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1. Introduction 

1.1 Background of optimization 

Optimization is a computational science that studies techniques for finding the ‘best’ 

solutions. It has been widely employed in a large variety of fields, including 

transportation, manufacturing, physics, and medicine. Real-world optimization 

frequently suffers from the following problems [Spa03]: 

• Difficulties in distinguishing global optimal solutions from local optimal ones. 

• The presence of noise in evaluating the solutions. 

• The ‘curse of dimensionality’ causes the size of the search space to grow 

exponentially with the problem dimension. 

• Difficulties associated with given constraints and the need for problem-specific 

optimization methods. 

Numerous conventional optimization schemes have been proposed and developed. In 

fact, we have observed their successful applications and implementations, ranging from 

new drug design and protein structure prediction to power system scheduling. Among 

these schemes, the steepest descent method is a typical one in that it is based on the 

derivative of the objective functions to be optimized. Unfortunately, they also face 

difficulties in meeting the growing needs of modern industry, in which the existing 

optimization problems tend to be dynamic, constrained, multi-variable, multi-modal, 

and multi-objective. Conventional optimization methods have been limited by a weak 

global search ability, instability, and inefficiency, especially when attempting highly 

nonlinear optimization tasks. For example, the gradient information needed in the 

steepest descent method can be expensive, time-consuming, or even impossible to 

obtain under certain circumstances. Moreover, most of the conventional optimization 

approaches are not efficient enough in dealing with practical large-scale systems.  
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1.2 Nature-inspired computation methods 

The Nature-Inspired Computation (NIC) methods refer to as those algorithms derived 

by mimicking natural phenomena and biological models [Cas07] [Ova06]. For instance, 

the Clonal Selection Algorithm (CSA) draws its inspiration from natural immune 

systems, which can prevent the human body from invasion by disease-causing 

pathogens. The collective behaviors of the foraging of ants, mound construction of 

termites, nest-building of wasps, and web-weaving of spiders have been studied and 

have inspired the so-called Swarm Intelligence (SI) algorithms. The NIC 

methodologies, such as the CSA, Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Simulated Annealing (SA), Harmony Search (HS), Differential 

Evolution (DE), and Mind Evolution Computing (MEC), are emerging types of Soft 

Computing (SC) or Computational Intelligence (CI) methods [Zad96]. 

Many engineering problems are indeed complex and have built-in uncertainties as well. 

It is well known that conventional optimization approaches usually require some prior 

information beforehand, which is often either difficult to acquire or even unavailable. In 

recent years, NIC methods have gained considerable attention from different 

communities [Emb97]. Compared with conventional optimization schemes, NIC 

methods offer more suitable candidates for dealing with the demanding problems faced 

by industry, and can thus offer us robust, competitive solutions. As a matter of fact, for 

optimization applications in fields such as pattern recognition, self identity, data 

analysis and machine learning, NIC methods are capable of outperforming the classical 

techniques by providing better and more flexible solution choices.  

1.3 Hybridization of nature-inspired computation optimization methods 

The NIC algorithms have their own advantages and disadvantages, since they have 

received their inspiration from individual natural phenomena; for example, the PSO is 

inspired by the flocking of birds, fish schooling, and the ACO foraging behaviors of 

ants. If used separately, the weaknesses of these algorithms may hinder their wider 

employment in attacking challenging optimization problems. That is to say, these NIC 

methods are complementary rather than competitive. It is generally advantageous to 
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apply them in combination instead of individually. For example, the harmful particle 

clustering of the original PSO method can be overcome by introducing operations from 

other NIC algorithms so as to randomly disturb the trend of solution centralization. The 

performance of the regular HS method can be significantly enhanced if the harmony 

memory members are fine-tuned on the basis of the CSA. Thus, utilizing the advantages 

of various NIC algorithms while avoiding their drawbacks promotes advances in hybrid 

NIC techniques.  

The past decade has witnessed the overwhelming success of hybrid NIC optimization 

methods that can effectively combat with their individual drawbacks while benefiting 

from each other’s strengths. The hybridization strategies have been developed with the 

aim of coping with specific types of optimization problems. For instance, the ACO, a 

promising NIC technique, has been merged with the CSA for solving those optimization 

problems under dynamic environments [P8]. Fusion of the SA and PSO can result in a 

hybrid PSO with an improved global search capability for nonlinear problems. To 

summarize, the motivation for hybridization is to improve convergence acceleration, 

robustness, and reliability. In general, hybrid NIC methods can be classified into 

different categories according to the measures used, e.g., motivation for hybridization 

and architecture of hybridization. As an illustrative example, we can divide them into 

‘preprocessors and postprocessors’, ‘cooperators’, and ‘embedded operators’ based on 

the relationship among all the NIC methods involved. Actually, a careful and 

comprehensive analysis of the classification of the hybridization would help us not only 

gain a deep understanding of the NIC methods but also choose the best combinations for 

the targeted optimization problems.  

1.4 Aim of this dissertation 

The aim of this dissertation is to explore the hybrid NIC methods applied to 

optimization. More precisely, in our work, we first study various types of hybridization 

of the aforementioned NIC algorithms, and propose several new hybrid NIC techniques, 

e.g., CSA-DE, HS-DE, and CSA-SA. Their underlying motivations, principles, 

structures, and algorithms are analyzed and discussed in details. We next investigate the 
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performance of our hybrid NIC methods in handling nonlinear, multi-modal, and 

dynamic optimization problems. This work also examines the application of these novel 

optimization strategies for nonlinear function optimization, optimal LC passive power 

filter design, and optimization of neural networks and fuzzy classification systems. 

Computer simulations are made to compare the proposed techniques with conventional 

optimization methodologies as well as individual NIC methods. It has been 

demonstrated that the hybrid NIC approaches can yield superior optimization 

performances over the existing schemes with regard to search efficiency, convergence 

speed, as well as the quantity and quality of the optimal solutions obtained.  

In this dissertation, a concise introduction to the optimization-related issues, including 

definition, classification, and traditional optimization methods, is given in Chapter 2. 

Chapter 3 presents a survey of seven popular NIC methods: the CSA, PSO, ACO, SA, 

HS, DE, and MEC. A brief review of the hybrid optimization techniques based on the 

above NIC algorithms, which have been proposed, developed, and reported in the 

literature, is provided in Chapter 4. Chapter 5 summarizes the main results of the 

publications. Finally, some conclusions and remarks are drawn in Chapter 6. 



 

____________________________________________________________________________________

Xiaolei Wang, Hybrid Nature-Inspired Computation Methods for Optimization 

 

5

 

2. Introduction to Optimization 

Generally, optimization is a process of searching for the best possible solution to a 

given problem, which is subject to certain constraints. Modern industry and science are 

rich in optimization problems [Pri99]. For example, there are different ways to design a 

cylindrical pressure vessel, but which one costs the least? There are various methods to 

construct a telecommunication network, but which one is the most reliable? This 

chapter briefly defines optimization and provides a background to typical optimization 

problems and optimization methods.   

2.1 Definition of optimization 

Optimization simply means finding the best solution or operating a system in the most 

effective way, as shown in Fig 2.1 [Hau98]. It can be considered as a process of 

adjusting the input in order to attain the optimal (minimal or maximal) system output. 

Optimization algorithms represent the search approaches for obtaining the optimal 

solution to an optimization problem, possibly subject to a set of constraints [Eng05]. 

Particularly, the search environment may change over time, the constraint conditions 

may restrain the search space, and the optimal solutions may be intertwined with many 

neighboring candidates. For any given optimization problem, optimization can consist 

of the following three principal components:  

• Objective function: quantity to be optimized (minimized or maximized). 

• Variables: inputs to the objective function. 

• Constraints: limitations assigned to the variables. 

Thus, the goal of an optimization method is to assign possible values to the variables so 

as to acquire the optimal solution to the objective function, while satisfying all 

constraints. 
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Fig. 2.1. Basic structure of optimization. 

Based on their qualities, optima can be classified into either global or local optima, as 

shown in Fig. 2.2. Figure 2.2 illustrates a minimization problem in the feasible search 

space SF ⊆ . Obviously, only the global optima are the best solutions among all the 

candidates. Hence, the definitions of the global and local optima of the minimization 

problems are given as follows [Eng05]: 

• Global minimum: The solution Fx ∈*  is a global optimum of the objective  

function )f(x , if  

Fxxx ∈∀<    ),f()f( * ,                                           (2.1) 

where SF ⊆ . 

• Local minimum: The solution FNxN ⊆∈*  is a local optimum of the objective  

function )f(x , if  

NxxxN ∈∀<    ),f()f( * ,                                         (2.2) 

where FN ⊆  is a set of the feasible points in the neighborhood of *
Nx . Note 

that these two definitions can be generalized to the maximization problems. 
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Fig. 2.2. Types of optima. 

2.2 Classification of optimization problems 

Figure 2.3 shows the general classification of optimization problems. The optimization 

problems can be classified according to three primary factors (variable, objective 

function, and output) as well as their different characteristics: 

• The constraints to variables: The optimization problems that use only boundary 

constraints are referred to as unconstrained optimization problems. Constrained 

optimization problems have additional equality and/or inequality constraints. 

• The number of variables: If there is only one variable, the optimization problem 

is one-dimensional. However, if more than one variable is involved, the problem 

is referred to as a multi-dimensional optimization problem. Usually, the more 

variables the problem has, the more complex it is.  

• The types of variables: Optimization problems can also be classified by discrete 

and continuous variables. The former have integer-valued variables, whereas the 

later consist of continuous-valued variables. 

• The nonlinearity of objective functions: A linear optimization problem has the 

objective functions linear with respect to all the variables. Otherwise, the 

optimization problem is considered as a nonlinear optimization problem. 
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• The environment of output: Dynamic optimization means that the output is a 

time-varying function; for static optimization, the output is always independent 

of time. 

• The number of optima: The optimization problem is uni-modal, if there is only 

one unique optimal solution. Otherwise, it is a multi-modal optimization 

problem. 

