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Työn kirjallisuusosassa annetaan yleiskuva sphaleriitin hapettavan liuotuksen mekanismeista ja kinetiikasta. 
Liukenemisen nopeuteen vaikuttavat tekijät sekä joitain tutkimuksessa käytettäviä menetelmiä esitellään 
lyhyesti.  
 
Työn kokeellisessa osassa käytettiin useita tutkimusmenetelmiä. Suoraliuotuskokeissa, joissa käytettiin 
mangaanidioksidia sekä ferri-ioneita hapettajina, todettiin MnO2:n vaikuttavan sphaleriittirikasteen 
liukenemiseen kahdella tavalla: se suoraan liuottaa sulfidimineraalia sekä regeneroi hapettavaa ferri-ionia. 
Tulokset myös viittaavat siihen, että mangaanidioksidi hapettaa partikkelien pinnalle muodostavaa 
elementääririkkikerrosta. 
 
Kahden rikasteen liukenemiskinetiikkaa tutkittiin suoraliuotuskokeissa, joissa käytettiin ferrirautaa 
hapettimena rikkihappoliuoksissa. Rikasteet oli jaettu fraktioihin < 37 µm ja > 37 µm ja koeolosuhteet oli 
valittu vastaamaan teollista tuotantoa. Rikastefraktioiden keskimääriset sinkkikonversiot kolmen tunnin 
liuotuksen jälkeen olivat 45:stä 74:än massaprosenttiin. Rikasteen kokofraktio sekä liuoksen lämpötila ja 
ferrirautapitoisuus vaikuttivat voimakkaasti konversioihin. Hapon konsentraatiolla ja sinkkippitoisuudella ei 
ollut huomattavaa vaikutusta. Odotetusti konversio oli suurinta rikastefraktiolla, jolla oli suurin ominaispinta-
ala ja konversiot laskivat pienenevän pinta-alan mukaisesti. Konversiot olivat keskimäärin 15 
massaprosenttia korkeampia sillä rikasteella, jonka hilassa oli enemmän rautaa, kun keskimääräiset 
konversiot jaettiin rikasteiden ominaispinta-aloilla. 
 
Tutkimusta varten tehtiin pyörivä rengas-levy-elektrodi, jossa käytettiin levyelektrodina rikasteesta 
puristettua nappia. Ferrorauta, jota syntyi kun ferrirauta hapetti rikastetta, detektoitiin platinaisella 
rengaselektrodilla hapettamalla se takaisin ferrimuotoon. Rengaselektrodin virran avulla  määritettiin 
liuekenemisnopeus. Menetelmä on nopea ja sopii rikasteiden liukenemisominaisuuksien vertailuun eri  
olosuhteissa. Lisäksi menetelmän avulla saadaan erotettua aineensiirron ja kinetiikan vaikutukset, jolloin 
voidaan tarkemmin tutkia reaktiokinetiikkaan vaikuttavia tekijöitä. Teoreettiset aineensiirtolaskut osoittivat, 
että kinetiikka on reaktionopeutta rajoittava vaihe. Parantamalla aineensiirtoa liuoksessa ei voida nopeuttaa 
liukenemista, vaan olosuhteita tulee muuttaa kineettisten vaiheen nopeuttaiseksi. 
 
Mineraali-hiilipastaelektrodi tehtiin sekoittamalla sphaleriittirikastetta hienon hiilijauheen ja öljyn kanssa. 
Mitatut sykliset voltamogrammit osoittavat, että hiili-öljypastaelektrodi oli inertti käytetyissä olosuhteissa. 
Modifioidulla mineraalielektrodilla tehdyillä voltametrisillä ja potentiostaattisilla mittauksilla tutkittiin 
potentiaalin vaikutusta liukenemisnopeuteen. Sulfidin liukeneminen alkoi 0,8 V:n (vs. Ag/AgCl) 
potentiaalissa ja reaktionopeus kasvoi potentiaalin noustessa 1,2 volttiin (vs. Ag/AgCl) saakka. 
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In the literature part of the thesis, an overview of the mechanisms and kinetics of oxidative sphalerite 
dissolution was given. The factors affecting the rate of dissolution and some methods of study were briefly 
described. 
 
In the experimental part various methods were used. In batch dissolution experiments with manganese 
dioxide and ferric ions as the oxidising species, it was found that MnO2 affects the dissolution of a sphalerite 
concentrate by two mechanisms: by directly oxidising the sulphur in the mineral and by regenerating the 
active ferric species. The results also suggested further oxidation of the elemental sulphur layer by the 
manganese species. 
 
The dissolution behaviour of two sphalerite concentrates was studied by batch dissolution experiments using 
ferric ions as the oxidant. Fractions with particle sizes of < 37 µm and > 37 µm were used. The measurement 
parameters were chosen to match those in industrial scale dissolution. The average zinc conversions for the 
fractions were from 45 to 74 mass percent after 3 hours dissolution. The conversions were strongly effected 
by the size fraction of the concentrate, temperature and the concentration of iron in the solution. The effects 
of the sulphuric acid and zinc concentrations were on average negligible. As expected, the concentrate 
fraction with the largest surface area per gram had the highest conversion and the conversions decreased with 
decreasing surface area. The average conversion divided by the surface area of the concentrate was 15 m-% 
higher for the concentrate with a higher concentration of iron in the lattice.  
 
A rotating ring disc electrode was constructed, in which a pressed concentrate pellet was used as the disc. 
The Fe2+ ions formed by the dissolution of ZnS in the disc were detected on the platinum ring by oxidising 
them back to the ferric form. The measured current was used to determine the rate of dissolution. The method 
is fast and thus can be used for rapid comparison of the dissolution characteristics of different concentrate 
fractions under varying conditions. In addition, the method allows for the effects of kinetics and transport 
processes on the current to be separated, allowing a closer study of the factors affecting the kinetics of the 
reaction. Theoretical calculations of the rate of mass transfer showed, that kinetics are rate limiting under 
these conditions. Increasing the mass transport in the solution will not increase the rate of the dissolution 
process; the conditions have to be made more favourable for faster kinetics. 
 
A mineral-carbon paste electrode was constructed by mixing sphalerite concentrate with fine carbon powder 
and oil. Cyclic voltammetric measurements showed the carbon-oil paste electrode to be inert under the 
conditions used. The voltammetric and potentiostatic measurements conducted on the modified mineral 
electrode showed the effect of the electrode potential on the rate of dissolution. The oxidation of the sulphide 
began above 0.8 V vs. Ag/AgCl and the rate was increased with increasing potential until a maximum was 
reached at 1.2 V vs. Ag/AgCl.  
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K  rate of dissolution (eq. 25)     [g g-1 m-2 h-1]  

kc  rate constant of the reaction (eq. 24)    
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r0  radius of the unreacted particle (eq. 6, 8, 9)   [cm] 

R molar gas constant      [J/(mol K)] 

t  reaction time        [min] 

T absolute temperature      [K] 

X conversion 

 

α  transfer coefficient  

η over potential        [V] 

ρz density of sulphide mineral (eq. 6, 8, 9)   [g/cm3] 

υ kinematic viscosity      [m2/s] 

ω angular speed of the electrode     [rad/s] 

 

[i]   concentration of i       [mol/l] 
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1. INTRODUCTION 
 

Sphalerite is by far the most processed zinc mineral and annually over 7 million 

tonnes (2003) of zinc is produced by the treatment of sphalerite concentrates [1]. 

In the traditional roast-leach-electrolysis process the concentrate is combusted to a 

soluble oxide, dissolved into acid and the zinc is recovered by electrowinning. 

The roasting process also produces sulphur dioxide, which can no longer be 

released into the atmosphere due to ecological legislation. The sulphur dioxide has 

to be treated into a more storable form, and is usually processed into sulphuric 

acid. This is not economically viable, due to the over production of the acid and 

thus new production methods for zinc are of great interest.  

 

The roasting step was first replaced by direct, oxidative leaching under high 

pressure and later, an atmospheric leaching process was taken to use [1]. Both of 

these methods oxidise the sulphur into elemental form so it can easily be collected 

and stored. These methods are often used alongside the roasting process and 

concentrates are divided between the processes by their characteristics. Some 

research is concentrating on the possibilities of a biological oxidation step to be 

incorporated with the direct leaching process [1].  

 

Although the industrial processes have been in use for many years, there is still 

controversy on the kinetics and mechanisms of the dissolution reaction in direct 

oxidative leaching. This is partly due to the variety of concentrates used, as the 

amounts of impurities, especially iron, in the sulphide lattice have a strong effect 

on the dissolution rate. In addition, the effects of catalytic agents, surface-active 

agents, oxidative species, and mechanical activation, stirring rate and reaction 

time on their part explain the lack of a comprehensive model for this dissolution 

phenomenon.
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2. LEACHING OF SPHALERITE 

2.1 DIRECT OXIDATIVE LEACHING 
 

Zinc can be released for processing from sphalerite concentrate by oxidative 

dissolution. A multitude of studies has been published using various solutions and 

oxidants [2, 3, 4, 5, 6].  

