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1 Introduction

Modeling of electromagnetic scattering from various objects is a commonly
encountered problem in electrical engineering. If the scattering problem
involves multiple scatterers which are penetrable by electromagnetic fields,
then the fields must be solved in multiple regions inside and outside the
scatterers. The more numerous and the more varied in their electrical
properties the scatterers are, the more difficult the solving of the scattering
problem becomes.

Even for a single object finding a solution for the scattering prob-
lem may be very difficult, if the surface structure of the scatterer is suffi-
ciently complicated. Such surfaces that are often encountered in scattering
problems are, for example, corrugated surfaces of various cross-sectional
shapes, fractal surfaces, planar antenna structures, composite material
mixtures, many meta-material realizations, etc. (see Fig. 1).

If the fields only outside the scatterer are of interest, then a great num-
ber of scattering problems would be greatly simplified if, instead of using
the original complicated surface structure, the presence of the scatterer
could be simulated by a boundary condition. Then the scattering problem
would only involve a smoother and simpler surface, thus providing a more
efficient numerical solution.

However, a boundary condition is a mathematical idealization of a
complex situation, and finding a suitable one for the given problem is not
a trivial task. Many factors must be taken into account if one wishes
to make such an approximation: the curvature of the original scatterer,
the penetration depth, the nature and the direction of the incident field,
etc. Fortunately, for many kinds of surfaces there exists an impedance
boundary condition that is a sufficiently accurate idealization. But finding
a well fitting boundary condition is usually only the first step on the path
to solve the studied problem.

As the solving of a complicated scattering problem usually involves
some sort of numerical solution method, this introduces a new set of prob-
lems. Implementing an accurate numerical method for solving a scattering
problem with a specific boundary condition is often not a straightforward
process. Surface integral equation methods are often used in solving elec-
tromagnetic scattering problems, but finding an efficient and accurate for-
mulation for a given problem may be difficult. Also, numerical integration
methods, despite having been carefully studied since the birth of scientific
computing, remain still a problematic area.

There are also situations when the analysis of the scattering from a
surface defined by a boundary condition is not of primary interest. Instead,
the goal may be to find or to synthesize a material or a meta-material that

13



Figure 1: Different types of complex surfaces

corresponds to a specific kind of a boundary condition. These situations
may arise, for example, when trying to realize certain specific scattering
characteristics for an antenna, and a suitable boundary condition would
satisfy these requirements.

In this thesis the focus of the research has been the analysis of the elec-
tromagnetic scattering from anisotropic impedance surfaces, i.e. surfaces
that have some preferred direction for the electric and magnetic fields. The
goal was to develop new analytical and numerical methods for scattering
analysis. The research was branched into two problem areas.

The first area was the theoretical analysis of the scattering properties
of complex anisotropic boundary conditions, and also the study of their
possible realizations. The second problem area was the numerical anal-
ysis of scattering from surfaces that can be approximated by anisotropic
boundary conditions. In addition to studying the numerical methods, the
second part of the research also led to the development of some new results
for the numerical integration techniques involved.

However, it is not sufficient to propose a numerical solution method for
a problem without verifying its accuracy. Also, when finding possible real-
izations for complex boundary conditions it must be carefully verified that
the synthesized material exactly produces the desired boundary condition
and the scattering behavior. This means in many cases that the full, accu-
rate model of the original complex surface structure must be studied. This
may prove to be problematic as the surface may have many electrically
small details, so that the accurate modeling would require impracticable
computational resources.

During recent years, there has been a considerable interest in the Mul-
tilevel Fast Multipole Algorithm (MLFMA), which has been successfully
used to solve very large scattering problems. MLFMA can be used in
many cases to verify that the impedance boundary approximations accu-
rately model the scattering behavior of the original object. MLFMA can

14



also be used in conjunction with complex boundary condition to further
increase the size of the studied problems by making the most efficient use
of the available computational resources. For these reasons, the last part
of the research concentrated on the MLFMA.

2 Anisotropic Impedance Boundary

An impedance boundary condition (IBC) defines a relationship between
the time-harmonic tangential electric and magnetic fields on a surface. To
study this relationship between the fields, one must start by studying the
Maxwell equations.

The Maxwell equations in the frequency domain are (with a suppressed
time factor e−iωt)

∇× E = iωB, (1)

∇× H = −iωD + J , (2)

∇ · B = 0, (3)

∇ · D = ρ. (4)

Often, for symmetry reasons, the magnetic current density M is intro-
duced into the equation (1),

∇× E = iωB − M , (5)

and similarly, the magnetic charge density ρm is introduced into the equa-
tion (3),

∇ · B = ρm. (6)

The Maxwell equations (1)-(4) contain two vector and two scalar equa-
tions and four vector unknowns. To guarantee a unique solution for the
fields, the medium equations (i.e. the constitutive relations) must also be
introduced. They can be written in the general form [43]

D = ǫ · E + ξ · H, (7)

B = ζ · E + µ · H. (8)

For a linear medium the dyadic medium parameters ǫ, ξ, ζ, µ depend
on the electric and magnetic properties of the medium. The medium
parameters mask all the physical phenomena of the medium, so that the
macroscopic electromagnetic fields behave similarly for two different media
with the same medium parameters even though the media in question may
have significantly different physical characteristics.

15
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Figure 2: Interface between two media.

The Maxwell equations in their differential form are not valid every-
where if the medium parameters are discontinuous, since some of the field
components may then also be discontinuous and thus their derivatives
would be infinite. Unfortunately, one often encounters such situations in
electromagnetic computations, e.g. a model may contain two different
materials that have different medium parameters. In such a case, the
interface conditions relate the discontinuous fields to the discontinuous
sources, and they are written as

n̂1 × E1 + n̂2 × E2 = −M , (9)

n̂1 × H1 + n̂2 × H2 = J , (10)

where E1 and H1 are the electric field and the magnetic field in the
volume V1 with medium coefficients ǫ1, µ1, the unit normal vector n̂1 on
the interface pointing to the volume V1, and similarly for the subscript ()2
for the volume V2 (see Fig. 2). J and M are the electric and magnetic
current sources at the interface.

If the interface is a closed surface S that completely bounds the vol-
ume V2, it may be possible to significantly simplify the original scattering
problem. The Huygens’ equivalence principle defines the so-called equiv-
alent surface currents on the surface S which create fields outside of V2

that exactly cancel the fields produced by the original sources in V2 [45]
(see Fig. 3). Thus, these equivalent surface currents produce exactly the
same fields outside V2 as the original sources.

The equivalent surface currents can be obtained from the interface
conditions (9), (10) by requiring that the fields E2 and H2 vanish outside
V2, in which case one can write

J = n̂ × H, (11)

M = −n̂ × E, (12)

16



J

M
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Figure 3: Using the Huygens’ equivalence principle and equivalent surface
currents, the original scattering problem may be reduced to a simpler one.

for fields on the boundary, with n̂ pointing away from the region V2. By
enveloping the original scatterer by the surface S and using the equivalent
surface currents (11) and (12) as sources, it is possible to replace the
original scattering problem by a new one.

2.1 Different Kinds of Boundary Conditions

The use of Huygens’ equivalence principle to simplify the original scatter-
ing problem introduces a new problem: What kind of a boundary con-
dition on the surface S models accurately the scattering behavior of the
original scatterers? Usually, the equivalent current sources on Huygens’
boundary are unknown (as are the original induced sources), so some phys-
ical insight and knowledge of the original scatterers must be used to shed
light on the problem.

The impedance boundary condition (IBC) defines a linear relation be-
tween the the tangential electric field Et and the tangential magnetic
field Ht in the interface conditions (11), (12). The impedance boundary
condition is generally an approximation of the real interface conditions,
although there are situations where it can be considered to be exact. If
the error made in the approximation is sufficiently small, then it is usually
safe to use the IBC in numerical solution procedures. Typically, a medium
with a large refractive index can be handled through IBC.