• The number of optimization criteria: If the quantity to be optimized is expressed 

using only one objective function, the problem is referred to as a uni-objective 

problem. A multi-objective problem specifies more than one sub-objective that 

needs to be simultaneously optimized. In this dissertation, we only investigate 

uni-objective optimization problems. 

The focus of this dissertation is on nonlinear uni-modal and multi-modal optimization 

under both static and dynamic environments. In the following sections, we discuss 

multi-modal and dynamical optimization problems. 

Optimization

Output

Objective function

Variable

Type

Limit

Number

Continuous

Discrete

One-dimensional

Multi-dimensional

Constrained

Unconstrained

Linear

Nonlinear

Uni-modal

Multi-modal

Dynamic

Static
Enviroment

Number of optima

Optimization criteria
Multi-objective

Uni-objective

 
Fig. 2.3. Categories of optimization problems. 



 

____________________________________________________________________________________

Xiaolei Wang, Hybrid Nature-Inspired Computation Methods for Optimization 

 

9

 

2.3 Multi-modal optimization 

Multi-modal problems contain many optima including at least one global optimum and 

a number of local ones in the search space. The goal of the multi-modal optimization is 

to identify as many of these optima as possible. Hence, the multi-modality of such 

problems determines the difficulty for any optimization approach in terms of the 

quantity and quality of the optima located. For example, Figure 2.4 illustrates the 

solutions to the function )5(sin)f( 6 xx π=  in [ ]1,0 . The optimization task is to achieve all 

of the five global optima (maxima). Some multi-modal problems rich of many attractors 

surrounding the global optima are indeed challenges to the existing optimization 

techniques. As an illustrative example, Schaffer’s function:  

( )
( )[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

−+
+−= 222

222

001.01
5.0sin

5.0),f(
yx

yx
yx ,                             (2.3) 

where [ ]5,5−∈x  and [ ]5,5−∈y , has only one global optimum with numerous 

neighboring local optima within the distance of about 210− , as shown in Fig. 2.5 

[Cas02] [Sch89]. Therefore, avoiding the misleading local optima is a key issue in 

dealing with the multi-modal optimization problems. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6
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0.8
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1

x

f(x
)

 

Fig. 2.4. Plot of function )5(sin)f( 6 xx π= . 
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Fig. 2.5. Plot of Schaffer’s function. 

2.4 Dynamic optimization 

Dynamic optimization problems have objective functions that can change over time, 

thus potentially causing variations in the optima and search space. These problems are 

defined (in the minimization case) as: 

minimize [ ],)(,f tϖx  ),,,( 1 xnxx L=x  [ ])(,),()( 1 ttt nϖ
ϖϖϖ L= ,                (2.4) 

where )(tϖ  is a vector of time-dependent objective function control parameters. The 

goal is to find 

[ ]{ })(,fmin)(* txtx ϖ
Χ

= ,                 (2.5) 

where )(* tx  is the optimum at time t . Therefore, the task of a dynamic optimization 

algorithm is to locate the optimum and track its trajectory as closely as possible 

[Eng05]. The location of optimum )(* tx  and value of [ ])(f * tx  are the two criteria for 

detecting the variations under a changing environment. There are three types of 

dynamic environments: 

1. Type I: Location of the optimum is subject to change. 
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2. Type II: Location of the optimum remains the same, but its value changes. 

3. Type III: Both the location and value of the optimum change simultaneously. 

For instance, Figure 2.6 illustrates the changes in three different dynamic environments 

that can affect [ ])(,f tx ϖ : 

[ ] [ ] )()()(,f 2
1

2
1 ttxtx

xn

j
j ϖϖϖ +−=∑

=

,                               (2.6) 

where 2=xn . Additionally, the complexity of a given dynamic objective function 

depends on the following three factors [Ang97] [Ram06]: 

1. ‘Change severity’ determines the displacement of the current location position 

from the static environment. 

2. ‘Update frequency’ determines the number of the generations between each 

movement of the base function. Generally, the higher the frequency changes, the 

more complex the optimization problem is. 

3. ‘Predictability of change’ gives an indication as to whether there is a pattern or 

even a trend in the environment change. 

 
Fig. 2.6. Changes of function (2.6) under dynamic environment. 
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2.5 Conventional optimization algorithms 

Optimization methods can be classified into two essential types: stochastic and 

deterministic [Jan97]. The former use random elements to update the candidate 

solutions, and the later involve no randomness. An important and widely used class of 

deterministic algorithms are gradient-based methods capable of choosing their search 

directions according to the derivative information of the objective functions. In this 

dissertation, deterministic optimization techniques, such as steepest descent search and 

Newton’s method, are also classified as conventional optimization algorithms. 

Nevertheless, to simplify our discussions, we only concentrate here on the most popular 

conventional optimization algorithm: the steepest descent method. 

The steepest descent method is based on the simple principle that from a given θ̂ , the 

best direction in which to proceed is the one that produces the largest local change in the 

objective function: 

,,2,1,0  ),ˆ(ˆˆ
1 L=−=+ kg kkkk θαθθ                                    (2.7) 

where k  is the iteration index,  )ˆ( kg θ  is the gradient at kθ̂ , and 0>kα  is the step size 

used to maintain the search stability so that the operating points do not move too far 

along the performance surface. Equation (2.7) indicates that the new estimate for the 

best value of kθ̂  is equal to the previous one minus a term proportional to the gradient at 

the current point [Spa03]. That is, the search can start from an arbitrary 0̂θ , and slides 

down the gradient. Figure 2.7 illustrates a simple convex function minimization case. 

When kθ̂  is on either side of the minimum, the update moves towards the minimum in 

that direction, which is opposite to the sign of the corresponding element in the gradient 

vector. For example, when kθ̂  lies left of the minimum, from (2.7), the new estimate 

will move to the right, according to the search direction given by the positive sign of the 

gradient component. Apparently, the steepest descent method is stable, straightforward, 

and easy to apply. If the minima exist, this approach can locate them after enough 

iterations. However, the steepest descent method is not a universal solution to all the 

engineering optimization problems, because the gradient information of the objective 
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functions is sometimes difficult or costly if not impossible to obtain. Another drawback 

of the steepest descent method is that it cannot be guaranteed to always find the global 

minimum. The ultimate solutions acquired depend on the initial 0̂θ . As a matter of fact, 

it is easily trapped into the local minima and may thus result in poor optimization 

performance. 

)ˆ(θL

0)ˆ( <kg θ 0)ˆ( >kg θ

1
ˆ
+kθ 1

ˆ
+kθ
θ̂

••

 

Fig. 2.7. Search using steepest descent method.  

2.6 Summary 

This chapter gives an overview of the optimization problems and conventional 

optimization methods including their definition and classification. Unfortunately, 

conventional optimization algorithms are not efficient at coping with demanding real-

world problems without derivate information. As shown in Figs. 2.2 and 2.7, they can 

only find the local optimum with a high probability, if 0̂θ  is close to it. In other words, 

selection of the initial points for the deterministic optimization methods has a decisive 

effect on their final results. However, a foresight of appropriate starting points is not 

always available in practice. One common strategy is to run the deterministic algorithms 

with random initialization numerous times and retain the best solution; however, this 

can be a time-consuming procedure. Therefore, a stochastic nature should be introduced 

and utilized in these optimization methods so as to enhance their performance. Indeed, 
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stochastic algorithms have become the dominant approaches to optimization during the 

past decades, due to the following characteristics: 

• Derivative free, 

• Intuitive guidelines, 

• Flexibility, 

• Randomness, 

• Robustness, 

• High parallel property, 

• Global optimization. 

In Chapter 3, we shall discuss several typical stochastic nature-inspired optimization 

techniques.  
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3. Nature-Inspired Optimization Methods 

The development of modern science and technology requires flexible, reliable problem-

solving methods. The Nature-Inspired Algorithms (NIA) represent such an emerging 

computing paradigm that draw their metaphorical inspiration from diverse natural 

sources, including the operation of biological neurons, evolution processes, and natural 

immune responses. The general framework for developing novel intelligent algorithms 

inspired from natural phenomena is illustrated in Fig. 3.1 [Tim08]. More precisely, the 

first step is to probe and study the natural systems from which the inspiration can be 

drawn. After that, this perception is used to build a simplified representation and model 

of the sophisticated natural phenomena. Next, the abstract model can provide us with 

useful principles for designing the new NIA characterizing the underlying mechanisms 

of the natural phenomena. Finally, the developed NIA is employed to deal with various 

engineering problems.  

In the following sections, we will give a concise introduction to the theory and 

applications of several typical NIA: Clonal Selection Algorithm (CSA), Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), Differential Evolution (DE), 

Simulated Annealing (SA), Harmony Search (HS) method, and Mind Evolutionary 

Computing (MEC). However, it should be emphasized that the well-known evolutionary 

computation method including the Genetic Algorithms (GA) [Wri91], Evolutionary 

Programming (EP) [Hoo07], and Evolutionary Strategies (ES) [Fra98] is a matured NIC 

technique, which has been extensively investigated by many researchers from different 

communities during the past decades. In this chapter, we aim at analyzing and 

developing only the above recently emerging NIC algorithms.  
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Fig. 3.1 Framework to develop novel NIA. 

