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Abstract
The aim of this thesis was to study effects of anti-epileptic drugs in the infant brain
using functional connectivity networks defined by phase and amplitude correlations
in EEG measurements. Prenatal exposure to anti-epileptic drugs is a well-known
cause of problems like decreased cognitive function later in life.

Connectivity matrices derived from EEG measurements of 56 newborns with
prenatal exposure to anti-epileptic drugs and 67 healthy controls were used in the
analysis. EEG measurements collected during both active sleep and quiet sleep
were used, and both phase-phase and amplitude-amplitude correlation was used
in defining the brain networks. Network connectivity was studied using multiple
network metrics that give information about network segregation and integration. In
addition, correlation between network statistics and neurodevelopmental assessment
in the age of two was studied.

Significant differences were found in efficiency and clustering of the networks
between the AED-exposed newborns and healthy controls. Also, differences in the
networks was found using a method called the network-based statistic. These results
indicate that functional connectivity could be useful in the examination of the effects
of anti-epileptic drugs to the infant brain.
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Tiivistelmä
Raskaudenaikainen altistuminen epilepsialääkkeille lisää lapsen riskiä muun muassa
kognitiivisen suorituskyvyn alenemalle. Tämän diplomityön tavoitteena oli tutkia
epilepsialääkkeiden vaikutusta vastasyntyneiden aivojen funktionaalisiin verkostoihin.
Tähän käytettiin aivosähkökäyräsignaaleista sekä vaihekorrelaation että amplitudikor-
relaation mukaan määriteltyjä verkostoja. Verkostoja analysoitiin graafiteoreettisin
menetelmin.

Tutkimuksessa oli mukana 56 raskauden aikana epilepsiälääkkeille altistunutta
vastasyntynyttä sekä 67 tervettä verrokkia. Aivosähkökäyrää oli tallennettu sekä
syvän että REM-unen aikana. Lasten neurologista kehitystä oli myös tutkittu kahden
vuoden iässä, ja verkostoanalyysin tuloksia vertailtiin lopuksi lasten kehitykseen
liittyviin tuloksiin.

Epilepsialääkkeille altistuneiden ja verrokkiryhmän aivoverkostojen välillä ha-
vaittiin eroavaisuuksia verkostojen tehokkuudessa ja klusteroitumisessa. Tulokset
viittaavat siihen, että funktionaalisia verkostoja voitaisiin tulevaisuudessa käyttää
apuna tutkittaessa epilepsialääkkeiden vaikutusta vastasyntyneiden aivoihin.
Avainsanat elektroenkefalografia, vastasyntynyt, verkostoanalyysi
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1 Introduction
Anti-epileptic drugs (AEDs) are a treatment for epilepsy, a neurological condition
which requires regular pharmacological management, also during pregnancy. This
exposes children to a wide array of complications during pregnancy and hindrances
in later life. By more efficient and early recognition of adverse effects of prenatal
AED exposure, the management of neurodevelopmental disorders could be optimized
beyond the current clinical practise. [1][2]

EEG is a powerful tool for evaluating the neurological state of newborns. By
the use of EEG data, known for its high temporal resolution, information about the
connections of the infant brain could be inferred and accurately used in analysing the
neurological development of the newborn. Evaluating the interareal synchronization
of elemental features of EEG, like phase and amplitude, forms the basis for functional
connectivity analysis. [3]

Functional connectivity is a phenomenon increasingly studied in brain research,
which deals with the temporal correlations between separate brain regions. As
most neurological disorders may not present as alterations in structural connections,
assessment of functional connectivity has been recognized as an essential method
for finding relevant information about the brain function. For this reason, many
measurements of complex network analysis have been utilized for analysis of brain
networks. [4][5][6]

The dataset used in this thesis consists of brain connectivity matrices depicting
both phase-phase correlation and amplitude-amplitude correlation in EEG measure-
ments of 56 infants prenatally exposed to AEDs and 67 healthy controls. The data
includes measurements from both sleep states, active sleep and quiet sleep. The
EEG measurements were done at the conceptional age of 42 weeks.

The aim of this thesis was to gather information about the differences in func-
tional connectivity between AED-exposed infants and healthy controls. For this
purpose, network measures including efficiency, clustering and modularity were used.
Additionally, a method called network-based statistic was used to identify differences
in the networks. As neurodevelopmental assessment of the test subjects in the age of
two was also available, a secondary goal was to investigate whether differences in the
networks in the early life can be correlated with neurological development later in
life.
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2 Background
In this section, previous research around the study field of this thesis is described.

2.1 Anti-epileptic drugs
Anti-epileptic drugs (also known as anticonvulsants or anti-seizure drugs) are phar-
macological substances used in the treatment of epilepsy, which is a neurological
condition affecting approximately 1 percent of the general population [7].

Because of their multiple mechanisms of action, they are also used in a range of
other neurological and psychiatric disorders, such as bipolar disorder and neurogenic
pain [8].

Conventional AEDs are generally attributed as having an enhancing effect on
GABAergic inhibitory neurotransmission or an inhibitory effect on voltage-gated
sodium ion channels [9]. In addition to these mechanisms, newer AEDs can also
inhibit glutamatergic neurotransmitter receptors or T-type calcium channels. [10]
The mechanisms of action remain partially unclear for some AEDs currently in use.

AEDs are used in neonatal intensive care for preventing seizures that might
contribute to brain injury, as they have been shown to have neuroprotective effects
in such cases [11]. However, many kinds of AEDs have been shown to cause neuronal
cell death when applied to a developing brain in animal studies, which indicates
that the use of such drugs is not without a risk in the early stages of life [12]. This
thesis focuses on infants exposed to AEDs during pregnancy leaving use of AEDs for
neonatal complications outside of its scope.