The IBC can be written in the following equivalent forms [43],

Et = −Zs · n̂ × H, −n̂ × H = Ys · Et, (13)

17
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Figure 4: Impedance boundary.

where Zs is the surface impedance dyadic, Ys = Z
−1

s is the surface ad-
mittance dyadic, and n̂ is the outward directed unit normal vector to the
surface S (see Fig. 4). The surface impedance and admittance dyadics
satisfy

n̂ · Zs = Zs · n̂ = 0, n̂ · Ys = Ys · n̂ = 0. (14)

The simplest form of an impedance boundary is the isotropic boundary,
which is defined to have an impedance dyadic of the form

Zs = ZsIt, Ys = YsIt, (15)

where It = ûû + v̂v̂ is the unit dyadic tangential to the surface, and
Ys = 1/Zs. The unit vectors û and v̂ are local orthogonal tangential
vectors on the surface, so that û × v̂ = n̂.

A special case of an isotropic impedance boundary is the Perfect Elec-
tric Conductor (PEC) boundary that is often applied as an approximation
for materials made of good electric conductors. The PEC boundary con-
dition can be obtained from (12) by setting M = 0,

n̂ × E = 0. (16)

The PEC boundary condition assumes that the conductivity of the mate-
rial is infinite, so the corresponding impedance dyadic is Zs = 0. Analo-
gously one can also define the Perfect Magnetic Conductor (PMC) bound-
ary condition for magnetic fields from (11) by setting J = 0,

n̂ × H = 0. (17)

Similarly as in the case of the PEC boundary, the admittance dyadic for
the PMC surface is Ys = 0.
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The PEC and the PMC boundary conditions can be combined to form
the Perfect Electric and Magnetic Conductor (PEMC) boundary condition
[46],

n̂ × (H + ME) = 0, (18)

where M denotes the admittance of the PEMC boundary. The PMC
boundary condition corresponds to the case M = 0 and the PEC boundary
condition can be obtained as the limit M → ∞.

The isotropic boundary can also be considered a special case of the
more general bi-isotropic boundary that has an impedance dyadic of the
following form,

Zs = ZaIt + ZbJ, (19)

with J = n̂ × It. The unit dyadic It and the antisymmetric dyadic J

are isotropic, since they do not depend on the choice of the vector basis.
Any impedance boundary is called isotropic if its impedance or admittance
dyadic can be expressed in terms of isotropic dyadics. Neither the isotropic
nor the bi-isotropic boundaries have any preferred direction in the tangent
plane of the surface.

If the impedance depends on the direction of the fields, the surface is
called anisotropic. In the simplest form the anisotropic impedance dyadic
can be written

Zs = Zuûû + Zvv̂v̂, Ys = Yuûû + Yvv̂v̂, (20)

where Yu = 1/Zu, Yv = 1/Zv, so that the impedance is Zu for tangential
electric field polarized along û and, correspondingly, Zv for the tangential
field along v̂.

In general, a planar anisotropic dyadic can be written as a linear com-
bination of the dyadics It, J, and

K = ûû − v̂v̂, L = ûv̂ + v̂û, (21)

as shown in [P1]. As opposed to the isotropic dyadics It and J the dyadics

K and L depend on the chosen basis vectors. In [P1], the so-called Perfectly
Anisotropic Boundary (PAB) was defined as having a surface impedance

dyadic that can be expressed only in terms of K and L, i.e. in the form

Z = ZcK + ZdL. (22)

A special case of the anisotropic impedance boundary is called the Soft-
and-Hard Surface (SHS) boundary, for which the boundary condition can
be written in the form [33,34]

û · E = 0, û · H = 0. (23)
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The anisotropic impedance dyadic for the SHS is obtained from (20) with
Zu = 0, and as the limit Zv → ∞. The SHS behaves as a PEC surface for
tangential electric fields Et parallel to û, whereas for tangential magnetic
fields Ht parallel to û it behaves as a PMC surface.

A more general class of soft-and-hard boundaries can be defined by
the condition [44]

a · E = 0, b · H = 0, (24)

where a and b are complex vectors satisfying the conditions n̂ · a = 0,
n̂ · b = 0, and

a · b = 1. (25)

The boundary condition (24) defines the so-called Generalized Soft-and-
Hard Surface (GSHS).

2.2 Realization of an Impedance Boundary

Finding a realization for a given boundary condition and the corresponding
surface impedance dyadic is not a trivial task. Often there are several
different ways in which a boundary condition can be realized. As the
material parameters ǫ, µ, ξ, and ζ are related to the boundary condition
through the interface conditions, finding the expressions for the medium
dyadics is often the first step in the process of finding a possible realization
for the boundary condition.

If the material behaves similarly in all directions, i.e. it has no special
directions, then it is called isotropic or bi-isotropic. As an example, the
PEC surface is often used as an approximation for metal structures, i.e.
good electric conductors. For such materials the penetration depth of and
the dependency on the angle of incidence of the electric field inside the
material are very small, so in practice the PEC boundary condition can
be used for these types of materials without much concern as the error
made in the impedance boundary approximation is small. Similarly, the
PMC boundary condition can be used in situations where the magnetic
field does not depend on the incident angle nor on the penetration depth
of the magnetic field into the material.

Generally speaking, an isotropic surface impedance of the form Z = ZIt

can be obtained by a slab of isotropic material with ǫ = ǫIt, µ = µIt. If
the surface impedance dyadic is bi-isotropic, i.e. it has a component of
the form ZJ, then the surface impedance may be realized by a gyrotropic
material. The PEMC boundary condition (18) is an example of such a
surface, and a planar PEMC surface can be realized with a gyrotropic
slab backed by a PEC plate, with the gyrotropic medium defined by the
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Figure 5: Possible realizations for PAB and GSHS surfaces are based
on high-permeability rods and metal wires embedded in a dielectric slab
backed by a PEC plane.

medium dyadics [47]

ǫ = ǫ
(

It + ieJ + ezn̂n̂
)

, µ = µ
(

It + imJ + mzn̂n̂
)

, (26)

where e, ez, m, and mz are dimensionless parameters.

For a PAB surface, if it is assumed that the surface admittance dyadic
is of the form (see [P1])

Y = iBsK, (27)

where Bs is a real surface susceptance, the medium dyadics can both be
assumed to be multiples of K, i.e.

ǫt = ǫkK, µt = µkK. (28)

Similarly, in [P2] it was shown that for a GSHS, the medium dyadics
required for its realization may be written in the following form,

ǫt =
1

k0d

(

π2Aab − Bab××n̂n̂
)

(29)

µt =
1

k0d

(

− π2

4B
ab +

1

A
ab××n̂n̂

)

(30)

where the parameters A and B depend on the practical realization. (In
the equations (29) and (30) the double cross product for two dyads ab and
cd is defined as ab××cd = (a × c)(b × d) [43].) In [P1] and [P2] possible
realizations for the PAB and GSHS surfaces are given based on the work
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Figure 6: Side profile of the corrugation.

by Prof. I. Lindell and Prof. A. Sihvola [48]. These realizations include
high-permeability rods and metallic wires embedded in a dielectric slab
backed by a PEC plate (see Fig. 5).

The SHS boundary is of particular interest for scattering computa-
tions, since it has many applications in antenna engineering and it can be
realized in simple ways, for example, by using thin parallel wires above a
PEC plate, or by a corrugated surface. To realize an SHS boundary, an
impedance boundary of the form (20) with Zu = 0, Zv → ∞ is required.