3.1 Clonal selection algorithm 

The natural immune system is a rich inspiration resource for developing intelligent 

algorithms, and the extension of immunological principles to engineering has promoted 

a new biologically inspired computing technique, namely Artificial Immune Systems 

(AIS). The Clonal Selection Algorithm (CSA) inspired by the Clonal Selection Principle 

(CSP) is one essential branch of the AIS [Tim08] [Wan04]. The CSP describes how the 

immune response works with regard to an antigenic stimulus [Kim02]. To be more 

precise, when the B cells are stimulated by the Ag (paratope bound with epitope), they 

first proliferate (divide), and finally mature to the terminal (nondividing) plasma cells 

(see Fig. 3.2). Moreover, the proliferated B cells grow in concentration inside the 

immune network at proliferation rates that are proportional to the affinities of the 

Antibody-Antigen (Ab-Ag). In fact, those B cells with low affinities are gradually 

eliminated or edited. In addition to proliferating and differentiating into the plasma 

cells, the B cells can also differentiate into the memory B cells with longer living lives 

that will circulate through the blood, lymph, and tissues of the body. The clones, i.e., a 

set of new cells, are the progenies of the stimulated B cells. In other words, only the 

cells (antibodies) capable of recognizing the non-self cells (antigens) are selected, and 
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they can, therefore, proliferate. The main ideas of the CSA borrowed from the CSP are 

[Cas99]: 

• Maintenance of memory cells functionally disconnected from the repertoire; 

• Selection and cloning of the most stimulated antibodies; 

• Affinity maturation and re-selection of clones with higher affinity; 

• Mutation rate proportional to cell affinity. 

cells Plasma

cellsMemory ionProliferat

Selection

ationDifferenti

antigen  self-Non

 

Fig. 3.2. Process of clonal selection. 

The diagram of the basic CSA is shown in Fig. 3.3, in which the corresponding steps are 

explained as follows. 

Step 1: Initialize the antibody pool (Pinit) including the subset of memory cells (M). 

Step 2: Evaluate the fitness of all the individuals in population P. The fitness here refers 

to the Ab-Ag affinity measure. 

Step 3: Select the best candidates (Pr) from population Pinit according to their fitness 

(affinity with antigen). 

Step 4: Clone these best antibodies into a temporary pool (C).  
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Step 5: Generate a mutated antibody pool (C1). The mutation rate of each individual is 

inversely proportional to its fitness. 

Step 6: Evaluate all the individuals in C1. 

Step 7: Re-select the individuals with better fitness from C1 to compose the memory set 

M. Other improved individuals of C1 can replace certain members in Pinit so as to 

maintain the overall antibody diversity. 

P
M

Evaluate

Select

Cloneselect-Re

rP

1C

C

Mutate

Evaluate

initP
)1(

)2(

)3(

)4(

)5(

)6(

)7(

 
Fig. 3.3. Diagram of basic Clonal Selection Algorithm (CSA). 

We should point out that the clone size in Step (4) is usually defined as a monotonic 

function of the affinity measure. With regard to the CSA mutation operator, the mutated 

values of the Abs are inversely proportional to their affinities. That is, the better fitness 



 

____________________________________________________________________________________

Xiaolei Wang, Hybrid Nature-Inspired Computation Methods for Optimization 

 

19

 

an Ab has, the less it may change. The idea of Abs suppression is also employed to 

eliminate the Abs with high self-affinities so that a diverse Ab pool is always 

maintained. In contrast to the popular GA [Wri06], which often tend to bias the whole 

population of chromosomes towards the best candidate solution, the CSA can 

effectively handle the demanding multi-modal optimization tasks. 

Fukuda et al. propose a modified CSA-based immune optimization approach by 

merging the immune diversity, network theory, and CSA together. They explain that the 

main characteristics of this new method are the candidate diversity and efficient parallel 

search [Fuk99]. Proposed by de Castro and von Zuben, the CLONALG is one of the 

most widely applied CSA in practice [Cas02a]. The CLONALG utilizes the affinities of 

the evolving Abs. That is, the proliferation rates of the Abs are set to be proportional to 

their affinities. During the evolution of the CLONALG, those Abs with higher affinities 

are stimulated, while the ones with lower affinities are suppressed. Therefore, it can 

efficiently search in a diverse set of local optima to find even better solutions. de Castro 

and von Zuben demonstrate that compared with the GA in manipulating with the multi-

modal and combinatorial optimization problems, the proposed CLONALG has a 

reduced computational cost. 

3.2 Swarm intelligence 

It is intriguing that some living creatures, e.g., ants, termites, and bees, exhibit collective 

behaviors despite the simplicity of the individuals that compose the swarm. Within the 

swarm, the relatively complex behavior is the result of the patterns of interactions 

among the individuals of the whole swarm over time. The main properties of this 

collective behavior can be summarized into four aspects, as shown in Fig. 3.4: 

1. Nonsupervision: There is no single ‘leader’ to control the moving directions in 

the flock or hunting routes in the insect colony. The activity of any individual 

highly depends on its surrounding environment, which is furthermore influenced 

by the others.  

2. Stigmergy: Cooperation and communication among individuals can be in the 

indirect contact form (changes made to the local environment) 
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3. Aggregation: Individuals trend to move towards the attractive local environment, 

which results in the dominant appearance of gathering. 

4. Emergence: The term ‘emergence’ here refers to the process of deriving some 

new and coherent structures, patterns, and behaviors from complex systems. The 

group behavior of the swarm is not an inherent ability of any individuals, and is 

not easily predicted or deduced from the simple individual experiences.  

 
Fig. 3.4. Main features of collective behavior. 

The collective behavior of unsophisticated agents interacting locally with their 

environment causes the coherent patterns of emergence [Ram05]. These swarming, 

flocking, and herding phenomena have promoted a popular NIC method, known as 

Swarm Intelligence (SI), which was firstly coined by Beny and Wang in the 1980s in 

the context of cellular robotics [Ben89] [Abr06]. The goal of the SI schemes is to model 

the simple behaviors of individuals as well as their interactions with the environment or 

neighbors so as to realize more advanced and complex techniques, which can be applied 

for coping with difficult optimization problems [Eng05].  

The SI is generally classified into two main paradigms: Particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO). They are inspired by bird flocking and ant 

colony, respectively. The former mimics the behaviors of the individuals, whose 

moving directions are influenced by either the best neighbor or personal best experience 

record. The later models the pheromone trail-leaving and trail-following behaviors of 

ants, in which each ant perceives chemical pheromone concentrations in its local 
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environment, and acts by probabilistically selecting directions based on the available 

pheromone concentration. In the following two sections, we shall discuss both the PSO 

and ACO in more detail. 

3.2.1 Particle swarm optimization 

As an important branch of the SI, the PSO draws its inspiration from some common 

properties existing in a flock of birds, school of fish, swarm of bees, and even human 

society. For example, the movement of bird flocking is an outcome of the individual 

efforts to maintain an optimal distance from their neighbors. This optimal distance 

makes the individuals match the velocity of the nearby flock mates without colliding. 

As a consequence, all the members in the flock are highly centralized. Swarming 

phenomena suggest the distinctive features of homogeneity, locality, collision 

avoidance, velocity matching, and flock centering. Thus, information exchange and 

sharing in the colony can provide an evolutionary advantage.  

Inspired by the social behavior of the aforementioned flocking of birds and gathering of 

fish into schools, Kennedy and Eberhart propose the PSO method [Ken95]. In the 

original PSO, the position of each particle in the swarm represents a possible problem 

solution. The position and velocity of particle i  at iteration n  are denoted as n
idx  and 

n
idv , respectively. The new velocity at the next iteration, 1+n

idv , is calculated using its 

current velocity n
idv , the distance between the particle’s best previous position n

idp  and 

n
idx , as well as the distance between the position of the best particle in the swarm n

gdp  

and n
idx : 

)()( 2211
1 n

id
n
gd

n
id

n
id

n
id

n
id xprcxprcwvv −+−+=+ ,                           (3.1) 

where w  is the inertia weight, 1c  and 2c  are two positive constants, namely cognitive 

and social parameters, respectively, and 1r  and 2r  are two random values in the range of 

[ ]1,0 . These deterministic and probabilistic parameters reflect the effects on the particle 

positions from both the individual memory and swarm influence. The position of 

particle i , n
idx , is iteratively updated as follows: 
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11 ++ += n
id

n
id

n
id vxx .                                                (3.2) 

Figure 3.5 shows the principle of particle update in the PSO. The optimal solutions can, 

thus, be acquired by choosing the best particles in the swarm after a certain number of 

iterations.  

n
idx

1+n
idv

n
idv

1+n
idx

n
id

n
gd xp −

n
id

n
id xp −

 

Fig. 3.5. Particle update in PSO. 

The original PSO algorithm, as shown in Fig. 3.6, is summarized by the following five 

steps: 

(1) Randomly choose the initial position and velocity within the given boundaries for 

each particle, and set the particle’s best previous position n
idp  to be equal to the 

current position. 

(2) Evaluate every particle in the swarm based on the objective function.   

(3) Compare the current position with the particle’s best previous position n
idp . If the 

current position is better, update n
idp . 

(4) Move all the particles based on (3.1) and (3.2). 

(5) If the preset stop criterion is met, terminate the PSO algorithm. Otherwise, return 

back to Step 2.  
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Fig. 3.6. Basic flowchart of original PSO. 

Note that the PSO method has a well-balanced mechanism to efficiently utilize 

diversification and intensification in the search procedure, as demonstrated in Step 4 

and (3.1) [Mon08]. Apparently, there are three velocity-related terms on the right-hand 

side of (3.1): current velocity, personal best velocity, and global best velocity. Even 

without the last two terms, the particles can still keep on exploring new areas by ‘flying’ 

in the same directions until they reach the given boundaries, which corresponds to the 

diversification in the search procedure. Intensification refers to the fact that all the 

particles try to converge to the n
gdp  and n

idp . For this reason, the diversification can be 

appropriately weighted to emphasize the global search. 

We can observe that during iterations, each particle learns from not only its own 

experiences but also the social behavior of the swarm, through which the search points 

gradually approach the optimum. In other words, taking advantage of the collective 

intelligence is a distinguishing property of the PSO method, which has been 

demonstrated to be efficient in solving various optimization problems [Par02]. 

However, empirical simulation experiments also show that the convergence speed of the 
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PSO often slows down with the growth of iterations, since stagnant particles may 

predominate the whole swarm [Ciu02]. Therefore, numerous improved PSO methods 

have been developed to overcome this drawback. For example, a fuzzy logic-based 

turbulence operation is used to control the velocities of all the particles [Liu07]. Zhan et 

al. deploy the crossover operator of the GA to maintain the swarm diversity and guide 

the particles to track the global optimum in nonlinear optimization [Zha07]. Parrott and 

Li divide the swarm into sub-populations based on the particle similarity so as to handle 

dynamic optimization problems [Par06]. 