 

Ferric sulphate is a common oxidising agent in sphalerite dissolution and the 

dissolution into hot sulphuric acid can be conducted at atmospheric pressure. The 

sulphur in the concentrate is oxidised to elemental form by the ferric ions, and as 

the lattice is broken down, the zinc is released into the solution according to 

equation 1 [7, 8, 9]: 

 

ZnS (s) + 2 Fe3+ (aq) → Zn2+ (aq) + 2 Fe2+ (aq) + S (s)   (1) 

 

If oxygen is present in the system, the ferrous ions can be oxidised to the ferric 

form according to reaction 2 [1, 9]: 

 

2 Fe2+ (aq) + H2SO4 (aq) + ½ O2 (g) → 2 Fe3+ (aq) + SO4
2- (aq) + H2O      (2) 

 

In both pressure and atmospheric leaching it has been noted, that direct oxidation 

of concentrate by oxygen is minimal [1]. The solution potential is determined by 

the ferric to ferrous ion ratio [2], so if there is no oxygen, or not enough of it, the 

potential of the solution decreases with reaction time. With an abundance of 

oxygen in the system, the total reaction becomes:  

 

ZnS (aq) + H2SO4 (aq) + ½ O2 (g) → ZnSO4 (aq) + S (s) + H2O  (3) 

 

At temperatures below 150 °C elemental sulphur is the main sulphur product, only 

at higher temperatures in pressure leaching conditions, sulphates begin to form 

[1].    The elemental sulphur formed remains on the surface of the particle and the 
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reactive core of the particle shrinks during the dissolution according to the 

Shrinking core model [4, 8, 10, 11]. Layers of differing composition and 

stoichiometry are formed within the concentrate particle and the rate of diffusion 

of ferric ions to the ZnS lattice is reduced as the topmost layers are depleted in 

zinc. Likewise, the rate of diffusion of the products away from the reaction zone is 

reduced. These effects can be seen as a reduction on the over all reaction rate. If 

the oxidation potential in the solution is high enough, the elemental sulphur layer 

can be further oxidised into a soluble sulphate form according to reaction 4 [12]: 

 

S (s) + 6 Fe3+ (aq) + 4 H2O → 8 H+ (aq) + SO4
2- (aq) + 6 Fe2+ (aq)        (4) 

 

The dissolution reactions are electrochemical in nature and in the beginning of 

dissolution charge transfer at the surface is the rate-determining step. This 

mechanism explains why increase in the solid solution iron content or dissolved 

Ag, Hg and Bi (catalytic effect), increase the rate of dissolution. The effect of 

mechanical activation may also be explained. [1] 

 

2.2 SELECTIVE EXTRACTION 
 

In nature, zinc is often associated with other sulphides, such as iron sulphides 

(pyrite and pyrrhotite), copper sulphides (covellite), copper-iron sulphides 

(chalcopyrite) and lead sulphides (galena) [13,14]. These sulphides are difficult to 

separate by traditional separation techniques such as selective flotation. However, 

hydrometallurgical methods can be applied to selectively dissolve the metals, as 

the optimum leaching conditions of the minerals vary, as do the rates of 

dissolution.  

 

The selectivity of the process can be increased by addition of roasting steps at 

different temperatures. Akcil and Ciftci [14] reported recoveries of 97 % for 

copper and 90 % for zinc in a combined thermal treatment – pressure leaching 

process for the mixed sulphide.  The sulphide was roasted firstly at 400 °C and the 
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zinc was dissolved in a leaching step. The roasting was repeated at 620°C, after 

which the copper was dissolved and recovered.  

 

A heterogenous mixture of sulphides has areas of varying potential and galvanic 

coupling is known to greatly affect the rates of dissolution [14, 15].  The sulphide 

with the higher rest potential becomes the cathode and supports the reduction of 

the oxidising agent; the one of lower potential becomes the anode and dissolves. 

The oxidation potential of sphalerite is lower than that of e.g. copper sulphide and 

dissolution of zinc by selective extraction is possible from a mixed zinc-copper 

sulphide [16]. Pyrite also is known to enhance the dissolution of sphalerite by 

galvanic coupling [14, 17]. 

 

Palencia et al. [16] studied the acidic ferric sulphate solution of a copper/zinc 

sulphide. They found that the galvanic interaction between the sphalerite and 

chalcopyrite resulted in the selective extraction of zinc. Zinc conversion of nearly 

80 % was achieved, and after the separation of solid sulphur and lead sulphate 

from the residue, it could be used as a copper concentrate for a pyrometallurgical 

recovery process. 

 

2.3 BIOLEACHING 
 

The use of bacteria, such as Thiobacillus ferroxidans, in oxidative leaching has 

been studied for several years [5, 16, 18, 19]. There is disagreement on the role of 

different mechanisms of bioleaching.  There are three proposed ways in which T. 

ferroxidans can participate in the dissolution reaction of minerals in ferric 

sulphate containing media [17, 18]. Firstly, in the direct oxidation of the mineral, 

the bacteria attack the mineral lattice oxidising the sulphur and freeing the metal 

into the solution. Secondly, the bacteria can oxidise the ferrous ions in the 

solution to ferric ions, which then attack the lattice. Thirdly, the bacteria can 

attack the sulphur layer, which forms in many mineral surfaces during dissolution 

and slows down the reaction rate. As the surface is kept clean, mass transport is 

not hindered and the reaction continues at a greater rate. The relative importance 
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of these mechanisms is disputed, but the oxidation of the ferrous ions to the ferric 

form seems to be of major importance [1]. However, the mechanisms may also be 

dependent on the experimental conditions.  

 

Selvi et al. [5] studied the electrobioleaching of sphalerite with the T. ferroxidans 

at different potentials, as the electrobioleaching process produces current and thus 

an applied potential can affect the rate of reaction. They found the leaching at a 

positive potential (+0.4 V (SCE)) to be more efficient than that at the lower 

potential (-0.5 V (SCE)). They also concluded, that at the higher potential the 

direct attack mechanism becomes predominant and the elemental sulphur layer is 

oxidised by the bacteria. 

 

Fowler et al. [18] likewise studied the dissolution of zinc sulphide and concluded 

that the reaction at the mineral surface was the rate-determining step at low 

ferrous ion concentrations. At higher ferrous ion concentrations, the diffusion of 

this species through the elemental sulphur layer would be the rate-determining 

step. They proposed, that the bacteria only affect the process by removing the 

elemental sulphur layer from the particle surfaces. Long et al. [19] studied the 

effects of ferrous ion concentration on the performance of a strain of immobilised 

T. ferroxidans, A. ferroxidans, and found high ferrous concentrations to reduce the 

activity of the immobilised bacteria.   
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3. MECHANISM AND KINETICS OF OXIDATIVE 
LEACHING  
 

Many metals are processed from their sulphide ores and the behaviour of sulphur 

during the leaching processes is very important. In the minerals, the sulphur is in 

the –2 oxidation state and as it is oxidised to the elemental form, the metal ions 

are released into the solution. Intermediate polysulphide species, formed through 

covalent chains, have also been found. Elemental sulphur is quite stable in 

aqueous conditions, but can be further oxidised to the +6 state, thus forming 

sulphates SO4
2-, by oxidising species or applied potentials [20, 21].   

3.1 THE SHRINKING CORE MODEL 
 
The shrinking core model describes dissolution processes, where one or more of 

the reaction products is insoluble and remains on the surface of the dissolving 

particle. The total radius of the particle remains constant throughout the process, 

while depleted layers of varying stoichiometries are formed inside the particle. 

The rate of dissolution can be governed by four different processes: 1) the mass 

transfer of reagents and products through the solution, between the particle 

surface and the bulk solution, 2) The diffusion of reagents and products through 

the product layer in the particle, between the surfaces of the particle and the 

reacting core, 3) a chemical reaction and 4) a charge transfer reaction. 

 

In the beginning of the sphalerite concentrate dissolution the rate of reaction is 

determined by the electron transfer reaction at the surface of the particle. When 

the shrinking core model for spherical particles is obeyed, the rate of reaction is 

dependent on the conversion, X, according to equation 5: [4, 10]  

 

kct = 1- (1-X)1/3        (5) 

 

where t is the reaction time, X is the conversion, given by 1 – (r/r0)3 and kc is the 

rate constant for the reaction, given by [4]: 
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kc = 
z

fscc

r
cMbk

ρ0

                  (6) 

 

where M is the molecular weight of the sulphide mineral, b is the stoichiometric 

coefficient, kcc is the chemical rate constant, cfs is the concentration of Fe3+ in the 

sulphur layer on the mineral surface, r0 is the radius of the unreacted particle, r is 

the radius of the reacted particle and ρz is the density of sulphide mineral.  

 

As the process continues, the forming layer of elemental sulphur hinders diffusion 

slowing down the reaction until the diffusion through this layer becomes the rate-

determining step. In this case the rate of reaction can be expressed by the Crank-

Ginstling and Brounstein model for diffusion through a non-porous product layer 

[4, 10]: 

 

3/2)1(
3
21 XXtkd −−−=               (7) 

 

where kd is the rate constant for diffusion, given by [4]: 

 

kd = 
z

fse

r
cMbD

ρ2
0

2
        (8) 

 

where De is the effective diffusion coefficient of ions in porous medium.  

 

The conversion of the concentrate is dependent both on the mass transport in the 

system and the parameters affecting the kinetic rate of reaction, such as solution 

potential and temperature. Equations 5 and 7 apply only to the special cases when 

either the surface reaction or diffusion fully controls the rate of reaction. During 

most of the dissolution process a combination of the two equations is needed to 

express or predetermine the rate. If the two rates are of equal magnitude, their 

combined, mixed-kinetics equation becomes: 
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[ ] ⎥⎦
⎤

⎢⎣
⎡ −−−+−−= 3/23/1

0
2

0

)1(
3
21

2
)1(1 XX

k
X

r
D

t
r

cDMbk cce

z

fsecc

ρ
  (9)  

 

Dutrixac et al. [1] studied the conditions under which the shrinking core model is 

applicable for the dissolution of sphalerite. They found, that the model is obeyed 

when the rate of roughening of the surface and the decrease in free mineral 

surface area due to the sulphur layer and agglomeration are equal. This is because 

the model assumes the surface area of the particle to remain uniform throughout 

the measurement, and only the surface area of the reactive mineral surface to 

reduce with time. 

 

The effects of product mass transfer through a liquid film and diffusion control 

caused by product solubility limitations could be studied by an extension to the 

shrinking core model proposed by Lapidus et al. [22]. This complex kinetic 

equation was applied to experimental data on the ammoniacal leaching of zinc 

with cupric chloride and the results support the theory of product diffusion 

control. 