This kind of a surface can be realized by a corrugated plate with the
grooves of the corrugation filled with a dielectric material depicted in the
Fig. 6. The grooves of the corrugation can be approximated by short-
circuited waveguides. If the width w of the grooves of the corrugation is
sufficiently small, i.e. w ≪ λ, where λ is the wavelength of the incident
wave, and the thickness t of the walls between the grooves is much smaller
than the width, t ≪ w, then the corrugated surface can be approximated
by an impedance boundary.

If the incident electric field is in the plane formed by the surface normal
n̂ and the vector û, the dominant waveform created inside the grooves is
the evanescent TE1 mode [8], and the surface impedance seen by the
incident electric field is

Zu = iZTE1 tan (βTE1h), (31)

where ZTE1 = ωµ2/βTE1 is the wave impedance for the TE1-waveform,
βTE1 is the propagation factor, and µ2 is the permeability inside the cor-
rugation. For incident electric field in the plane formed by the surface
normal n̂ and the vector v̂, the waveform created inside the grooves is a
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standing TEM wave, and the surface impedance is given by

Zv = iη2 tan (k2nh), (32)

where k2n = |n̂ · k2|, and η2 =
√

µ2

ǫ2
is the wave impedance inside the

corrugation.

If the groove height h of the corrugation is also chosen properly, i.e. if
the groove height is tuned to the incident frequency, then the corrugated
surface can be made to approximate the SHS. The resonant height of the
corrugation is

hr =
λ

4
√

ǫ2/ǫ1 − sin2 α
, (33)

where α is the incident angle measured from the surface normal towards
the û-direction, and ǫ1 and ǫ2 are the permittivities outside and inside
the grooves, respectively. With the height of the corrugation chosen as in
(33), the following limits for the impedance components apply,

lim
w→0

Zu = 0, lim
h→hr

Zv = ∞. (34)

2.3 Applications of Anisotropic Boundaries

Impedance boundary conditions are often used as approximations for mod-
eling the macroscopic behavior of complicated surface structures in elec-
tromagnetic scattering [27, 60, 61, 73]. More specifically, corrugations and
SHSs also have been used in many applications, e.g. in radar calibration,
remote sensing, antenna and waveguide engineering [19,35,49,50,62].

One of the the main properties of anisotropic boundaries is polarization
transformation of reflected fields, which can be exploited for example in
antenna and waveguide applications. In [P1] and [P2] this property of the
PAB and the GSHS surfaces is studied analytically. Similarly in [P4] and
[P5] electromagnetic scattering from corrugated structures is numerically
examined. The methods and the results of [P4] and [P5] are introduced
in the Section 4.

The polarization transformation can be studied analytically by means
of Geometrical Optics (GO) and the reflection dyadic R. Using the reflec-
tion dyadic one can write the reflected field from a surface as

Er = R · Ei, (35)

where Ei is the incident field. Generally, the reflection dyadic depends on
the propagation direction of the incident field, thus R = R(Ei) and (35)
is not a linear relation.
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Figure 7: Reflection of a circularly polarized field from (a) an SHS retains
the original handedness; reflections from (b) GSHS and (c) PAB surfaces
can transform a linearly polarized incident filed into an elliptically polar-
ized field.

If the incidence is restricted to the normal direction, then for the planar
GSHS defined on the xy-plane by the vectors

a = x̂ cos ϕ + iŷ sinϕ,

b = x̂ cos ϕ − iŷ sinϕ = a∗.
(36)

the reflection dyadic can be written (see [P2])

R = −K cos 2ϕ + iJ sin 2ϕ. (37)

For a regular SHS surface, which can be obtained from (36) by setting
ϕ = 0, the reflection dyadic is simply

R = −K. (38)

Similarly, for a planar PAB defined by (27), the reflection dyadic can be
written and for normal incidence (see [P1])

R = It cos 2ψ − iK sin 2ψ, (39)

where
tan ψ = η0Bs. (40)

Using the above reflection dyadics and a circularly polarized incident
wave Ei = E0(û + iv̂) to compute the reflected field, we can easily see
that the field reflected from an SHS retains the original handedness,

Er = −E0K · (û + iv̂) = E0(û − iv̂). (41)
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For the GSHS defined by (36) and for a linearly polarized incident field
Ei = E0û, the reflected field is elliptically polarized,

Er = E0(−K cos 2ϕ + iJ sin 2ϕ) · û = −E0(cos 2ϕû − i sin 2ϕv̂), (42)

with the ellipticity of the reflected field determined by the parameter ϕ.
Similarly, for a PAB surface and for a linearly polarized incident field
Ei = E0(û + v̂), the reflected field Er is elliptically polarized,

Er = cos 2ψ(û + v̂) − i sin 2ψ(û − v̂), (43)

with the ellipticity determined by the value of the parameter ψ. (See
Fig. 7 for these examples.)

3 Numerical Methods

When solving difficult scattering problems, especially those involving com-
plicated boundary structures or conditions, one must often resort to com-
putational methods. The field of computational electromagnetics has been
studied extensively during the last decades and the literature covering the
different methods is vast [3, 31, 41, 51, 53, 57, 68]. The techniques used
in the analysis of electromagnetic scattering can be broadly divided into
methods based on differential equations and integral equations.

On the differential equation side the most commonly used methods are
the Finite-Difference Time-Domain (FD-TD) method [42, 69, 81] and the
Finite Element Method (FEM) [30, 52, 58, 63, 76]. In these methods the
whole computational domain is discretized and the fields are the unknowns
to be solved for. The advantages of these methods are that the resulting
system matrix in the FEM is sparse (or, as is in the case of FD-TD, there
is no actual system matrix).

On the other hand, for scattering problems or other such problems
that involve an unbounded domain, the system matrix needs to be com-
puted for the whole computational domain, which leads to a large number
of unknowns. Naturally, the computational domain must be artificially
limited, e.g. using absorbing boundary conditions or Perfectly Matched
Layers (PMLs) [1], which adds a dimension of complexity to formulating
these methods.

When using integral equation based methods, such as the Method of
Moments (MoM) [25, 79], equivalent sources are used as unknowns in-
stead of the fields. This means that the resulting system matrix is usually
a full matrix, and its elements are computed from singular integrals. The
advantage of these methods is that the number of unknowns, especially
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Figure 8: Using the equivalent surface current sources J and M on the
surface S of the scatterer D, the scattering problem can be simplified.

for surface integral equations, is usually much smaller than for the corre-
sponding differential equation based solution. Surface integral equations
based methods are also well suited for scattering and radiation problems
that involve unbounded domains.

The disadvantages of integral equation based methods include the dif-
ficulties involved in the numerical integration of the singular kernels and
inverting the full system matrix. The former problem has been the sub-
ject of extensive research and is studied in the paper [P3]. To alleviate the
latter problem, iterative solution methods may be used instead of direct
matrix inversion.

However, the use of iterative solution methods only somewhat speeds
up the computations. The computational cost of the full matrix inversion
is O(N3), for N unknowns, while the iterative solvers typically have a
computational cost of O(N2). However, for large problems, even when
using iterative solution methods, the required computational costs often
exceed the available resources.

Fast solvers, e.g. FFT-based methods, the adaptive integral equation
method and the Fast Multipole Method (FMM), are often used to speed
up the computations when the number of unknowns grows beyond the
limit that a straight-forward integral equation based solution method can
handle. The FMM is discussed in more detail in Section 5.

3.1 Surface Integral Equations for Scattering Problems

Consider the scattering problem presented in the Fig. 8, where Ei and
Es are the incident (primary) field and the scattered field, respectively.
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The medium outside the scatterer D is assumed to be homogeneous and
isotropic material or vacuum.