3.2.2 Ant colony optimization  

In recent years, collective behaviors including the foraging behavior of ants, mound 

construction of termites, nest-building of wasps, and web-weaving of spiders have been 

studied and have inspired another type of SI: the ACO. More precisely, when foraging, 

some ant species have the behavior of depositing a kind of chemical substance, called 

pheromone, through which they can communicate with each other to find the shortest 

path from their nest to the food source. These pheromone-leaving and pheromone-

following phenomena lay a solid basis for the ACO, which is a stochastic, meta-

heuristic, and population-based optimization algorithm.  

The ACO can be characterized by the following [Eng05]: 

• A probabilistic transition rule is used to determine the moving direction of each 

ant, 

• Pheromone update mechanism indicates the problem solution quality. 

Among the existing ACO algorithms, the Ant System (AS) is first proposed by Dorigo 

et al. for combinatorial optimization problems. Its main characteristic is that the 

pheromone values are updated by all the ants that have built a solution in the iterations 

[Dor06]. However, there are also other ACO algorithms that are targeted at continuous 

optimization problems. Bilchev and Parmee propose a continuous ACO approach for 

the local search in order to improve the quality of the solutions obtained by the GA 

[Bil95]. Wodrich and Bilchev extend this algorithm and introduce a bi-level search 

structure, in which both the local and global ants search and explore regions of the 
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continuous functions, thus moving to the destinations with increased fitness by 

repeatedly searching locally and globally [Wod97]. These continuous ACO algorithms 

share the following features [Ho05]: 

• Bi-level search functions (with both local and global search), 

• GA used in global search. 

Local search is indeed important in dealing with continuous optimization problems. The 

continuous ACO has been generalized to a hierarchical structure, in which the global 

search only aims at the ‘bad’ regions of the search space, while the goal of the local 

search is to exploit those ‘good’ regions. The basic ACO algorithm for continuous 

optimization (at each generation) is described as follows [Eng05]:  

1. Create nr global ants. 

2. Evaluate their fitness.  

3. Update pheromone and age of weak regions. 

4. Move local ants to better regions, if their fitness is improved. Otherwise, choose new 

random search directions. 

5. Update ants’ pheromone. 

6. Evaporate ants’ pheromone. 

Obviously, the continuous ACO is based on both the local and global search towards the 

elitist. The local ants have the capability of moving to the latent region with the best 

solution, according to transition probability )(tPi  of region i : 

∑
=

= g

j
j

i
i

t

ttP

1
)(

)()(
τ

τ ,                                                (3.3) 

where )(tiτ  is the total pheromone at region i  at time t , and g  is the number of the 

global ants. Therefore, the better the region is, the more attraction it has for successive 

ants. If their fitness is improved, the ants can deposit the pheromone increment iτΔ , as 

in (3.4). Otherwise, no pheromone is left. 



 

____________________________________________________________________________________

Xiaolei Wang, Hybrid Nature-Inspired Computation Methods for Optimization 

 

26 

 

⎩
⎨
⎧ Δ+

=+
otherwise             )(

improved is fitness if    )(
)1(

t
t

t
i

ii
i τ

ττ
τ

.                      (3.4) 

After each generation, the accumulated pheromone is updated as:  

 )()1()1( tt ii τρτ ⋅−=+ ,                                         (3.5) 

where ρ  is the pheromone evaporation rate. We can conclude that the probability of the 

local ants selecting a region is proportional to its pheromone concentration. On the other 

hand, the pheromone is affected by the evaporation rate, ant age, and growth of fitness. 

Thus, this pheromone-based selection mechanism is capable of promoting the solution 

candidate update, which is suitable for handling the changing environments in 

optimization. The ACO is an efficient solution to a large variety of dynamical 

optimization problems, including routing, job assignment, and task scheduling [Dor06]. 

3.3 Simulated annealing 

Based on the analogy between statistical mechanics and optimization, the SA is one of 

the most flexible techniques available for solving difficult optimization problems. The 

main advantage of the SA is that it can be applied to large-scale systems regardless of 

the conditions of differentiability, continuity, and convexity, which are usually required 

for conventional optimization methods [Fuk08]. The SA was originally proposed by 

Metropolis in the early 1950s as a model of the crystallization process. The SA 

procedure consists of first ‘melting’ the system being optimized at a high temperature, 

and then slowly lowering the temperature until the system ‘freezes’ and no further 

change occurs. At each temperature instant, the annealing must proceed long enough for 

the system to reach a steady state [Kir83]. The SA includes the following main features: 

• Transition mechanism between states, 

• Cooling schedule. 

The SA method actually mimics the behavior of this dynamical system to achieve the 

thermal equilibrium at a given temperature. It has the remarkable ability of escaping 

from the local minima by accepting or rejecting new solution candidates according to a 
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probability function. In addition, the SA method requires little computational resource. 

Fig. 3.7 illustrates the corresponding flowchart, and can be explained by the following 

steps: 

1. Specify initial temperature 0T , and initialize the solution candidate. 

2. Evaluate fitness E  of the candidate. 

3. Move the candidate randomly to a neighboring solution. 

4. Evaluate the fitness of new solutions 'E . 

5. If EE ≤' , accept the new solution. If EE >' , accept the new solution with 

acceptance probability P . 

6. Decrease temperature T . The SA search is terminated, if T  is close to zero. 

Otherwise, return back to Step 2.  

Initialize

Evaluate

Evaluate

Accept Accept with P

EE ≤' EE >'

Decrease T

(1)

(2)

Move (3)

(4)

(5)

(6)

 

Fig. 3.7.  Flowchart of basic SA method. 
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As we can observe that the SA algorithm simulates the process of gradually cooling a 

metal/crystal until the energy of the system achieves the global minimum. Each 

configuration of the physical system and energy of the atoms correspond to the current 

solution found for the optimization problem and fitness of the objective function, 

respectively. The temperature T  is used to control the whole optimization procedure. At 

each generation, according to the Metropolis criterion [Sim06], the candidate is updated 

with the random perturbation, and the improvement of its fitness is also calculated. If 

EE ≤' , the moving change results in a lower or equivalent energy of the system, and 

this new solution can be accepted. Otherwise, the displacement is only accepted with 

the probability P : 

T
EE

eP
)( '−−

= .                                                   (3.6) 

The temperature is updated by: 

),()1( kTkT λ=+  10 << λ ,                                     (3.7) 

where k  is the number of generations, and λ  is a given coefficient. As a matter of fact, 

the cooling schedule needs to be properly adjusted by modifying parameter λ . The 

main strength of the SA method is its capability of obtaining the global optimum with a 

great probability. However, it usually uses a large number of generations to converge. 

3.4 Harmony search 

When musicians compose harmony, they usually try various possible combinations of 

musical pitches stored in their memory. Such an efficient search for a perfect state of 

harmony is analogous to the procedure used for finding optimal solutions to engineering 

problems. Thus, harmony improvisation has inspired the emergence of a novel NIC 

approach, HS [Gee01]. Table 3.1 presents the comparison of harmony improvisation 

and optimization [Gee08]. Figure 3.8 shows a flowchart essentially describing the HS 

method that involves four principal steps. 
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Table 3.1. Comparison of harmony improvisation and optimization. 

Comparison factors Harmony improvisation  Optimization  

Targets Aesthetic standard Objective function 

Best states Fantastic harmony Global optimum 

Components Pitches of instruments Values of variables 

Process units Each practice Each iteration 

 

Step 1. Initialize the HS Memory (HM). The HM consists of a number of randomly 

generated solutions to the optimization problems to be solved. For an n-dimension 

problem, an HM with a size of N can be represented as follows: 
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where [ ]i
n

ii xxx ,,, 21 L  ( Ni ,,2,1 L= ) is a candidate solution. Note that the HM stores the 

past search experiences and plays an important role in the optimization performance of 

the HS method. 

Step 2. Improvise a new solution [ ]nxxx ′′′ ,,, 21 L  from the HM. Each component of this 

solution, jx′ , is obtained based on the Harmony Memory Considering Rate (HMCR). 

The HMCR is defined as the probability of selecting a component from the HM, and 1-

HMCR is, therefore, the probability of generating it randomly. If jx′  comes from the 

HM, it is chosen from the thj  dimension of a random HM member, and it can be further 

mutated depending on the Pitching Adjust Rate (PAR). The PAR determines the 

probability of a candidate from the HM to be mutated. The improvisation of 

[ ]nxxx ′′′ ,,, 21 L  is similar to the production of offspring in the GA with the mutation and 

crossover operations [Pol02]. However, the GA usually create new chromosomes using 
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only one (mutation) or two (crossover) existing ones, while the generation of new 

solutions in the HS method makes full use of all the HM members.  

Step 3. Update the HM. The new solution from Step 2 is evaluated, and if it yields a 

better fitness than that of the worst member in the HM, it will replace that one. 

Otherwise, it is eliminated.   

Step 4. Repeat Step 2 to Step 3 until a termination criterion is met.  

 

Fig. 3.8. Flowchart of HS method. 

Similar to the GA and SI algorithms, the HS method is a random search technique. It 

does not need any prior domain knowledge beforehand, such as the gradient information 

of the objective functions. Nevertheless, different from those population-based 

approaches, it utilizes only a single search memory to evolve. Hence, the HS method 

imposes few mathematical requirements, and has the distinguishing advantage of 

computation simplicity. On the other hand, it occupies some inherent drawbacks, e.g., 
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weak local search ability. Mahdavi et al. propose a modified HS method by using an 

adaptive PAR to enhance its optimization accuracy as well as speed up the convergence 

[Mah07]. To summarize, the features of multi-candidate consideration and correlation 

among variables contribute to the flexibility of the HS method, thus making it well 

suited for constrained optimal design problems [Kan04] [Gee02].     