2.1.1 Effects of prenatal AED exposure

Epilepsy is one of the most common neurological disorders that requires continuous
treatment during pregnancy. However, the use of AEDs during pregnancy has
been reported to increase the risk of both prenatal and postnatal complications.
Neurodevelopmental effects of prenatal AED exposure include impaired verbal and
memory abilities as shown by multiple measures of cognitive function [13][14][15].
Because of the seriousness of the neurodevelopmental outcomes, there is a need for
methods for recognizing evidence pertaining to the adverse outcomes in a more time
sensitive manner to be able to manage the deficits as early as possible [16]. Other
adverse effects of prenatal AED use commonly include congenital malformations,
fetal growth restriction and fetal death, which have been generally reported and
studied more extensively than neurodevelopmental outcomes [17][1][16].

GABAergic interneurons have been offered as one of the cellular level explanations
for what causes synchronization of oscillatory activity in early brain development [18].
Maturation of GABAergic brain circuits has also been shown to determine the onset of
critical developmental periods early in life, and it is recognized that pharmacological
targeting of these circuits can onset premature or delayed development [19].

Offspring of women with epilepsy have an increased risk of perinatal complica-
tions, and the risk is further increased by gestational use of AEDs like valproate,
carbamazepine, oxcarbazepine, lamotrigine and levetiracetam [20].
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It has been suggested by studies that list outcomes for individual drugs that
neurocognitive deficiencies associated with AEDs are most accountable to valproate,
whereas many other AEDs have no such effect [15]. For example, a higher occurrence
of ADHD has been reported in children prenatally exposed to valproate, but not in
children exposed to other AEDs [21]. Valproate is listed as a first-line drug for all
epilepsy-related complications in the U.S. [22] and it is also listed as an essential
medicine according to the World Health Organization [23].

In this thesis, it is only taken into account whether the infant has been prenatally
exposed to AEDs or not, without specifying the kind of medication in use.

2.2 Electroencephalography
Electroencephalography (EEG) is a non-invasive method for recording electrical
activity in the brain. EEG signals are recorded using electrodes placed on the scalp
so that they capture signals simultaneously from most cortical brain regions. The
measured voltage fluctuations are caused by populations of pyramidal cells of the
cortex as a response to thalamo-cortical and cortico-cortical brain connections. These
voltages are small, of the order of magnitude of several microvolts, which means that
the signal is somewhat prone to artefacts from other electricity-producing activity
near the electrodes, such as muscle movements. [24]

The voltage at each electrode is recorded in comparison with a common reference,
producing signals unique to the location of the electrode. These signals are in the
format of waveform time series, which can be used in electrophysiological analysis by
determining various features, such as frequency, phase and amplitude, from the data
to quantify the raw signals. [25]

EEG is regarded as having a high temporal resolution, of the order of magnitude
of milliseconds, which makes it one of the best methods for recording real-time
neuronal activity of the brain. Conversely, the spatial resolution of EEG is usually
mentioned as being poor. This is often stated as a downside of the method, as
it makes localization of findings often too imprecise for matching the activity to
the underlying structural brain areas. In clinical use, EEG is particularly useful
for evaluating seizure activity and epilepsy. Other indications for its use include
monitoring recovery from hypoxic states of the brain. [24][26][27]

EEG can be efficiently used in connectivity analysis, as correlations between
signals from all pairs of electrodes can be measured with different methods to suit the
underlying hypothesis that is being tested. Thereafter, the correlations are used to
define connectivity matrices to describe brain networks. Properties of these networks
can then be analysed using, for example, measures of graph theory. [28]

There are potential problems in using EEG recordings for connectivity analysis,
which must be taken into account in choices of connectivity metrics in order to
minimize false correlation and other artefacts. One of these is the common reference
problem, which arises from the fact that the EEG signal at each electrode reflects the
difference of potential at the electrode and at the reference electrode. This means
that fluctuations at the reference electrode are reflected in all signals produced this
way, potentially causing false correlation at a zero time lag between two actually
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uncorrelated electrodes. Other problems include the volume conduction problem,
which is caused by currents flowing in tissues resulting in activity from one source
being picked up by multiple electrodes. [28]

2.2.1 Infant EEG

Compared to adult EEG, neonatal EEG has a better spatial resolution and non-
redundant information can be collected even with more scalp electrodes, due to the
higher conductivity of the neonatal skull [29].

There are some features of EEG that are characteristic for perinatal children, and
also some features which change quickly along with the conceptional age of the child
[25]. This makes EEG an interesting method for studying the brain development
in the very early stages of life. These features include trace alternant activity and
increasing continuity [25], and spontaneous activity transients (SATS), which include
so called delta brushes [30][3].

Age-dependent features of neonatal EEG can be used in determining the concep-
tional age of the baby, and consequently in the assessment of whether the EEG of
the baby is normal. The interpretation of these features is traditionally based on
the assumption that the immature brain develops at the same rate both in utero
and after delivery [25]. This may not always be true, because it has been shown
that some connectional features in preterm neonates differ from full-term neonates
of corresponding age [31].

One of the features of normal EEG in newborn infants is interhemispheric syn-
chrony (IHS). IHS is defined as temporal co-incidence of activity across brain
hemispheres, which is usually encountered during trace alternant activity. [32]

EEG is clinically used for monitoring neurodevelopmental status of newborns
and it is considered as a valuable tool for trying to minimize injury to the brain in
neonatal intensive care [11][3]

2.2.2 Sleep EEG

The EEG data used in studying functional connectivity of the neonatal brain is
usually recorded during sleep. This is due to the fact that the inevitable movement
of the babies in the awake state would cause excessive artefacts in the recordings
and lower the quality of the data beyond the needs of connectivity analysis [33].

By conventional definition, two different behavioral states, active sleep (AS),
also called REM sleep, and quiet sleep (QS), also called non-REM sleep, can be
distinguished in neonatal sleep EEG. Until conceptional age of circa 30 weeks, the
EEG looks similar in both sleep states, whereafter the features of the sleep states
have a differential development [26]. Active sleep constitutes up to 50 percent of
sleep time in neonates, and its amount diminishes gradually by age, reaching 30
percent by the age of two and eventually 20 percent in adulthood [34].