Using Huygens’ equivalence principle (or more specifically, the Stratton-
Chu formulae [10]), one can find the following integral representations for
the scattered electric and magnetic fields outside D,

− 1

iωǫ
D(J)(r) −K(M)(r) = Es(r), r ∈ ext(D), (44)

− 1

iωµ
D(M)(r) + K(J)(r) = Hs(r), r ∈ ext(D), (45)

where the equivalent surface currents J(r) and M(r) are tangential vector
fields on the surface defined as, for r ∈ S,

J(r) = n̂(r) × H(r), (46)

M(r) = −n̂(r) × E(r). (47)

where n̂(r) is the outward directed unit normal of S. The total electric
and magnetic fields are the sums of the known incident and the unknown
scattered fields, i.e. E(r) = Es(r) + Ei(r), H(r) = Hs(r) + H i(r). In
this surface integral formulation, the fields Ei(r) and H i(r) are considered
as the sources and the equivalent currents as the unknowns.

Furthermore, in (44) and (45) the integral operators D and K are
defined for a continuous tangential vector field F (r) on the closed surface
S with the help of the vector single layer potential S, given by

S(F )(r) =

∫

S
G(r, r′)F (r′) dS′, (48)

where G(r, r′) is the scalar Green’s function

G(r, r′) =
eik|r−r

′|

4π|r − r′| . (49)

Using S, the double layer potential K can be written as

K(F )(r) = ∇× S(F )(r), (50)

and D as

D(F )(r) = ∇×K(F )(r) = ∇×∇× S(F )(r), (51)

both for r ∈ ext(D).

The presentations for the electric and the magnetic fields on the surface
S are obtained by assuming that the point r ∈ ext(D) in (44) and (45) is
of the form r + hn̂(r), with h > 0, and then moving r to the surface S
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by taking the limit as h → 0. By taking the cross product of (51) with
n̂(r) and by moving the field point r to the surface S yields the following
result [9],

lim
h→0

n̂(r) ×D(F )(r + hn̂(r)) = D̃(F )(r)

= p.v.

∫

S
n̂(r) × (∇×)2

(

G(r, r′)F (r′)
)

dS′, (52)

where p.v. stands for the principal value integral. Similarly, for the K
operator we get

lim
h→0

n̂(r) ×K(F )(r + hn̂(r)) = K̃(F )(r) +
1

2
F (r)

=

∫

S
n̂(r) ×∇×

(

G(r, r′)F (r′)
)

dS′ +
1

2
F (r). (53)

By taking the cross products with n̂(r) of both sides of (44) and of
(45), inserting the limits (52) and (53), and replacing the scattered electric
and magnetic fields by the difference of the total and incident fields, one
obtains the familiar electric field integral equation (EFIE)

−n̂(r) × Ei(r) = − 1

iωǫ
D̃(J)(r) − K̃(M)(r) +

1

2
M(r), r ∈ S, (54)

and the magnetic field integral equation (MFIE),

−n̂(r) × H i(r) = − 1

iωµ
D̃(M)(r) + K̃(J)(r) − 1

2
J(r), r ∈ S. (55)

In the equations (54) and (55) the unknowns are the electric and mag-
netic surface currents J and M . If an IBC of type (13) is valid on S, we
can eliminate either J or M from one of the equations (54)-(55), and we
only need to solve one equation for one unknown. For example, for a PEC
surface the boundary condition indicates that the tangential components
of the total electric field are zero on the surface, i.e.

n̂(r) × E(r) = −M(r) = 0, (56)

in which case the all the terms containing the magnetic surface current
M can be eliminated.

3.2 Method of Moments

Method of Moments (MoM), sometimes also called the generalized Galerkin
method, is often used for numerically solving equations of following type,

LJ = E, (57)

28



where E is the known electric field, J is the unknown current density and
L is a linear (integral) operator, for example one of the operators S, D, or
K. The first step in the method is to expand the unknown current density
J by the basis functions jn

J ≈
N

∑

n=1

xnjn, (58)

where xn ∈ C are unknown coefficients. Inserting this into (57) gives us

N
∑

n=1

xnLjn ≈ E, (59)

or, by subtracting the approximation (59) from (57), one gets

LJ −
N

∑

n=1

xnLjn = E −
N

∑

n=1

xnLjn, (60)

where the left-hand side is called the residual R.

The residual R is then minimized in the space spanned by the testing
functions tm, m = 1, . . . , N , so that it is orthogonal to all testing functions
tm. Orthogonality is measured by a product 〈· , ·〉, which gives us

〈tm, R〉 = 0 = 〈tm, E〉 −
N

∑

n=1

xn〈tm,Ljn〉, m = 1, . . . , N. (61)

where the product 〈·, ·〉 is defined as

〈g, f〉 =

∫

S
g(r) · f(r) dS. (62)

Often the set of basis functions is chosen as the set of testing functions,
in which case the MoM formulation is equivalent to the usual Galerkin
method.

Triangular rooftop functions, also known as Rao-Wilton-Glisson (RWG)
functions [54], are a popular choice for basis and testing functions. For
triangular surface elements T+ and T−, which share a common edge In

(or Im), these functions can be written as

fn(r) =



















L

2A+
(r − p+), if r ∈ T+,

− L

2A−
(r − p−), if r ∈ T−,

0, otherwise,

(63)
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Figure 9: RWG functions are defined for a pair of adjacent triangles.

where L is the length of the edge In, A+ and A− are the areas of T+ and
T−, respectively, and p+ and p− are the vertices of T+ and T− which are
opposite to In. According to the definition, the current density flows from
element T+ to element T− (see Fig. 9).

The rooftop functions are also very commonly used as basis functions
in MoM formulations. They are particularly well suited for modeling
large planar structures that have straight edges. The rooftop functions
are defined for a pair of adjacent rectangles P+ and P−, which share a
common edge In, with the help of the shape function sn(r) defined by

sn(r) =



















L

A+
(r − p+) · û+, if r ∈ P+,

− L

A−
(r − p−) · û−, if r ∈ P−,

0, otherwise,

(64)

where L is the length of the edge In, A+ and A− are the areas of P+ and
P−, respectively, and p+, p− and the unit vectors û+, û− are as in Fig. 10.
The constants L/A+ and L/A− can also be written as L/A+ = 1/L+ and
L/A− = 1/L−. The basis functions are then defined using the shape
functions,

fn(r) = sn(r)û, (65)

where û = û+ for r ∈ P+ and û = û− for r ∈ P−.

RWG and rooftop functions have the property that their normal com-
ponent is continuous across the edge In, i.e. they are divergence conform-
ing. Also, it is worth noting that on the other edges of the elements T+

and T− (or P+ and P−), the current is always tangential to the boundary
and is zero on the vertices. Thus, the net current flowing out from or in
to the elements is zero.
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Figure 10: Rooftop functions are defined for a pair of adjacent rectangles.

3.3 Accurate Numerical Integration

In the Method of Moments formulation, the discretized surface integral
equations are used to compute the system matrix elements Amn from
double integrals of the following type,

Amn =

∫

Sm

tm(r) ·
(

L(bn)(r′)
)

dS, (66)

where the linear operator L(f) may be any of the above defined integral
operators S(f), K(f), or D(f). The outer and inner integrals above are
evaluated on the surface patches Sm and Sn where the testing and the
basis functions are defined.

When these surface patches overlap or touch each other, the inner
integral in (66) may be singular. Accurate evaluation of these singular in-
tegrals is quite difficult, and several different methods have been proposed
to efficiently compute them. These accurate methods may also be used in
the near-singular cases, where the surface patches are close to each other,
i.e. the distance between the evaluation point r and the source point r′ is
small, since otherwise the number of integration points in the numerical
integration rules required for accurate integration may become too large.