3.5 Differential evolution  

The DE method is a simple but powerful population-based optimization technique first 

proposed by Storn and Price [Sto97]. The principle underlying DE is similar to that of 

other evolutionary computation methods, such as the GA. However, the uniqueness of 

DE is that it generates new chromosomes by only adding the weighted difference 

between two chromosomes to the third. In other words, unlike the GA, which rely on a 

predefined probability distribution function, the DE derives its mutation using the 

differences between randomly sampled pairs of the chromosomes [Cor99]. If the fitness 

of the resulting chromosome is improved, this newly generated chromosome replaces 

the original one. More precisely, suppose three chromosomes are under consideration in 

the current population: )(1 kr , )(2 kr , and )(3 kr . Note that )(1 kr  and )(2 kr  are randomly 

selected and mutually different. Figure 3.9 shows that a trial update of )(3 kr , )1(3 +′ kr , 

is: 

[ ])()()()1( 2133 krkrkrkr −+=+′ λ ,                               (3.9) 

where λ  is a pre-determined weight. In order to further increase the diversity of the 

chromosomes, a ‘crossover’ operator is employed here to generate )1(3 +′′ kr  by 

randomly combining the parameters of )(3 kr  and )(3 kr′  together. If )1(3 +′′ kr  yields a 

higher fitness than )(3 kr , we get: 

)1()1( 33 +′′=+ krkr .                                          (3.10) 

Otherwise, )1(3 +′′ kr  is eliminated, and the above iteration procedure restarts until all the 

chromosomes have been successfully updated. The DE method has the following 

characteristics: 
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• Robustness, 

• Inherently parallel structure, 

• No need for a derivative, 

• Few parameters to set, 

• Simple processing,  

• Reliability. 

The DE method has been utilized as a global optimizer and a practical design tool for 

mixed variable optimization problems involving multiple and nonlinear constraints 

[Cor99].   

)(1 kr

)(2 kr

)(3 kr

)()( 21 krkr −

)1(3 +′ kr
[ ])()( 21 krkr −λ

 
Fig. 3.9. Principle of DE method. 

3.6 Mind evolutionary computing 

The MEC is an evolutionary optimization approach developed by Sun in 1998 [Sun03a] 

[Jie06]. It is based on analysis of the human mind. As shown in Fig. 3.10, the whole 

population of chromosomes in MEC is divided into groups. Two billboards, local and 

global billboards, are used to store the evolution history. The global billboard can record 

winners in the global competition among the groups, while the local billboard is 

reserved for the winners among the individuals of each group in the local competition. 

The MEC employs two unique operations: similartaxis and dissimilation. In 

similartaxis, starting from their initial centers, individuals of every group compete 

against each other in local areas to become the winners, i.e., local optima. A group is 
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considered to have matured, if no new winner appears there. The similartaxis actually 

serves as ‘exploitation’ in the MEC. On the other hand, the dissimilation is an 

‘exploration’ process, in which individuals and groups compete to be the global winners 

in the solution space. The function of this operator is two-fold: (1) some best individuals 

are chosen as the initial scattering centers of the new groups; and (2) the current global 

optima are selected from the local optima of all the groups obtained by similartaxis. 

However, unlike the GA, there is no separate selection operation in MEC. In fact, the 

selection is implicitly employed in both similartaxis and dissimilation.  

Global billboard

Local billboard

Group 1 Group NG

Ns1 Ns2 NsG

 
Fig. 3.10. Structure of MEC. 

The iterative procedure of the basic MEC can be described as follows. Let S  denote the 

population size, GS  the group size, and GN  the number of groups in the MEC, and 

GG NSS = .  

Step 1. Generate S  random chromosomes in the solution space, and select GN  

individuals from these as the initial scattering centers for the GN  groups. 

Step 2. Perform the similartaxis on these groups, i.e., for every group, 1−GS  

chromosomes are scattered based on a preset probability density function around the 

group center. The resulting GS  individuals are next evaluated and compared with each 
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other, and a local winner is chosen as the new group center for the next generation. 

Update the local billboard by recording the local winners on it. The above process is 

repeated until all the groups are matured. 

Step 3. Select the best solutions from all the local optima (winners) obtained in Step 2. 

Store them on the global billboard, and expunge a certain number of poor chromosomes 

from the billboard. 

Step 4. If the given optimization criterion is satisfied, terminate the MEC. Otherwise, 

return back to Step 1. 

Thus, Step 1 initializes the appropriate scattering group centers. Step 2 implements the 

similartaxis operation and serves as the local competition, in which a local optimal 

solution is located on the basis of the chromosomes starting from the scattering center of 

each group. Step 3 evaluates these local optima acquired through similartaxis and 

updates the global billboard. Steps 1 and 3 act together as the aforementioned 

dissimilation operation. Further details and some variants of the MEC can be found in 

[Sun03a]. Due to the contributions from the similartaxis and dissimilation employed, 

the MEC has been shown to outperform the GA in nonlinear multi-dimensional function 

optimization [Sun03b]. Guo et al propose a modified MEC by introducing ‘forbidden 

zones’ on both the global and local billboards so as to improve the overall search 

efficiency. In addition, they also explore the application of this new MEC in the 

optimization of PID controllers [Guo04]. 

3.7 Summary 

This chapter has discussed a total of seven stochastic, iterative, and population-based 

NIC methods, which require little prior information concerning the optimization 

problems to be solved. Apparently, these algorithms share two common characteristics 

in mimicking natural phenomena: 

• Inspiration drawn from nature, 

• Modeling of natural processes. 
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The NIC techniques usually have a general flowchart, as shown in Fig. 3.11 [Cor99]. 

First, randomly generate an initial collection of candidate solutions (Initialize). After 

that, produce new members by making changes to the selected candidates, and then 

evaluate them (Operate). The changes may involve merging two or more existing 

members together or introducing random variations to the current candidates. Finally, 

replace those solutions that are outdated with the improved ones (Renew). Such a 

competitive strategy results in appropriate candidates for generating new solutions in 

the next generation. Hence, the key ideas underlying most NIC approaches are 

candidate generation, evaluation, selection, and update.  

 

Fig. 3.11. General flowchart of NIC algorithms. 

We can conclude that the above NIC methodologies share many similarities, e.g., 

adaptation, learning, and evolution. On the other hand, they also have some distinct 

differences, and each has its own advantages and drawbacks [Wol97]. Table 3.2 

summarizes the advantages and shortcomings of the NIC algorithms introduced in this 

chapter. For example, CSA and ACO can deal with multi-modal and dynamical 

optimization problems, respectively. Although they have attracted considerable research 

attention, due to their outstanding performance compared to the conventional 

optimization solutions discussed in Chapter 2, the standalone NIC methods are still not 

efficient enough at handling uncertainty and imprecision in practice. Additionally, 

practicing engineers often face the difficulty of choosing the most suitable NIC methods 

to meet particular engineering requirements. In the next chapter, we will present and 
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investigate several hybrid optimization schemes, which are based on the fusion of these 

NIC algorithms and can overcome their individual weaknesses. 

Table 3.2. Advantages and disadvantages of different NIC algorithms. 

NIC algorithm Advantages Disadvantages 

ACO Pheromone-based elitism Over-similarity 

CSA Diversity Slow convergence speed 

DE Effective search High computational effort 

HS Algorithm simplicity Outdated information 

MEC Anti-premature Time-consuming 

PSO Information sharing Premature 

SA Robustness Long computation time 
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4. Hybrid Nature-Inspired Optimization Methods 

It is well known that CSA, PSO, ACO, SA, DE, HS and MEC, discussed in the previous 

chapters, represent typical NIC schemes that have found successful applications in 

numerous engineering areas. However, all the NIC methods have their own strengths 

and drawbacks, since they are based on only certain phenomena in nature. Over the past 

decade, hybridization of the NIC algorithms has gained significant popularity, thus 

helping to overcome the individual drawbacks while benefiting from each other’s 

advantages. Therefore, fusion of the NIC methods, e.g., combination of ACO and CSA, 

can offer us competitive solutions with improved performance for challenging 

optimization problems. The inspiration and fusion of these NIC techniques are shown in 

Fig. 4.1.  

Clonal 
Selection 
Principle

Harmony 
Improvisation

HS CSA

Human Mind 
Progress

SI

Swarm of 
Insects

MEC

Evolutionary 
Process

DE

Thermal 
Process

SA

Fusion of NIC Methods
 

Fig. 4.1. Inspiration and fusion of typical NIC methods. 

4.1 Hybridization taxonomy 

Numerous hybrid NIC optimization algorithms have been proposed and studied in the 

literature [Gro05] [Sin03] [Yen95]. In this section, we classify these fusion strategies 

into two main types of hybridization: motivation for hybridization and architecture of 

hybridization.  

4.1.1 Motivation of hybridization 

The capability of overcoming the shortcomings of individual algorithms without losing 

their advantages makes the hybrid techniques superior to the stand-alone ones. Based on 
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the dominant purpose of hybridization, the hybridization of the NIC methods can be 

divided into two types: 

• Exploitation: In this type of hybridization, after an NIC algorithm has been used 

to the search for promising regions in the solution space, another one is next 

employed in the local search to further prompt the convergence to the global 

optimum. In other words, these hybrid methods actually perform a hierarchical 

optimization strategy, in which the local search component refines the ‘rough’ 

solutions obtained by the global search partner. 

• Parameter optimization: This class consists of those hybridization approaches 

that utilize one NIC algorithm as the ‘secondary’ method to optimize the 

parameters of another. For example, the GA can be merged with fuzzy logic for 

the optimal generation of membership functions and fuzzy reasoning rules 

[Ish95]. 

4.1.2 Architecture of hybridization 

As shown in Fig. 4.2, hybrid NIC algorithms can also be classified into three categories 

according to the nature of their architectures. 