 

3.2 FERRIC SULPHATE AS AN OXIDANT 

3.2.1 Pressure leaching 
 

The kinetics and mechanisms of the pressure leaching of sphalerite have been 

under study for decades. The dissolution takes place through formation of H2S, 

according to reactions 10-12 [23, 24, 25]: 

 

ZnS + H2SO4 → ZnSO4 + H2S      (10) 

 

H2S + Fe2(SO4)3 → 2 FeSO4 + S + H2SO4      (11) 

 

2 FeSO4 + H2SO4 + ½O2 → Fe2(SO4)3 + H2O    (12) 
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Jan et al. [23] showed, that the heterogeneous oxidation of hydrogen sulphide to 

elemental sulphur at the sphalerite surface was rate controlling, instead of the 

homogenous reaction in the solution. They also stated, that the mineral was 

oxidised by the ferric ions in the solution, not by direct oxidation by oxygen. The 

role of the oxygen was to re-oxidise the ferrous ions to the ferric form. Currently, 

this has been accepted by most other researchers. 

 

Verbaan and Crundwell [2] derived a model for the dissolution of sphalerite in 

sulphuric acid with ferric sulphate as the oxidant in pressure leaching conditions. 

It is a charge-transfer model, in which the potential of the mineral surface is 

approximated by the solution redox potential for the Fe2+/Fe3+ redox couple. The 

rate of the dissolution is expressed by equation 13: 
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where M  is the amount of leachable material remaining in particle cores, M0 is the 

initial value of M, A0 is the total initial area available for reaction and Eh is the 

redox potential of the solution vs. Ag/AgCl. 

 

The rate of ferrous-ion oxidation was expressed by (14): 
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where [Fe(III)] is the concentration of Fe3+, [Fe(II)] is the concentration of Fe2+, 

[O2] is the concentration of O2 and [H+] is the concentration of H+. The 

simultaneous integration of equations 10 and 11 results in an expression, which 

well predicted experimental results. 

 

Courriou et al. [24] studied the thermodynamics and kinetics of synthetic ZnS 

dissolution in sulphuric acid under pressure leaching conditions with and without 
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oxygen present. They corroborated earlier studies [23] and found the rate of 

reaction in the presence of oxygen to be chemically controlled by the oxidation of 

hydrogen sulphide. They found the concentration of dissolved zinc to be 

dependent on the surface area of the ZnS, the initial partial pressure of oxygen and 

the initial sulphuric acid concentration. 

 

The oxidation of the ferrous ions formed during ferric oxidative pressure leaching 

of sphalerite was studied by Dresinger et al. [25]. They postulated, that the free 

ferrous ions are less easily oxidised than the ion pair FeSO4, and formed an 

empirical equation for the rate of ferrous oxidation: 
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where [Fe2+] is the concentration of Fe2+, [FeSO4] is the concentration of FeSO4, 

[CuSO4] is the concentration of CuSO4 , PO2 is the partial pressure of oxygen and 

T is the reaction temperature in Kelvin. 

 

These empirical kinetic expressions are far from a comprehensive model for the 

leaching process, but do further the understanding of the reactions involved. 

Likewise, the results from pressure leaching experiments cannot be directly 

applied to atmospheric leaching, but give a good basis to build upon.  

 

3.2.2 Atmospheric leaching 
 

Dutrizac et al. [1] made surface studies of fracture exposed sphalerite surfaces at 

different stages of dissolution in ferric sulphate - sulphuric acid media to 

determine a more detailed reaction sequence than portrayed by equations 1 and 2. 

They concluded, that firstly, a region a few atomic layers thick is leached of zinc 
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forming a polysulphide of variable composition, which could be described as a 

dynamic metal-deficient sulphide: 

 

(1+y) ZnS + 2y Fe3+ → y Zn2+ + ZnS1+y + 2y Fe2+    (16) 

 

The oxidation continues until a distinct polysulphide phase with a defined 

composition is formed: 

(1+x) ZnS + 2x Fe3+ → x Zn2+ + ZnS1+x + 2x Fe2+,  x>y   (17) 

 

This phase then reacts to form elemental sulphur: 

 

ZnS1+x + (2+2x) Fe3+ → Zn2+ + (2+2x) Fe2+ + (1+x) S0   (18) 

 

This causes a uniform sulphur layer to form on the surface. It seems another 

mechanism for the sulphur formation is needed to explain the formation of 

isolated sulphur globules. A deposition from solution would explain the formation 

of euhedral sulphur crystals at the active sites on the surface, such as grain 

boundaries and other surface defects. The proposed mechanism is [1]: 

 

ZnS1+x + 2H+ → Zn2+ + H2S (aq)      (19) 

 

H2S (aq) → HS- + H+        (20) 

 

HS- + 2 Fe3+ → S0 +2 Fe2+ + H+      (21) 

 

This dissolution – deposition route would result in the observed isolated sulphur 

globules and euhedral sulphur crystals. 

 

3.3 MANGANESE DIOXIDE AS AN OXIDANT 
 

Minerals are known to participate in galvanic interactions with each other as well 

as with metals [26, 27, 28]. Sphalerite can be oxidised by contact with manganese 
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dioxide, a process in which both dissolve. The Mn(IV)-oxide is stable in aqueous 

solutions, but can be electrochemically reduced to the valence +2. This is the most 

stable state of manganese in aqueous solutions and in acidic solutions it is present 

as the Mn2+ ion [29].  The reaction takes place through galvanic interactions 

between the solids and is described by equation 22 [27, 28]: 

 

ZnS + MnO2 + 4 H+ → Zn2+ + Mn2+ + S0 + 2 H2O    (22) 

 

Madhuchhanda et al. [27] studied the interactions between MnO2 and sulphide 

minerals using leaching studies and polarisation measurements. The polarisation 

measurements gave information on the galvanic effect between the minerals. In 

the case of a sphalerite electrode coupled to a MnO2 electrode, the reaction rate 

was found to be under mixed control of the cathodic reduction of MnO2 and the 

diffusion controlled oxidation of the sphalerite anode. The leaching experiments 

gave information on the rate of reaction in a suspension of the two solids in an 

acid medium. The amount of solids is of absolute importance, since now the 

galvanic connections take place only when the particles collide in the solution. It 

was shown that the zinc dissolution current increased from 0.24 mA/cm2, with 2 g 

of sphalerite and 4 g of MnO2 to 0.36 mA/cm2 with 10 grams of both solids in 100 

ml of sulphuric acid. 

 

When ferrous ions are also present in the solution, a reaction between the ferrous 

ions and manganese dioxide may occur according to equation 23: 

 

2 Fe2+ + MnO2 + 4 H+ → 2 Fe3+ + Mn2+ + 2 H2O    (23) 

 

These reactions shall be studied in more detail in the experimental part of this 

work. These reactions were also studied by Srinivasa et al. [28], who concluded 

from leaching experiments, that when ferric ions are present, they are the main 

species oxidising the sulphide lattice. The manganese dioxide participated in the 

process mainly by re-oxidising the ferrous ions formed. 
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4. FACTORS AFFECTING THE RATE OF DISSOLUTION 

4.1 TEMPERATURE 
 

As in most processes, temperature has a clear effect on the rate of sphalerite 

dissolution.  The magnitude of the effect is given by the activation energy of the 

reaction Ea and the relation between temperature and the rate of reaction is given 

by the Arrhenius equation [30]: 

 
)/( RTE

c
aAek −=         (24) 

 

where kc  is the rate constant of the reaction, A is the pre-exponential factor, Ea is 

the activation energy, R is the molar gas constant and T is the absolute 

temperature. 

 

Diffusion is moderately dependent on temperature and the reported values for the 

activation energy of diffusion through a liquid range from 4.2-12.6 kJ/mol [4] to 

20-25 kJ/mol [3]. When diffusion takes place through a porous layer, the Ea 

values are higher than in solution and are in the same range as for chemically 

controlled reactions. Chemical reactions are usually more dependent on the 

temperature and have reported activation energies greater than 42 kJ/mol [4] or 30 

kJ/mol [3].  

 

The activation energy values reported in literature for sulphide dissolution 

reactions vary somewhat. Weisener et al.. [3] calculated an Ea of 34 kJ/mol for the 

sphalerite dissolution reaction in perchloric acid with oxygen, while Bobek et al. 

[4] calculated an overall activation energy of 46.9 kJ/mol for the acidic ferric 

chloride leaching. It cannot be determined, whether the processes are under 

chemical control or controlled by diffusion through a porous layer, as the 

activation energy values for these processes lie in the same value range. Verbaan 

et al. [2] reported Ea values as high as 79.4 kJ/mol for the ferric sulphate 

dissolution of sphalerite in sulphuric acid. One reason for the differences in the 

values is the varying iron content of the sphalerites used. Crundwell et al. [8] 
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found the activation energies to change from 59 kJ/mol for a sphalerite with 0.5 % 

iron, to 32 kJ/mol for the mineral with 9.7 % iron.  

 

The activation energy for the acid ferric sulphide dissolution of chalcopyrite was 

studied by Munoz et al. [31]. The chalcopyrite dissolves similarly to sphalerite, 

with an elemental sulphur layer forming on the particles. The electron 

conductivity of the product sulphur layer seemed to be the rate-limiting step, with 

an Ea of 83.7 kJ/mol. This corresponds nicely to the activation energy for electron 

conductivity measured in elemental sulphur, 96.3 kJ/mol.   

 

4.2 PARTICLE SIZE AND MIXING 
 

The particle size distribution of the sphalerite has a strong effect on the rate of 

dissolution [4, 9]. Bobeck et al. [4] found decreasing particle size and increasing 

surface area to enhance sphalerite dissolution, as is to be expected. This is 

naturally corroborated by other authors [23, 32]. Jan et al. [23] analysed the effect 

of particle size (44µm – 125 µm) on the pressure leaching of sphalerite with 

oxygen. The rate of dissolution was increased with surface area, which showed 

that the rate of oxygen dispersion was not the rate-determining step. If had been, 

particle size would not have affected the reaction rate. 