These accurate integration methods include, for example, the so-called
singularity cancellation methods that are based on coordinate transfor-
mation techniques, e.g. the polar transformation technique, the Duffy’s
transformation [12, 71], and the recent Khayat-Wilton method [32, 70].
In the articles of this thesis the evaluation of these singular and near-
singular integrals has been based on the singularity subtraction technique
with closed-form integral representations [4, 13,22,72,80,83].

The singularity subtraction technique is based on the Taylor series
of the exponential function in the Green’s function. The exponential is
expanded at R = |r − r′| = 0,

eikR =
∞

∑

q=0

(ikR)q

q!
= 1 + ikR − k2R2

2
− ik3R3

6
+ . . . (67)
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so that the free space Green’s function, with the above expansion, can
then be written

G(r, r′) =
1

4π

∞
∑

q=−1

(ik)q+1Rq

(q + 1)!
=

1

4π

(

1

R
+ ik − k2R

2
− ik2R2

6
+ . . .

)

(68)

In the expansion (68) the problematic terms regarding the numerical
integration are the "odd" terms (q = −1, 1, 3, . . .), which are not smooth.
The first term is of course singular, and is subtracted from the series.
However, even with the first term removed, the derivative of the remaining
series is discontinuous at R = 0, so the numerical integration may still not
be accurate in all cases. Therefore more "odd" terms than one need to be
removed for an accurate evaluation of the integrals [83].

In practical implementations, the singular integrals are then split into
smooth and non-smooth parts, e.g.

∫

Sn

G(r, r′)bn(r′) dS′

=

∫

Sn

Gs(r, r′)bn(r′) dS′ +
1

4π

∫

Sn

1

R
bn(r′) dS′ − k2

8π

∫

Sn

Rbn(r′) dS′,

(69)

where the “smooth” Green’s function Gs(r, r′) is the original Green’s func-
tion with the first two "odd" terms removed,

Gs(r, r′) =
1

4π

(

eikR − 1

R
+

k2R

2

)

. (70)

More "odd" terms may be removed if accurate integration so requires.
However, since the product kR is small, the higher powers of kR diminish
very quickly, so in practical computations subtracting only the first two
odd terms (q = −1 and q = 1) turns out to be sufficient.

The smooth part of the integral may then be evaluated numerically,
e.g. using Gaussian quadratures. The non-smooth integrals of the odd
powers of Rq can be reduced, through vector algebra and by using basic
integral identities, to the line and surface integrals of the following types

Iq
L(∆L) =

∫

∆L
Rq dl′, (71)

and

Iq
S(S) =

∫

S
Rq dS′, (72)

where ∆L is one edge of the integration element, and S is the surface area.
The integrals (71) and (72) can be further reduced to lower order line and
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Figure 11: Corrugated surface may be replaced by an IBC if the dimen-
sions of the corrugation are suitable.

surface integrals using recursive integration rules. Recursion is used until
the order R−3 for surface integrals and R−1 for line integrals is reached.
For these powers, the integrals may be evaluated analytically, as shown in
[P3].

The recursive integration rules are derived in detail for RWG and
rooftop functions in [P3]. As these integration rules are usually somewhat
different for each basis function type, they must be derived separately for
each case. However, if the basis functions can be expressed in a more gen-
eral form, for example by using polynomial shape functions, then these
rules can be derived in a more general way [28,29].

4 Scattering from Anisotropic Surfaces

In papers [P4] and [P5] the scattering properties of two kinds of anisotropic
surfaces are studied using MoM and IBC. Both these surfaces can be real-
ized by a corrugated surface (see Fig. 11). Previously, numerical methods
and formulations for anisotropic impedance surfaces have been introduced,
see e.g. [21, 38], but these are applicable only for cases where the impe-
dance values are small.

For a corrugated surface whose properties closely resemble those of an
SHS, as is the case in [P4] and [P5], the IBC assumes either very small
or very high impedance values, depending on the direction of the fields on
the surface. This means that some physical interpretation that takes into
account the behavior of the equivalent currents on the studied surfaces
must be used when formulating the problem.
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Figure 12: Trihedral corner reflector with an interior corrugated face.

4.1 Scattering from Soft-and-Hard Surface

Trihedral corner reflectors are often used in remote sensing and radar
technology as location markers and calibration targets [49,62], since they
have a high backscattering radar cross section over a wide angular range,
are easy to construct, and do not require any power to operate.

In [P4] a trihedral corner reflector that has one or several corrugated
interior faces was studied (see Fig. 12). The corrugation was assumed
to be perfectly tuned to the incident wave frequency, in which case the
impedance values in (31) and (32) become Zu → 0 and Zv → ∞. Then
the corrugation can be considered to approximate an SHS, so that the
boundary condition on these interior faces is the SHS boundary condition
(23).

The use of an SHS on one or several of the interior faces of the trihedral
corner reflector opens up the interesting possibility to construct such a
reflector that the reflected wave has the same handedness as the incident
elliptically polarized field, or that the reflected field is rotated by 90◦

in the case of linearly polarized incident field. This property makes the
reflected field easier to distinguish from the background noise due to the
environment.

The scattering properties of an SHS corner reflector have been pre-
viously studied, but the methods used in these studies were not as ac-
curate as a full MoM computation [20, 45]. Other methods for ana-
lyzing corrugated and Soft-and-Hard surfaces have also been introduced
[36, 37, 39, 64, 82], but these are somewhat complex and computationally
intensive compared to the method presented in [P4].

As can be seen from the SHS boundary condition (23), on such a
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Figure 13: Configuring the rooftop functions so that they only allow cur-
rent flow to the û-direction, i.e. the direction of the corrugation, directly
fulfills the SHS boundary condition.

surface the equivalent electric and magnetic surface currents can only flow
in the û-direction, i.e.

J = n̂ × H = n̂ × (Huû + Hvv̂ + Hnn̂) = −Hvû, (73)

and
M = −n̂ × E = −n̂ × (Euû + Evv̂ + Enn̂) = Evû, (74)

with û× v̂ = n̂. Accordingly, the configuration of basis functions must be
such that they model this unidirectional current behavior in a physically
correct way. The popularly used RWG functions (63) are in this case a
bad choice, as forcing this kind of a current behavior leads to the use of
infinite and zero impedance values according to (31) and (32).

However, rooftop functions (65) can easily be made to mimic the cor-
rect currents, so they were used instead. This also led to the necessary task
of deriving the singularity subtraction formulae for the rooftop functions
that were discussed in the Section 3.

As the SHS boundary imposes a condition for both the electric and
the magnetic field, both the electric and magnetic field integral equations
must be used. Using the boundary conditions (73) and (74) in the EFIE
(54) and MFIE (55) then yields the integral equations that are needed to
solve the unknown electric and magnetic surface currents on the SHS.

Using the rooftop functions also allows one to easily take into account
the SHS boundary condition in the integral equation formulation. Config-
uring the basis functions on the SHS so that they only allow current flow
to the û-direction means that the the boundary condition is automatically
fulfilled on the surface (see Fig. 13). This also lowers the computational
cost of modeling an SHS, since the number of needed basis functions is
essentially half of that of the corresponding PEC surface. These insights
are the major novelties in the paper [P4].
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4.2 Scattering from Anisotropic Impedance Boundary

As the SHS is only applicable as an approximate boundary for perfectly
tuned corrugated surfaces, it was of interest to study how it would be
possible to extend the implementation presented in [P4] to corrugations
that deviate slightly from the perfectly tuned one. In [P5] an IBC was
derived that can be applied to such corrugated surfaces.

The problem, as explained above, is that it is not possible to use the
usual IBC (13), as the impedance and admittance values for the corru-
gation (31) and (32) will have at least one very large value. Also, at the
limit where the geometry of the corrugation approaches the SHS case, the
IBC should return the SHS boundary condition.