The recognition of the sleep state usually has to be conducted visually based on
EEG patterns, regularity of respirations, and the presence or absence of rapid eye
movements (REMs) [35][26]. REMs occur during active sleep, but they are absent
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during quiet sleep. EEG features of each sleep state vary greatly with the gestational
age of the infant. [35]

In addition, functional connectivity has been shown to change significantly in
neonatal test subjects between the two sleep states. [33].

2.3 Brain networks
Brain network science is a developing field of study, which incorporates observations
from brain measurements into theoretical knowledge of complex networks to reveal
the prevalence of network integration in the human brain [6]. Research has shown
that both structural systems and functional systems in the brain have features of
complex networks, which has led to many studies investigating brain networks in
diverse experimental modalities [36].

While structural (anatomical) connections naturally occur between brain regions
and neurons connected by white matter tracts, functional connections, consisting of
correlated activity, may occur between anatomically unconnected brain regions [5].
Therefore, in the context of brain connectivity, it is important to make the distinction
between structural connections and the statistical connections showing up in brain
network analysis, because the observations in EEG connectivity analysis are not
necessarily representative of the underlying physical connections. Nevertheless, the
structural connections act as a foundation upon which the functional connections
may develop, and should therefore be regarded as constraints on the overlying
functional networks [4][6]. How the anatomical networks relate to the segregation
and integration observed in statistically reconstructed functional networks is an
interesting outstanding question in brain network science [6].

Graph models are often used as a tool to examine brain network organization,
topology and complex dynamics [36]. In the early days, graph theoretical approach
for understanding brain networks mostly dealt with binary networks constructed
by the use of thresholding the data input [37]. With the development of more
sophisticated technical and mathematical methods, the present research usually
incorporates weighted networks as to more accurately reflect patterns of variable
connections.

Using the graph theory approach, various organizational and topological properties
have been found in the human brain [36][6]. Brain networks have often been
characterized by small-worldness, similarly to many other complex systems, as in
they generally have a high, non-random local connectivity, and short, near-random
path lengths [4]. These are seen in network measurements, for example, as a high
clustering coefficient and a high global efficiency [38][4]. Randomness of a network
ensures fast spreading of information in a network, and regularity gives rise to
coherent oscillations, which is why a brain as a small-world network takes advantage
of the best of both features [39]. The small-worldness of brain networks has been
interpreted to reflect two important features of the brain: highly specialized and
localized processing of information, and cost-effective transfer of information from
one area of the brain to another [40]. Additionally, modular organization is often
revealed in the brain networks so that distinct clustering patterns and subnetworks
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can be recognized [6].

2.3.1 Functional connectivity

By definition, functional connectivity means statistical dependence between time
series of measured neurophysiological signals. Two spatially separate locations are
regarded as functionally connected if they have synchronized dynamics, which can be
used to study the inner workings of the brain. [4] EEG is a good tool for analysing
the functional connectivity of the brain, because its high temporal resolution means
that dependence can be studied in multiple time scales [41].

Functional connectivity of brain networks crucially affects the way the brain
processes information, leading to the notion that simple activation studies previously
conducted in brain research need to be replaced, or at least complemented, by more
complex functional network studies [42].

Different research methods, such as fMRI and EEG, have been shown to ex-
press correlation in studying vigilance-dependent changes in dynamic functional
connectivity networks [43].

Current research shows that both phase and amplitude relations can be used
to define large-scale brain networks depending on the underlying hypothesis, as
they capture different dynamics of connectional activity in the brain [28][44]. In
this thesis, connectivity matrices based on both phase-phase correlation (PPC) and
amplitude-amplitude correlation (AAC) are used for defining graphs to be analysed
with graph theoretical metrics.

Graph theory metrics, such as global connectivity and network clustering in
neonatal MRI have been shown to correlate with cognitive performance at the
age of five [45]. As the time resolution of EEG measurements is better than MRI
measurements, the network connectivity could theoretically be more accurately
studied with EEG. By studying preterm neonates it has been shown that EEG can
be used to determine network measures which can also be found to correlate with
cognitive outcomes [31]. The need for accurate methods for predicting potential
cognitive developmental problems has been recognized, because research has shown
that not all early developmental problems are predictive of disabilities in the later
stages of development [46]. Furthermore, as endogenous brain activity is a prerequisite
for the development of the neonatal brain, finding relevant disruptions in the functional
connectivity of the brain as early as possible is a task of clinical importance [47].

2.3.2 Development of brain networks

Functional connectivity is known to develop rapidly with age in the early stages
of life. In the neonatal period, a neurodevelopmental change seems to occur from
experience-independent development, which is essential in utero, to experience-
dependent development, which is useful when there exists environmental sensory
input. [33]

Early development of brain connectivity networks is thought to be driven by
endogenous signals called spontaneous activity transients (SATs) [3]. SATs provide
the brain with the possibility for innate activity-dependent wiring before there is
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brain activity driven by sensory experiences [48]. In the proximity of full-term age,
genetic factors and sensory factors are mutually responsible for the development of
the brain [49][50]. Soon after the birth, SATs can no longer be seen in a healthy
infant brain and their presence can indicate underlying pathology [3]. These processes
can be seen as an indication of a gradual transition from experience-independent
development essential in utero to experience-dependent development useful with the
environmental sensory input [33].

The different functional connectivity measures have been shown to work as
indicators of brain development. For example, as higher frequencies in the neonatal
EEG are mostly incorporated into SAT events, amplitude fluctuations of higher
frequencies are thought to indirectly indicate occurrence of SATs [51]. AAC coupling
declines from preterm infants towards term age, and can also be seen as preterm
infants having overall stronger AAC networks than healthy controls [33][31]. This
decline reflects the disappearance of SAT events and has been suggested to be
particularly fast in the weeks following term age [33]. Also, changes in PPC coupling
can be attributed to maturing of the anatomical neuronal connections, as higher
frequency correlation increases with age in the neonatal brain [33].

