi-task learning with hard parameter sharing.

In soft parameter sharing, each of the tasks has its own layers and parameters.
The main idea behind this approach is that the layers are regularized, meaning that
the distance between each model’s parameters is penalized, so that they can have
similar parameters. This approach is more flexible by just loosely restricting the
parameters of the models. An example of soft parameter sharing is presented in
figure 7.

Figure 7: Multi-task learning with soft parameter sharing.

Even though the multi-task learning approaches seem appealing, they have some
drawbacks. Since they involve optimizing multiple loss functions, we need to carefully

11

choose a weighting factor that determines the contribution of each of the separate
losses. That is often not a trivial task and choosing a wrong weighting factor can
have an undesirable impact on the learning process. For example, if we give more
weight to one loss function, the model might focus on that part more and not learn
the other one. Also, if one of the tasks is easier, it will be learned a lot faster and its
contribution should have less impact in the later stages of the training.

12

3 Automatic speech recognition
This chapter focuses on the importance of automatic speech recognition (ASR) in
our society. It also explains different types of automatic speech recognition systems
and how they are used in various applications. Later, it dives into the different
building blocks of speech recognition systems and ways of assessing their performance.
Lastly, it gives an overview of previous research that was done in the field, as well
as the strengths and weaknesses of various approaches for doing ASR. Some of
these principles will be applied in our experiments when constructing the speech
recognition part of the system.

3.1 Importance of ASR
Speech is a continuous audio stream composed of small chunks of sound called phones.
The acoustic properties of these phones vary depending on the speaker style, gender,
and age [9, 10]. These phones serve as main building blocks of larger chunks known as
sub-words. The sub-words are then merged to form words. This process of mapping
the speech signal to the corresponding transcript is done using automatic speech
recognition.

Automatic speech recognition is the way for the computers to recognize and
translate spoken language into text. It is a way for humans to interact with computers
using speech the same way as humans interact with each other. The ASR systems
play a vital role in hands-free interaction with various devices, such as smartphones,
cars, home automation equipment, and computers. They are also used in medical,
military, telephony, and various other fields.

3.2 Types of ASR systems
There are different ways of interaction with a speech recognition system. Depending
on the way they are used, we can separate them into two groups: spoken dialogue
and natural language systems.

There are different ways of interaction with a speech recognition system. De-
pending on the way they are used, we can separate them into two groups: spoken
dialogue and natural language systems.

Spoken dialogue systems work in a way that they present the users with predefined
options that they can choose from. This simplifies the speech recognition task by
restricting the input to predefined words or phrases. Spoken dialogue systems are
suited for tasks such as home automation, where we can have predefined commands
like "turn on the light" or "unlock the door". One of the oldest applications involving
spoken dialogue system is the JUPITER project [11], which allows users to obtain
weather forecast information through their phones. These systems usually achieve
good performance but are less flexible from a user’s perspective and don’t feel natural.
It also requires the user to memorize the voice commands.

Natural language systems take as input any form of free speech and are not
restricted to predefined phrases or words. These systems are easier to use since the

13

interaction is in a more natural way, similar to the way humans interact with each
other. One of the oldest natural language systems is HARC [12], which operates in
an airline information domain and has a vocabulary of 2000 words. Some more recent
applications include personal assistants in computers and smartphones. Even though
these systems seem appealing, developing them is more difficult. The conventional
speech recognition systems rely on dictionaries and grammar. When a free speech is
involved, the number of words increases, causing the system to misclassify them.

In subject to the way speech recognition systems are trained, they are divided
into two groups: speaker-dependent (SD) and speaker-independent (SI) systems.

Speaker dependent systems are trained by the individuals that are going to use
them. The advantage of these systems is that they tend to achieve high performance.
They do that by learning the unique characteristics of different speakers. The
disadvantage of these systems is that new speakers need to train the system to their
voice, so that is can achieve good results.

Speaker independent systems are trained in a more general way, not relying
on the individual patterns that people have when they speak. These systems are
usually trained on a large variety of data including different genders, age groups, and
environments. These systems are better suited for general purpose use but they tend
to perform worse in comparison to speaker-dependent systems.

3.3 Building blocks of conventional ASR systems
The conventional ASR systems typically consist of several building blocks. These
building blocks include feature extraction, acoustic model, language model, and
lexicon. Each of these blocks needs to be created separately, which adds to the
complexion of the whole system. An example of the building blocks of the conventional
ASR system can be seen in figure 8.

Figure 8: Conventional ASR components.

14

3.3.1 Feature extraction

The feature extraction process is an important part of the ASR systems. The most
common features that are extracted from the audio waveform are Mel-frequency
cepstral coefficients (MFCCs) and Mel-filter banks. The Mel-filter banks can be
correlated, which may harm some machine learning algorithms, in which case the
MFCCs are preferred. In our experiments, we will use logarithmic Mel-filter banks as
input features to the network, because neural networks are more robust to correlated
features. In the following part, we will explain how the Mel-filter banks and MFCCs
are extracted.

The nature of the signals is such that their frequency changes over time. If
we want to transform the signal from time to frequency domain, using a Fourier
transform, we need some way of approximating the frequency. To do that, instead
of processing the whole signal at once, we can split it into small frames, assuming
that the frequency in each of the frames remains stationary. In speech, typically a
frame length of 20ms - 40ms is used, with an overlapping window of 50% between
the consecutive frames.

Since the Fourier transform assumes that we are dealing with an infinitely re-
peating signal, if the start and the end of the signal do not match, that can cause a
discontinuity in the signal. To deal with that, a windowing function is applied to
the signal. One of the most commonly used windowing functions is the Hamming
window, defined as:

h[n] = 0.54 − 0.46 ∗ cos(2πn

N − 1) (3.1)

where, N is the window length and 0 ≤ n ≤ N − 1.
To compute the power spectrum of a signal, we can use a discrete Fourier transform

(DFT). The DFT calculates the frequency spectrum of each of the frames as:

Si(k) =
N∑︂

n=1
si(n)h(n)e−j2πkn/N 1 ≤ k ≤ K (3.2)

where, h(n) is the Hamming window, si(n) is the framed signal, n is the number
of samples, i denotes the frame number and K is the length of the DFT.

The power spectrum is calculated as:

Pi(k) = |Si(k)|2
N

(3.3)

After we have the power spectrum, we can compute the Mel-filter banks. We do
that by applying m number of triangular filters to the power spectrum. The number
of filters usually ranges from 20 to 40. The filter banks can be calculated using the

15

following formula:

Hm(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 k < f(m − 1)
k−f(m−1)

f(m)−f(m−1) f(m − 1) ≤ k ≤ f(m)
f(m+1)−k)

f(m+1)−f(m) f(m) ≤ k ≤ f(m + 1)
0 k > f(m + 1)

(3.4)

where, f() represents the boundary points. The first filter bank starts at the first
point, reaches its peak of 1 at point two, and returns to 0 at the third point. The
second filter bank starts at the second point, reaches its peak at the third point, and
returns to 0 at the fourth point. This process goes for all the filter banks. In figure
9, we can see an example of 15 filter banks. In the end, we convert those filter banks
to a logarithmic scale. This is done to mimic the human hearing since we don’t hear
loudness on a linear scale.

Figure 9: 15 Mel-filter banks.

Since we are working with an overlapping window, the filter bank energies are
correlated, which can cause problems for some machine learning algorithms. To
decorrelate them, we can apply a discrete cosine transform (DCT) and get the
cepstral coefficients. When we are working with MFCCs, it is typical to keep only
some part of the coefficients and discard the higher ones. The reason for that is
because those coefficients represent fast changes in filter bank energies, which can
harm the ASR performance.

16

3.3.2 Lexicon

The lexicon is usually developed by phonetic experts, using a phone set, which is
specific for each language. The lexicon describes how different words are pronounced
phonetically. Some words can have the same spelling but being pronounced differently.
The lexicon contains information about all the alternative pronunciations.

The lexicon usually has two main roles in the ASR systems. Firstly, it covers
what words will be known to the system. The larger vocabulary it has, the better
coverage it will have, thus less out-of-vocabulary words.

The lexicon also provides a link between the acoustic model and the language
model, by containing the phonetic pronunciations of each of the words.

3.3.3 Acoustic model

The acoustic model is responsible for modeling the acoustic information of the speech.
It usually uses MFCC features, extracted from the raw audio.

The role of the acoustic model is to predict at each frame, which phone is being
spoken. It is usually implemented using a hidden Markov model (HMM) or a
combination between HMM and Gaussian mixture model (GMM) or a deep neural
network (DNN).

The hidden Markov model is a probabilistic framework that is represented as
a weighted directed graph that follows the Markov property. This means that the
probability of moving from one state to another depends only on the current state.
The term hidden in the hidden Markov model comes from the fact that the internal
states are not visible and we only have the observations, which are the feature
vectors. The probability of observing a feature vector, given the internal state is
called emission probability, whereas, moving from one internal state to another is
called transition probability. The HMM is a generative model, which means that it
tries to learn the underlying distribution of the features, given the states.

Training an acoustic model requires large amounts of audio data and corresponding
transcripts. The quality of the training data can have an impact on the performance
of the acoustic model. We should take into account different genders, accents,
background noise, and microphone types because that will affect what the acoustic
model is capable of recognizing.

3.3.4 Language model

The language model is responsible for predicting which word is supposed to appear
based on previous words. It outputs a probability for the next word based on a
previous sequence. The language models are usually implemented using an n-gram
model or a neural network.

Training the language model is done on a lot of textual data. Since the language
model is learning the probabilities of the words from a training data, that can reflect
on what kind of words will have a higher probability, since people’s word choices
are influenced by the topic. When training a language model, it is important to use

17

training data similar to what the language model is expected to encounter in the
real world. The language models are explained in more detail in section 5.

3.4 End-to-end ASR
As the name suggests, the end-to-end ASR systems typically consist of one model
that does all the work. In comparison to the conventional ASR systems, that
are composed of acoustic model, language model, and lexicon, the E2E models
incorporate everything into one model. One big advantage of the E2E models is that
they don’t require the audio and the transcripts to be aligned. There are two main
approaches for doing E2E ASR, the connectionist temporal classification (CTC) and
attention-based encoder-decoder.

3.4.1 Connectionist temporal classification

Speech recognition systems try to map an input audio sequence X to the corresponding
output Y. This might seem trivial but some challenges need to be considered when
designing such systems. One challenge is that the input and the output sequences
can vary in length. That introduces another problem, we need to find a way to align
the input and the output sequences. These issues are solved by the CTC algorithm
[13].

CTC works in a way that it outputs a character for each timestep. This means
that we end up with more output tokens than the original transcript. After the model
generates the output, the consecutive characters that are repeated are removed. For
example, if the correct word is "car" and one possible alignment is "ccarr", then, by
collapsing the "c" and "r", we will end up with the correct word.

In some situations, collapsing all the repeating characters can be undesirable. If
we have a word that contains characters that are consecutively repeated, for example,
"balloon" and the alignment is "bballloon", then the output would be "balon", which
is incorrect.

To overcome that, CTC introduces a special token ϵ, that the system can output
at any timestep of the prediction. The repeating characters still get collapsed, unless
the special token is between them. In the end, the special token is removed from the
output. An example of that is shown in figure 10.