Thus, instead of using only the impedance or admittance in the IBC,
only those components which have a very small value in the chosen con-
figuration are used. The IBC for approximating corrugations that closely
resemble the perfectly tuned one can then be written in the form

û · E = −Zuv̂ · H, û · H = Yvv̂ · E, (75)

which is more suited to numerical computations, and also returns the
SHS boundary condition as the limit Zu → 0, Zv → ∞. As in [P4], the
equivalent surface currents are best modeled using rooftop functions as
basis functions in the MoM solution.

The impedance and admittance values for the corrugation in (75) can
be computed using (31) and (32). Although these values are strictly speak-
ing only valid for normal incidence, numerical analysis using an exact two
dimensional corrugation model has shown that they are nevertheless a
good approximation for the real values even for oblique incidence [74].

According to (75), in addition to the û-directional equivalent surface
currents, there are now also small perturbation type currents that are
perpendicular to the dominant direction, i.e.

J = −n̂ × (YvEvû + Hvv̂ + Hnn̂) = Hvû − YvEvv̂ (76)

and
M = n̂ × (−ZuHvû + Evv̂ + Enn̂) = −Evû + ZuHvv̂ (77)

The basis functions must now allow current flow to both the û- and the
v̂-direction. The v̂-directional currents are multiplied by the proper impe-
dance or the admittance values, so that the current behavior is as shown
in the Fig. 14. Again, inserting the equations (76) and (77) into the EFIE
(54) and the MFIE (55), yields the needed integral equation formulations.
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Figure 14: On the impedance boundary that closely resembles a corru-
gated surface, in addition to the dominant û-directional currents, there
are also small v̂-directional currents that need to be taken into account.

The scale of these small v̂-directional currents is dictated by the im-
pedance and admittance values, which can not be made very large. The
impedance and admittance values are, in turn, dictated by the geometrical
properties of the corrugation.

If the impedance or admittance values become too large in comparison
to the ideal SHS case, the numerical accuracy of the method is lost, as the
numerical computations in [P5] show. Also, the accuracy of the method
suffers when modeling scattering from corrugated surfaces in scattering
and incident directions that are too close to the tangent plane.

5 Multilevel Fast Multipole Algorithm

An IBC can be used in scattering computations to replace a complicated
surface by a simpler one, as discussed in the previous sections. Verify-
ing that these simplifications correctly model the original scatterer often
means that the full scattering problem must be solved, which may be
computationally a very expensive operation. For this reason, fast and effi-
cient numerical methods are an interesting research subject that is closely
related to the analysis of anisotropic impedance surfaces.

Solving scattering problems based on integral equations involves either
inverting a full system matrix or alternatively using an iterative solution
method. For direct solvers, such as Gaussian elimination or lower-upper-
triangular decomposition, the computational complexity is proportional
to O(N3), where N is the number of unknowns.

The computational cost of iterative solvers is of the order O(N2),
which can still be very large. The Fast Multipole Method (FMM) was
developed to speed up the iterative solution methods. The original FMM
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for static problems was introduced by Greengard and Rokhlin [23]. A
version suitable for solving high frequency problems using the Helmholtz
equation was later developed by Rokhlin et al. [7, 14, 15, 55, 56], which
reduced the computational cost to O(N1.5).

Shortly thereafter a multilevel version (Multilevel Fast Multipole Al-
gorithm, MLFMA) was presented [5, 6, 66, 67], which further reduces the
computational cost of using iterative solvers to O(N log N). The MLFMA
has been extensively studied during the last decade, and it is considered
to be one of the most important computational algorithms available for
electromagnetic scattering computations [2,11]. It has been used to solve
scattering problems involving a significant number of unknowns [24, 75],
and the development of the algorithm is still ongoing, see e.g. [16,18,77,78]

5.1 Background

To illustrate the concepts of the FMM and the MLFMA, consider the ba-
sic scattering problem shown in the Fig. 8. When using MoM to solve the
scattering problem, the surface S is first discretized into N sufficiently
small surface elements, for example triangular or rectangular patches.
Then the system matrix elements Amn are computed from an equation
of the form (66). The result is a matrix-vector equation

N
∑

n=1

Amnxn = Fm, m = 1, . . . , N, (78)

where xn are the unknown coefficients of the basis functions, and the right
hand side vector is computed by

Fm =

∫

S
tm · F i dS, (79)

where F i is the incident field.

Using matrix inversion or other direct methods to solve the equation
(78) incurs a cost of order O(N3). Due to the high cost of direct solvers,
iterative solution methods, such as the GMRES or the conjugate gradi-
ent method, which have a computational cost of order O(N2), are often
used instead. The FMM and the MLFMA can be used to speed up the
computing of the matrix-vector products in the iterative solution methods
lowering the cost to order O(N1.5) and O(N log N), respectively.

In the FMM and the MLFMA, the full system matrix is never com-
puted. Instead, the interactions between elements are computed using a
three-step procedure that is explained below. First, the discretized surface
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Figure 15: The out-to-in translation converts the outgoing field from the
source cube to the incoming field in the target cube.

elements are grouped inside the cubes. After that, the cubes are divided
into nearby and well separated cubes, so that for each cube its nearby
cubes are those that share with it at least one boundary point.

The matrix-vector products are then redistributed between the nearby
and the well-separated cubes, so that

N
∑

n=1

Amnxn =
∑

n∈G

Amnxn +
∑

n/∈G

Amnxn, m = 1, . . . , N, (80)

where G is the group of all elements that belong to the nearby cubes.
Only the interactions between elements that belong to the nearby cubes
are computed using the regular MoM matrix elements. The matrix-vector
products for the well separated cubes are computed in a fast way. To sim-
plify the analysis, let us only consider the case shown in Fig. 15 that only
involves one source cube centered at the origin, one target cube centered
at D, and the matrix elements of the following type,

Amn =

∫

S
tm(r) ·

(
∫

S′

G(r, r′)bn(r′) dS′

)

dS. (81)

The FMM and the MLFMA are based on the plane-wave expansion of
the Green’s function (49), which is obtained from the truncated multipole
series expansion of the Green’s function [6]. Inserting the plane-wave
expansion into the equation (81), and changing the order of integration
gives for the inner integral the approximation

∫

S′

G(r, r′)bn(r′) dS′ ≃
∫

|k̂|=1
eikk̂·rTL(D, k̂)Fn,∞(k̂) dk̂ (82)
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where Fn,∞(k̂) is the far field pattern due to the basis function bn,

Fn,∞(k̂) =
1

4π

∫

S
e−ikk̂·r′

bn(r′) dS′, (83)

TL is the Rokhlin translator of order L,

TL(D, k̂) =
ik

4π

L
∑

n=0

in(2n + 1)h(1)
n (kD)Pn(k̂ · D̂), (84)

h
(1)
n (x) is the spherical Hankel function of the first kind, Pn(x) is the

Legendre polynomial, and |r − r′| < |D|. The vector D is called the
translation vector. The order L in (84) controls the approximation error
(also called the truncation error) in the equation (82).

Using the procedure explained above, one can compute the matrix-
vector products in (80) as follows. First compute the far field patterns due
to the basis functions in division cubes on each division level, see below.
Then, using the Rokhlin translator (84) compute the so-called out-to-in
translations from the source cubes to the field cubes, which convert the
outgoing fields, given by the radiation pattern Fn,∞(k̂), to incoming fields,
given by the incoming wave pattern V (k̂), inside the field cubes,

V (k̂) = TL(D, k̂)

(

∑

n

xnFn,∞(k̂)

)

. (85)

The matrix-vector products for the well-separated cubes on the lowest
division level can then be computed by

∑

n/∈G

Amnxn ≃
∫

S
tm(r) ·

(

∫

|k̂|=1
V (k̂)eikk̂·r dk̂

)

dS. (86)

5.2 Overview of the MLFMA

When solving a surface integral equation with MLFMA and MoM, the
scatterer is first divided into cubes that have a sidelength al = 2l−1λ.
After that the cubes on the lowest division level l are grouped inside
cubes on the next level l + 1, so that on this level the cubes contain eight
lower level cubes each. The lower level (child) cubes are grouped inside
larger (parent) cubes on the higher level until the highest level, where at
least two non-empty well separated cubes still appear, is reached.