Synchronized neural connectivity develops from birth until early adulthood. The
age-related changes of patterns in synchronization of high-frequency oscillations have
been shown to correlate with both cognitive scores and resting-state brain activity.
Additionally, the activation of frontal regions of the brain has been shown to increase
as subjects approach adulthood, which in combination with precise synchronization
has been suggested to be a landmark of maturity. [18]

GABAergic interneurons and gap junctions have been suggested as being a cellular
level explanation for what causes synchronization of oscillatory in the brain, and
these have been shown to play an important role in early brain development [18].
Maturation of GABAergic brain circuits have also been shown to determine the onset
of critical developmental periods early in life, with the insight that pharmacological
targeting of these circuits can onset premature or delayed development [19].

In general, networks in the infant brain are thought to be more globally dispersed,
before being organized into more localized, anatomically proximal subnetworks seen
in the adult brain [6].

2.4 Aims
The present thesis aims to find indications that functional connectivity as recorded
with EEG could be used to examine the effects of AEDs on the development of brain
networks in infants. Similar methods have previously been used successfully to find
effects of other conditions, such as preterm birth [31]. Specifically, network metrics
that have previously been found to discover differences in development near term
age are in the focus of this study.

In addition, the results are also compared to the neurodevelopmental scores
collected later to assess whether the differences seen in the brain networks are robust
enough to show up in developmental performance of the children later in life.
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3 Materials and methods
In this section, the data and research methods are described. First, general infor-
mation about the dataset used in this thesis, as well as information about the data
collection and preprocessing is introduced. After this, there are descriptions about
how the methods of analysis work.

3.1 Dataset
The data used in this thesis consists of adjacency matrices of the size 58x58, where
58 is the number of nodes in the graph representing brain network.

These adjacency matrices were derived from AS and QS EEG measurements
from 56 neonates fetally exposed to anti-epileptic drugs and 67 controls. The mean
conceptional age during the collection of EEG data was 42 weeks. Of the AED group,
19 were exposed to oxcarbazepine or carbamazepine, 5 were exposed to valproic acid,
16 were exposed to polytherapy (none of which received valproic acid) and 16 were
exposed to monotherapy with other drugs. For a more accurate description of the
test subjects, the reader may refer to [2], where the same test group was used.

The EEG data was filtered into frequency bands around 21 central frequencies
between 0.5 Hz and 19.2 Hz.

The data was collected using 19 scalp electrodes placed using the international
10-20 standard. For information about the process of data collection, the reader may
refer to http://www.babacenter.fi/methods/physiological-methods.

Using an infant head model and a cortical surface model for infant brain, the
contribution of cortical current sources to each of the scalp electrodes can be estimated.
Parcellation of these cortical sources was performed so that the eventual data consisted
of 58 parcels representing brain regions all around the brain. These parcels became
nodes for the adjacency matrices used in this thesis.

After reconstructing EEG signals for each of the 58 parcels, correlations between
all signal pairs were computed. AAC was computed by mutually orthogonalizing the
parcel signals, computing amplitude envelopes at each time point and calculating
the Pearson correlation coefficient between these amplitude envelopes. Mutual
orthogonalization has been reported to be effective at minimizing the potential
non-independence of signals caused by volume conduction of currents [53][54].

For PPC, the squared weighted phase lag index (dWPLI) was computed. DWPLI
is an index of phase-synchronization that minimizes sensitivity to noise and volume-
conduction [55].

For a more detailed description of the aforementioned preprocessing steps, the
reader may refer to [31], where the data underwent similar processing.

3.2 Network measures
Network connectivity in the dataset was analysed using several measures: mean,
modularity, efficiency, and local and global clustering coefficients. Different measures
characterize distinct features in the networks, such as the presence of subnetworks or

http://www.babacenter.fi/methods/physiological-methods
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Frequency Type
0.50 Delta
0.60 Delta
0.72 Delta
0.86 Delta
1.04 Delta
1.24 Delta
1.49 Delta
1.79 Delta
2.15 Delta
2.58 Delta
3.10 Delta
3.72 Delta
4.46 Theta
5.35 Theta
6.42 Theta
7.7 Alpha
9.24 Alpha
11.1 Alpha
13.3 Beta
16.0 Beta
19.2 Beta

Table 1: List of central frequencies of the frequency bands used in EEG data and
their corresponding wave types according to the conventional classification [52].

the level of integration [42]. For calculating the measures, Matlab functions provided
in The Brain Connectivity Toolbox [5] were used, with the exception of mean, which
was calculated using the Matlab default function.

In the following notations, N is the set of all nodes in the network, whereas n is
the number of nodes. (i,j) is a link between the ith and the jth node in the graph,
and it is associated with a connection weight wij, which is the correlation between
the two nodes.

3.2.1 Mean

The mean connectivity, M, is simply calculated as the average of all weights in the
network,

M = 1
n

∑︂
i,j∈N

wij. (1)

The mean connection strength is used to indicate whether the overall connectivity in
the networks is sparse or weak, or dense or strong.
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3.2.2 Efficiency

Global efficiency is a measure for quantifying functional integration in a network, and
it is defined as the inverse of average shortest path length in a network. It is related
to another network measure called characteristic path length, with the difference
that global efficiency can be also used for disconnected networks, as the inverse of
an infinite path length of two separated network components produces an efficiency
of zero. Global efficiency is also more affected by short paths than its counterpart,
which is why it is usually regarded as the superior measure for functional integration
in brain networks. [5]

Global efficiency, E, is calculated as

E = 1
n

∑︂
i∈N

Ei = 1
n

∑︂
i∈N

∑︁
j∈N,j ̸=i dw

ij

n − 1 , (2)

where dw
ij is the shortest weighted path length between nodes i and j, and Ei is the

efficiency of node i.

3.2.3 Clustering coefficient

Clustering coefficient is a measure for quantifying functional segregation in a network.
The clustering coefficient of a node is equivalent to how much the neighbours of the
node are also connected to each other, comprising triangles. The mean clustering
coefficient is used for measuring global prevalence of clustered connectivity in a
network as a whole. [5][4]

The clustering coefficient of a node i, Cli is calculated as described by Onnela
and colleagues in [56]:

Cli = 2tw
i

ki(ki − 1) , (3)

where ki is the degree of node i, and tw
i is the weighted geometric mean of trian-

gles around i. The network-wide, global clustering coefficient, Cl, is consequently
calculated as

Cl = 1
n

∑︂
i∈N

Cli. (4)

Both nodewise and averaged clustering coefficients are presented for the networks
in this thesis as measurements of local and global clustering, respectively.