Figure 10: CTC algorithm

To get the probability of the output, given the input sequence, CTC sums all the
possible alignments between the two. This approach is not efficient because there

18

are a lot of alignments that need to be considered. That is solved using a dynamic
programming algorithm.

The CTC algorithm can work well in many cases but it also comes with some
drawbacks. The CTC assumes that the outputs are conditionally independent of
each other, which is a wrong assumption to make when dealing with speech. Another
drawback is that the alignments are many-to-one mappings, where multiple inputs
can be aligned to at most one output.

3.4.2 Attention-based encoder-decoder

Attention-based encoder-decoder architecture is another way of doing end-to-end
speech recognition. Just like the CTC, this model also doesn’t need alignment
between the input and the output.

The main idea behind this method is that it takes acoustic features as inputs and
produces characters as outputs. Each character output yi is modeled as a conditional
distribution over the previous characters and the input signal using the chain rule.

This model consists of two sub-modules: encoder and decoder. The encoder and
decoder have two operations that they perform. The encoder processes the audio
features and the decoder, which is attention-based does the decoding. The encoder
takes the acoustic features and transforms them into a hidden representation h, which
is then passed to the decoder. The decoder uses those hidden representations to
produce probability distribution over character sequences. Both the encoder and the
decoder usually consist of recurrent neural networks.

Since the acoustic signals can have a very large number of frames, training a
conventional BLSTM is unfeasible. To reduce the length of the input sequence, a
pyramidal BLSTM is used in the encoder.

The decoder uses an attention mechanism, together with an LSTM. The goal of
the decoder is to produce a probability distribution over each character, conditioned
on all the previous characters. Outputting character sequences makes the model
more robust to out-of-vocabulary words. Another advantage of producing characters
as output is that the model can produce multiple spelling variants.

This model treats the outputs as conditionally dependant, unlike the CTC, where
the outputs are treated as they are independent of each other. This can be seen as
an advantage over the CTC model.

The attention-based encoder-decoder model works reasonably well for ASR but
it requires a lot of training data, in comparison to the conventional ASR systems.

The attention based encoder-decoder architecture is explained in more detail in
section 6, since we are using it in our experiments.

3.5 Challenges in ASR
Constructing an ASR system has many challenges that need to be addressed for it to
achieve good performance. The conditions in which the speech is recorded can affect
the performance of the system significantly. In noisy environments such as crowded

19

places, it is hard even for humans to recognize speech correctly. Room reverberation
can also have an impact on the quality of the speech signal.

The gender of the speakers can also have a significant impact on the system’s
performance. The difference between male and female speech was studied in detail
in [14]. They observed that in most of the cases the fundamental frequency of female
speakers was higher than the one in the male speakers. If the ASR system is exposed
to only male or only female speakers, then it might have difficulties recognizing the
opposite gender.

The age group of the speakers is another area that needs to be taken into
consideration when designing an ASR system. Elderly people tend to have decreased
speech rate and more speech disruptions compared to middle-aged people [15]. There
is also a significant difference between children and mature speakers. The study done
in [16] shows that the ratio between the vowel and consonant duration is higher for
children. The study also points out that the confusion between different phones is
higher in children’s speech. Different age groups need to be taken into account when
designing an ASR system that is going to be used by a variety of speakers.

The construction of a good ASR system requires a significant amount of data.
This data is more available for high-resource languages such as English but for
low-resource languages that can be difficult. Not having enough data can result in a
higher number of out-of-vocabulary (OOV) words, which can degrade the performance
of the system.

3.6 Speech recognition assessment
When developing a speech recognition system, it is important to have a way of
measuring how well it performs in a real-world scenario. Knowing how well the
system performs can help us distinguish between different algorithms and learn their
strengths and weaknesses.

3.6.1 Word error rate

The goal of the speech recognition system is to generate transcripts for given audio.
Thus, we need a way to measure the quality of the transcripts. One common way
of assessing the performance of an ASR system is the word error rate metric. The
WER metric is based on the Levenshtein distance [17], which measures the number
of insertions, deletions, and substitutions in a string.

• Insertion occurs when a new word gets added to the generated transcript.

• Deletion occurs when a word is missing in the generated transcript but is
present in the original.

• Substitution occurs when a word from the original transcript gets replaced
with another in the generated transcript.

20

The word error rate can be computed as:

WER = Levenshtein distance
Number of spoken words ∗ 100

= I + D + S
N ∗ 100

(3.5)

where I is the number of insertions, D is the number of deletions, S is the number
of substitutions and N is the number of words in the reference (spoken words).

The word error rate is usually measured in percentage, where a lower percentage
means higher quality transcripts. Since there are no restrictions on the number of
insertions, the WER can exceed 100%.

Even though the word error rate is a good way of measuring the performance
of an ASR system, it has its limitations. Often other external factors can affect
the performance of the system, such as bad microphone, background noise, and
pronunciation.

3.6.2 Processing time

Another aspect that is worth considering when evaluating an ASR system is the
processing time. Usually, bigger models can achieve better WER but that can affect
the processing time of the model and make it unusable in a real-time scenario. The
processing time is usually estimated as a real-time factor and one needs to make a
trade-off between that and the WER, according to the environment in which the
system is going to be used.

3.7 Previous research on ASR
The earliest attempts of doing automatic speech recognition go back to the 1950s.
In 1952, one of the first automatic speech recognition systems was developed [18].
This system was able to recognize spoken digits with high accuracy. Since then,
the paradigm of doing automatic speech recognition shifted from pattern matching
to statistical, especially with the hidden Markov model framework. HHM was
successfully applied in automatic keyword spotting in unconstrained speech, achieving
high accuracy [19]. In [20], the authors developed a speech recognition system that
can handle speech contaminated with noise. To achieve that, they used signal
decomposition using hidden Markov models [21].

The HMM framework was further extended with the Gaussian mixture model.
This hybrid HMM-GMM model was successfully applied in various ASR tasks. In [22],
the authors used a hybrid HMM-GMM model to develop a voice command system
for a robot arm. They showed that better recognition results can be achieved using
this hybrid approach. An ASR for recognizing 20 spoken Hindi words was developed
using the HMM-GMM model, achieving better performance than the standard HMM
model [23]. HMM-GMM model for large vocabulary word recognition was explored
in [24]. The authors showed that with high enough training data, recognizers using

21

mixture HMM outperform the ones that use unimodal Gaussian HMM by a large
margin. In [25], the authors applied the HMM-GMM model by doing automatic
speech recognition for Arabic language. The HMM-GMM models played a dominant
role in ASR for a long time. That changed with the popularization of the deep neural
networks.

With the advancement of deep neural networks, new approaches for ASR were
developed. A new context-dependent DNN-HMM (CD-DNN-HMM) model was
proposed, outperforming the previous CD-GMM-HMM models by a significant
margin [26].

All of the above methods fall into the category of conventional ASR systems.
Even though these systems achieve high accuracy, especially the CD-DNN-HMM
variant, their complexity makes them less accessible. They are usually composed of
an acoustic model, a language model, and a lexicon. All of these components need to
be trained separately, which adds to the complexity. Feature extraction is another
drawback of these systems that requires domain knowledge.

To address the shortcomings of the conventional ASR systems, a new generation
of end-to-end ASR systems was developed. These E2E systems rely heavily on neural
networks, alleviating the need for hand-crafted features.

A novel method, relying on the connectionist temporal classification loss was
proposed, outperforming the standard HMM and HMM-RNN approaches [13]. This
approach does not require alignment between the input and the output, which is
a challenge in the conventional methods. Another advantage of this approach is
that it directly outputs the transcripts, unlike the conventional systems that usually
output phonemes and other small units and then do post-processing to obtain the
transcripts. One drawback of this approach is that it assumes independence between
output sequences. Another drawback is that it can be viewed as an acoustic-only
model because it defines a phoneme distribution that depends on the acoustic input
sequence.

To incorporate a language model into CTC, a recurrent neural network (RNN)
was incorporated into the system, known as RNN Transducer. [27]. This approach
was explored in [28], achieving state-of-the-art results on the TIMIT dataset [29]. In
[30], the authors explored different ways of improving the RNN Transducer model.
In their experiments, they used deep recurrent neural network and sub-word units
instead of whole word units in the output. Their model also uses hierarchical pre-
training with CTC. Even though the RNN Transducer solves some of the issues that
the CTC model has, it still faces some other challenges. This model can produce
unreasonable paths that are hard to avoid.

Another E2E approach that gained popularity in recent years is the Listen,
Attend and Spell architecture, presented in [31]. This architecture builds on top of
the sequence-to-sequence model presented in [32] and its improved attention-based
variant [33]. Unlike the CTC model, the attention-based sequence-to-sequence model
does not make the independence assumption. This approach, just like CTC, does not
require pre-segmented alignments. The soft alignment is learned using the attention
mechanism. Besides the advantages mentioned above, this model also has some
shortcomings. The alignment that this model does is flexible, which can result in

22

insertion and deletion errors. It can also prematurely stop the decoding process.
To deal with the shortcomings that the attention-based model has, a multi-task

approach was proposed. In [34], the authors proposed a hybrid CTC and attention-
based model. For training, they used a multi-task learning approach by optimizing
two objective functions. For the decoding part, they combined both the attention-
based and CTC scores. This approach achieved competitive results, in comparison
to the previous state-of-the-art conventional system. Similar hybrid CTC/Attention
architecture was applied for audio-visual speech recognition, achieving state-of-the-art
results [35].

23

4 Named entity recognition
This chapter focuses on the importance of named entity recognition. It also explores
different types of NER systems, their strengths, and weaknesses, as well as how they
are applied in various fields. Furthermore, it explores a common architecture for
doing NER, which uses BLSTM with a CRF layer on top, as well as the challenges
that arise when designing a NER system. In the end, it delves into different ways of
assessing the performance of the NER system and exploring previous research that
was done in this area.

4.1 Importance of NER
Language is the main source of communication that humans use. We use language
to express ideas, feelings, intentions, among many other things. Being able to
communicate those thoughts with a computer has been an open area of research
since the 1950s, which gave rise to the natural language processing field. NLP is a
way for computers to process and analyze large amounts of natural language data.
It can be viewed as a way for humans to interact with machines in the same was as
humans interact with each other.

Languages have ambiguous nature. Same words can have a different meaning,
depending on the context they are referred to. This is more formally known as
lexical ambiguity. Another type of ambiguity that happens in natural languages is
syntactic ambiguity, where the same sentence can have different meanings. People
use language throughout their entire lives, so resolving these ambiguities does not
cause difficulties, which is not the case for computers.

When we, as humans, hear or read a sentence, we immediately associate it with
its meaning. The process of extracting meaning from a sentence is known as semantic
analysis. The extraction of meaning is not bound to sentence-level only but it can
be done on a word or sub-word level as well, which is known as lexical semantics.
Semantic analysis is one of the key components when doing natural language under-
standing or spoken language understanding. The difference between these two terms
is that NLU tries to extract meaning from text, whereas SLU does it from speech.

One of the first things when doing natural language or spoken language under-
standing is to do named entity recognition. It also serves as one of the main building
blocks in extracting semantic information from documents. NER is also an integral
part of other larger areas such as question answering, information extraction, machine
translation, and text summarization.

In the question answering task, the goal is to find an answer in a paragraph of text.
It is important to detect the named entities in the text because answers are often
named entities. That is especially the case in the fact-based answers to questions.
In that sense, most of the traditional question answering systems incorporate some
form of named entity recognizer, which simplifies the task significantly.