The discretized surface elements are grouped inside the cubes on the
lowest level so that each cube contains a small number of elements, say be-
tween ten and one hundred, or is empty. Only non-empty cubes are listed.
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Figure 16: In the aggregation stage, all the contributions from the child
cubes are grouped together in the parent cube.

Two cubes that are on the same level and share at least one boundary point
are called nearby cubes. Two cubes that are not nearby and are on the
same level are well separated. The interaction list of a cube contains other
cubes on the same level that are well separated and are contained in the
nearby cubes of the parent cube.

The MLFMA can be separated into three separate parts: preprocess-
ing, aggregation, and disaggregation. In the preprocessing part, which
includes the discretization and division process described above, the far
field patterns of each surface element are computed using (83).

In the aggregation phase, the far field patterns for each cube on each
division level are computed, starting from the lowest level. On the lowest
level, the previously computed element far field patters are summed to-
gether to form the far field field pattern Wl(k̂) of each cube (see Fig. 16).
Continuing up to the next level l + 1, these are then transformed and
summed into far field patterns Wl+1(k̂) of the higher level parent cubes
using the out-to-out translation,

Wl+1(k̂) = eikk̂·(rl−rl+1)Wl(k̂), (87)

where rl is the center of the division cube on the level l. The algorithm
continues in this fashion until the highest division level is reached.

In the disaggregation phase, the far field patterns are translated into
incoming field patterns and then disaggregated. On the highest division
level, the incoming fields Vl(k̂) for each cube are computed from the far
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Figure 17: On the highest level the contributions from the well separated
(shaded) cubes are translated to the target cube.

field patterns Wl(k̂) of well separated cubes using the out-to-in translation
(85) (see Fig. 17).

Continuing to the second to highest level, the incoming fields Vl−1(k̂)
are computed from the cubes in the interaction list of each cube using the
out-to-in translation and also from the incoming field patterns Vl(k̂) of
the parent cube using the in-to-in translation (see Fig. 18),

Vl−1(k̂) = eikk̂·(rl−rl−1)Vl(k̂). (88)

The algorithm continues in this fashion until the lowest division level is
reached.

On the lowest level, the final values are then computed using (86).
The interactions of the surface elements inside the same and the nearby
division cubes must also be taken into account. These interactions are
computed using the regular MoM formulation.

5.3 Efficient Evaluation of the Rokhlin Translator

In the numerical evaluation of the integral (86), the Rokhlin translator
TL must first be sampled in the directions k̂mn dictated by the used inte-
gration rule. As the number of these sampling directions depends on the
order L of the Rokhlin translator, the associated computational costs, i.e.
the processing time and the storage cost, may be significant especially on
the higher division levels when L is large.
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Figure 18: On level l − 1 the contributions of the cubes in the interaction
list (shaded cubes) are taken into account and the effect of the l level
cubes well separated from the parent cube (hatched cubes) are computed
from the incoming field pattern of the parent cube.

It is possible to considerably decrease these computational costs by
using Lagrange interpolation to evaluate the Rokhlin transfer function, as
has been demonstrated by several authors [17, 40, 65]. An accurate inter-
polation method requires that the oversampling factor s and the number
of points in the interpolation stencil 2p are sufficiently high for the target
accuracy (see Fig. 19).

As the number of the directions k̂mn where the values of TL must be
computed is high, also the number of needed interpolations is very large.
To obtain the computationally most efficient interpolation method, the
number of the stencil points in the interpolation must be minimized. This
can be achieved by using a high oversampling factor (see Fig. 20).

However, the use of a high oversampling factor increases the compu-
tational and, especially, the storage costs required by the direct oversam-
pling. It is thus essential to find such values for the oversampling factor
and for the number of stencil points that are sufficient for the target ac-
curacy and are the computationally most efficient.

In [P6] it is shown by using the Fast Fourier Transform (FFT) based
oversampling method for the Rokhlin translator TL, that it is possible
to considerably decrease the computational costs associated with the in-
terpolation method. The FFT technique allows the use of much larger
oversampling factors without increasing the storage costs. Thus the num-
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the sample points is not suffi-
cient, the number of the sten-
cil points must be increased in
order to accurately integrate a
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Figure 20: By oversampling
the original function the num-
ber of the stencil points may
be reduced, as a lower order
polynomial is sufficient for ac-
curate interpolation.

ber of stencil points can be reduced, which decreases the computational
costs. These improvements significantly increase the efficiency of the in-
terpolation algorithm. The FFT technique has also been used to speed
up the computations in the aggregation and the disaggregation stages of
the MLFMA [59].

The interpolation technique is based on the fact that TL(D, k̂) is a
trigonometric polynomial TL(α) of order L, with α = arccos (D̂ · k̂),

TL(α) =
L

∑

n=−L

bneinα, −π ≤ α ≤ π. (89)

This can be seen from the equation (84), since Pn is the Legendre poly-
nomial of degree n and its argument can be written in the form D̂ · k̂ =
cos α = 1

2

(

eiα + e−iα
)

.

Using the Lagrange interpolation, the values of TL can be computed
by

T̃L(α) =

2p
∑

j=1

TL(βj)γj(α), (90)

where T̃L(α) is the interpolate of TL, and the interpolating polynomials
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Figure 21: The stencil points are evenly distributed on both sides of the
interpolation point in the Lagrange interpolation.

γj(α) are defined as

γj(α) =

2p
∏

k=1
k 6=j

α − βk

βj − βk
(91)

The interpolation stencil points are βj = αm+j , j = 1, . . . , 2p, with m
chosen so that βp ≤ α ≤ βp+1, i.e. the interpolation point α is in the
center interval of the stencil (see Fig. 21).

To use the FFT based oversampling method for the interpolation, the
samples are first computed directly in the Nyquist sampling points

α′
m =

2π

2L + 1
m, m = −L, . . . , L. (92)

by (84)
u(m) = TL(α′

m). (93)

Then the centered Fourier transform F2L+1,

(F2L+1u) (n) =
L

∑

m=−L

u(m)e−i 2π

2L+1
nm, n = −L, . . . , L, (94)

is used to compute the coefficients bn = b(n) in (89) by

b(n) =
1

2L + 1
(F2L+1u) (n), n = −L, . . . , L. (95)

The oversampling is achieved simply by zero-padding the sequence b, i.e.
by adding sL − L zeros at both ends of b to get the sequence c, and
then computing the values TL(αm) in the oversampling points αm by the
inverse Fourier transform F−1

2sL+1 as

TL(αm) = (2sL + 1)
(

F−1
2sL+1c

)

(m), m = −sL, . . . , sL. (96)
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The computational cost of using FFT in (95) and (96) is of the order
2sL log (2sL), which is significantly faster than direct oversampling. Also,
when using the FFT technique the oversampled values need not be com-
puted and stored beforehand, so the memory costs can be minimized. As
it is essential to find the optimal values for the interpolation parameters
for a fast algorithm, i.e. the oversampling factor s and the number of
stencil points 2p, in [P6] these values are found using both a numerical
search and an analytical upper bound for the field error.

The order L of the Rohklin translator TL plays a significant role in the
accuracy and the computational cost of the MLFMA, so it is important
that the value for L is chosen correctly. The order L can be accurately
obtained by computing the truncation error in the incoming multipole
series of the Green’s function, see e.g. [6]. In [P6], these orders are found
numerically as a function of the division level and the target accuracy.
These values are also tabulated in the paper.