 

The effect of agitation on the rate of dissolution has been studied in a multitude of 

papers, with largely varying conclusions [7, 16, 32]. Agitation affects the 

thickness of the diffusion layer surrounding the dissolving particles. The effect of 

the rate of agitation on the dissolution rate depends on the rate-determining step of 

the process. At low rates of agitation, diffusion in the diffusion layer can be the 

rate-determining step, and thus mixing does affect the rate of reaction. The rate of 

reaction increases with increasing agitation until diffusion in the solution is no 

longer rate determining. Above this level, the rate of agitation is non-

consequential [4, 23]. The effects of particle size and agitation have to be 

considered together, since as the particle size is reduced, diffusion to the surface is 

enhanced and the effect of stirring becomes less pronounced. 
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The effects of agitation and particle size were more thoroughly analysed for the 

dissolution kinetics of human enamel powder [33, 34, 35]. As in sphalerite 

dissolution, a by-product layer is formed on the surfaces of the enamel particles 

and reduces the rate of dissolution. Gramain et al. [33] found the rate of 

dissolution at high stirring to be limited by diffusion through this by-product layer 

and at low stirring by diffusion in the Nernst layer adjacent to the surface 

deposited layer. A rigorous mathematical treatment of the high-stirring case was 

done by Hsu et al. [34, 35] and an explicit expression for the temporal variation in 

the size of the particles was obtained as well as an analytical expression for the 

effect of the particle size on the dissolution time. 

 

4.3 COMPOSITION OF THE MINERAL 

4.3.1  Iron content of the sphalerite 
 
The dissolution of sphalerite is an electrochemical process, governed by the 

charge transfer at the surface. Thus it is natural, that the solid solution iron content 

of the sphalerite has a strong effect on the leaching rate as they have an effect on 

the number of occupied sites in the d-orbital conduction band of the (Z, Fe)S [11, 

36]. 

 

Dutrizac et al. [1] studied the dissolution behaviour of five fracture-exposed 

sphalerite surfaces with iron contents from 0 % to 15 % in weight. The surface 

layers of the samples were analysed after dissolution with X-ray photoelectron 

spectroscopy, to give information of the changes in composition. The minerals 

with 8 and 15 % iron on the lattice reacted very rapidly from the very beginning 

of dissolution, while the ones of low iron content (<0.2 %) were quite non-

reactive under the applied conditions.  

 

Bobek et al. [4] compared the rate of dissolution for a pure ZnS powder and a 

mineral concentrate. They found the rate of dissolution to be considerably faster 

for the mineral concentrate. It was proposed, that the effect was due to the 
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presence of iron (5 %) in the sphalerite mineral. Impurities are believed to 

enhance the ionic character of the mineral, thus inducing faster dissolution. 

 

A linear relation between spahlerite iron content and dissolution rate was found by 

Pelencia Perez et al. [11]. They studied fifteen sphalerite samples with 0.04 to14.7 

% of iron in the mineral and found the data to yield an equation for the rate of 

reaction: 

 

K (g g-1 m-2 h-1) = 0.219 + 0.258 [% Fe]        (25) 

 

Their results suggested that the activation energy for the dissolution varied with 

the iron content of the mineral, with values ranging from 41 to 72 kJ/mol with 

decreasing iron content from 12.5 to 0.04 wt.%. Weisener [37] et al. found similar 

results for sphalerite dissolution in HClO4. They measured activation energies of 

63, 50 and 39 kJ/mol for samples with 0.45, 11.40 and 12.90 wt.% of iron. 

Halavaara [32] noted a similar increase in the rate of reaction as a function of iron 

content of the mineral, and found the rate-enhancing effect to cease, as diffusion 

through the product layer became rate determining. 

 

Crundwell [36] studied the dissolution of sulphide minerals applying the 

fundamentals of semiconductor electrochemistry. He concluded, that mineral 

dissolution mostly takes place though a hole mechanism. He explained the effect 

of lattice iron on the rate of dissolution by the d-band energy levels within the 

band gap provided by the substitutional iron. This allows for easier transfer of 

electrons and pins the Fermi level at a level within the d-orbital band.  

 

Kemmel et al. [38] measured the equilibrium potentials of sphalerite samples with 

varying iron content and found the relation to be linear. The sphalerite with the 

least iron (0.1 %) had a potential of over 600 mV vs. SHE, while the one with the 

highest iron content (10.3 %) had a potential below 300 mV vs. SHE. The other 

samples fit nicely on the adjoining line.  
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4.3.2 Other impurities in the mineral 
 

Also other impurities in the ZnS lattice can have a crucial effect of the dissolution 

characteristics of the mineral. Crundwell [39] studied two sphalerite minerals, 

which could not be leached beyond 50 % conversion of zinc. The conversions 

were dependent on the particle size, which would suggest a rate-determining 

surface reaction.  The minerals had a high lead content (2 %) and it was proposed 

that a layer of PbSO4 or lead jarosite was formed on the surface hindering 

dissolution. These lead species are insoluble in sulphate solutions, but dissolve in 

chloride solutions. No passivation of the sphalerite surfaces was found in chloride 

solutions, which supports the theory of insoluble lead species formation. 

 

Buckley et al. [40] studied the surface compositions of two sphalerite samples 

under leaching conditions with oxygen or nitric acid as the oxidant. They found, 

that when zinc is leached into the solution and a metal-deficient sulphide is 

formed, copper in the lattice diffuses from the bulk mineral to the vacant cation 

sites near the surface. They proposed, that it was this copper-enriched layer, not 

the elemental sulphur layer, which hindered the dissolution process.  

 

4.4 MECHANICAL ACTIVATION AND LATTICE DEFORMATIONS 
 

Kammel et al. [38] reported an increase in zinc extraction from 68% to above 

95% by grinding sphalerite to smaller particle size before leaching with sulphuric 

acid. They found, that 10 minutes of grinding in a semi-industrial attritor was 

sufficient, further grinding no longer increased the conversions. Energy on 20 

kWh per tonne of sphalerite concentrate was enough to increase the conversion of 

zinc up to 91 %. 

 

Balaz et al. [41] studied how mechanical activation by grinding affects the rate of 

sphalerite dissolution in hydrogen peroxide. Under the same conditions, the 

activation of the concentrate increased zinc conversion from 17 % to 65 –100 %. 

They also noted, that a maximum in surface area is reached, after which the 



  18

increase in surface area is counterbalanced by the formation of agglomerates. A 

XRD-study showed, that the grinding results in the decrease of crystalline phase 

of the mineral; the increase in lattice defects is seen as increasing amorphisation. 

In a further study [42] on the mechanochemistry of sulphide minerals they found, 

that the leaching rates of both zinc and iron are increased by the mechanical 

activation of a high-iron concentrate. They also found, that the selectivity of 

leaching was directly influenced by the surface disorder of the sphalerite.  

 

Xiao et al. [43] used a thermochemical cycle to measure the mechanically 

activated storage energy of minerals, the excess energy stored in the lattices as 

dislocations and structural defects as a result of mechanical treatment. The energy 

was found to increase with activation time and was independent of the total 

surface-area.  

 

Mikhlin et al. [44] explained the leaching behaviour of minerals by the formation 

and transformations of non-equilibrium metal-depleted layers (NL), with sulphur 

centers acting as dopants. The electrochemical properties of the mineral surface 

are determined by this layer, which causes the semi-conducting properties of the 

NL to become non-uniform. Thus, the NL should be considered a disordered 

semiconductor, with properties governed by negative correlation energy centres 

associated with sulphur atoms. The conductivity in a disordered semiconductor is 

low as movement of charge carriers is limited by being trapped in localised states 

and any heterogeneity has a significant effect on the properties of the 

semiconducting surface. 

 

Naturally, the increased surface area reached by grinding increases the rate of the 

overall dissolution reaction. However, an understanding of the electrochemical 

mechanism of the dissolution is needed to see the other equally important effects 

of mechanical activation [1]. The grinding causes an increase in the number of 

lattice defects in the mineral surface, which can affect both the conductivity and 

stability of the crystals. Electrical conductivity is an essential factor in 

determining the rate of sulphide dissolution, as is the diffusion coefficient of the 
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metal ion in the sulphide lattice [45]. In addition, the activation energy of 

dissolution is decreased by mechanical activation, as bonds are broken in the 

crystalline lattice [42].  

 

4.5 SOLUTION PARAMETERS 
 

The species present in the solution effect the rate of dissolution, as is to be 

expected. High concentrations of the products naturally decrease the rate of 

reactions, as was found by Aaltonen [46] for the case of dissolved zinc in the 

leaching of sphalerite concentrates. Crundwell [8] explained the rate decreasing 

effect of Fe2+ ions by an indirect mechanism, in which the Fe2+ ions affect the 

concentrations of the oxidative species, Fe3+ and FeHSO4
2+, in the solution. 

 

Another important solution parameter is the pH, which can affect the rate of 

concentrate dissolution [7] as well as other reactions in the solution. For example, 

the feed of the oxidative leaching process contains iron in the form of jarosite, 

which is partially dissolved in the first stages of the leaching. In later stages of the 

dissolution, the concentration of sulphuric acid decreases and the pH rises, 

causing the precipitation of jarosite according to equation (26)[9]:  

 

 1½ Fe2(SO4)3 + ½ (NH4)2SO4 + 6 H2O → NH4Fe3(SO4)2(OH)6 + 3 H2SO4        (26) 

  

Other cations in the solution, such as K+, Na+, Pb2+ or H3O+, can also precipitate 

as jarosite.  

 

4.6 CATALYSIS 
 

Several species in the solution can catalyse the dissolution of sphalerite. Ferric 

ions were first considered as a catalytic species in the process [7], whereas now 

they are considered the actual oxidant. Also manganese dioxide has been listed as 

a catalyst [47] although it can perform as the oxidant [27]. These species have 
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been discussed in earlier sections. Other species can affect the leaching process, 

without directly participating in the lattice oxidation reaction. These are often 

present in small amounts. 