When doing information extraction, many of the relations are associations between
named entities. Being able to detect them is important for the system so that it can
extract the relevant information. Misclassification of a named entity might lead to

24

wrong information being extracted.
Named entities have an important role in machine translation as well. The system

needs to recognize them correctly because incorrectly translating or dropping a
named entity can change the meaning of the sentence.

In text summarization, the goal is to extract relevant information from documents.
The relevant information usually includes dates, locations, people, and organizations.
All these categories can be detected using a NER system. This will make sure that
the system won’t exclude relevant information in the summarization.

4.2 Types of NER systems
There are different approaches of building named entity recognition system and the
most common ones are rule-based, learning-based, and hybrid approaches. Each of
these approaches has its own advantages and disadvantages.

Rule-based systems require hand-crafted features such as dictionaries, lexical
and syntactic patterns. These systems usually need domain knowledge in order
to construct the rules, which is expensive and time-consuming. The hand-crafted
features are usually implemented using regular expressions.

The advantage of these systems is that they can be implemented with a small
amount of data and they work well in domains where the text is formal, following
the standard rules of the language.

These systems tend to have high precision, which means that if they detect a
named entity, they will most probably classify it in the correct category. On the
other hand, the rule-based systems may struggle to detect the named entities due to
the informal nature of some texts that exhibit the grammatical rules of the language,
which can result in a low recall.

Learning-based systems are trained using machine learning methods. The learning
algorithms work in a way that they take as input training data features and learn
patterns that emerge from them. These patterns are then used to predict new, unseen
data. In the case of NER, each word is a token and a sentence can be viewed as
a sequence of tokens. The task of predicting a sequence of tokens is known as a
sequence tagging task. These tokens are usually represented as multidimensional
vectors that describe them. The tokens are fed to a machine learning model that is
trained to do a sequence tagging task.

The advantage of these systems is that they don’t rely on hand-crafted features,
thus unstructured texts can cause fewer difficulties compared to the rule-based systems.
This may result in a high recall at expense of lower precision. The disadvantage of
the learning-based systems is that they tend to require a lot of data to be able to
learn and achieve good results. That data may not be always available, especially in
low-resource languages and specific domains. In our experiments, we will be using
this approach for doing NER.

Hybrid systems aim at combining the good characteristics of both rule-based
and learning-based systems. This approach can yield good results for languages that
have difficult syntax and semantics. By utilizing the patterns learned by the machine
learning model, the system can detect the entities, which can result in a high recall.

25

The rule-based system on the other hand can correctly classify those entities in their
categories, which can yield high precision. The hybrid approach may seem appealing
considering that they combine the best of both worlds but constructing these systems
requires a significant amount of time and resources.

4.3 BLSTM-CRF architecture for NER
The most common way of doing named entity recognition is using a bidirectional
LSTM network with a CRF layer on top of it. This architecture gives good results
since both BLSTM and CRF models are well suited for processing sequential data.

The BLSTM network usually processes a sentence at a time and the CRF layer
does the named entity annotation for each sentence. The words in a sentence are
replaced with n-dimensional vector representations, that describe those words. The
vector representations of words are called word embeddings and they are described
in more detail in section 5.

The BLSTM processes each word in a sentence and passes that information to the
next word. In the end, the output of the BLSTM is passed through a fully connected
layer that has an output size equal to the number of named entity classes. That
information is then passed to the CRF layer, which produces tag probabilities for
the whole sentence.

4.4 Challenges in NER
Several challenges need to be addressed when designing a named entity recognition
system. The NER task requires the system to be able to disambiguate between
entities. For example, the entity "YouTube" can refer to both company or product,
depending on the context it appears in. Named entity disambiguation is a sub-task
of NER that addresses that issue.

Personal names also pose certain challenges for the NER system. There are large
varieties of personal names that the system hasn’t seen but should be able to detect.
Also, there are not many constraints of what a personal named can be, which can
cause the system to ignore it or mistake it for another entity.

Named entities are usually capitalized, so the system relies on capitalization to
detect them. That is usually the case when dealing with formal texts but in informal
texts, capitalization can be neglected and cause degradation in the performance
of the system. Informal texts also tend to have an incorrect sentence structure,
abbreviations, and slang, which affect the performance of the system.

To achieve good results, NER systems require a significant amount of data. For
high-resource languages such as English and Chinese, obtaining data is not difficult,
which is not the case for low-resource languages, such as Finnish. Data sparsity can
also happen in specific domains such as biology and chemistry, where there is not
enough annotated data.

26

4.5 Assessment of named entity recognition systems
Having a proper evaluation metric for the named entity recognition system can help
us analyze the strengths and weaknesses of the system. It can also help us distinguish
between various architectures and hyper-parameters. Named entity recognition is a
sequence tagging task that differs from speech recognition. Thus, we need a different
way of assessing the quality of the named entity recognition system.

4.5.1 Precision, recall and F1

As a starting point we can consider the accuracy metric, which is calculated as:

accuracy = correct predictions
total predictions (4.1)

This metric might look good at first glance but it comes with certain drawbacks.
If we consider a case where there is a class imbalance, for all the examples the model
can predict the majority class and achieve high accuracy, even though it struggles to
predict the minority class. In a real-world scenario, we can consider a case where we
have a classifier that predicts frauds. In this case, most of the time there will be no
fraud, so if the model predicts no fraud all the time, it will still achieve high accuracy,
which is highly undesirable. This is known as accuracy paradox. To mitigate this, we
can use precision, recall or F1 score.

Precision takes into account how many of the positive predictions are truly
positive. It is calculated as:

precision = number of correct positive predictions
total number of positive predictions (4.2)

The precision score can be interpreted as a way of measuring how well the system
can predict the cases that it has detected. A high precision score is important for
systems where the cost of false positives is high. For example, if we have a classifier
that predicts if a person has committed fraud, we don’t want to have a false positive
case because that can result in an innocent person being convicted.

Recall measures how many of the positive cases are captured by the model. It is
calculated as:

recall = number of correct positive predictions
total number of positive samples (4.3)

The recall can be interpreted as a way of determining how well the model can
find a positive case. A high recall score is important when the cost of having false
negatives is high. If we consider again the case of fraud detection, we don’t want the
person that has committed the fraud to be ignored and classified as non-fraudulent.

27

F1 is a measurement that combines precision and recall as follows:

F1 = 2 ∗ precision * recall
precision + recall

(4.4)

This measurement takes a balance between precision and recall and is commonly
used in information retrieval and sequence tagging tasks, especially when dealing
with imbalanced class distribution.

4.6 Previous research on NER
Named entity recognition was first introduced as a task in 1996 on the Sixth Message
Understanding Conference [36]. Since then, many researchers tried to improve and
develop new methods for doing named entity recognition. These approaches include
various rule-based, statistical, and machine learning methods.

The traditional named entity recognition systems were mostly rule-based, relying
on hand-crafted features and gazetteers (geographical dictionaries). These rule-based
systems were successfully applied in various tasks and languages. In [37], the authors
developed a rule-based named entity recognition system for Greek financial texts.
A combination of clustering and gazetteers was explored in [38] by doing named
entity recognition for Japanese language. The authors of [39] explored NER for
low-resource Urdu language. Even though these methods achieve good results, they
are mostly domain-specific and hard to adapt to new domains. The construction
of gazetteers, especially for low-resource languages is challenging because there is a
little amount of data available. These systems also suffer from lower recall and are
unable to disambiguate between entities.

With the rise of machine learning popularity, new methods were developed for
named entity recognition, which alleviate the use of external lexicons and gazetteers.
The most successful ones are maximum entropy (ME) models and conditional random
fields [40]. The maximum entropy named entity (MENE) model was first introduced
in [41]. In [42], the authors tried to utilize the global document information when
doing named entity recognition using the maximum entropy model. Conditional
random fields also showed great success in various named entity recognition tasks.
The authors of [43] were one of the first to apply CRFs in the named entity recognition
task. In [44], CRFs were used to detect named entities in biomedical field.

Even though ME and CRF methods achieve good results, they still require domain
knowledge to do feature engineering. This issue is directly addressed by deep neural
networks, that became more appealing with the increase of the computational power.
Recurrent neural networks are well suited for sequential data due to their ability
to store information about sequences. RNNs, especially the LSTM variant, gained
popularity in the NLP field after being successfully applied in language modeling,
outperforming the current state of the art backoff language model [45]. In [46], the
authors applied LSTM network for NER in clinical texts.

In 2015, a new architecture was proposed that combines LSTM with a CRF
layer on top of it [47]. This architecture outperformed the previous neural network
architectures and achieved state of the art results on the CoNLL 2003 dataset [48].

28

Recurrent neural networks usually take vector representation of words as input,
known as word embeddings. This works well for languages that don’t have a big
vocabulary but morphologically rich languages have a large vocabulary that is hard
to cover. This causes an increase in out-of-vocabulary words, which degrades the
performance of the system. To overcome this, sub-word units were proposed instead
of whole words [49].

To deal with the OOV words some researchers experimented with character-level
sub-word units. Character-level LSTM was applied for the NER task, achieving
competitive results [50]. In [51], the authors incorporated word and character
embeddings into their LSTM network with a CRF layer on top of it. This approach
achieved state of the art results on two biomedical datasets. The authors of [52]
extracted character embeddings using a convolutional neural network and combined
them with word embeddings. This approach achieved state-of-the-art results on
CoNLL 2003 dataset. A similar approach of utilizing word and character embeddings
was applied in [53], for doing NER for Spanish and Portuguese languages.

Another common approach for dealing with OOV words is to segment the words
into morphs. This approach improved the performance of language models [54, 55]
by constructing the unseen words from morphs. In [56], the authors explored the
effects of morphology in the morphologically rich Turkish language when doing NER.

In recent years, pre-trained language models became famous for performing well
on various NLP tasks. In 2018, Google presented its transformer architecture BERT
[57], which gave competitive results on the NER task, compared to the state-of-
the-art at that time. With the introduction of the ELMo word representations [58],
the authors managed to get new state-of-the-art results on the CoNLL 2012 NER
task. Since then, many researchers are shifting their attention towards transformer
models. These models work well and achieve good results on various NLP tasks, but
they come with several drawbacks. They require a lot of data, which is not always
available, especially for low-resource languages. Their computational time is another
challenge, which makes them not easily accessible to everyone.

Neural network approaches usually yield state-of-the-art results when dealing
with high-resource languages where there is a lot of annotated corpora. For low-
resource languages that is not the case and the performance of the model suffers
due to lack of data. To improve the performance of the system in a low-resource
scenario, various knowledge transfer techniques were proposed. In [59], the authors
constructed a NER system for low-resource Dutch and Spanish languages by using a
bilingual lexicon. They achieved that by transferring knowledge from high-resource
to low-resource language. A similar approach was explored in [60], where the authors
used bilingual embeddings to transfer knowledge by doing a nearest neighbor search
from high-resource to low-resource language.