3.2.4 Modularity

Modularity is a summary statistic for quantifying the degree to which a network can
be subdivided into separate, non-overlapping components. A higher modularity value
indicates a stronger division into distinct network communities [6]. Like the clustering
coefficient, it is classified as a measure of functional segregation in a network by
Rubinov and Sporns in [5]. However, modularity measurements can also be classified
separately from segregation measurements due to the difference in how they deal
with within- and between-community connectivity structures in the network [6].
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Unlike the other measures used in this thesis, modularity is not calculated exactly
but instead estimated using an optimization algorithm due to the computational
demand of the task. The Matlab function used in this thesis uses an algorithm
described by Newman in [57] for optimizing the subnetwork placement for each
individual node. It evaluates the division into subnetworks by returning a Q value
that indicates how successful the division is: a value of 0 means the division is totally
random, and a value of 1 means a perfect division [58].

The Q value for modularity returned by the function is calculated as described
by Newman in [58]:

Q = 1
lw

∑︂
i,j∈N

[wij −
kw

i kw
j

lw
]δmi,mj

, (5)

where mi is module containing nodei, and δmi,mj
= 1 if mi = mj , and 0 otherwise (if

mi and mj don’t belong to the same module).

3.3 Rank sum
Comparisons between groups were done using the Wilcoxon rank sum test [59]. This
method pools all observations together, ranks them based on their position in the
ascending ordering of all observation values, and determines whether the sum of
ranks of values from both groups are similar enough to be from the same population.
This was computed using the default Matlab function ranksum.

3.4 Post-hoc correction
When multiple statistical tests are conducted, the p-values need to be adjusted
accordingly to account for positive findings that occur purely by chance. Multiple
comparisons were corrected in the calculations of node-wise clustering coefficients
using a method described by Palva and colleagues in [60]. In this method, the
expected number of false positives is calculated according to the number of performed
tests, after which that number of initially significant observations is removed in the
order of descending p-value.

3.5 Network-based statistic
To complement the aforementioned network measures, the network-based statistic
(NBS) method introduced by Zalesky and colleagues (2010) was applied to the
connectivity matrices. NBS is a method developed for finding differences between
brain networks and its purpose is to control for a large number of multiple comparisons
while still remaining powerful, especially in networks with a low contrast-to-noise
ratio. This is achieved by searching for connected components in the network and
testing the null hypothesis on a component-by-component basis, as opposed to simply
applying a link-wise correction based on each p-value as a separate occasion. [61]

In this method, a t-statistic threshold is selected to find a subset of edges which
present the most difference in the pairwise association between the two groups. The
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selection of this threshold is described as arbitrary. Using a breadth-first search,
connected components among these suprathreshold edges are identified, and their
size, k, is stored. Permutation testing is then used by randomizing the test subject
group allocations for M (5000 in this thesis) permutations and finding connected
components for each random permutation. A corrected p-value is estimated to
determine whether the connected component is significant by calculating the number
of maximum component sizes which are larger than k, and normalizing by M. [61]

The NBS works under the assumption that the statistically different links are
connected to each other, and therefore can only find a single component of interest in
a network. It can also only be used to reject the null hypothesis for the component
as a whole, whereas more traditional methods with a more robust FWE-control can
declare individual connections significant. [61]

The arbitrary selection of the t-statistic threshold has been listed as a source for
criticism for this method, but this can be countered by noting that control of the
family-wise error rate is guaranteed irrespective of the threshold choice [62]. In this
thesis, a t-statistic threshold of 2.1 was used for most of the analyses. This value was
chosen as a result of preliminary point checking of some instances where different
subnetworks were expected after the assessment of clustering coefficients.

3.6 Network visualization
Visualization of the brain networks is an important part of showing the results of
statistical correlations in this thesis, because looking at only matrices of p-values
will not convey information as efficiently as possible. Therefore, the networks have
been mapped to two-dimensional and three-dimensional models of the brain in
order to make it easier to comprehend the results. Adjacency matrices of various
frequency bands and correlation modes have been regarded as graphs so that each
value corresponds to the strength of an edge between two nodes. With this method,
the graph can be visualized as a brain model where the nodes denote cortical parcels
and the edges denote a functional connection between them. The visualizations have
been done with a Matlab toolbox called BrainNet Viewer [63].

3.7 Neurodevelopmental outcomes
For assessment of neurodevelopmental outcomes, the test subjects were tested at the
age of two using the third edition of Bayley Scales of Infant and Toddler Development
(BSID). BSID is an instrument for measuring the functioning development and
possible developmental delays in infants and toddlers [64].

In this thesis, the BSID scores assigned to the test subjects for their develop-
mental status in cognition, language skills in terms of both receptive and expressive
communication, and fine motor and gross motor skills were used. Pearson correlation
coefficient was computed between the BSID scores and connection strengths in the
subnetworks found with the NBS analysis. For Pearson correlation, the Matlab
function ‘corr ’ was used.
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4 Results
This section explains what was found in the analysis of the connectivity matrix data.

4.1 AAC matrices
4.1.1 Mean connectivity

Firstly, the means of the correlation values that comprise the AAC networks were
calculated to find out the overall strengths of the networks. No significant differences
were found between the two research groups, AED and control, in the active sleep
mode.

Figure 1: The mean connectivity of the amplitude-amplitude correlation connectivity
matrices in active sleep mode. The small asterisks above frequency bands 2.6 and
3.1 Hz denote p-values less than 0.1.

In the quiet sleep mode, the means of the correlation values for the lower frequency
bands, 0.5-0.6 Hz, were found to be higher in control group than in the AED group.
In higher frequency bands, 13.3-16 Hz, a reverse effect could be seen, as the means
were significantly higher in the AED group than the control group.