• Preprocessors and postprocessors (Fig. 4.2 (a)): This is the most popular 

hybridization type, in which the NIC techniques are applied sequentially, i.e., 

data/information generated by Algorithm A (preprocessor) can be fine-tuned by 

Algorithm B (postprocessor). For instance, Grosan et al. propose a fusion of two 

modified NIC methods, Independent Neighborhoods Particle Swarm 

Optimization (INPSO) and Geometrical Place Evolutionary Algorithms (GPEA), 

for solving difficult geometrical place problems [Gro05]. The proposed hybrid 

INPSO-GPEA starts with the INPSO and switches to the GPEA after a given 

number of iterations, e.g., 100 iterations. Actually, all the initial chromosomes 

used by the GPEA represent particles existing in the INPSO. Thus, the candidate 

solutions that have failed earlier with the INPSO are expected to converge using 

the additional iterations of the GPEA. In [P5], the CSA is employed to improve 

the fitness of the solution candidates in the HM. In other words, all the members 
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of the HM are regarded as the individual antibodies, and they can evolve in the 

population of the CSA. 

• Cooperators (Fig. 4.2 (b)): Figure 4.2 (b) illustrates such a hybrid system, in 

which the two algorithms involved simultaneously adjust each other. Common 

information is exchanged and shared between the algorithms during the search 

process. For example, the evolutionary computation method and fuzzy inference 

technique are fused together in a hybrid evolutionary-fuzzy system for nonlinear 

function approximation. These two algorithms can optimize, fine-tune, and 

control the parameters of each other [Abr08] [Her95]. 

• Embedded operators (Fig. 4.2 (c)): The hybrid NIC methods belonging to this 

class are characterized by their architectures, in which Algorithm B is embedded 

inside Algorithm A. A typical approach is to combine the local search and global 

search from different NIC techniques together in order to improve the 

convergence of the hybridization. For example, in [Gam97] [Sol02], the 

heuristic local search strategies, such as Tabu search [Glo97], are employed in 

the ACO for early detection of high-quality solutions, which can then be used 

either as the basis for generating new solutions or to refine the pheromone 

concentration. The update of the ants in their hybrid ACO is based on a joint 

contribution from both the local and global search operations. In [P2], the 

dissimilation and similartaxis in the CSA, which is embedded in the MEC, are 

for the global and local optimal search, respectively.  

The hybrid NIC optimization methods for dealing with the nonlinear and dynamical 

problems are discussed in Sections 4.2 and 4.3, respectively.  
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Fig. 4.2. Architectures of the hybrid NIC algorithms. 

4.2 Hybrid nature-inspired optimization methods for nonlinear problems 

In this section, we summarize and review a few representative hybrid nature-inspired 

optimization schemes for the nonlinear problems. Based on the NIC techniques 

involved, they can be classified into SI-based hybridization, HS-based hybridization, 

SA-based hybridization, and AIS-based hybridization as follows. 

4.2.1 SI-based hybridization 

The SI algorithms, including PSO and ACO, have the advantage of quickly locating 

good but approximate solutions. However, they may converge prematurely to give a 

relatively poor solution. To address this problem, the ACO has been fused with other 

NIC methods to form an efficient local search approach. Indeed, the manner in which 

the local search is embedded and utilized is one of the most important issues to be 

considered in an ACO-based hybrid system [Eng05]. Bilchev and Parmee propose a 

hybrid optimization algorithm, in which the ACO method is merged with a GA for the 

refinement search so as to improve the quality of the final solution of the GA [Bil1996]. 

It is further improved and used in the application of nonlinear electromagnetic devices 

design by Ho et al [Ho05]. The feature common to these hybrid ACO methods is that 

the continuous region can be divided into several regions, which act as the local 

‘stations’ for the ants to move into and explore [Mat00]. Therefore, such a combination 
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of local and global search procedures makes the hybrid algorithms efficient in 

optimization. 

In the PSO, the behaviors of a particle as well as its neighbors are directly influenced by 

the global best particle, which could result in the harmful clustering and premature 

convergence. Therefore, many PSO variations have been developed by combining the 

characteristics from the GA and PSO. Shi et al. propose the execution of both the PSO 

and GA in parallel. With their hybridization, the best solutions are exchanged between 

the two populations of the particles and chromosomes after a predetermined number of 

iterations [Shi03]. In QPSO, Pant et al. have suggested a quadratic crossover operator 

[Pan07]. This nonlinear multi-parent crossover operation makes use of three particles 

(parents) in the swarm to produce another particle (offspring), which lies at the point of 

the minimum of the constructed quadratic curve passing through these three selected 

particles. The new particle is accepted into the swarm, irrespective of whether it might 

be better or worse than the present worst particle. Hence, the PSO search is not only 

limited to those regions around the current best location but is, in fact, more diversified. 

In [P2], a hybrid NIC algorithm is proposed by combining the PSO method with the 

CSA and MEC. This hierarchical scheme enhances both the exploitation in the local 

space and exploration in the global space, and can effectively manipulate with the 

aforementioned premature problem of the regular PSO.  

4.2.2 HS-based hybridization 

The HS has been shown to be powerful in identifying high-performance regions in the 

solution space. Unfortunately, it performs poorly in the local search. Omran and 

Mahdavi propose an improved HS, PSO-HS, by modifying the PAR and pitch-

adjustment step [Omr08]. The idea of swarm learning is also incorporated into the 

original HS, thus allowing a new harmony to mimic the best harmony in the HM. This 

modification actually alleviates the problem of tuning the HS parameter, bw (distance 

bandwidth), which is difficult to specify a priori, and is usually based on trial and error. 

Their PSO-HS works efficiently for both continuous and discrete optimization 

problems.  
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Cruz and Coelho introduce the elitism of the GA and probability threshold strategy 

inspired by the SA to the regular HS method [Cru08]. This new meta-heuristic 

algorithm can offer competitive results in certain specific application fields. Li and Li 

embed the HS method as a global search to improve the optimization performance of 

the GA [Li07]. In their Novel Hybrid Real-Value Genetic Algorithms (NHRVGA), the 

GA chromosomes are considered as the HM members, and are updated using the HS 

method, which gives the NHRVGA a strong exploitation capability. Simulations 

demonstrate that this NHRVGA performs better than the real-valued GA in solving 

different benchmark problems, even those with as many as 30 dimensions. Combining 

the advantages of HS and fuzzy C-means analysis, Malaki et al. incorporate a fuzzy 

approach into the HS with a Fuzzy Harmony Search Clustering (FHSClust) as the pre-

processing tool for the fuzzy C-means analysis [Mal08]. The hybrid technique utilizes 

the fuzzy-improved HS to locate the promising places of the global optimum, and feeds 

the results of the FHSClust to the fuzzy C-means, thus enabling the global optimal 

solution to be found rapidly. 

The solution quality of the HS method highly depends on the harmony memory pool, 

which may limit the global exploration ability. In [P5], the CSA is used to optimize the 

harmony memory so as to keep it more diverse and efficient. This HS-CSA algorithm 

shows superior performance in the optimization of fuzzy classification systems. In [P4], 

we propose two modified HS methods to deal with uni-modal and multi-modal 

optimization problems. The first modified HS method is based on the fusion of the HS 

and DE techniques. Similar to [P5], the DE is employed to optimize the HS memory 

members. The second modified HS method utilizes a novel HM management approach 

that aims at handling multi-modal problems. In summary, some NIC methodologies 

have been deployed for refining the HM in order to accelerate the convergence of the 

hybrid HS methods. 

4.2.3 SA-based hybridization 

The SA can enhance the global search capability of hybrid NIC optimization methods. 

Mohammed et al. discuss an improved SA approach, in which the search control and 

state update procedures are separated [Moh93]. It is further used together with a 
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Hopfield neural network to optimize the solutions obtained from a trained multilayered 

perceptron. This new hybrid NIC method has been applied to the optimal design of 

electromagnetic devices and has yielded improved parameters compared to the 

conventional optimization method.  

Kuo develops a novel SA-PSO to minimize the total generation costs of a power system 

over an appropriate period of time within various given constraints [Kuo08]. In his 

algorithm, the movements (velocity update) of all the particles are first generated by the 

PSO algorithm and are next combined with an SA judgment operator. The metropolis 

process of the SA calculates whether the determined movements are accepted or not, 

according to a temperature-controlled probability. Compared with the PSO and GA, this 

SA-PSO can obtain more efficient and higher-quality solutions with reduced CPU time.  

Vasconcelos et al. propose a Modified SA (MSA) method by combining the SA with 

the Tabu search for the optimal design of electromagnetic [Vas96]. In the MSA, the 

neighborhood search of the SA is restrained by the Tabu list, thus enabling those local 

optima encountered to be escaped from. This MSA has been shown to be a simple but 

powerful optimizer for complex global optimization problems. In [P7], the SA is 

embedded into the CSA to enhance its global search ability. Our hybrid algorithm is 

applied to deal with the optimization of several nonlinear benchmark functions as well 

as a practical engineering design problem: pressure vessel design. Numerical 

simulations have demonstrated that it is superior to the regular CSA with regard to 

optimization efficiency.  

4.2.4 AIS-based hybridization 

Hajela and Lee argue that AIS, which are capable of performing schema recognition and 

adaptation [Cas00], should be used advantageously to improve the performance of the 

GA in structural optimization problems [Haj99]. Their hybrid model can enhance the 

convergence of a GA approach and handle the design of constraints in GA-based 

optimization. Coello and Cortes have developed Hajela’s algorithm into a parallel 

version and have examined it using a larger problem set [Coe04]. Furthermore, an 

extension proposed by Bernardino et al. divides the whole chromosome population into 

feasible and infeasible individuals, which are optimized by the GA and AIS, 
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respectively [Ber08]. Compared with four traditional methods, the proposed AIS-GA 

method achieves the best solutions with the probability of 57.14% in five constrained 

optimization problems. 

Hou et al. integrate the Artificial Neural Networks (ANN) with the AIS to optimize the 

parameters in an IC wire bonding process [Hou08]. In their approach, the AIS consist of 

memory cells and suppressor cells that store the candidate solutions with the best Ab-

Ag and Ab-Ab affinities, respectively. Using this approach, the memory cells can 

improve the evolution procedure of the Abs, and the role of the suppressor cells is to 

prevent the AIS from revisiting those regions that have been previously searched. The 

modified CSA is applied to find the optimal wire bonding process parameters using the 

output of the ANN as the affinity measure. Simulations show that it takes about 50 

iterations (201 seconds in calculation) for the proposed optimization method to obtain 

the optimal solution, but 200 iterations (390 seconds) for the GA. 