Named entity recognition is one of the main building blocks when doing spoken
language understanding, where the goal of the system is to understand what has
been spoken. The most common approach for extracting named entities from speech
is through a pipeline approach, as described in figure 11. In this approach, the
speech recognition system generates transcripts, and the named entity recognition
system tries to detect entities in those transcripts. The output of the ASR systems

29

is usually lower-cased and noisy, in a sense that the word order can be mixed, words
might be missing or misspelled, etc. When developing a NER system for speech
data, these factors need to be taken into account. Some researchers tried restoring
the capitalization and the punctuation from the transcribed speech as in [61]. A
maximum entropy model was used for doing NER on transcripts generated by a
speech recognition system for Chinese, utilizing n-best lists [62]. These approaches
improve the performance of the system on noisy speech data but they are are still
sensitive to the speech recognition output and error propagation. To deal with that,
an end-to-end approach was proposed that directly extracts named entities from
speech [63].

Extracting named entities directly from speech in an end-to-end manner is re-
searched very little. This thesis will focus on extracting named entities from spoken
Finnish language by combining the speech recognition and named entity recognition
systems into one end-to-end model.

Figure 11: Pipeline NER system.

30

5 Language modeling
The language model (LM) can be used to compute the probability of a sentence or
a sequence of words P (W) = P (w1, w2, ..., wn). It can also be used to compute the
probability of the next word, given a sequence of words P (w3|w1, w2). The language
model is one of the essential building blocks when making a conventional speech
recognition system. Even though the end-to-end models don’t necessarily require
a language model, it can still be used to improve the results. The most common
language model types are the n-gram and the neural network-based models.

5.1 N-gram language models
To calculate the probability of a sequence of words P (W), we can use the chain rule
to compute the conditional probability of each word wi given the previous words
w1, w2, ..., wi−1.

P (W) =P (w1)P (w2|w1)P (w3|w1, w2)...P (wn|w1, w2, w3, ..., wn−1)
=

∏︂
i

P (wi|w1, w2, w3, ..., wi−1) (5.1)

A naive way of estimating these probabilities is to count and divide:

P (wi|w1, w2, ..., wi−1) = count(P (w1, w2, ..., wi))
count(P (w1, w2, .., wi−1))

(5.2)

This naive approach is unfeasible because there are too many sentences and we
will need a lot of data to estimate all of them. To overcome this issue, we can consider
only the n − 1, instead of the whole history:

P (wi|w1, w2, ..., wi−1) ≈ P (wi|wi−2, wi−1) (5.3)

The probabilities can then be estimated as shown in Equation 5.4. This way we
do an approximation of the probability of a word by taking part of the history.

P (wi|wi−2, wi−1) = count(P (wi−2, wi−1, wi))
count(P (wi−2, wi−1))

(5.4)

Even though the n-gram language models work well, they assign zero probability
to word combinations that do not appear in the training set but are present in the
test set. To overcome that issue, various smoothing techniques were developed, which
take part of the probability of the occurring n-grams and assign it to the unseen
combinations. One of the most widely used smoothing techniques is the Kneser-Ney
smoothing [64]. Another drawback that n-gram language models have is that they
can struggle to capture long-span dependencies between words. These types of
language models are also not robust to word order changes. The issues mentioned
above are addressed by neural network language models.

31

5.2 Neural network language models
The neural network language models typically use a recurrent neural network, more
specifically the LSTM variant. The goal of this language model is to compute the
probability of the next word given the previous words. The advantage of this type
of language models is that they model long-term dependencies, unlike the n-gram
language models. These models rely on learning distributed representations of words
(or sub-words), which can make them more robust to word order changes. Words are
typically represented as vectors of real values, where those values are learned in a way
that similar words lie close in the shared vector space. Those vector representations
of words are called word embeddings.

Word embeddings are typically pre-trained but they can also be learned during
training. Depending on the way they are trained, there are different types of word
embeddings, where the most common ones include word2vec [65], fastText [66] and
Glove [67].

The fastText embeddings work particularly well for large-vocabulary languages,
such as Finnish. Often, some words are not present in the vocabulary, so there
is no vector representation for those words. Those words usually get a random
vector assigned to them, which is not desired. This issue is solved with the fastText
embeddings because they can utilize the sub-word information of the words, so even
if the whole word is not present, its sub-word units may be present in the vocabulary.

The recurrent neural network language models are trained on large amounts of
textual data. That data should be in the same domain as what the language model
is expected to encounter in the real world. The network learns in a way that it
processes each token (word) in the sentence and produces a probability distribution
over the whole vocabulary. The word with the highest probability is usually the one
that is chosen as the next word. The context of the previous words is taken into
account when predicting the next one.

The training of neural network language models can be done on a word or a
sub-word level. When training a word-level language model, we make sure that
the output of the model will be a valid word. One big drawback of the word-level
language models is that they are not robust to OOV words. This can cause problems
for agglutinative languages like Finnish, that have a big vocabulary, which results
in a high number of OOV words. To deal with the OOV issue, sub-word-based
language models were developed, which use characters or other bigger sub-word units
as output, instead of whole words. This way the OOV words can be modeled using
the individual characters or other bigger sub-word units. Since the sub-word-based
language models output characters or bigger sub-word units, instead of whole words,
the output can have misspelled words.

The RNNs work better at capturing long-term dependencies compared to the
n-gram models but still struggle with very large contexts. To overcome that, a new
family of language models, called Transformers, was developed. The Transformer
models typically rely on attention mechanism to capture the long-term dependencies.
One of the first Transformer models that was developed is called BERT [57]. This
model does not use any kind of recurrence and only relies on the attention mechanism.

32

This model was trained on the whole English Wikipedia data. Another popular
Transformer is the Transformer-XL model [68], which uses recurrence together with
an attention mechanism. According to the authors, this language model can capture
80% longer dependencies, compared to the standard RNN models. These models
usually outperform the standard recurrent neural network language models but they
require a lot of training data, as well as computational power.

5.3 Language models in E2E ASR
Unlike the conventional ASR systems that require a language model, that is not the
case for the end-to-end approaches. Even though these approaches do not require an
external LM, researchers experimented with integrating one so that they can achieve
better results [69]. Integrating an external language model into the ASR is called
language model fusion. The most common fusion approaches are shallow fusion [70],
deep fusion [70] and cold fusion [71].

The shallow fusion approach incorporates an external language model at inference
time by log-linear interpolation:

y∗ = arg max
y

[log P (y|x) + β log PLM(y)] (5.5)

where log P (y|x) is the beam search output, log PLM(y) is the language model
output and β is the weighting factor for the language model.

The deep fusion approach, like shallow fusion, assumes that the ASR system and
the external language model are pre-trained. The difference between the two is that
in deep fusion the external language model is integrated by fusing the hidden states
of the decoder and the language model.

The cold fusion approach is an early training integration approach, where the
ASR system is trained together with the pre-trained language model.

33

6 Methods
To do E2E named entity extraction from spoken Finnish, we will explore two
approaches. In the first approach, we will build an attention-based encoder-decoder
(AED) model for ASR by augmenting the labels with NER tags. In the second
approach, we will explore multi-task learning where the model simultaneously learns
to transcribe speech and annotate it with named entity tags. The pipelines of both
approaches are explained in Figures 12 and 13 respectively.

Figure 12: E2E NER system with augmented labels.

Figure 13: E2E NER system with multi-task learning.

6.1 Baseline NER system
The baseline system that we used to annotate the data with named entity tags is a
BLSTM neural network with a CRF layer on top. This architecture utilizes morph,

34

character, and word embeddings, where the word embeddings are pre-trained and
the morph and character ones are learned during training. Each of the embeddings
goes into a separate BLSTM and the outputs are then concatenated together. The
concatenated output goes through a highway layer, followed by a fully-connected
layer. The output of the fully-connected layer is passed to a CRF layer, which
produces tag probabilities. The baseline architecture is explained in mode detail in
[72]. The architecture is depicted in figure 14.

Figure 14: Baseline NER system architecture.

6.2 ASR with augmented labels
For this approach we developed an attention-based encoder-decoder architecture
that takes audio features as input and produces transcripts with named entity tags.
As a starting point, we can consider the standard encoder-decoder architecture,
without attention. Let X = (x1, x2, ..., xT) be the audio features, where each feature
is represented as xi and i is the order of the feature. Additionally, we define the
output character set Y = (y1, y2, ..., yT), where y consists of all the characters plus
the special tokens: < UNK >, < sos >, < eos >, O, PER, LOC and ORG. The
goal is to model the conditional probability:

P (Y |X) =
∏︂

i

P (yi|Y<i, X) (6.1)

It predicts the i-th output character, given the previous characters and the input
features X. It does this using an encoder and a decoder.

35

The encoder is a recurrent neural network that computes the hidden states hi for
each timestep t as follows:

henct = f(W hhht−1 + W hxxt) (6.2)

where W hh and W hx are learnable parameters, ht−1 is the hidden state of the previous
timestep and xt is the input feature of the current timestep. The final hidden state
contains information from all the previous timesteps. The encoder compresses the
input features in a single hidden representation. This hidden representation is then
used to initialize the decoder.

In the standard encoder-decoder architectures, the decoder consists of another
recurrent neural network, which computes the hidden states ht as:

hdect = f(W hhht−1) (6.3)

From equation 6.3 we can see that to compute the current hidden state ht, the
decoder uses only the previous hidden state ht−1. To get the output label yt for the
timestep t, a softmax function is applied to create output distribution of the labels:

yt = softmax(W sht) (6.4)

where, W s is a learnable weight.
The drawback of the standard encoder-decoder architecture is that the encoder

network needs to compress the entire input sequence into a single vector representation.
This can affect the performance of the model, especially when dealing with long
sequences, which is the case for speech features. The attention mechanism tries to
mitigate this problem. The attention-based encoder-decoder architecture is presented
in figure 15.

Figure 15: Model architecture for ASR with augmented labels.

36

6.3 Attention mechanism
The issue with the encoder compressing the entire input sequence into a single
vector is addressed by the attention mechanism. The attention mechanism allows
the decoder to "focus" on different parts of the input sequence at each step of the
decoding. There are many different types of attention mechanisms and they are
divided into two major groups: Luong attention [73] and Bahdanau attention [33].

6.3.1 Luong attention

To add Luong attention to the decoder, we first need to calculate the decoder hidden
states. The hidden states are calculated using the previous decoder hidden state and
the output of the embedding layer, similar to Equation 6.2:

hdec = f(W hhht−1 + W hxxt) (6.5)

where ht−1 is the previous hidden state and xt is the output of the embedding layer.
To apply attention to the decoder, we need to calculate the alignment vector αts as:

αts = softmax(score(henc, hdec)) (6.6)

where henc is the encoder hidden state and hdec is the decoder hidden state. The
Luong attention mechanisms are divided into several categories, depending on the
scoring function that they use.