 

The catalysts can affect process by various mechanisms. Cu2+ and Co2+ ions are 

known to have a catalytic effect on the air oxidation of ferrous ions, thus 

regenerating the active oxidising species [47]. Some species, such as Ag, Bi and 

Hg affect the surface layers of the mineral and cause changes in the 

electrochemical properties, for example increasing the conductivity of the layers 

[1]. Haung et al. [7] studied the catalytic effect of copper in the ZnS dissolution 

process. They found zinc ions in the lattice to be substituted by copper ions in the 

solution, which increases the conductivity of the surface layer thus enhancing 

dissolution. However, copper seemed to induce agglomeration of the concentrate, 

which hinders the reaction by reducing the total surface area. Buckley et al. [40] 

found copper from the bulk mineral to diffuse to the cation-depleted layer formed 

by zinc dissolution. In their leaching experiments with oxygen or nitric acid as the 

oxidant, this copper-enriched layer seemed to hinder the dissolution process. The 

addition of ferric ions into the solution removed the copper from the surface of the 

mineral and allowed dissolution to continue through the metal-deficient sulphide, 

which contained zinc as the only cationic species. 

 

The catalytic effect of copper on the ferrous ion oxidation has been widely studied 

and seems to take place by reaction (27)[25, 47]: 

 

Cu2+ + Fe2+ → Cu+ + Fe3+       (27) 

 

In acidic media, the Cu+ species can be oxidised by oxygen: 

 

4 Cu+ + O2 + 4 H+ → 4 Cu2+ + 2 H2O     (28) 

 

The Cu+ oxidation is faster than the direct oxidation of the ferrous species and 

thus copper addition increases the total rate of the dissolution reaction. An 



  21

analogous regeneration of the sphalerite oxidising species by cupric ions was 

presented by Ghosh et al. [48] for the case of the oxidative ammonia leaching of 

sphalerite. 

 

Kemmel et al. [38] studied the effect of copper in the solution on the dissolution 

of zinc from sphalerite concentrates. They found the catalytic effect of Cu2+ to be 

dependent on the iron content of the mineral: for minerals with less than 1 % iron 

in the lattice, Zn extraction was enhanced by an addition of Cu2+ in the solution, 

while the extraction rate of minerals with a higher iron content was reduced by the 

copper addition. This phenomenon was explained by the formation of copper 

sulphide species. Potentiodynamic experiments on sphalerite electrodes showed 

CuS to be formed on the surfaces of a low iron-content mineral, while Cu2S is 

formed on minerals with a high content of iron. 

 

4.7 SURFACTANTS 
 

The elemental sulphur forming on the concentrate particles seems to hinder the 

diffusion of reactants and products and lower the reaction rate. In conditions of 

pressure leaching, at temperatures over 119 °C, the sulphur melts and forms a 

compact layer on the surface, stopping the reaction [32]. Surface-active species 

are used to eliminate this effect. 

 

Owusu at al. [6] studied the effects of three surfactants on the rate of sphalerite 

dissolution in pressure leaching conditions at elevated temperatures. The 

orthophenylene diamine (ODP), lignin sulphonic acid and metaphenylene diamine 

(MPD) dispersed the liquid sulphur and increased conversion from 50% in 1 hour 

to > 99%, 86-94% and 95-98% respectively.  These results are comparable to the 

experiences of lignin sulphonic acid use in industry. Lignosulphonate was also 

studied by Lochmann et al. [10], who found that the use of 1 g/l lignosulfonate 

increased the conversion of zinc from 30% to 60% by coagulating the sulphur, 

forming a porous, penetrable matrix. 
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Haung et al. [7] used Quebracho, a tannic acid extract, in their sphalerite 

dissolution experiments and found it  effective in removing elemental sulphur 

from the mineral surfaces. In large quantities, however, it seemed to decrease the 

rate of reaction. 

 

In atmospheric dissolution processes, the elemental sulphur layer first grows in 

separated islands, which eventually join to form a uniform layer on the particle 

surface. This layer is not as compact as is formed by molten sulphur, but still has 

to be taken into consideration in the process. Elemental sulphur is very 

hydrofobic, causing the reacted particles to rise to the surface of the solutions. 

Surface-active species are used to disperse the particles into the solution for better 

dissolution as well as solution uniformity.  A new method for the speciation and 

quantification of elemental sulphur on mineral surfaces was presented by 

Toniazzo et al. [49]. They combined the use of gas chromatography and mass 

spectrometry and studied the sulphur species forming on a pyrite surface. They 

found two different types of S8 to form on the surface and believed this to be due 

to defects and impurities in the lattice. 
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5. METHODS FOR THE STUDY OF MINERALS AND 
CONCENTRATES 

5.1 ROTATING RING DISC ELECTRODE 
 

The rotating ring disc electrode is a useful tool for separating the effects of 

kinetics and mass transport when studying electrochemical phenomena. The 

rotating motion causes a steady flux of solution to the electrode surface and the 

thickness of the stagnant diffusion layer can be controlled by the rotation speed. 

Species formed on the disc electrode can be detected at the ring by applying a 

suitable potential. Only a fraction of the species produced on the disc is detected 

on the ring. The collector efficiency is dependent on the geometry of the ring-disc 

electrode. The current on the disc electrode is formed according to equation (29): 

 

diffVB III
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        (29) 

 

where I is the total current, IB-V  is the kinetic current according to the Butler-

Volmer equation (30) and Idiff the diffusion current according to the Levich 

equation (31) : 

 

( )( )[ ])exp(1exp0 ηαηα ffII VB −−−=−      (30) 

 

where I0 is the equilibrium current, a the transfer coefficient, f=nF/(RT) and η  the 

over potential. 

 
bcnFADI 2/16/13/2620.0 ωυ −=       (31) 

 

where D is the diffusion coefficient of the reacting species, υ  the kinematic 

viscosity (viscosity divided by the density) of the solution, ω  the angular speed of 

the electrode and cb the bulk concentration of the reacting species. 
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When the rotation speed is increased, the diffusion layer becomes thinner and 

diffusion to the electrode is faster; at infinite rotation speed the current is fully 

dominated by the reaction at the electrode surface. Thus, the kinetic current can be 

obtained by extrapolation from a graph expressing 1/I as a function of ω -½.  

 

Ring-disc electrodes have been used for the study of conductive minerals, such as 

pyrite [50], usually using electrodes fractured directly from the rock. A method 

using concentrate pellets is presented in the experimental section of this study. 

 

5.2 CARBON PASTE ELECTRODE 
 

The specific electrical resistance of sphalerite is 6·109 ohm·cm at 90°C [23]; most 

other metal sulphides have values ten orders of magnitude lower. This causes a 

problem for the electrochemical study of sphalerite, as an electrode material has to 

have sufficient conductivity. Mixing the mineral with copper and iron into a 

sulphide matte or with graphite into a paste increases the conductance and allows 

the mixtures to be used as electrodes [51].  

 

Srinivasan et al. [12, 52] studied the optimum composition for a mineral-carbon 

paste, with different proportions of concentrate, graphite and pitch. The best 

results were reached with conducting compact electrodes made from sphalerite 

and graphite by pressure and heat treatments. In their cyclic voltammetric 

measurements, the oxidation of the sulphide is clearly seen, as is the consequent 

oxidation of elemental sulphur to sulphate ions. On the reverse scan, the formation 

of elemental sulphur and possibly of H2S is seen. Acid concentration and scan rate 

were found to increase the dissolution current.  

 

Pesonen [53] analysed the dissolution of sulphide minerals with anodic 

polarisation, cyclic voltammetry and potentiostatic dissolution. A mineral-

graphite paste electrode was used and found to be practically inert during the 

electrochemical measurements. An increase in the rate of mineral dissolution due 

to increased temperatures and suitable potentials was seen. Ahlberg et al. [54] 
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used a similar electrode; sphalerite with carbon paste and an organic binder, as a 

rotating disc electrode. They found the rate determining process in sphalerite 

dissolution to change with the potential as well as solution composition. Both of 

these studies showed the carbon paste to be inert during electrochemical 

measurements.  Crundwell [8] however had found the contrary: the presence of 

graphite did affect the mechanism of sphalerite dissolution. 

 

Zhang et al. [55] prepared a sphalerite-carbon paste electrode with carbon for 

better conductance and paraffin oil for homogeneity. They studied the 

electrochemistry of these electrodes in HCl/FeCl3 solutions. From a cyclic 

voltammogram they could clearly define peaks for the oxidation of the sulphide to 

elemental sulphur, the oxidation of chloride anions to adsorbed chlorine gas, the 

oxygen formation reaction, the reduction of chlorine gas back to chloride ions, the 

reduction of elemental sulphur to sulphide ions and the hydrogen forming 

reaction. The addition of ferric chloride to the system changes the voltammogram, 

as the reduction and oxidation of the iron species become dominant. The other 

peaks disappeared or were deformed and displaced at FeCl3 concentration of 0.02 

mol/dm3. Choi et al. [56] identified the same reactions in their own 

voltammograms with carbon paste electrodes in the same solutions. In addition, 

increases in dissolution current with increasing temperature and decrease in 

current due to zinc depletion with time were shown. 