Often, instead of using the accurately computed values for L, approx-
imation based on the excess band-width formula [6] is used,

L = kd + 1.8q2/3(kd)1/3, (97)

where d = k
√

3al. Comparing these values with the values given in [P6]
one can see that the approximated values are often inaccurate, particularly
yielding too low estimates for L for lower levels. An improved approxima-
tion has been given by Hastriter et al. [26].

6 Summary of the Articles

[P1]: Perfectly Anisotropic Impedance Boundary

In [P1], the class of perfectly anisotropic boundaries (PABs) is defined
and some of its scattering properties are studied. The surface impedance
and admittance dyadics can be characterized as two-dimensional dyadics,
and thus they can be expanded in terms of four basis dyadics. The basis
dyadics are either isotropic or anisotropic, and so a surface admittance or
impedance dyadic is also either isotropic or anisotropic depending on the
basis dyadics that define them. A PAB surface admittance or impedance
has as components only basis dyadics that are anisotropic.

A method of realization for a planar PAB is found based on a layer of
waveguiding anisotropic material backed by a PEC plane and an expres-
sion for the PAB impedance dyadic as a function of the material parame-
ters is derived.

Also, the reflection properties of the PAB are studied, and it is found
that a PAB can act as a polarization transformer, e.g. it can transform
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a linearly polarized incident field into an elliptically polarized one and
vice versa. This property can be further applied to transform an elliptic
polarization to another elliptic polarization through reflections upon two
PAB planes.

[P2]: Realization of Generalized Soft-and-Hard Boundary

Generalized Soft-and-Hard Surface (GSHS) boundary has been previously
defined in [44]. In [P2], a possible realization for such surfaces is proposed
and their reflection properties, especially regarding polarization transform-
ing, are studied. As in [P1], a slab of special wave-guiding anisotropic ma-
terial backed by a PEC plate is used for the realization. Analytic expres-
sions for the material parameters and the surface admittance are derived,
and it is verified that they satisfy the GSHS boundary conditions. With
these analytic expressions, it is in theory possible to implement any GSHS
boundary.

As the class of GSHS boundaries covers a large scale of possible bound-
aries, also the polarization transforming properties of such structures are
diverse. The GSHS boundary is shown to be able to transform any po-
larization, be it linear, circular, or elliptic, to another for incident waves
arriving from the normal direction. The choice of parameters defining the
GSHS boundary condition and the corresponding material parameters and
their effect to the polarization transforming properties have been studied
in detail.

[P3]: Singularity Subtraction Integral Formulae for Surface
Integral Equations with RWG, Rooftop, and Hybrid Basis
Functions

The main results of the paper [P3] are the singularity subtraction formulae
for the numerical integration of surface integral equations with n̂×RWG,
rooftop, and n̂×rooftop functions (n̂ × f notation means that the cur-
rent flow inside the basis function has been rotated by 90◦). Previously,
the singularity subtraction formulae for RWG functions had been widely
published in the literature, but their presentation had been somewhat
fragmented and difficult to assemble coherently [4, 13, 22, 83]. In [P3] a
comprehensive collection of these singularity subtraction formulae are de-
rived for the rooftop and the RWG functions in a uniform way.

Although RWG functions are, justifiably, widely used in electromag-
netic computations, there are situations where the rooftop functions are
more suitable. These situations often involve anisotropic surfaces, e.g. as
discussed in the papers [P4] and [P5].
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The formulae given in [P3] are numerically verified to give accurate
results, by using Duffy’s transformation and a straight-forward Gaussian
quadratures to compare the results. The singularity subtraction formulae
give considerably more accurate results with a smaller number of integra-
tion points than the other methods. Also, in some situations, the other
methods failed to achieve as good accuracies even with a very high number
of integration points.

[P4]: Method of Moments Analysis of the Backscattering
Properties of a Corrugated Trihedral Corner Reflector

In [P4] a new numerical method to analyze electromagnetic scattering
from Soft-and-Hard Surfaces by using a surface integral equation method
with Method of Moments is introduced. The application considered in
[P4] is a corrugated trihedral corner reflector, which has some interesting
applications in radar technology and remote sensing.

The numerical method assumes that the corrugated surface is ideally
tuned to the incident wavelength, i.e. it models the SHS perfectly. In the
numerical simulations, a novel method to model the SHS by an appropriate
choice and configuration of the basis functions is introduced. Similarly,
an integral equation formulation that is suited for the SHSs is derived.

The backscattered fields from the trihedral corner reflector are com-
puted for different combinations of PEC and SHS plates covering the inside
faces of the reflector, and for various incident fields. The results are ver-
ified by Physical Optics (PO) method. The scattering properties of the
trihedral corner reflector had been previously studied with less complex
methods, e.g. analytically using reflection dyadics and numerically using
PO, but a rigorous numerical study of the scattering from such a struc-
ture had not been made. In the above mentioned studies, some interesting
scattering properties were found, and these results were duplicated by the
numerical analysis in [P4].

[P5]: Implementation of Method of Moments for Numerical
Analysis of Corrugated Surfaces with Impedance Boundary
Condition

The paper [P5] is a continuation of the research presented in the paper
[P4]. In [P4] it was assumed that the corrugated surface is ideally tuned
to the incident wavelength, so that it can be assumed to be an ideal model
for an SHS. In [P5] this condition is relaxed a bit by allowing the depth
and the width of the corrugation to diverge slightly from the ideal values.
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To be able to numerically compute the scattering fields from such a ’non-
ideal’ surface, the impedance boundary condition (IBC) must be used.

The main result of paper [P5] is the introduction of an IBC based in-
tegral equation formulation to model anisotropic impedance surface that
closely resemble the SHS surface. By using Method of Moments (MoM),
the scattered fields for various different corrugation types and incident
fields are computed. The results are verified by a commercial field com-
putation program CST Microwave Studio. The computational results are
found to agree well with each other. The limitations of the IBC approxi-
mation of the corrugation are found and given in the paper.

Although the corrugation is the main application considered for the
IBC integral equation formulation, the method can also be used for other
anisotropic impedance boundaries, provided that they fall within the ap-
plicable limits of the method that are given in the paper.

[P6]: Efficient Evaluation of the Rokhlin Translator in Mul-
tilevel Fast Multipole Algorithm

In [P6], a fast and efficient Fast Fourier Transform (FFT) based over-
sampling method for interpolating the values of the Rokhlin translator
is proposed. This oversampling method allows the use of much smaller
initial sampling rate, thus minimizing the memory usage, and the method
also leads to a smaller number of points in the interpolation stencil which
makes the interpolation much faster than before.

By treating the Rokhlin translator as a trigonometric polynomial, the
original sampling rate can be minimized, as the sampling must only be
done at the Nyquist rate. Since oversampling by FFT is very fast, it
is possible to increase the sampling rate with a very low cost. This in
turn allows the use of a smaller number of stencil points for the Lagrange
interpolation, which further minimizes the computational cost.

The interpolation parameters, i.e. the oversampling factor s and the
number of stencil points 2p, are optimized with respect to the relative
error in the translated (incoming) field. Previously, only the relative error
of the interpolation has been used in the optimizations. However, using
the field error more realistic values for the interpolation parameters can
be achieved.

Two different methods are used to optimize the interpolation parame-
ters. First, the optimal parameter pairs are found by an extensive numer-
ical search. After that, an analytic upper bound is used to compute the
optimal pairs. The computed (p, s) pairs are tabulated in the article for a
range of division levels and the relative target field accuracies, and can be
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used to obtain optimal accuracy and maximal speed-up and memory sav-
ings in practical computations. Also, the accurate orders L of the Rokhlin
translator as a function of the division level and the target accuracy are
tabulated.
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