Dot attention computes the scores by doing a dot product between the hidden
states of the encoder and the decoder. The scoring function for the dot attention is
defined as:

score(henc, henc) = ⟨henc, hdec⟩ (6.7)

General attention is similar to the dot attention with the only difference being
that the result from multiplying the hidden states of the encoder and the decoder
is additionally multiplied by a weight matrix. The weight matrix W is calculated
by passing the decoder hidden states through a fully connected layer. The scoring
function for general attention is defined as:

score(henc, hdec) = W (henc ∗ hdec) (6.8)

Concat attention works in a way that first the hidden states of the encoder and
the decoder are summed up and then passed through a fully connected layer. The
fully connected layer is then passed through a tanh nonlinearity and finally multiplied
by a weight vector v. The concat scoring function is defined as:

score(henc, hdec) = v ∗ tanh(Wcombined(henc + hdec)) (6.9)

Hybrid + location-aware attention works in a way that it also takes into account
the location of the elements, which is not the case for the previous scoring functions.
By taking the location into account, different scores can be produced for the same

37

element appearing in different positions. The scoring function of this type of attention
is calculated as:

score(henc, hdec) = v ∗ tanh(W e ∗ henc + W d ∗ hdec + W c ∗ conv + b) (6.10)

where v and b are learnable weights, together with the W matrices and conv is the
location-aware element, which is a convolution defined as:

conv = F ∗ αts (6.11)
where, F is a learnable matrix.
After the scores and the alignment vector are computed, the context vector ct is

then calculated as:

ct =
∑︂

s

αtshenc (6.12)

To get the attention vector attt, we concatenate the context vector ct and the decoder
hidden state hdec and pass them through a fully connected layer:

attt = W c[ct; hdec] (6.13)

6.3.2 Bahdanau attention

To apply the Bahdanau attention, we first need to calculate the alignment score αts,
just like in the Luong attention:

αts = softmax(score(henc, hdec)) (6.14)
The scoring function is defined as:

score(henc, hdec) = v ∗ tanh(Wt ∗ henc + Ws ∗ hdec) (6.15)

where, the vector v and the matrices W are learnable parameters.
With this scoring function, the encoder and the decoder hidden states get passed

through separate fully connected layers and then added together, after which a tanh
nonlinearity is applied. In the end, the score is multiplied by weight vector v.

After the alignment is computed, the context vector ct is calculated as:

ct =
∑︂

s

αtshenc (6.16)

and is concatenated with the embedding as follows:

k = [ct; xt] (6.17)

where xt is the output of the embedding layer. In the end, the concatenated result
and the decoder hidden states are passed through a recurrent neural network, followed
by a fully connected layer:

hdec = W c ∗ f(W hhkt−1 + W hxhdec) (6.18)

38

6.4 Multi-task learning
The multi-task approach uses attention-based encoder-decoder architecture, like the
ASR with augmented labels. In comparison to the previous approach, in addition to
the ASR decoder, this method incorporates another decoder branch for doing named
entity recognition. The architecture is depicted in figure 16.

Figure 16: Model architecture for multi task learning.

As we can see from the figure, both decoders share the same encoder. The encoder
and the ASR attention decoder are the same as in the ASR with augmented labels
model. The NER decoder consists of a bidirectional LSTM with a CRF layer on top.

CRF is a discriminative model suited for sequential tasks where the neighboring
states can affect the current prediction. It is a graphical probabilistic model that uses
state transition matrix as parameters. The output of the model for an input sentence
[X]n is the matrix of scores fθ([X]n), where θ represents the learnable parameters.
Each element of the matrix [fθ]i,j is the score for the i-th tag at the j-th word. Besides
the matrix of scores, there is also a transition matrix [A]i,j, storing the transition
scores from i-th to the j-th state. By introducing the transition matrix, additional
learnable parameters need to be added. We will denote the whole parameter set as
θ′. The score for each sentence [X]n with the tag sequence [i]n can be calculated by
summing the matrix of scores and the transition scores:

s([X]n, [i]n, θ′) =
T∑︂

t=1
[fθ][i]t,t + [A][i]t−1,[i]t (6.19)

Since this is a multi-task approach, we have two losses: ASR loss and NER loss.
To get the final loss, we do a weighted sum between the two losses as follows:

L = λLasr + (1 − λ)Lner (6.20)

39

where Lasr is the loss from the ASR decoder, Lner is the loss from the NER decoder,
and λ is a weighting factor that determines the contribution of both loss functions.

6.5 Decoding
As discussed earlier in this chapter, the encoder-decoder architecture produces a
probability distribution of the character set, for each timestep. Having a probability
distribution is not sufficient because we need to pick one character that is most
probable for each timestep. To solve that, we are going to discuss two decoding
approaches for doing that: greedy decoding and beam search decoding.

6.5.1 Greedy decoding

One of the easiest and most straightforward decoding strategies is greedy decoding.
This strategy takes the output of the decoder, which is a probability distribution over
all the characters, and picks the most probable one at each timestep. The advantage
of this approach is that it is easy to implement and it works fast. Even though this
approach can produce good results, the quality of the output is still worse than using
other decoding strategies. The greedy decoder can pick the most probable character,
which might be incorrect and that will influence the rest of the decoding. This issue
is solved with the beam search decoder.

6.5.2 Beam search decoding

Beam search decoding is an improved decoding strategy, in comparison to the greedy
search. It works in a way that instead of considering only the best character at each
timestep, we consider n different ones at the same time. In the end, we can select
n different hypotheses. The score for each hypothesis is calculated as the sum of
the log-probabilities of the selected characters. This approach solves the problem
that greedy decoding has, which is selecting a wrong character and influencing the
rest of the decoding from that character. The beam search decoding algorithm
usually produces better results in comparison to greedy search. The downside of this
decoding strategy is that the computational time can get high, especially when the
number of considered characters at each timestep is high. In our experiments, we
are going to use this decoding strategy because it is superior to greedy decoding.

40

7 Experiments
This section covers the data that was used in the experiments. Furthermore, it
explains the setup that was used for the experiments, including the choice of audio
features, architecture type, and various hyper-parameters. The last part of the
section covers the most important part of the thesis, which is the results. We will
compare both the augmented labels and multi-task approaches with the standard
pipeline and observe the advantages and drawbacks of using an end-to-end model.
In the multi-task approach, we will see how the NER branch performs when trained
individually, in comparison to training it jointly with the ASR branch. Lastly, we
will compare the two proposed approaches for E2E named entity extraction from
speech and see which one performs better.

7.1 Data
As training data, we used Finnish parliament sessions [74]. The dataset consists of
approximately 1500 hours of recordings. To investigate the impact of the amount of
data on the results, we also used a subset of the dataset, containing approximately
600 hours.

The whole data consists of approximately 7.3 million tokens, from which 337423
are unique. The dataset is annotated with a baseline named entity recognition
system, consisting of three named entity tags: person (PER), location (LOC), and
organization (ORG). The number of person tags is 44984, the number of location
tags is 73860 and the number of organization tags is 65463.

The subset data contains approximately 3.6 million tokens, where the number of
unique ones is 227763. The number of person tags is 23018, the number of location
tags is 37835 and the number of organization tags is 34288.

The data distribution for both the whole and the subset datasets is shown in
table 1

Table 1: Data distribution for the whole and the subset datasets.

Parameters Whole data Subset data
Audio length 1500 h 600 h
Total tokens 7.3 M 3.6 M
Unique tokens 337423 227763
PER tags 44984 23018
LOC tags 73860 37835
ORG tags 65463 34288

To train the baseline NER system, we combined two datasets: Digitoday and
Turku NER.

The Digitoday dataset 1 was collected and provided by [75]. It consists of online
Finnish technological news articles. There are 953 articles and 193,742 word tokens
in the dataset. Since the articles are from one domain, the authors also provided a

1The dataset is publicly available at: https://github.com/mpsilfve/finer-data

41

Wikipedia test for evaluating the system on out-of-domain data. Both datasets are
annotated using the BIO annotation scheme [76]. The Wikipedia test set consists of
83 articles and 49,752 word tokens. The class distribution in the Digitoday dataset
is shown in table 2.

Table 2: Class distribution in Digitoday and Wikipedia.

Class Count Digitoday Count Wikipedia
ORG (organization) 15445 (36.74%) 1821 (18.03%)

LOC (location) 4159 (9.89%) 1427 (14.13%)
PER (person) 6517 (15.50%) 2492 (24.67%)
DATE (date) 3685 (8.76%) 1862 (18.43%)

PRO (product) 11655 (27.73%) 2135 (21.14%)
EVENT (event) 569 (1.35%) 362 (3.58%)

TOTAL 42030 10099

The Turku NER corpus 2 was collected and provided by [77]. This corpus was
also annotated using the BIO scheme, just like the Digitoday. The class distribution
for the Turku NER dataset is presented in table 3.

Table 3: Class distribution in Turku NER.

Class Count Turku NER
ORG (organization) 2601 (22.72%)

LOC (location) 3269 (28.55%)
PER (person) 3085 (26.94%)
DATE (date) 1332 (11.63%)

PRO (product) 980 (8.56%)
EVENT (event) 181 (1.58%)

TOTAL 11448

7.2 Experimental setup
As discussed in the previous section, we used the Digitoday and Turku NER datasets
to train the baseline NER system. Since our goal is to annotate the parliament
transcripts, which are in lowercase and without punctuation, we pre-processed the
training data and converted it to lowercase.

To make a distinction between the first and the last word in a sentence and
the rest of the words, we added "<start>" and "<end>" tokens to each sentence.
For the morph-based sub-word modeling, we added boundary markers to enforce
restrictions on the generated output. Different ways of adding markers enforce
different restrictions. Some common types of markers are: "<w>", "<m+>", "<+m>",
"<+m+>". In our experiments, we used the "<+m+>" style marker since it is shown
to give the best results for Finnish language modeling in ASR [78]. For example,
the word "mobiilikäyttöjärjestelmä" would be segmented as "mobiili+ +käyttö+
+järjestelmä".

2The dataset is publicly available at: https://github.com/TurkuNLP/turku-ner-corpus

42

The architecture has 2 BLSTM layers and 4 highway layers. The embedding
dimensions of words, chars, and morphs are 300, 100, 100 respectively for the BLSTM
networks. The hidden sizes are 300, 75, 75 for words, chars, and morphs. A dropout
of 0.5 is added to the final BLSTM outputs and 0.2 for each layer except for the last.
After the highway layer, we added a dropout probability of 0.7. For training, the
model we used a batch size of 128 and RAdam optimizer [79] with a learning rate of
0.001. All of the hyperparameters were chosen based on internal experiments that
we did on the development set. The model parameters are presented in table 4.

Table 4: Model parameters for the baseline NER system.

Parameters Value
BLSTM layers 2
Highway layers 4
Word embedding dim 300
Character embedding dim 100
Morph embedding dim 100
Word hidden size 300
Character hidden size 75
Morph hidden size 75
Optimizer RAdam
Learning rate 0.001

As discussed in section 6, both ASR with augmented labels and multi-task learning
approaches use attention-based encoder-decoder architecture. As input features, we
used logarithmic filter banks with 40 filters. Speech features consist of a large number
of timesteps, so processing them using a standard BLSTM network is computationally
expensive. To deal with that we use a pyramidal BLSTM network. The pyramidal
structure reduces the computational time by concatenating every two consecutive
timesteps in each layer except the first. Our encoder consists of 5 BLSTM layers and
in each layer, the time resolution is reduced by half. The hidden size of the encoder
is 300. A dropout with a probability of 0.1 is applied after the last BLSTM layer.
As an optimizer, we used Adam [80] with a learning rate of 0.0005.

In the ASR with augmented labels approach, the decoder consists of a character
embedding layer with a dimension of 150, a single layer LSTM network with a hidden
size of 300, and a hybrid + attention-aware attention size of 300. The number of
filters in the convolutional layer is 100. A dropout of 0.1 is applied after the attention
mechanism. The decoder uses Adam optimizer with 0.0005 learning rate.