In [P1], the CSA is embedded into the MEC to construct a hybrid optimization method. 

The convergence speed of the CSA is improved by the MEC dissimilation operation, 

which can keep the candidate pool dynamic during iterations as well as explore more 

feasible solution space. In [P6], based on the fusion of the CSA and DE method, we 

propose a novel optimization scheme: CSA-DE. The DE is applied in order to increase 

the affinities of the Ab clones in the CSA. In other words, the employment of the CSA 

in these hybrid approaches can considerably enhance their optimization capability.  

4.3 Hybrid nature-inspired optimization methods for dynamical problems 

Real-world optimization problems are often dynamical with objective functions that 

change over time. The NIC methods are adequate solutions to these dynamical 

optimization problems, due to their distinguishing adaptation characteristics. For 

example, Ursem employs a self-organizing Multi-national GA (MGA) for a dynamical 

optimization that structures the GA population into sub-populations based on the 

detection of valleys in the fitness landscape [Urs00]. On the assumption that one of the 

local peaks on the multi-modal landscape may rise to become the global optimum 

because of changes in the environment, this multi-modal-based MGA can be deployed 
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for manipulating dynamical optimization problems. Branke et al. use a forking GA to 

enhance its search ability under dynamic environments by having a number of smaller 

populations to track the most promising peaks and only a larger parent population to 

continuously search for new peaks [Bra00]. 

Blackwell and Bentley have developed a charged PSO method based on the analogy of 

electrostatic energy and charged particles [Bla02]. The idea is to introduce two 

opposing forces within the dynamics of the PSO: an attraction to the mass center of the 

swarm and an inter-particle repulsion. More precisely, the attraction force facilitates the 

PSO convergence to a single solution, while the repulsion force preserves particle 

diversity. Meanwhile, the neutral swarm can continue to explore the neighborhood of 

the optimum [Bla06].  

Proposed by Blackwell and Branke, the atomic swarm method has been demonstrated to 

be adaptive for tracking multiple optima simultaneously with multiple swarms [Bla04]. 

In their atomic swarm scheme, the number of the swarms is set beforehand. When two 

swarms approach within a specified radius of each other, the swarm with the worse 

value at its attractor or global best position is randomized. In this way, the multiple 

swarms are prevented from converging to the same peak. The atomic swarms are also 

modified to form quantum swarms [Bla04]. The authors have simplified the above idea 

and replaced the charged particles with quantum particles that can move to random 

positions around the global best particle based on quantum computing principles 

[Han02]. 

Ramos et al. have developed another interesting self-regulating swarm algorithm, which 

merges the advantageous characteristics of swarm intelligence with evolutionary 

computation [Ram06]. The social environmental memory and cognitive map via the 

collective pheromone laid on the landscape are used to properly balance the exploration 

and exploitation nature of this hybrid search strategy. In addition, a simple evolutionary 

mechanism through a direct reproduction procedure linked to the local environmental 

features can self-regulate the exploratory swarm population in order to accelerate its 

global search speed.  
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Pulkkinen et al. combine the GA with SA in dealing with the dynamic combinatorial 

optimization problems of thermo-mechanical pulp production scheduling [Pul06]. In 

their hybrid algorithm, a population of candidate solutions first undergo a random walk 

in the search space, and then reproduce themselves. Using this approach, the GA phase 

takes large leaps in the search space, whereas the SA phase refines the solutions through 

a local search. 

Most of the current research work in the dynamical optimization has concentrated on 

those swarms that can track a single optimum. In [Par06], the authors propose a 

Dynamical Species-based PSO (DSPSO) to simultaneously track multiple optima, in 

which the swarm population is divided into species sub-populations on the basis of their 

similarity. The species are located using feedback from the multi-modal fitness 

landscape, and they can guide the sub-populations to adaptively approach the multiple 

optima. A crowding mechanism is also implemented in the DSPSO to give the swarm a 

remarkable ability to track the dynamic optima resulting from environmental changes. 

In general, for multi-population-based dynamical optimization approaches, the 

distribution of the individuals (diversity of solution candidates) in the search space has a 

crucial effect on multi-modal optimization performance. In [P8], we merge the 

pheromone-based elitism of the ACO with the solution diversity of the CSA in a 

hierarchical search scheme. The proposed hybrid algorithm has been employed to 

effectively tackle multi-modal problems under different time-changing environments. 

However, it should be pointed out that the ACO method in [P8] is a modified version of 

the original ACO, in which the foraging ants with their pheromone are considered as the 

potential solutions. 

4.4 Summary 

In this chapter, we have first discussed a general classification for the hybridization of 

the NIC methods. The existing hybrid NIC schemes are classified based on either the 

‘motivation for hybridization’ or ‘architecture of hybridization’ of the techniques 

involved. However, we can also classify these schemes according to the targeted 

problems to be solved, e.g., multi-modal and dynamical optimization problems. A brief 
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overview of some typical hybrid NIC optimization methods with applications is next 

presented. The common hybridization principle is that two or even more different NIC 

techniques are combined together, aiming at reinforcing their strengths and overcoming 

the weaknesses. The relationship among the NIC methods can be competitive or 

cooperative. We here only focus on the ability of the hybrid strategies in attacking 

nonlinear and dynamical optimization problems. Compared with stand-alone NIC 

techniques, the hybridization of these techniques has been shown to yield superior 

optimization performance. However, we need to emphasize that merging various types 

of NIC methods might increase the overall computational complexity of these hybrid 

approaches. Therefore, a trade-off must be made in choosing the appropriate 

hybridization in order to meet practical engineering needs. 
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5. Summary of Publications 

In this chapter, we present a summary of the publications comprising the dissertation. 

Publications [P1] and [P2] discuss two new CSA-based optimization methods with 

application to optimal power filter design. Publications [P3]-[P6] concentrate on 

employing the fusion of various NIC techniques in solving nonlinear optimization 

problems, including the optimization of nonlinear functions, neural networks and fuzzy 

classification systems. Two hybrid immune-based approaches for constrained and 

dynamic optimization problems are proposed in [P7] and [P8], respectively. 

5.1 [P1] 

X. Wang, “Clonal selection algorithm in power filter optimization,” IEEE Mid-Summer 

Workshop on Soft Computing in Industrial Applications, Espoo, Finland, June 2005. 

In [P1], a novel optimization scheme inspired by the CSA is applied to the design of a 

LC passive filter in a diode full-bridge rectifier. The optimization aims to obtain the 

optimal values of an inductor and a capacitor. Simulations demonstrate that the 

proposed CSA-based power filter design approach is capable of optimizing the given 

criteria, i.e., PF and THD. Compared with other LC filter optimization methods, the 

CSA can avoid being trapped into local optima and provides more practical design 

choices, due to its diverse solution candidate pool. It has been proven to be an effective 

and flexible optimization method for handling challenging engineering problems. 

The author is fully responsible for carrying out the research work including proposing 

the optimization method, implementing the CSA in the optimization of the power filter 

parameters, and document writing. 

5.2 [P2] 

X. Wang, X. Z. Gao, and S. J. Ovaska, “A hybrid optimization algorithm in power filter 

design,” 31st Annual Conference of the IEEE Industrial Electronics Society, Raleigh, 

NC, November 2005. 
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In [P2], we improve the performance of the regular CSA by combining it with the MEC. 

The nonlinear function optimization and optimal selection of power filter parameters 

(the same as in [P1]) are the two test-beds used. The convergence speed of the CSA is 

relatively slow. However, in our hybrid optimization algorithm, the MEC-based 

dissimilation operation keeps the Ab pool dynamical to explore larger regions in the 

solution space during iterations. The Abs diversity maintenance capability of the CSA 

and anti-premature function of the MEC are fully utilized in the proposed method, thus 

allowing it to evolve with a smaller size of population, while still achieving moderately 

better optimization performance.  

S. J. Ovaska introduced the passive filter parameters optimization problem to the author, 

and X. Z. Gao suggested the basic scheme for solving this problem. The author 

designed and implemented the hybrid optimization model, which combines the CSA 

and MEC together. 

5.3 [P3] 

X. Wang, X. Z. Gao, and S. J. Ovaska, “A novel particle swarm-based method for 

nonlinear function optimization,” International Journal of Computational Intelligence 

Research, vol. 4, no. 3, 2008. 

It is well known that premature is the main disadvantage of the original PSO in solving 

demanding optimization problems. To overcome this drawback, we study a hybrid PSO 

method in [P3], which is based on the fusion of PSO, CSA, and MEC. Both the cloning 

function borrowed from the CSA and MEC-characterized similartaxis and dissimilation 

operators are embedded in the PSO. Therefore, the information sharing of the PSO, the 

solutions diversity of the CSA, as well as the anti-premature of the MEC are combined 

together. Simulation results show that our hybrid PSO method can yield enhanced 

optimization performance. 

The author proposed and studied the idea of employing the PSO and CSA to enhance 

the search ability of the MEC, as well as implemented this idea using MATLAB. X. Z. 

Gao and S. J. Ovaska contributed to the work through their valuable comments and 

discussions. 



 

____________________________________________________________________________________

Xiaolei Wang, Hybrid Nature-Inspired Computation Methods for Optimization 

 

50 

 

5.4 [P4] 

X. Z. Gao, X. Wang, and S. J. Ovaska, “Uni-modal and multi-modal optimization using 

modified harmony search methods,” International Journal of Innovative Computing, 

Information and Control, in press. 

In [P4], we propose two modified HS methods to deal with the uni-modal and multi-

modal problems. With the fusion of HS and DE, a hybrid optimization scheme, HS-DE, 

is first discussed. The HM members are fine-tuned by the DE to improve their affinities, 

and achieve better optimization behaviors. In the second modified HS method, we 

deploy a fish swarm-based technique to maintain the diversity of the HM members, thus 

making it a suitable candidate for locating multiple optima. Several simulation examples 

of the uni-modal and multi-modal functions have been employed to verify the 

effectiveness of these two new HS methods. 