 

Nava et al. [57] used mineral-carbon paste electrodes to study the dissolution 

reactions of mixed sulphides. A concentrate with sphalerite (ZnS-63.4%), pyrite 

(FeS2-20.1%), chalcopyrite (CuFeS2-5%), galena (PbS-0.33%), tetrahedryte 

(Cu12Sb4S13-0.45%) and arsenopyrite (FeAsS-0.4%) was made into an electrode 

and anodic potential pulses were applied. The sphalerite and galena were 

dissolved throughout the potential range 0-600 mV vs. SSE. The other minerals 

had multi-step dissolution mechanisms and the potential areas for the 

transformations could be found from the voltammograms. This can be of use in 

the processing of complex sulphide concentrates. 
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5.3 SURFACE STUDIES 
 

A multitude of surface methods can be applied to the study of the dissolution 

phenomenon. Dutrizac et al. [1] used X-ray photoelectron spectroscopy (XPS) to 

study fracture-exposed surfaces of sphalerite samples before and after dissolution 

to find chemical state information on the first few nanometers of the surface. The 

high resolution S2p, Zn2p and Fe2p spectra showed that S is the active species in 

dissolution, with only negligible changes in Zn and Fe chemistry. The elemental 

ratios also suggested, that less than 5 % of the sulphur oxidised further to sulphate 

under these conditions. (100°C, 0.3 M Fe(SO4)1.5 – 0.3 M H2SO4).  The 

dissolution process was shown to take place through the formation of 

polysulphide species and the formation of elemental sulphur on the mineral 

surface was seen as the reaction advances. 

 

Waisener et al.[3] coupled XPS with time of flight secondary ion mass 

spectrometry (ToF-SIMS) to study the dissolution kinetics of  sphalerite in 

perchloric acid and the formation of a polymeric sulphur species on the particles. 

The advantage of this combination is that the ToF-SIMS gives information on the 

first few monolayers of the surface, while the XPS is used to study the near-

surface regimes. They concluded, that the sulphur layer does not hinder the 

kinetics of the dissolution reaction under the used conditions. 

 

Fowler and Crundwell [18] used scanning electron microscopy (SEM) to confirm 

the attachment of bacteria on sphalerite surfaces and energy dispersive X-Ray 

microanalysis (EDAX) to show, that the surfaces with bacteria had no elemental 

sulphur layer unlike the ones untreated with bacterial solution. Mikhlin et al. [58] 

applied XPS, X-ray emission and absorption spectroscopies and Mössbauer 

spectroscopy to study the surface changes during chalcopyrite leaching. 

Chernyshova [59] used FTIR spectroelectrochemical measurements to show that 

the oxidation of galena and pyrite surfaces takes place through the formation of 

thiosulphate and polythionate species from the elemental sulphur layer on the 

particle surfaces. Laser-induced oxidation of galena to oxysulphates was studied 
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by Shapter et al. [60] using Raman spectroscopy and the method was found 

applicable for the easy identification of galena in complex ores. Kendelewicz et 

al. [61] used photoemission spectroscopy to show that elemental sulphur and 

sulphur oxoanions were intermediate products in the oxidation of pyrite surfaces 

with molecular oxygen. 

 

These surface methods, coupled with batch dissolution experiments and 

electrochemical analysis techniques, help to build a better understanding of the 

mechanism and kinetics of mineral dissolution behaviour. They allow for the 

detection of surface changes in the very beginning of the process and give 

information on the formation of intermediate species. 
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EXPERIMENTAL 
 
 
 

6 DISSOLUTION EXPERIMENTS WITH MANGANESE 
DIOXIDE 
 
 

A study of sphalerite dissolution with ferric ions as the oxidant was conducted and 

is reported in reference [46]. Batch dissolution experiments were conducted to 

study the applicability of manganese dioxide as the oxidant and the results were 

compared to those of the earlier study. The possible reactions between manganese 

dioxide and ferrous ions and elemental sulphur were investigated. 

 

6.1 MATERIALS 
 

Concentrate A, a sphalerite concentrate of 54 – 105 µm diameter was used in all 

experiments and its composition is given in Figure 1. Sulphuric acid solution (0.2 

M) was diluted from concentrated H2SO4 (Merck) with MilliPore ion-exchanged 

distilled water. Manganese dioxide (Merck) and ferric and ferrous sulphates 

(Riedel-de Haën) were of reagent grade. 

 

50 %
30 %

10 %9 %1 %

Zn

S

H2O

Fe

Pb, Cu, Cd, Si

 
Figure 1. The composition of Concentrate A. 
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6.2 EQUIPMENT 
 

The dissolution experiments were conducted in a round-bottomed glass reactor of 

2 l volume (height 25 cm, diameter 10.5 cm) with four stainless steel bafflers 

(width 1.5 cm) placed inside to ensure thorough stirring. The Teflon cover had 

inlets for a reflux condenser, a stirring rod (with 4 sets of 4 tilted paddles), a 

thermosensor, a gas tube and two electrodes. The chosen temperature was 

maintained by a flexible electric heating cover placed around the vessel. A signal 

from the thermosensor placed inside the reaction vessel was used to adjust the 

heating power of the cover according to the chosen temperature. Nitrogen feed 

was used to ensure an oxygen free environment. In the potentiometric 

experiments, a platinum electrode was used as the working electrode and a 

commercial Ag/AgCl- electrode (REF 201 / Radiometer, 0.197 V vs. NHE at 25 

°C) as the reference. All potentials are given against the Ag/AgCl electrode. A 

picture and a schematic of the apparatus are given in Figures 2 and 3. 

 

 
  

Figure 2. A picture of the dissolution reactor. 

 



  30

 

 

kaasusy

mi

termoelementti 

electrodes

cooling water 

 

refluksoija 
kaasusyöttö 

jäähdytysvesi 
sisään 

jäähdytysvesi
ulos 

elektrodit 

sekoitin

 
  

Figure 3. A schematic of the dissolution reactor. 

 

6.3 PROCEDURE 
 

1.5 l of sulphuric acid (0.2 M or 20g/l) was used in each measurement. The acid 

was preheated and poured into the reaction vessel, and ferric sulphate and/or 

MnO2 was added. Nitrogen was bubbled through the solution for 15 minutes 

before and throughout the measurement to ensure an oxygen-free environment. 

After oxygen had been removed and the temperature of the solution had stabilised 

at 80 °C, the zinc concentrate was added to the solution. The solutions were 
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stirred at a constant rate to keep the solid matter in solution. Samples taken at 

given intervals were filtered and analysed with AAS to determine the conversion 

of zinc.  

 

The ability of manganese dioxide to dissolve the sulphide was studied in both 

solutions containing and not containing iron. Under study were the galvanic 

interactions between the concentrate and the oxidant as well as the interaction 

between MnO2 and iron. Also of interest was whether the MnO2 could dissolve 

the elemental sulphur layer forming on the particle surfaces. The measurement 

parameters are presented in Table 1. 

 

 Table 1. Measurement parameters. 

 

No. ZnS (g/l) Fe3+ (g/l) MnO2 (g/l) t (min) 

1 2 2.4 4.5 300 

2 2 2.4 22.6 300 

3 2 0 4.5 300 

4 2 0 22.6 300 

5 10 0 20 300 

6 10 4.4 0 480 

7 10 0 20 480 

8 10 4.4 20 480 

9 10 0 20 600 

 

 

To study the effect of MnO2 on ferrous ions, a solution of 4.2 g/l Fe2+ was made 

into oxygen-free 0.2 M sulphuric acid. Solid MnO2 (20 g/l) was introduced into 

the system and the potential was recorded as a function of time. Nitrogen was fed 

throughout the measurement. Samples of the solution were extracted and titrated 

with potassium dichromate solution to determine the amount of Fe2+. The sodium 

salt of diphenyl amino sulphonic acid was used as the indicator.  
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6.4 RESULTS AND DISCUSSION 

6.4.1 Dissolution efficiency of MnO2 and Fe3+ 
 
 
Figure 4 shows the conversions of zinc as a function of time in solutions 

containing 0 or 2.4 g of Fe3+ and 0, 4.5 or 22.6 g of MnO2 per litre of acid. All 

solutions contained 2 g/l of ZnS concentrate. When MnO2 was the only oxidant, 

conversions remained low, with the lower MnO2 content giving a conversion of 9 

% and the higher 15 % after 300 minutes. In the solution containing only ferric 

iron as the oxidant, conversion was close to 50 % after the same time. The ferric 

iron was considerably more effective an oxidant, due to it being dissolved in the 

solution whereas oxidation by MnO2 depends wholly on galvanic contacts. 
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Figure 4. Conversion of zinc in 0.2 M sulphuric acid with varying amounts 

of MnO2 and Fe3+ and 2 g/l ZnS at 80°C.  

 

Figure 4 also shows the combined effect of the two oxidants. The addition of 

MnO2 into a solution containing Fe3+ increased conversion by almost 20 %, 

whereas the amount of MnO2 addition (4.5 or 22.6 g) seemed to make little 

difference. However, the combination of the two oxidants resulted in higher 

conversions than the sum of the two separate reactions. This suggests, that a rapid 

oxidation reaction took place between the ferrous ion and MnO2, replenishing the 

solution with ferric ions. As the concentration of ferric ions remained high 
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throughout the measurement, the reaction continued faster than in the case with no 

reoxidisation of iron.  

 

Although the dissolving effect of magnesium dioxide was evident, the low amount 

of the solids resulted in a low number of galvanic contacts and the conversions 

remained low. Figure 5 shows how the increase in solids affected the conversion 

of zinc. It can be seen, that increasing the amount of MnO2 fivefold increased the 

conversion only by 6 %, whereas increasing the amount of concentrate fivefold 

increased the conversion by 36 %. 
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Figure 5. The effect of the amount of solids on the conversion of zinc in 

0.2 M sulphuric acid at 80°C.    

 

Figure 6 shows the results of dissolution experiments with a higher ZnS content. 

In a solution with 10 g/l of concentrate and 20 g/l of MnO2, conversion at 300 

minutes was close to 50 %. In the experiment with only Fe3+ as the oxidant, the 

reaction stopped after 40 % conversion is reached, as all ferric iron had been 

reduced to the ferrous form and there was no other oxidant present to oxidise the 

iron or the concentrate. The conversion obtained by the addition of these two 

effects exceeded the actual conversion from an experiment with both of the 

oxidants present. This due to the high amount of oxidants and the high 

conversions reached. The dissolution slowed down as the availability of unreacted 

concentrate was strongly reduced.    
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Figure 6. Conversion of zinc in 0.2 M sulphuric acid with 0 or 20 g of 

MnO2 and 0 or 4.4 g of Fe(III) in the solution (10 g/l ZnS) at 80°C. 