In the multi-task approach, we have two decoders, one for ASR and one for NER.
The ASR decoder is identical to the decoder in the augmented labels approach. The
NER decoder uses pre-trained 300 dimensional fastText word embeddings as input
to the one-layer BLSTM network with hidden size of 300. The output of the BLSTM
network is followed by a fully-connected layer with a hidden size of 300 and a dropout
probability of 0.1. In the end, the output is passed through a CRF layer which
produces tag probabilities. The NER decoder uses Adam optimizer with a learning
rate of 0.0005. After multiple experiments, we decided to use λ weighting factor of
0.8 for combining the separate losses as in equation 6.20.

43

In both of the approaches, we used negative log-likelihood loss. The parameters
are given in table 5 and table 6.

As a baseline speech recognition system, we are using the augmented labels model
but without augmenting the transcripts with named entities.

Table 5: Model parameters for augmented labels approach.

Parameters Encoder Decoder
Layers 5 1
Hidden size 300 300
Learning rate 0.0005 0.0005
Char embedding size 150
Attention type hybrid + location-aware
Attention size 300
Location-aware convolution size 100
Dropout 0.1
Optimizer Adam
Batch size 10

Table 6: Model parameters for multi-task approach.

Parameters Encoder ASR Decoder NER Decoder
Layers 5 1 1
Hidden size 300 300 300
Learning rate 0.0005 0.0005 0.0005
Word embedding dim 300
Char embedding dim 150
Attention type hybrid + location-aware
Attention size 300
Location-aware convolution size 100
Dropout 0.1
Optimizer Adam
Batch size 16
λ Weighting factor 0.8

7.3 Results
This subsection covers the most interesting part of the thesis, that is, the results.
We will start by presenting the results for the baseline NER architecture.

We evaluated the baseline NER system on the Digitoday and Wikipedia test
sets, converting them in lowercase and removing the punctuation. The results are
presented in table 7.

Next, we can observe how both E2E approaches performed in terms of WER on
the subset parliament dataset. The results are shown in table 8.

Similarly, in table 9, we can observe how both approaches performed on the whole
parliament dataset, but this time, in comparison to the baseline ASR system. The
speech recognition baseline system is the same as the augmented labels architecture
but using the original transcripts. It is a standard attention-based encoder-decoder
architecture.

44

Table 7: F1 score for the Digitoday and Wikipedia test sets, evaluated using the baseline
NER system trained on lowercase data.

Digitoday Wikipedia
Entity tag Precision Recall F1 Precision Recall F1
ORG 68.45 83.89 75.39 53.44 55.10 52.24
PER 73.81 82.66 77.98 82.47 70.40 75.96
LOC 86.53 70.38 77.62 72.31 64.62 68.25
DATE 88.22 99.46 93.50 86.70 96.86 91.50
PRO 69.74 53.62 60.63 67.10 46.33 54.81
EVENT 93.33 48.28 63.64 34.64 14.72 20.66
Micro average 72.22 73.05 72.63 72.83 63.74 67.98

Table 8: WER on the parliament subset data.

Model WER
Augmented labels 39.49
Multi-task 39.66

Table 9: WER on the parliament whole data.

Model WER
Baseline ASR 34.52
Augmented labels 35.16
Multi-task 35.76

Next, we wanted to see how well the multi-task model performs in terms of
precision, recall, and F1 score, across all the named entities. The results are presented
in table 10.

Table 10: Precision, recall and F1 score for the subset and whole parliament data, using
the multi-task approach.

parliament subset parliament whole
Entity tag Precision Recall F1 Precision Recall F1
PER 86.16 80.90 83.45 89.05 81.96 85.36
ORG 84.44 76.22 80.12 85.40 78.92 81.98
LOC 95.53 94.50 95.01 95.12 96.57 95.84
Micro average 93.25 91.05 92.13 93.69 92.87 93.27

To see if the ASR branch in the multi-task learning approach had any impact on
learning the named entities, we disabled it and trained only the NER branch. The
results are shown in table 11.

45

Table 11: F1 score for the whole and subset parliament dataset using the multi-task
approach where the ASR branch is disabled.

parliament subset parliament whole
Entity tag Precision Recall F1 Precision Recall F1
PER 89.80 84.08 85.85 91.25 83.02 86.94
ORG 88.63 76.78 82.28 90.91 79.28 84.69
LOC 96.79 95.2 96.00 96.32 96.75 96.54
Micro average 95.08 92.40 93.72 95.13 93.27 94.19

So far, we were using the original transcripts (the gold standard) to do named
entity recognition. In the next experiment, we did NER on the transcripts generated
by the multi-task model. First, we generated the transcripts with the ASR branch
and then got the named entities using the baseline NER system. Next, we generated
named entities using the NER branch and compared it against the ones generated
by the baseline model. The results are shown in table 12.

Table 12: F1 score for the whole parliament dataset using the multi-task approach, where
NER is done on the transcripts generated by the ASR branch.

Entity tag Precision Recall F1
PER 83.82 64.43 72.86
ORG 82.21 76.03 79.00
LOC 95.19 93.24 94.21
Micro average 92.70 85.66 89.04

We did a similar experiment for the augmented labels approach. We first generated
the transcripts and then used the baseline NER system on those transcripts. In the
end, we compared the named entities of the baseline system and the E2E augmented
labels approach. The results are shown in table 13.

Table 13: F1 score for the whole parliament dataset using the augmented labels approach,
where NER is done on the transcripts generated by the E2E system.

Entity tag Precision Recall F1
PER 83.51 55.34 66.57
ORG 90.18 62.22 73.64
LOC 95.07 89.78 92.35
Micro average 92.65 80.35 86.06

7.4 Analysis of the results
From the baseline NER system results presented in table 7, we can see that the
system performs better on the Digitoday dataset because that data is more in-domain,
in comparison to the Wikipedia. The F1 scores for both datasets are not very high
because the system was trained and evaluated on lowercase data, which causes
difficulties for the system, as discussed in the previous sections. Nevertheless, this
system serves as a good baseline.

46

In table 8, we can see the WER for both approaches, when evaluated on the subset
parliament data. From the table, we can see that the augmented labels approach
achieves 39.49% WER, which is a small improvement over the multi-task approach,
which got 39.66% WER.

Similar results can be seen in table 9, where we evaluated the WER for both
approaches, but this time, in comparison to the baseline ASR. Here, the models
are evaluated on the whole parliament data, which gives an improvement. From the
table, we can see that the augmented labels approach achieves WER of 35.16%, which
is an 0.6% improvement over the multi-task approach, which achieves 35.76% WER.
When we compare the results to the baseline ASR, we can see that both approaches
perform similarly in terms of WER but still fall slightly behind the 34.52% WER
that the baseline model achieves.

From table 10, we can see that using the whole dataset improved the NER results
for the multi-task approach, compared to using the subset data. Using the whole
data, we got an absolute improvement of 1.14%. From the table, we can also see
that the multi-task approach does a really good job of learning the named entities,
achieving a high F1 score of 93.27% on the whole parliament data. In both the
subset and the whole dataset, we can see that the model mostly struggles with the
ORG entity, especially in terms of recall.

When training the multi-task approach only with the NER branch and disabling
the ASR, we can see that the model is still able to learn the named entities. The
results can be seen in table 11. If we compare these results with the ones in table
10, we can see that the system is able to learn better the named entities by relying
only on the NER branch, which gives an improvement of 0.92%. This also shows
that the named entities can be learned directly from the acoustic features. Even
though by using only the NER branch, the system achieves slightly better results,
this approach is not very useful because we don’t have the transcripts. Without the
transcripts, it is hard to interpret the text just from the named entities.

In table 12, we can see that even when we did a NER on the transcripts generated
by the ASR branch, instead of using the original ones, the system still achieves good
results. We can notice that the system does a pretty good job with the LOC entity
and mostly struggles with detecting the PER entity, thus the lower recall score.

In table 13, we did similar experiment but with the augmented labels approach.
Similarly, like in the multi-task approach, we can observe that the system struggles
to recognize the PER entity and achieves lower recall. Nevertheless, the augmented
labels approach does a pretty good job of doing NER.

If we compare the overall F1 score in tables 12 and 13, we can see that the
multi-task approach achieves higher F1 score in comparison to the augmented labels,
with an absolute improvement of 2.98%.

A list of sample transcriptions and their named entity annotations, done using
the multi-task approach is presented in table 14. From the table, we can see that
the system does a pretty good job of transcribing speech, as well as doing named
entity recognition. It is also important to mention that the named entity recognition
in this case is done on the original transcripts and not on the predictions.

Similarly, in table 15, we see a list of samples and their named entities, done

47

using the augmented labels approach. From the sample sentences, we can see that
the augmented labels approach also is able to do a good job at transcribing speech
and detecting named entities, just like the multi-task approach.

Table 14: WER and F1 scores for sample sentences using the multi-task approach.

True sentence Predicted
s̃entence

True NER Predicted NER WER % F1 %

eukin on tehnyt
sinänsä hyviä
päätöksiä näistä
ikään kuin
taakanjaoista

eukki on tehnyt
sinänsä hyviä
päätöksiä näistä
ikään kuin
taakajaojaosta

’PER’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’

’PER’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’

20.00 100

on täysin selvää
että eduskunta
ja hallitus kokon-
aisuudessaan aja-
vat suomen etua
eivätkä suostu

on täysin selvää
että eduskunta
ja hallitus kokon-
aisuudessaan
ajaa suomen
etua eikä suostu

’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’LOC’, ’O’,
’O’, ’O’

’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’LOC’, ’O’,
’O’, ’O’

15.38 100

mutta samaan
aikaan koko
eurooppa mi-
ettii kuinka
pörssipelureita
ja joukkovelka-
kirjoihin si-
joittaneita
pelastetaan kun
pitäisi miettiä
kuinka luodaan
uutta kasvua ja
uutta

mutta samaan
aikaan koko
eurooppa mi-
ettii kuinka
pörssipelureita
ja joukkovelka-
kirjoihin si-
joittaneita
pelastetaan kun
pitäisi miettiä
kuinka luodaan
uutta kasvua ja
uhta

’O’, ’O’, ’O’, ’O’,
’LOC’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’

’O’, ’O’, ’O’, ’O’,
’LOC’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’

4.76 100

valiokunta kat-
soo että suomen
keskeinen tavoite
on kansallisten
ulkopoliittisten
intressien toteu-
tuminen joko
kahdenvälisesti
tai eu tasolla

valiokunta kat-
soo että suomen
keskeinen tavoite
on kansallisten
ulkopoliittisesti
ja intressien to-
teutuminen joko
kahdenvälisesti
tai eu tasolla

’O’, ’O’, ’O’,
’LOC’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’ORG’, ’O’

’O’, ’O’, ’O’,
’LOC’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’ORG’, ’O’

12.50 100

<UNK> ei käy
ilmi onko eussa
arvioitu keski
afrikan tasaval-
lan aikaisempaan
kehitykseen
ja vakauteen
vaikuttaneita
tekijöitä

teosta ei käy
ilmi onko eussa
arvioitu keski
afrikan tasaval-
lan aikaisempaan
kehitykseen
ja vakauteen
vaikuttaneita
tekijöitä

’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’LOC’, ’LOC’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’

’O’, ’O’, ’O’, ’O’,
’O’, ’O’, ’O’, ’O’,
’LOC’, ’LOC’,
’O’, ’O’, ’O’, ’O’,
’O’, ’O’

6.25 100

48

Table 15: WER for sample sentences using the augmented labels approach. Here, the
named entity tags are included in the WER calculation.