4.1.2 Modularity

The modularity of the networks did not show significant differences between the two
research groups in either of the sleep modes in AAC. Only one frequency band in
quiet sleep, 0.6 Hz, produced a p-value indicating significant difference, but these
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Figure 2: The mean connectivity of the amplitude-amplitude correlation connectivity
matrices in quiet sleep mode. (Small asterisks: p < 0.1, larger asterisks: p < 0.05.)

tests were not corrected for multiple comparisons, which means that the result could
be incidental.

4.1.3 Efficiency

The efficiency of the brain networks in AAC was calculated for both active and quiet
sleep and the AED and control groups were compared to each other. In active sleep,
a difference between the two groups was only seen in one frequency band, 2.6 Hz,
where the efficiency of the control group was found to be higher than the control
group. The higher and lower frequency areas did not show differences regarding the
groups.

In quiet sleep, the middle frequencies did not produce differences between groups,
but differences were found in both extremes of the examined frequency scale. In
lower frequencies, 0.5-0.6 Hz, the control group produced a higher efficiency than
the AED group. Conversely, in higher frequencies, 13.3-16 Hz, the efficiency of the
networks in the AED group was found to be higher than the controls.

The efficiency of the networks seems to correlate with the previously mentioned
overall strength of the networks. In active sleep, the efficiency of the networks was
higher in lower frequencies with a decreasing trend towards the higher frequencies.
In quiet sleep, the efficiency was found to be lower in the lower frequencies with an
increasing trend towards the higher frequencies. This overall effect was present in
both groups, AED and control, but it could be argued that the frequency dependent
efficiency increase of the quiet sleep mode is more prominent in the AED group than
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Figure 3: The modularity of the amplitude-amplitude correlation connectivity matri-
ces in active sleep mode.

Figure 4: The modularity of the amplitude-amplitude correlation connectivity matri-
ces in quiet sleep mode. The asterisk denotes p < 0.05.
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Figure 5: The efficiency of the amplitude-amplitude correlation connectivity matrices
in active sleep mode. (Small asterisks: p < 0.1, larger asterisks: p < 0.05.)

Figure 6: The efficiency of the amplitude-amplitude correlation connectivity matrices
in quiet sleep mode. (Small asterisks: p < 0.1, larger asterisks: p < 0.05.)
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in the control group.

4.1.4 Global clustering coefficient

Similarly to efficiency, the global clustering coefficient of the AAC networks was
found to be different in some of the high (16 Hz) and low (0.5-0.6 Hz) frequency
bands in the quiet sleep mode, with a similar trend of the AED group having lower
clustering in the low frequencies and higher clustering in the high frequencies. Again,
it can be noted that the clustering coefficient has more range in the AED group
across the frequency bands than in the control group.

Figure 7: The mean clustering coefficient of the amplitude-amplitude correlation
connectivity matrices in active sleep mode. (The small asterisks denote p < 0.1)

In the active sleep mode, the two research groups did not show significant
differences between them in the global clustering coefficient.

4.1.5 Node-wise clustering coefficient

The clustering coefficient was calculated for each node of the AAC network in both
active and quiet sleep, and the resulting coefficients were compared between AED
and control groups. Correction for multiple comparisons was executed so that for all
sets of 58 nodes representing a frequency band in each mode, the expected number
of false positives was removed from the results. In the active sleep mode, it can
be seen that in the frequency bands 2.1-3.7 Hz, there are multiple nodes in each
network that have a higher clustering coefficient in the control group than in the
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Figure 8: The mean clustering coefficient of the amplitude-amplitude correlation
connectivity matrices in quiet sleep mode. (Small asterisks: p < 0.1, larger asterisks:
p < 0.05.)

AED groups. These nodes don’t show remarkable localization in the brain networks
in visual inspection.

Figure 9: The node-wise clustering coefficients of the amplitude-amplitude correlation
connectivity matrices in active sleep mode
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In the quiet sleep mode, there are multiple nodal differences in the lower frequency
bands, 0.5-0.6 Hz, where the nodes of the control group networks have a higher
clustering coefficient than their counterparts in the AED group. In visual inspection,
these nodes don’t seem to be localized clearly to any specific region of the brain, but
seem to be scattered across the brain network. In the higher frequency bands, 6.4-19.1
Hz, there are multiple nodes that have a significantly higher clustering coefficient in
the AED group than in the control group. These nodes can be seen to have a weak
localization emphasizing the frontal regions of the brain.

Figure 10: The node-wise clustering coefficients of the amplitude-amplitude correla-
tion connectivity matrices in quiet sleep mode

4.2 PPC matrices
4.2.1 Mean connectivity

The mean correlation coefficient comprising the PPC networks researched in this
thesis seems to decrease as the frequency increases. When comparing the AED
and control groups, not many significant differences could be found. There was a
significant difference in two isolated frequency bands, 1 Hz and 3.7 Hz (p = 0.04 and
p = 0.02, respectively), in the active sleep mode. Additionally, a singular frequency
band, 0.9 Hz (p = 0.04), could be found to show a difference between the two groups
in the quiet sleep mode. In all of these frequency bands showing a difference, the
mean correlation of the control group is higher than the AED group.

Also, even though the overall trend in both sleep states is that the mean correlation
strength is negatively correlated with the frequency, there is still a visible difference
in mean correlation between active and quiet sleep modes in both research groups.
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Figure 11: The mean connectivity of the phase-phase correlation connectivity matrices
in active sleep mode. (Small asterisks: p < 0.1, larger asterisks: p < 0.05.)

Figure 12: The mean connectivity of the phase-phase correlation connectivity matrices
in quiet sleep mode. (Small asterisks: p < 0.1, larger asterisks: p < 0.05.)
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4.2.2 Modularity

Whether the test subjects belonged to the AED or the control group could not be
found to make a difference in the modularity of the PPC brain networks in either
active or quiet sleep mode. Similarly to the AAC networks, modularity in PPC
networks seems to be higher in the higher frequency bands than in the lower frequency
bands.