X. Z. Gao proposed the hybrid DE-HS algorithm for uni-modal optimization. The 

author cooperated with him in designing the modified HS method and using it to deal 

with the multi-modal optimization problems. This work was carried out under the 

instruction and supervision of S. J. Ovaska. 

5.5 [P5] 

X. Wang, X. Z. Gao, and S. J. Ovaska, “Fusion of clonal selection algorithm and 

harmony search method in optimization of fuzzy classification systems,” International 

Journal of Bio-Inspired Computation, vol. 1, no. 1-2, 2009. 

In [P5], we present a hybrid optimization method on the basis of the CSA and HS 

technique. The HS memory solely depends on past search experiences, which may limit 

the optimization ability of regular HS. In our novel approach, the CSA is applied to 

improve the fitness of the solution candidates stored in the HM. That is to say, all the 

members of the HM are regarded as individual Abs and can evolve in the population of 

the CSA. This hybrid optimization algorithm is further used to optimize Sugeno fuzzy 

classification systems for classification of the Fisher Iris data and wine data. Computer 
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simulations demonstrate that our systems can result in better classification performance 

with fewer fuzzy rules than that optimized with the original CSA and HS. 

The author proposed the improved HS algorithm, which employs the CSA to maintain 

the diversity of the harmony memory. X. Z. Gao suggested using this hybrid method to 

optimize the fuzzy classification systems. S. J. Ovaska provided some advice on 

improving the proposed optimization approach.  

5.6 [P6] 

X. Z. Gao, X. Wang, and S. J. Ovaska, “Fusion of clonal selection algorithm and 

differential evolution method in training cascade-correlation neural network,” 

Neurocomputing, in press. 

In [P6], by merging the CSA and DE together, we propose a hybrid optimization 

method, CSA-DE. The CSA Abs are fine-tuned by the DE to increase their affinities in 

order to obtain improved optimization performance. We also discuss the application of 

the CSA-DE in the optimal construction of a Cascade-Correlation (C-C) neural network, 

which is an adaptive self-growing feedforward neural network. Two numerical 

examples, nonlinear function optimization and C-C neural network training, have been 

used to explore the efficiency of the proposed method. Compared with the back-

propagation learning algorithm, the CSA-DE-based approach leads to a C-C neural 

network with less hidden nodes. 

The author and X. Z. Gao together proposed this CSA-DE-based approach. X. Z. Gao 

further implemented and used it in nonlinear function optimization and C-C neural 

network optimal training. S. J. Ovaska provided his valuable comments on 

improvements to the algorithm. 

5.7 [P7] 

X. Wang, X. Z. Gao, and S. J. Ovaska, “A simulated annealing-based immune 

optimization method,” International and Interdisciplinary Conference on Adaptive 

Knowledge Representation and Reasoning, Porvoo, Finland, September 2008. 
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In [P7], we develop a hybrid optimization algorithm using the principles of both the 

CSA and SA. The SA method often needs a considerably long time to acquire the global 

optimum, since the temperature has to be decreased slowly enough during the cooling 

procedure. In our strategy, fitness-related mutation and cloning, as well as affinity-based 

self-suppression of the CSA are deployed and integrated with the SA so as to improve 

global search and convergence speed. This new scheme is tested with several typical 

nonlinear optimization problems. Experiments have shown that the proposed hybrid 

technique is superior to certain existing algorithms in optimal pressure vessel design and 

can provide diverse, flexible solutions to the multi-modal problems. 

The author proposed this hybrid optimization approach and applied it to nonlinear and 

constrained optimization. X. Z. Gao suggested the idea of merging the CSA together 

with the SA to achieve enhanced search performance. S. J. Ovaska provided his 

suggestions for algorithm improvement in solving the constrained optimization 

problems. 

5.8 [P8] 

X. Wang, X. Z. Gao, and S. J. Ovaska, “A hybrid optimization algorithm based on ant 

colony and immune principles,” International Journal of Computer Science and 

Applications, vol. 4, no. 3, 2007.  

In [P8], we investigate a hybrid optimization algorithm that combines the distinguishing 

features of ACO and CSA, i.e., pheromone-based elitism selection, fitness- and age-

dependant mutation size, hierarchical search structure, and self-suppression. Especially, 

at each iteration, only those ants that can increase performance deposit an amount of 

pheromone proportional to their improved fitness. Thus, this hybrid optimization 

approach is capable of weeding outdated candidates without losing the best ones. It is 

also adaptive to the time-varying environment to avoid misleading the search directions 

of the ants. Its validity is examined in the optimization of several nonlinear functions 

under static and dynamic environments. 

The author and X. Z. Gao proposed the fusion of the ACO and CSA to fully utilize the 

advantages, thus making the resulting hybrid optimization algorithm adaptive to both 
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static and time-varying environments. S. J. Ovaska suggested this new NIC method for 

dynamical optimization.  
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6. Conclusions 

6.1 Summary and scientific importance of author’s work 

Optimization methods can be generally classified into two major categories: 

deterministic and stochastic techniques. Unlike deterministic optimization methods, the 

stochastic approaches involve useful randomness in their search procedures to avoid 

becoming stuck in local optima. Stochastic approaches have been shown to be better 

than conventional schemes in handling various types of challenging problems by 

providing globally optimal, robust, flexible solutions. Inspired by certain natural 

phenomena, the NIC optimization methods form a new emerging type of stochastic 

approaches.  

This dissertation has presented a brief introduction to a few important issues concerning 

optimization, e.g., definition, classification, and conventional optimization strategies. 

Altogether seven NIC optimization algorithms, including the CSA, PSO, ACO, HS, SA, 

DE and MEC, are next discussed in detail. This work has also reviewed some 

interesting hybrid NIC methods along with their applications. In the publications [P1] to 

[P8], we propose and study several new hybrid NIC optimization schemes and employ 

them in nonlinear, multi-modal, and dynamical optimization problems, such as neural 

networks training and optimization of fuzzy classification systems. As an example, the 

CSA inspired by the clonal selection principle of immunology is a principal NIC 

method discussed in our publications, which is an adequate candidate for the multi-

modal optimization [P1]. Nevertheless, its convergence speed is relatively slower than 

that of the GA. In [P6], we study a hybrid CSA-DE, in which the convergence of the 

original CSA is significantly improved by combining the DE with the CSA-based global 

search. Alternatively, the CSA can be hybridized with other NIC algorithms as a general 

parameter optimizer. In [P5], the CSA is employed in the proposed CSA-HS to optimize 

the harmony memory of the HS method. 

The scientific importance of the work in this dissertation is explained as follows. Firstly, 

we develop several novel solution candidate evaluation strategies for elite maintenance. 

For example, in the proposed CSA, the fitness of an Ab includes both its affinity to the 
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Ag and affinity to other Abs, and the self-suppression is used to eliminate those 

relatively weak candidates with high similarities to the outperformed ones. In the 

modified ACO, a pheromone-based instead of a fitness-dependent candidate selection 

strategy is applied to maintain the potential solutions under the changing environments 

in order to cope with the dynamical optimization problems. Secondly, the hybrid NIC 

methods can properly balance the exploitation and exploration in the solution space so 

as to cope with the common premature drawback and thus achieve improved 

optimization performances, including reliability, robustness, and acceleration of 

convergence. It has been demonstrated that our hybrid techniques are well capable of 

solving a wide variety of optimization problems even with a small number of initial 

candidates. To summarize, studying the hybridization of these NIC methods has 

allowed us to overcome the shortcomings of individual algorithms while at the same 

time retaining their individual advantages. Hybridization has led to the following 

benefits:  

• Improvement of convergence performance, 

• Enhanced solution quantity and quality, 

• Creation of compact, reconfigurable systems. 

Although the hybridization of the NIC optimization methods has been proven to be 

superior to the stand-alone techniques in dealing with certain practical problems, we 

should emphasize that the ‘No Free Lunch’ theorem is a fundamental barrier to the 

exaggerated claims of the power and efficiency of any specific optimization algorithm 

[Wol97]. This theorem predicts that if an algorithm is especially efficient in one type of 

problem, it is guaranteed to be inefficient in another type. That is to say, there is no one 

‘best’ optimization algorithm, because whatever an algorithm gains in performance in 

one class of problems is necessarily offset by poor performance in the remaining ones. 

Therefore, formulating a universal solution that can effectively solve all types of 

optimization problems is difficult in practice. The way to handle the negative 

implication of the ‘No Free Lunch’ theorem is to restrict the applications of a given 

optimization algorithm to only a particular type of task.  
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6.2 Topics for future work 

It is well known that a satisfactory optimization algorithm should possess the properties 

of robustness, efficiency, and accuracy. Unfortunately, these objectives usually conflict 

with one another. For instance, a robust optimization method may require a long time to 

converge. Hence, a comprehensive performance evaluation and comparison among the 

current hybrid NIC optimization methods with regard to their search effectiveness, 

convergence characteristics, and computational complexity need to be made. In 

addition, study of more and better hybridization of the NIC optimization approaches as 

well as fusion with the non-nature-inspired strategies is definitely a promising research 

topic for our future work.  

NIC optimization methods have different origins, and they mimic a variety of the 

phenomena observed in biological systems, nature, and human society. However, they 

also share some similarities. For example, regardless of the fact that it is motivated by 

natural immune systems, the CSA can be simply considered as a special type of GA. 

Thus, a general framework that can cover all the NIC optimization methods should be 

developed and investigated. In other words, the individual NIC optimization techniques 

are, in fact, alternative types of our collective framework, which unifies their common 

conceptual bases and characteristics. This feasible framework can provide us with deep 

insight into the principles, architectures, and algorithms of existing NIC methodologies 

as well as a useful guideline for choosing the best ones in order to satisfy specific 

requirements. Such a framework may also lay a solid theoretical basis for the 

aforementioned future exploratory research on new hybrid NIC optimization schemes. 
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