True sentence Predicted sentence WER %
matti PER vanhasen PER kakkoshallitus
O on O sosiaalisesti O oikeudenmukainen
O ja O se O myös O näkyy O tehdyissä
O päätöksissä O

matti PER vanhasen PER kakkoshallitus
O on O sosiaalisesti O oikeudenmukainen
O ja O se O myös O näkyy O tehdyissä
O päätöksessä O

4.16

keskustan ORG eduskuntaryhmä ORG
antaa O hallitukselle O ja O erityis-
esti O elinkeinoministeri O pekkariselle
O tunnustuksen O energiapaketin O
määrätietoisesta O perusteellisesta O ja
O ripeästä O valmistelusta O

keskustan ORG eduskuntaryhmä ORG
antaa O hallitukselle O ja O erityis-
esti O elinkeinoministeri O pekkariselle
O tunnustuksen O energiapaketin O
määrätietoisesta O perusteellisesta O ja
O ripeästä O valmistelusta O

0.00

on O hyvä O että O monista O muista
O maista O poiketen O suomen LOC
rikkaista O luonnonvaroista O löytyvät O
lääkkeet O vastata O

on O hyvä O että O monista O muista
O maista O poiketen O suomen LOC
rikkaissa O luonnonvaroissa O löytyvät O
lääkkeet O vastata O

7.69

keskustan ORG eduskuntaryhmä ORG
pitää O hyvänä O että O vanhasen PER
kakkoshallitus O jatkaa O vanhasen O
ykköshallituksen O keskustalaisella O kan-
nustavalla O

keskustan ORG eduskuntaryhmä ORG
pitää O hyvänä O että O vanhasen PER
kakkoshallitus O jatkaa O vanhasen PER
yksi O hallituksen O keskustalaisella O
kannustavalla O

12.50

puolitoista O vuotta O sitten O suomen
LOC pienenä O maana O piti O kantaa
O vastuuta O antaa O näille O pienille O
maille O kreikalle LOC irlannille LOC ja
O <UNK> O

puolitoista O vuotta O sitten O suomen
LOC pienenä O maana O piti O kantaa
O vastuuta O antaa O näille O pienille O
maille O kreikalle LOC irlannille LOC ja
O <UNK> O

0.00

keskustalainen O suomi LOC ei O ole O
tasaverojen O suomi LOC vaan O maa O
jossa O jokaisen O on O osallistuttava O
yhteiskunnan O rakentamiseen O kyky-
jensä O

keskustalainen O suomi LOC ei O ole O
tasaverojen O suomi LOC vaan O maa O
jossa O jokaisen O on O osallistettava O
yhteiskunnan O rakentamiseen O kyky-
jensä O

3.33

päinvastoin O kuin O oppositiolla O
suomen ORG hallituksella ORG ei O ole
O käytössään O politikoinnin O mahdol-
lisuutta O

päinvastoin O kun O oppositiolla O
suomen ORG hallituksella ORG ei O ole
O käytössään O politikoinnin O mahdol-
lisuutta O

5.00

49

8 Conclusion
This chapter covers what are the main takeaways from this thesis. It shows what we
learned from experimenting with doing named entity recognition for spoken Finnish
in an end-to-end manner. Furthermore, it covers the future directions in which this
research can be extended.

8.1 Conclusion
Doing named entity recognition on spoken data is a challenging task that requires
careful design choices. In the standard pipeline approach, the spoken data is first
transcribed using an automatic speech recognition system and then the named
entity recognition system annotates the transcripts. The speech recognition output
is usually without capitalization and punctuation, which causes the named entity
recognition system to miss or misclassify the entities. Usually, the speech recognition
systems are not perfect and they make mistakes, which are propagated to the named
entity recognition system. Having two separate systems also means that the ASR
system is not optimized for the NER task and vice-versa.

To overcome the above issues that arise when doing named entity recognition on
spoken data, we developed two approaches for extracting named entities from speech
in an end-to-end manner. These two approaches are the main focus of this thesis.

The augmented labels approach is attention-based encoder-decoder architecture,
that instead of using the normal transcripts during training, it uses transcripts
augmented with named entities. This way, the model can learn both tasks simulta-
neously.

The second approach is the multi-task learning approach, which is also attention-
based encoder-decoder architecture. The difference between this and the augmented
labels approach is that in this approach we have two separate decoder branches.
One branch for doing NER and one for ASR. This allows both decoder branches to
share the encoder by doing hard parameter sharing, which reduces the number of
parameters.

We showed that both approaches do a good job of transcribing speech and doing
named entity recognition. In the thorough experiments that we did, we showed that
the augmented labels approach is slightly better at transcribing the speech, whereas
the multi-task approach achieves better results on annotating the transcripts with
named entities. In comparison to the baseline ASR model, both proposed approaches
perform slightly worse in terms of WER. This means that the performance of the
ASR does not suffer too much from learning to annotate the named entities.

To explore the impact of the ASR branch in the multi-task learning approach, we
disabled it during training. From those experiments, we showed that the ASR branch
does not have that much impact on learning the named entities but is still important
to have if we want to analyze what has been spoken. We also showed that the named
entities can be learned directly from the acoustic features and even achieve slightly
better results than training the system together with the ASR branch.

Another thing that we can conclude is that adding more data helps in achieving

50

better results. In all the experiments that we did, the models trained on the whole
parliament data outperform the ones trained on the subset of the data.

From the experiments in this thesis, we can conclude that doing named entity
recognition from speech in an end-to-end manner is a good approach and performs
very good in comparison to the standard pipeline approach. They keep in pair with
the baseline ASR system, while also achieving high F1 score on the NER task.

The end-to-end approaches do the transcription and the named entity annotation,
using just one system, optimized to do both tasks, instead of using two separate
systems, like in the pipeline approach. This reduces the total number of parameters
that need to be learned, which can speed up the computation.

In the future, we plan to investigate the multi-task learning approach even more.
We plan to adaptively adjust the weight of both losses so that we can give more
advantage to the ASR loss later in the training. We also plan to experiment more
with scheduled sampling during training.

The experiments that we did in this thesis are on in-domain parliament data. In
the future, we plan to investigate how both approaches perform on out-of-domain
data. Furthermore, we plan to test the models on manually annotated data and see
how well they perform against the pipeline approach.

51

References
[1] M. Hassel, “Exploitation of named entities in automatic text summarization for

swedish,” in NODALIDA’03–14th Nordic Conferenceon Computational Linguis-
tics, Reykjavik, Iceland, May 30–31 2003, p. 9, 2003.

[2] B. Babych and A. Hartley, “Improving machine translation quality with auto-
matic named entity recognition,” in Proceedings of the 7th International EAMT
workshop on MT and other language technology tools, Improving MT through
other language technology tools, Resource and tools for building MT at EACL
2003, 2003.

[3] J. Jiang, “Information extraction from text,” in Mining text data, pp. 11–41,
Springer, 2012.

[4] R. Leaman, C.-H. Wei, and Z. Lu, “tmchem: a high performance approach for
chemical named entity recognition and normalization,” Journal of cheminfor-
matics, vol. 7, no. S1, p. S3, 2015.

[5] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” in International conference on machine learning, pp. 1310–
1318, 2013.

[6] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2,
pp. 157–166, 1994.

[7] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078,
2014.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] M. Gerosa, D. Giuliani, and F. Brugnara, “Acoustic variability and automatic
recognition of children’s speech,” Speech Communication, vol. 49, no. 10-11,
pp. 847–860, 2007.

[10] T. L. Perry, R. N. Ohde, and D. H. Ashmead, “The acoustic bases for gender
identification from children’s voices,” The Journal of the Acoustical Society of
America, vol. 109, no. 6, pp. 2988–2998, 2001.

[11] V. Zue, S. Seneff, J. R. Glass, J. Polifroni, C. Pao, T. J. Hazen, and L. Het-
herington, “Juplter: a telephone-based conversational interface for weather
information,” IEEE Transactions on speech and audio processing, vol. 8, no. 1,
pp. 85–96, 2000.

52

[12] M. Bates, R. Bobrow, P. Fung, R. Ingria, F. Kubala, J. Makhoul, L. Nguyen,
R. Schwartz, and D. Stallard, “The bbn/harc spoken language understanding
system,” in 1993 IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 2, pp. 111–114, IEEE, 1993.

[13] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist tem-
poral classification: labelling unsegmented sequence data with recurrent neural
networks,” in Proceedings of the 23rd international conference on Machine
learning, pp. 369–376, 2006.

[14] E. Pépiot, “Voice, speech and gender:. male-female acoustic differences and
cross-language variation in english and french speakers,” Corela. Cognition,
représentation, langage, no. HS-16, 2015.

[15] C. Andrade and O. V. Martins, “Speech fluency variation in elderly.,” Pro-fono:
revista de atualizacao cientifica, vol. 22, no. 1, pp. 13–18, 2010.

[16] M. Gerosa, S. Lee, D. Giuliani, and S. Narayanan, “Analyzing children’s speech:
An acoustic study of consonants and consonant-vowel transition,” in 2006 IEEE
International Conference on Acoustics Speech and Signal Processing Proceedings,
vol. 1, pp. I–I, IEEE, 2006.

[17] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” in Soviet physics doklady, vol. 10, pp. 707–710, 1966.

[18] K. H. Davis, R. Biddulph, and S. Balashek, “Automatic recognition of spoken
digits,” The Journal of the Acoustical Society of America, vol. 24, no. 6, pp. 637–
642, 1952.

[19] J. G. Wilpon, L. R. Rabiner, C.-H. Lee, and E. Goldman, “Automatic
recognition of keywords in unconstrained speech using hidden markov models,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 11,
pp. 1870–1878, 1990.

[20] A. Varga and R. Moore, “Hidden markov model decomposition of speech and
noise,” in International Conference on Acoustics, Speech, and Signal Processing,
pp. 845–848, IEEE, 1990.

[21] R. Moore, “Signal decomposition using markov modelling techniques,”
MEMORANDUM-ROYAL SIGNALS AND RADAR ESTABLISHMENT RSRE
MEMO, 1986.

[22] I. M. El-Emary, M. Fezari, and H. Attoui, “Hidden markov model/gaussian
mixture models (hmm/gmm) based voice command system: A way to improve
the control of remotely operated robot arm tr45,” Scientific Research and Essays,
vol. 6, no. 2, pp. 341–350, 2011.

53

[23] P. Bansal, A. Kant, S. Kumar, A. Sharda, and S. Gupta, “Improved hybrid model
of hmm/gmm for speech recognition,” Intelligent Information and Engineering
Systems, 2008.

[24] L. Deng, P. Kenny, M. Lennig, V. Gupta, F. Seitz, and P. Mermelstein, “Phone-
mic hidden markov models with continuous mixture output densities for large
vocabulary word recognition,” IEEE Transactions on Signal Processing, vol. 39,
no. 7, pp. 1677–1681, 1991.

[25] M. O. Khelifa, Y. M. Elhadj, Y. Abdellah, and M. Belkasmi, “Constructing
accurate and robust hmm/gmm models for an arabic speech recognition system,”
International Journal of Speech Technology, vol. 20, no. 4, pp. 937–949, 2017.

[26] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition,” IEEE Transactions
on audio, speech, and language processing, vol. 20, no. 1, pp. 30–42, 2011.

[27] A. Graves, “Sequence transduction with recurrent neural networks,” arXiv
preprint arXiv:1211.3711, 2012.