Figure 13: The modularity of the phase-phase correlation connectivity matrices in
active sleep mode

4.2.3 Efficiency

The efficiency of the PPC networks was found to be higher in the control group than
the AED group in some of the lower frequency bands in both active and quiet sleep.
In the quiet sleep mode, the differences were presented in the frequencies 0.6-0.7 Hz
and in the active sleep mode, difference could be seen in the frequency of 0.7 Hz. In
addition to this, one frequency band in the middle of the researched frequency range,
3.7 Hz, showed a similar significant difference in efficiency. This singular finding
coincides with the difference seen in the mean strength of the correlation network in
the same frequency band.

4.2.4 Global clustering coefficient

The global clustering coefficient of the nodes in PPC networks was not significantly
different between the research groups in either active or quiet sleep mode. Curiously,
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Figure 14: The modularity of the phase-phase correlation connectivity matrices in
quiet sleep mode

Figure 15: The efficiency of the phase-phase correlation connectivity matrices in
active sleep mode. (Small asterisks: p < 0.1, larger asterisks: p < 0.05.)
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Figure 16: The efficiency of the phase-phase correlation connectivity matrices in
quiet sleep mode. (The asterisks denote p < 0.05.)

there is one exception, which is the frequency band 3.7 Hz, where there was also
a difference in efficiency and mean correlation in the same active sleep networks.
In this frequency band, the control group showed a higher mean of the clustering
coefficients.

However, there are multiple low frequency bands, 0.5-1 Hz, that almost reach
the significant limit of p<0.05 in the active sleep mode networks. These frequency
bands show a tendency of the control group having a higher clustering than the AED
group, and it could be argued that multiple nearly significant consecutive findings as
an aggregate would be significant. To prove this, further statistical analysis would
need to be executed.

4.2.5 Node-wise clustering coefficient

There are differences between the two research groups in nodal clustering coefficients
in multiple nodes across many of the frequency bands in the PPC networks. In the
active sleep mode, frequency bands 0.5-1 Hz, 3.1-3.7 Hz and 11.1 Hz show more than
three nodes with a significantly higher clustering in control group than in the AED
group. Many of these frequency bands showed a global clustering reaching almost
significant differences, which could mean that the local differences are not strong
enough to show at a global level.

In the quiet sleep mode, the frequency bands 0.9-1.2 Hz, 3.1 Hz and 11.1-13.3 Hz
show multiple nodes with a higher clustering coefficient in the control group than
the AED group. There are also few singular nodes with a difference in frequency
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Figure 17: The mean clustering coefficient of the phase-phase correlation connectivity
matrices in active sleep mode. (Small asterisks: p < 0.1, larger asterisks: p < 0.05.)

Figure 18: The mean clustering coefficient of the phase-phase correlation connectivity
matrices in quiet sleep mode. (The small asterisks denote p < 0.1.)
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Figure 19: The node-wise clustering coefficient of the phase-phase correlation con-
nectivity matrices in active sleep mode

bands 4.5 - 7.7 Hz, where the AED group has a higher clustering coefficient. Like in
the analysis of node-wise clustering in AAC networks, the weakest three significant
nodes were disregarded in terms of correction for multiple comparisons.

Figure 20: The node-wise clustering coefficient of the phase-phase correlation con-
nectivity matrices in quiet sleep mode
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4.3 NBS analysis
The NBS analysis produced results reflecting what was also found out in the local
clustering analysis. In the frequencies where the networks presented with more
concentrated areas of local clustering differences, subnetworks between nodes were
generally found to be affected in the same direction.

The sizes of the largest subnetworks different between the AED group and the
control group can be found by NBS can be seen in figures 21 and 22. In addition
to the aforementioned findings, it can be noted that there are no subnetworks
during AS in either AAC or PPC networks where the AED group would have a
stronger connectivity. During AS, the control group had subnetworks with a stronger
connectivity in multiple frequency bands, such as some coinciding findings in both
AAC and PPC networks in the higher delta frequencies. During QS, the control
group had subnetworks with a stronger connectivity in multiple delta frequencies.

Figure 21: The sizes of significantly different subnetworks in AAC networks as
produced by NBS

In AAC networks of QS mode, NBS analysis showed subnetworks with a higher
connectivity in the AED subjects in multiple frequency bands. These frequencies were
in the higher end of the tested frequency spectrum, the alpha and beta frequencies.
These subnetworks were relatively dense and located mostly in the frontal areas
of the brain, as seen in Figure 23. In the lower end of the frequency spectrum,
subnetworks showing lower connectivity in the AED subjects could be found. These
subnetworks fairly sparse and didn’t show clear localization to any specific brain
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Figure 22: The sizes of significantly different subnetworks in PPC networks as
produced by NBS

region, which is shown in Figure 24. These findings are well in line with the local
clustering coefficients, which showed similar results in their part.
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Figure 23: An example of a subnetwork of quiet sleep AAC connectivity (f=9.24Hz)
that showed higher connectivity in the AED group than the control group in NBS
analysis. In this picture, the top left shows the brain from behind, top center from
the top, top right from the left, bottom left from the front, bottom center from the
bottom and bottom right from the right.
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Figure 24: An example of a subnetwork of quiet sleep AAC connectivity (f=0.6Hz)
that showed higher connectivity in the control group than the AED group in NBS
analysis.
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Figure 25: An example of a subnetwork of active sleep AAC connectivity (f=2.6Hz)
that showed higher connectivity in the control group than the AED group in NBS
analysis.

In AAC networks of AS mode, there were some significant differences in the
higher end of delta frequencies, with the control group showing higher connectivity
in some subnetworks. These subnetworks span all over the brain, with some focus in
the right posterior area, which is seen in the Figure 25.

In PPC networks of QS mode, some subnetworks could be found as having
stronger connectivity in the control group than the AED group. These networks
covered many areas of the brain, but some localization could be seen to the left and
posterior brain regions, as shown in Figure 26.