 

6.4.2 The effect of MnO2 on ferrous ions 
 

Analysis was also made to determine the degree of MnO2 dissolution. The amount 

of dissolved Mn as a function of time is depicted in Figure 7. When only ZnS and 

MnO2 were present in the solution, the rate of dissolution was constant, giving a 

30 % conversion after 6 hours. When ferric ions were added, the reaction rate was 

faster, but not equally linear, giving a conversion of 45 % at 6 h.  The reduction in 

dissolution rate was due to the depletion of ferrous iron as there was not enough 

of the species to oxidise all of the MnO2. However, as the dissolution of 

manganese dioxide was enhanced by the presence of ferric ion, a direct reaction 

between the species was suggested, according to reaction 32: 

 

 2 Fe2+ + MnO2 + 4 H+ → 2 Fe3+ + Mn2+ + 2 H2O    (32) 

 

The reaction was studied by monitoring the potential of a solution with only 

MnO2 and Fe(II) present in the beginning, as the potential of the solution is 

determined by the Fe(II) to Fe(III) ratio.   The potential of the iron-(II) - sulphuric 

acid solution at 80 °C was 400 mV vs. Ag/AgCl. The change in potential after 

MnO2 was introduced into the system can be seen in Figure 8. 
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Figure 7. Conversion of manganese in 0.2 M sulphuric acid with 10 g of 

ZnS and 0 or 4.4 g of Fe(III) in the solution (20 g/l MnO2). 
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Figure 8. The potential of the solution as a function of time in a reaction 

between Fe(II) (4.2 g/l) and MnO2  (20 g/l) in sulphuric acid . 

 

In the beginning of the measurement Fe(III) was present only in minute amounts. 

The MnO2 in the solution rapidly oxidised the ferrous ions into the ferric form, 

which can be seen as a rise in the potential. These results were confirmed by the 

titration of solution samples. After the first few samples, the presence of Fe(III) 

could be seen directly from the indicator colour in the solution, which had a 

smooth transition from yellow (first 30 min) via reddish brown (45 min) to dark 

purple (> 50 min) indicating the change in the valence of the iron species. 
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6.4.3  The effect of MnO2 on elemental sulphur 
 

When ferric ions are used to dissolve sphalerite, the rate of dissolution is reduced 

after a few hours. This is due to the elemental sulphur layer forming on the 

surfaces of the particles. When MnO2 was used for the dissolution, the reaction 

rate remained constant, which could be interpreted as the dissolution of the 

sulphur layer. Figure 9 shows the amounts of Zn and Mn dissolved during a 10-

hour experiment. If equation (29) was obeyed, the molar amounts dissolved 

should be equal. As is seen, MnO2 was used up in excess, suggesting a parallel 

reaction, such as the dissolution of the sulphur layer according to equation 33: 

 

3 MnO2 + S0 + 4 H+ → 3 Mn2+ + SO4
2- + 2 H2O    (33) 
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Figure 9. The amount of dissolved Mn and Zn during dissolution in 0.2 M 

sulphuric acid at 80 °C, with 10 g/l of concentrate and 20 g/l of MnO2. 

 

To determine whether the elemental sulphur layer was dissolved or not, samples 

of the concentrate before and after dissolution were analysed for Mn, Zn and S. 

The weight percentages of sulphur in the residue are presented in Figure 10. The 

zinc conversions calculated from the solution analysis results were used to 

calculate the expected values for the sulphur weight percentages, assuming that no 

sulphur was dissolved. As is seen, the fraction of sulphur in the concentrate 

residue was decreased during dissolution with MnO2. If the elemental sulphur 
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layer was inert to oxidization in these conditions, the fraction of sulphur in the 

residue should grow, as zinc is leached out of the concentrate. It has to be noted 

however, that the changes in total mass and in the percentages of sulphur were 

small. 
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Figure 10. The weigh-percentage of sulphur in dissolution residues, 

calculated and experimental. 

 

In conclusion, it was found that MnO2 affects the dissolution of sphalerite by two 

mechanisms: by directly oxidising the sulphur in the mineral and by regenerating 

the active ferric species. When MnO2 was the only oxidising species in the 

solution, the dissolution proceeded linearly with time, which suggests further 

oxidation of the elemental sulphur layer. This was also suggested by the results 

showing an excess of MnO2 dissolution compared to the stoichiometric amount 

required by the sphalerite oxidation. Analysis of sulphur in the dissolution residue 

also corroborated the theory of further sulphur oxidation. 
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7 DISSOLUTION EXPERIMENTS WITH FERRIC IONS 
 

Batch dissolution experiments were conducted to study the dissolution behaviour 

of two sphalerite concentrates using ferric ions as the oxidant. Measurement 

parameters were chosen to match those in industrial scale dissolution. The goal 

was to simulate the industrial process and find out how different parameters affect 

the rate of dissolution. 

 

7.1 MATERIALS 
 

The composition of the sphalerite concentrates used, Concentrate B and 

Concentrate C, are shown in Table 2. Fractions with diameters > 37 µm and < 37 

µm were used. Sulphuric acid solution was diluted from concentrated H2SO4 

(Merck) with MilliPore ion-exchanged distilled water. The ferric, cuprous and 

zinc sulphates (Riedel-de Haën) were of reagent grade. 

 

Table 2. The composition of Concentrate B and Concentrate C fractions 

and their surface areas. 

 

  Size % Zn % S % Fe % Pb % Cu m2/g 
B1 <37µm 53.7 13 5.9 1.3 1.3 1.11 
B2 >37µm 54.8 9 4.4 1.1 1.1 0.632 
C1 <37µm 53 36 9.8 1.4 1.4 0.868 
C2 >37µm 52.8 29 10.1 1.4 1.4 0.525 

 

 

7.2 EQUIPMENT 
 

The measurements were conducted in a new reactor, the dimensions of which 

were more suited for modelling purposes. The reactor had a level bottom, and the 

stirring rod was changed to a standard 4-paddled one. Otherwise the reactor was 

identical to the one used in the MnO2 dissolution experiments. 
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7.3  PROCEDURE 
 

The sulphuric acid was preheated and sulphates of iron, zinc and copper were 

introduced to the system. After the temperature had stabilised, the concentrate was 

added. Oxygen was fed to the system 15 minutes prior and throughout the 

experiment. After the chosen reaction time, the residue was filtered, washed with 

MQ-water, dried and analysed with AAS. Conversion of zinc under different 

conditions could be calculated from the analysis results.  

 

The conditions in these measurements were closer to real values in the industrial 

zinc process than in previous measurements done for the master’s thesis of 

Aaltonen [46].  The chosen parameters were temperature (80 °C and 95 °C), 

solution iron content (8 g/l and 25 g/l) and zinc content (60 g/l and 120 g/l), 

sulphuric acid concentration (20 g/l and 80 g/l), concentrate (Concentrate B and 

Concentrate C) and the concentrate fraction (< 37 µm and > 37 µm). In all 

measurements, the amount of concentrate was 10 g/l and the reaction time was 3 

hours. Table 3 shows the measurement plan for one concentrate fraction. 

Differing values were used for some of the preliminary experiments described in 

sections 7.4.1 – 7.4.3.  

 

A preliminary study showed, that copper in the solution affects the dissolution 

process and as there is always some dissolved copper in the industrial process, 1 

g/l of copper was added to all solutions. All solutions containd 60 g or 120 g of 

zinc sulphate per litre. The amount of zinc entering the solution from the 

dissolving concentrate was very small compared to this and could not be analysed 

reliably from the solution. Analysis had to be made from the concentrate residue, 

which made the sampling considerably more difficult than in prior experiments. 
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Table 3. Measurement plan for one concentrate fraction. 

 

Measurement T/C m(Fe)/(g/l) m(Zn)/(g/l) m(acid)/(g/l) 

1 80 8 120 80 

2 80 8 60 20 

3 80 25 120 20 

4 80 25 60 80 

5 80 25 60 20 

6 80 8 120 20 

7 80 8 60 80 

8 80 25 120 80 

9 95 8 120 20 

10 95 25 60 20 

11 95 8 60 80 

12 95 25 120 80 

13 95 8 60 20 

14 95 25 120 20 

15 95 25 60 80 

16 95 8 120 80 

 

 

7.4 RESULTS AND DISCUSSION 

7.4.1 Sampling 
 

The solutions contained plenty of zinc and the analyses had to be done from the 

dissolution residue. The plan was to use the lead in the concentrate as an internal 

reference, which could be used to calculate the conversion of zinc without 

knowing the total mass of undissolved concentrate at a given time. For this to 

succeed the lead had to be inert and remain in the residue. Part of the solution 

would be filtered through a membrane and the small sample of solids analysed.   
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To determine the reliability of this method, a series of measurements was 

conducted where the results of samples taken during a measurement were 

compared with the results of batch dissolution experiments. In the batch 

experiments the entire undissolved residue was filtered, washed, dried and 

weighed prior to AAS analysis, giving the absolute amount of undissolved zinc. 

Parallel analyses of the residue were made at the laboratories of Outokumpu 

Research Oy (ORC) and Analyysikeskus.  

 

The results of the batch dissolution experiments as analysed in ORC and 

Analyysikeskus are depicted in Figure 11 for the zinc content and Figure 12 for 

the lead content. The zinc content decreased with time, as was expected and the 

results of the two laboratories correlated well. Also, the lead analyses were 

congruent, but the lead did not behave as expected. The lead seemed to be active 

during the experiments and the amount of lead in the residue varied with time.  
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Figure 11. The zinc content of the residue as a function of leaching time in 

0.2 M sulphuric acid with 8 g/l of ferric iron and 10 g/l of concentrate. 

Results from the laboratories of ORC and Analyysikeskus. 
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Figure 12. The lead content as a function of leaching time in 0.2 M 

sulphuric acid with 8 g/l of ferric iron and 10 g/l of concentrate. Results 

from the laboratories of ORC and Analyysikeskus. 