[28] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in 2013 IEEE international conference on acoustics,
speech and signal processing, pp. 6645–6649, IEEE, 2013.

[29] J. S. Garofolo, “Timit acoustic phonetic continuous speech corpus,” Linguistic
Data Consortium, 1993, 1993.

[30] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures, data and
units for streaming end-to-end speech recognition with rnn-transducer,” in 2017
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU),
pp. 193–199, IEEE, 2017.

[31] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A neural
network for large vocabulary conversational speech recognition,” in 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 4960–4964, IEEE, 2016.

[32] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Advances in neural information processing systems, pp. 3104–
3112, 2014.

[33] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[34] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hybrid
ctc/attention architecture for end-to-end speech recognition,” IEEE Journal of
Selected Topics in Signal Processing, vol. 11, no. 8, pp. 1240–1253, 2017.

54

[35] S. Petridis, T. Stafylakis, P. Ma, G. Tzimiropoulos, and M. Pantic, “Audio-visual
speech recognition with a hybrid ctc/attention architecture,” in 2018 IEEE
Spoken Language Technology Workshop (SLT), pp. 513–520, IEEE, 2018.

[36] R. Grishman and B. M. Sundheim, “Message understanding conference-6: A
brief history,” in COLING 1996 Volume 1: The 16th International Conference
on Computational Linguistics, 1996.

[37] D. Farmakiotou, V. Karkaletsis, J. Koutsias, G. Sigletos, C. D. Spyropoulos,
and P. Stamatopoulos, “Rule-based named entity recognition for greek financial
texts,” in Proceedings of the Workshop on Computational lexicography and
Multimedia Dictionaries (COMLEX 2000), pp. 75–78, 2000.

[38] K. Torisawa et al., “Inducing gazetteers for named entity recognition by large-
scale clustering of dependency relations,” in proceedings of ACL-08: HLT,
pp. 407–415, 2008.

[39] F. Jahangir, W. Anwar, U. I. Bajwa, and X. Wang, “N-gram and gazetteer
list based named entity recognition for urdu: A scarce resourced language,” in
Proceedings of the 10th Workshop on Asian Language Resources, pp. 95–104,
2012.

[40] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in Proceedings
of the 18th International Conference on Machine Learning 2001 (ICML 2001),
pp. 282–289, 2001.

[41] A. Borthwick and R. Grishman, A maximum entropy approach to named entity
recognition. PhD thesis, Citeseer, 1999.

[42] H. L. Chieu and H. T. Ng, “Named entity recognition: a maximum entropy
approach using global information,” in Proceedings of the 19th international
conference on Computational linguistics-Volume 1, pp. 1–7, Association for
Computational Linguistics, 2002.

[43] A. McCallum and W. Li, “Early results for named entity recognition with
conditional random fields, feature induction and web-enhanced lexicons,” in
Proceedings of the seventh conference on Natural language learning at HLT-
NAACL 2003-Volume 4, pp. 188–191, Association for Computational Linguistics,
2003.

[44] B. Settles, “Biomedical named entity recognition using conditional random fields
and rich feature sets,” in Proceedings of the International Joint Workshop on Nat-
ural Language Processing in Biomedicine and its Applications (NLPBA/BioNLP),
pp. 107–110, 2004.

[45] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur, “Recurrent
neural network based language model,” in Eleventh annual conference of the
international speech communication association, 2010.

55

[46] Z. Liu, M. Yang, X. Wang, Q. Chen, B. Tang, Z. Wang, and H. Xu, “Entity
recognition from clinical texts via recurrent neural network,” BMC medical
informatics and decision making, vol. 17, no. 2, p. 67, 2017.

[47] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence
tagging,” arXiv preprint arXiv:1508.01991, 2015.

[48] E. F. Sang and F. De Meulder, “Introduction to the conll-2003 shared task:
Language-independent named entity recognition,” arXiv preprint cs/0306050,
2003.

[49] T. Hirsimaki, J. Pylkkonen, and M. Kurimo, “Importance of high-order n-
gram models in morph-based speech recognition,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 17, no. 4, pp. 724–732, 2009.

[50] O. Kuru, O. A. Can, and D. Yuret, “Charner: Character-level named entity
recognition,” in Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers, pp. 911–921, 2016.

[51] M. Gridach, “Character-level neural network for biomedical named entity recog-
nition,” Journal of biomedical informatics, vol. 70, pp. 85–91, 2017.

[52] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional lstm-cnns-
crf,” arXiv preprint arXiv:1603.01354, 2016.

[53] C. N. d. Santos and V. Guimaraes, “Boosting named entity recognition with
neural character embeddings,” arXiv preprint arXiv:1505.05008, 2015.

[54] M. Creutz, T. Hirsimäki, M. Kurimo, A. Puurula, J. Pylkkönen, V. Siivola,
M. Varjokallio, E. Arisoy, M. Saraçlar, and A. Stolcke, “Morph-based speech
recognition and modeling of out-of-vocabulary words across languages,” ACM
Transactions on Speech and Language Processing (TSLP), vol. 5, no. 1, pp. 1–29,
2007.

[55] V. Siivola, T. Hirsimaki, M. Creutz, and M. Kurimo, “Unlimited vocabulary
speech recognition based on morphs discovered in an unsupervised manner,” in
Eighth European Conference on Speech Communication and Technology, 2003.

[56] R. Yeniterzi, “Exploiting morphology in turkish named entity recognition system,”
in Proceedings of the ACL 2011 Student Session, pp. 105–110, Association for
Computational Linguistics, 2011.

[57] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[58] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” arXiv preprint
arXiv:1802.05365, 2018.

56

[59] X. Feng, X. Feng, B. Qin, Z. Feng, and T. Liu, “Improving low resource named
entity recognition using cross-lingual knowledge transfer.,” in IJCAI, pp. 4071–
4077, 2018.

[60] J. Xie, Z. Yang, G. Neubig, N. A. Smith, and J. Carbonell, “Neural cross-
lingual named entity recognition with minimal resources,” arXiv preprint
arXiv:1808.09861, 2018.

[61] A. Gravano, M. Jansche, and M. Bacchiani, “Restoring punctuation and capi-
talization in transcribed speech,” in 2009 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 4741–4744, IEEE, 2009.

[62] L. Zhai, P. Fung, R. Schwartz, M. Carpuat, and D. Wu, “Using n-best lists for
named entity recognition from chinese speech,” in Proceedings of HLT-NAACL
2004: Short Papers, pp. 37–40, 2004.

[63] S. Ghannay, A. Caubrière, Y. Estève, N. Camelin, E. Simonnet, A. Laurent,
and E. Morin, “End-to-end named entity and semantic concept extraction from
speech,” in 2018 IEEE Spoken Language Technology Workshop (SLT), pp. 692–
699, IEEE, 2018.

[64] R. Kneser and H. Ney, “Improved backing-off for m-gram language modeling,”
in 1995 International Conference on Acoustics, Speech, and Signal Processing,
vol. 1, pp. 181–184, IEEE, 1995.

[65] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances
in neural information processing systems, pp. 3111–3119, 2013.

[66] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, “Learning word
vectors for 157 languages,” in Proceedings of the International Conference on
Language Resources and Evaluation (LREC 2018), 2018.

[67] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pp. 1532–1543, 2014.

[68] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov,
“Transformer-xl: Attentive language models beyond a fixed-length context,”
arXiv preprint arXiv:1901.02860, 2019.

[69] S. Toshniwal, A. Kannan, C.-C. Chiu, Y. Wu, T. N. Sainath, and K. Livescu,
“A comparison of techniques for language model integration in encoder-decoder
speech recognition,” in 2018 IEEE spoken language technology workshop (SLT),
pp. 369–375, IEEE, 2018.

[70] C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-C. Lin, F. Bougares,
H. Schwenk, and Y. Bengio, “On using monolingual corpora in neural machine
translation,” arXiv preprint arXiv:1503.03535, 2015.

57

[71] A. Sriram, H. Jun, S. Satheesh, and A. Coates, “Cold fusion: Training seq2seq
models together with language models,” arXiv preprint arXiv:1708.06426, 2017.

[72] D. Porjazovski, J. Leinonen, and M. Kurimo, “Named entity recognition for
spoken finnish,” in 2nd International Workshop on AI for Smart TV Content
Production: Affiliation; Access and Delivery, (New York, NY, USA), ACM,
2020.

[73] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-
based neural machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[74] A. Mansikkaniemi, P. Smit, M. Kurimo, et al., “Automatic construction of the
finnish parliament speech corpus.,” in INTERSPEECH, vol. 8, pp. 3762–3766,
2017.

[75] T. Ruokolainen, P. Kauppinen, M. Silfverberg, and K. Lindén, “A finnish
news corpus for named entity recognition,” Language Resources and Evaluation,
pp. 1–26, 2019.

[76] L. A. Ramshaw and M. P. Marcus, “Text chunking using transformation-based
learning,” in Natural language processing using very large corpora, pp. 157–176,
Springer, 1999.

[77] J. Luoma, M. Oinonen, M. Pyykönen, V. Laippala, and S. Pyysalo, “A broad-
coverage corpus for finnish named entity recognition,” in Proceedings of The
12th Language Resources and Evaluation Conference, pp. 4615–4624, 2020.

[78] P. Smit, S. Virpioja, M. Kurimo, et al., “Improved subword modeling for wfst-
based speech recognition.,” in INTERSPEECH, pp. 2551–2555, 2017.

[79] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance
of the adaptive learning rate and beyond,” arXiv preprint arXiv:1908.03265,
2019.

[80] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	1.1 Scope of the thesis
	1.2 Research questions
	1.3 Outline of the thesis

	2 Machine learning
	2.1 Data in machine learning
	2.2 Types of machine learning methods
	2.3 Conditional random fields
	2.4 Neural networks
	2.4.1 Recurrent neural networks

	2.5 Multi-task learning

	3 Automatic speech recognition
	3.1 Importance of ASR
	3.2 Types of ASR systems
	3.3 Building blocks of conventional ASR systems
	3.3.1 Feature extraction
	3.3.2 Lexicon
	3.3.3 Acoustic model
	3.3.4 Language model

	3.4 End-to-end ASR
	3.4.1 Connectionist temporal classification
	3.4.2 Attention-based encoder-decoder

	3.5 Challenges in ASR
	3.6 Speech recognition assessment
	3.6.1 Word error rate
	3.6.2 Processing time

	3.7 Previous research on ASR

	4 Named entity recognition
	4.1 Importance of NER
	4.2 Types of NER systems
	4.3 BLSTM-CRF architecture for NER
	4.4 Challenges in NER
	4.5 Assessment of named entity recognition systems
	4.5.1 Precision, recall and F1

	4.6 Previous research on NER

	5 Language modeling
	5.1 N-gram language models
	5.2 Neural network language models
	5.3 Language models in E2E ASR

	6 Methods
	6.1 Baseline NER system
	6.2 ASR with augmented labels
	6.3 Attention mechanism
	6.3.1 Luong attention
	6.3.2 Bahdanau attention

	6.4 Multi-task learning
	6.5 Decoding
	6.5.1 Greedy decoding
	6.5.2 Beam search decoding

	7 Experiments
	7.1 Data
	7.2 Experimental setup
	7.3 Results
	7.4 Analysis of the results

	8 Conclusion
	8.1 Conclusion