In PPC networks of active sleep mode, NBS analysis found subnetworks with
significantly diminished connectivity in AED subjects. Interestingly, the subnetworks
contained many interhemispheric connections near the center of the brain, as shown
in figure 27. This finding complements the local clustering coefficient findings, which
indicated lower clustering in some of the parietal and temporal nodes, but did not
yet show the direction of the connections for which the correlation is lower.
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Figure 26: An example of a subnetwork of quiet sleep PPC connectivity (f=1.0Hz)that
showed higher connectivity in the control group than the AED group in NBS analysis.

Figure 27: An example of a subnetwork of active sleep PPC connectivity (f=0.86Hz)
that showed higher connectivity in the control group than the AED group in NBS
analysis.
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4.4 Neurological scores
Lastly, correlation between neurological BSID scores and the subnetworks indicated
by the NBS analysis was calculated to find if the mean connection strengths in the
subnetworks coincide with neurodevelopmental progress in the first years of life.

No correlation was found between the BSID scores and the subnetwork connection
strengths in most cases. Only in PPC networks of AS, the subnetworks found in
frequencies 3.1-3.7 Hz indicated correlation with the neurological scores (p < 0.05),
namely in language expression.

COG LP LE FM GM
3.1 Hz 0.6334 0.6575 0.0044 0.2256 0.9954
3.7 Hz 0.4709 0.7592 0.0292 0.6355 0.6047

Table 2: The neurological scores showing differences in language expression between
control group and AED group in the connection strengths of the subnetworks found
in NBS analysis in PPC of AS. (COG = Cognition, LP = Language processing, LE
= Language expression, FM = Fine motor, GM = Gross motor)
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5 Discussion
The results presented in this thesis show that there are differences between functional
brain networks of infants exposed to prenatal AEDs compared to healthy controls.
This is in line with the large body of data on neurodevelopmental problems these
children are often encumbered with. It would be easy to say that AEDs should not be
used during pregnancy, but AED use is in most cases a necessity for the well-being of
the mother. Therefore, these kinds of results are most useful in learning to recognize
the adverse effects of epilepsy medication early in life to be able to manage further
complications.

5.1 General observations
In AAC networks of QS, the AED group had a higher clustering and stronger
connectivity in the higher frequency bands, where as the clustering in the control
group was higher in the lowest frequency bands. This could be seen as an overall
shift of activity to higher frequencies in babies exposed to AEDs, but has in fact
probably more to do with different developmental stages and their features. It could
be speculated that the prominency of higher frequencies in the AED group is related
to persistency of SATs for longer than expected, as the SATs encompass a lot of
high frequency activity [25]. Higher delta wave activity in the control group could
similarly be associated with better increasing of overall continuity of slow wave sleep,
which occurs around the age of the infants studied in this thesis [26].

Subnetworks that were stronger in the control group than the AED group were
found in many frequency bands of PPC networks. This is line with the notion
that PPC networks increase in connectivity with the development of neonates [33],
suggesting that the AED group might be experiencing slower development.

The subnetworks found in NBS analysis to be different in AED infants than
healthy controls did not mostly correlate with neurodevelopmental assessment in the
age of two. This is an indication of how difficult the task of predicting outcomes from
EEG measurements is, and that these NBS results were not promising as biomarkers
for slower development. It might be worth testing the same thing with different
t-statistics in NBS, as the widespread nature of the results found with lower t-statistic
values might confound the effects that a smaller, more focal subnetwork might bring
forward.

5.2 Strengths, limitations and future directions
In this study, all infants exposed to AEDs were in the same study group instead of
separating by pharmacological agent. Different AEDs are conventionally regarded
as having different effects on the brain, which means that the studied effects on
the brain were potentially largely heterogenous. Therefore, effects of any one drug
might be confounded by others and not be seen with the methods used. Despite this,
there were significant results in many network metrics studied here, which suggests
further robustness of the results and the research methods. While all kinds of AEDs
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have been shown to cause some complications for children of mothers with epilepsy,
as mentioned previously, most of the adverse effects of AEDs are most strongly
associated with valproate. It would be interesting to study the effects of valproate
separately, as the differences in connectivity might prove more clear without other
drugs with less neurodevelopmental effects dampening the results. This is probably
not possible, though, as valproate use during pregnancy is (happily) decreasing
because of the widely known recent findings [65]. Also, further research should be
done about the comparative safety of different AEDs, for which functional network
analysis such as in the present thesis might be beneficial.

There has been some speculation about how reproducible and reliable the EEG
measurements of infants are. It has been suggested that while global measurements
are more consistent in retesting, local measurements might not be as reproducible
[66]. The results of local measurements, like clustering coefficients, in the present
thesis seem fairly robust and it would be interesting to evaluate how well the results
would hold up in retesting.

Only a few metrics describing properties of the brain networks were chosen for
this thesis, with the aim of assessing whether there is promise for more extensive
research. There is a diverse selection of network measures that could be used to get
a more accurate view on the network properties that indicated possible significant
results, which could also be used to validate the significances. For example, it would
be interesting to use other measures of network segregation to see if they yield better
or worse results than the clustering coefficients shown here.

When trying to find differences between the AED group and healthy controls,
most of the network measures only rarely surpassed the p-value indicating significancy
(p < 0.05). However, there seemed to be overall trends of nearly significant differences
(p < 0.1) between groups in these measurements suggesting that the differences
might be real and the power of these tests just wasn’t enough to pass the "magical"
significancy limit. Other methods of determining significancy, which take such group
effect into account, could be investigated and used to find out whether these trends
are really significant.

In NBS analysis, altering the choice of the initial t-statistic threshold produced a
large variation in the resulting subnetworks. In preliminary visual inspection of the
results, a lower initial t-statistic finds more subnetworks, but they are immediately
larger than those found with a higher t-statistic, and often widespread across the
whole brain, which then again makes assessment of potential localization harder. It
is, of course, the purpose of the method to find subnetworks of maximal size, but for
further analysis it might be beneficial to find the "sweet spot" where subnetworks
can be found but they still show localization more clearly.
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