 

Figure 13 shows the lead / zinc –ratios as a function of time for the measurements 

with the two different sampling methods. The higher curves had been analysed 

from the batch experiments in both laboratories, the lowest curve was calculated 

from the small samples taken during a longer measurement and analysed at 

Analyysikeskus. The ratio clearly varied with the method of sampling. The 

difference in the analysis results of the various methods was 10 % for the zinc and 

90 % for the lead.  

 

The taking of samples during the measurement was made very difficult by the 

inhomogeinity of the solution and it was almost impossible to get a representative 

sample. The elemental sulphur layer forming on the surfaces is hydrophobic and 

reacted particles rose to the surface. This separation of particles was advanced by 

differences in mass. Also, in the feeding of the concentrate to the solution, the 

concentrate tended to remain on the surface and not mix throughout the reactor. 

Some of these problems were solved by mixing the concentrate in a small amount 

of acid, thus wetting it, before pouring it into the reactor. The use of 

lignosulphonate and an anti-foaming agent also considerably increased the 

homogeinity of the solution. However, the difference between the two sampling 
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methods remained too big and the experiments had to be conducted as batch 

measurements, where the entire residue is weighed and analysed. 
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Figure13. The zinc/lead-ratio as a function of leaching time in 0.2 M 

sulphuric acid with 8 g/l of ferric iron and 10 g/l of concentrate. Results 

form full residue analysis (ORC and Analyysikeskus) and from 

intermediate sample analysis (Filters). 

 

Figure 14 shows the zinc conversions calculated by different methods as a 

function of time. The two lower curves show the conversion calculated from the 

Zn/Pb-ratio and as can be seen, they clearly differ from the expected continually 

increasing form. The higher curves are calculated by using only the zinc contents 

of the residues, assuming that all the change in mass is due to zinc passing into the 

solution from the lattice. These curves are much closer to the ones expected for a 

dissolution reaction than the previous ones. Naturally this assumption is not 

acceptable when gathering quantitative data, but the figure shows, that even crude 

assumptions result in better agreement with theory and other experiments than 

using lead as an internal standard. 
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Figure 14. The conversion of zinc as a function of leaching time in 0.2 M 

sulphuric acid with 8 g/l of ferric iron and 10 g/l of concentrate, calculated 

from the residue zinc analysis (-Zn)(assuming only zinc dissolves) and 

from the Zn/Pb-ratio (-Pb). Results from the laboratories of ORC and 

Analyysikeskus. 

 

7.4.2 The effect of copper 
 
The industrial solutions contain copper, so the effect of copper on the oxidation of 

ferrous iron was studied. Oxygen was fed to a sulphuric acid solution containing 

ferrous iron and the potential was recorded, as a rise in the solution potential 

indicates the formation of ferric ions. This can be deduced from the Nernst 

equation: 

 

[ ]
[ ]+

+

−= 2

3
0 ln

Fe
Fe

nF
RTEE        (34) 

 

where E is the solution potential, E0 the standard equilibrium potential, R, T, n, 

and F have their usual meanings and [Fe3+] and [Fe2+] are the concentrations of 

the ferric and ferrous ions, respectively. 
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Figure 15 shows the change in potential in a solution without copper and with 1 

g/l of copper. Copper greatly increased the rate of ferrous oxidation as could be 

seen from the changes in potential. This effect was subdued in a solution 

containing a zinc base (60 g/l), but since copper did affect the kinetics of the 

oxidation, 1 g was added to all solutions.  
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Figure 15. The effect of copper on ferrous ion oxidation with oxygen in 

0.2 sulphuric acid at 80°C. 

 

7.4.3  Solution potential 
 
The solution potential was determined by the ratio of ferric to ferrous ions 

according to equation (34). The solution potential was to be controlled separately 

from the total concentration of iron by oxygen feed; so two iron concentrations 

could be studied at two potentials. Figure 16 shows the potential as a function of 

time for a solution with 15 g/l of concentrate, 8 g/l of iron, 60 g/l of zinc in 0.2 M 

sulphuric acid at 80°C as oxygen is fed throughout the measurement. The oxygen 

was not enough to stop a change in potential. The experiment was repeated with 

identical results. The great potential drop in the beginning of reaction was caused 

by a small change in concentrations, due to the logarithmic nature of the potential, 

and could be eliminated by adding some ferrous sulphate to the solution prior to 
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the experiment. However, the potential continued to decrease for several hours 

before equilibrium was reached.  
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Figure 16. Solution potential as a function of time for a dissolution 

experiment in 0.2 M sulphuric acid solution with 15 g/l of concentrate, 8 

g/l of iron and 60 g/l of zinc at 80°C. 

 

Figure 17 shows the results of oxidation experiments where the effects of mixing, 

oxidation and amount of concentrate were studied. The highest curve is from a 

measurement with only 3 g/l of concentrate; the other measurements had 15 g/l. 

As expected, the lower concentrate content resulted in a smaller potential drop, as 

there was less of one reactant resulting in a slower overall reaction. The two 

curves in the middle show the effect of mixing, the higher curve being from a 

measurement with mixing at 300 rpm, the lower at 800 rpm. It can be seen, that 

the effect of low mixing in slowing down the reaction was greater than the effect 

of increased mixing on oxygen dissolution. The lowest curve represents the 

measurement without oxygen feed and in this case the potential continued to 

decrease throughout the measurement. The other measurement parameters 

remained constant.  
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Figure 17. The effect of stirring, amount of concentrate and oxygen feed 

on the solution potential as a function of time, for a dissolution experiment 

in 0.2 M sulphuric acid solution with 3 or 15 g/l of concentrate, 8 g/l of 

iron and 60 g/l of zinc at 80°C, with or without oxygen feed. 

 

Figure 18 shows the effect of selected solution parameters on the potential of the 

solution. The basic values were 8 g/l of iron and 60 g/l of dissolved zinc in the 

solution. The higher values were 25 g/l for the iron (Fe+) and 120 g/l for the zinc 

(Zn+). The basic measurement was done as a 1 hour and as a 6 hour experiment, 

and the correlation between the solution potentials can also been seen in Figure 

18. The measurements did seem to have good repeatability, as the two basic 

measurements quickly converge on the same potential trend. The differences in 

potential in the beginning of the measurements were caused by very small 

changes in concentrations. As expected, the higher amount of iron(III) raised the 

solution potential. The zinc had a similar effect, only to a lesser extent. This could 

be due to the additional zinc slowing down the dissolution reaction, thus keeping 

the solution potential at higher values. 

3 g with oxygen 
15 g with oxygen (300 rpm) 
15 g with oxygen (800 rpm) 
15 g without oxygen 
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Figure 18. The effect of solution parameters on the solution potential for 

experiments with 10 g/l of concentrate, 8 or 25 g/l iron and 60 or 120 g/l 

of zinc in 0.2 M sulphuric acid at 80°C. 

 

The oxygen feed was maximised in order to stop the continuous decline in 

potential, but in a small reactor with no mentionable hydrostatic pressure, the 

dissolution of oxygen and the consequent oxidation of ferrous iron took place 

more slowly than the reduction of iron caused by the concentrate. With no 

adequate way of oxidization, the outside potential control was left out of the 

measurements, and oxygen was fed into the system only to minimize the change 

in potential. The potential level of the solution was thus determined by the amount 

of ferric ion fed to the system. 

  

7.4.4 Batch dissolution experiments 
 

The results of the 64 measurements are given in Appendix 1. The effects of 

particle size, temperature and iron, zinc and acid concentration on the conversion 

of zinc under differing conditions are expressed in Appendices 2-11. The tables 

express the measurement parameters and the graphs show the effect of the 

variable in question. The effects are shown separately for the two concentrates 

under study, Concentrate B and Concentrate C, and a comparison of both fractions 

basic 1 h

basic 6 h
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of both concentrates are shown in Appendix 12, where the parameters are given 

by Table 3 on page 40. 

 

The most pronounced effect on the conversion of zinc was by the size fraction of 

the concentrate. For the Concentrate B, the conversions for the smaller fraction 

were by average 27 mass percent higher than for the fraction with the larger 

particle size. The corresponding result for the Concentrate C was 21 mass percent. 

The average conversions for the four fractions are given in Table 4, along with the 

particle sizes and specific surface areas. As expected, the concentrate fraction with 

the highest specific surface area had the highest conversion and the conversions 

decreased with decreasing surface area. The differences between the two 

concentrates in copper and iron concentration seemed to have less effect than the 

surface areas. Once the conversions were divided by the surface area of the 

concentrate in question (in m2/g), to give a scaled conversion, the average 

conversion for the Concentrate C was 15 m-% higher than the one for Concentrate 

B. This could be due to the increased concentration of iron in the lattice.  

 

Table 4. The conversions (X), particle sizes and surface areas of the used 

concentrates. 

 

Fraction Size A (m2/g) X / m-% X/A 
B1 <37µm 1.11 74 67 
B2 >37µm 0.632 47 74 
C1 <37µm 0.868 62 71 
C2 >37µm 0.525 45 86 

 

 

Increasing the temperature from 80 °C to 95 °C raised the average conversion of 

the Concentrate B by 15 m-%, with two of the measurements showing decrease in 

conversion.  The results for the Concentrate C were more varied, with 5 out of 16 

measurements showing a decrease in conversion with the increase in temperature. 

For the experiments with a positive effect, the average increase was 11 m-%, the 

total effect being only a 3 % increase. 
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The concentration of iron in the solution also had a clear effect on the 

conversions. The conversion for the Concentrate B was increased by 11 m-% and 

of the Concentrate C by 7 m-% by the increase of ferric iron from 8 to 25 g/l. The 

effects of the acid and zinc concentrations were negligible on the conversion 

reached at Concentrate B dissolution, with an average difference of 1 m-%. The 

effects on the Concentrate C were slightly stronger, with average effects of 5 m-% 

and 2 m-% respectively. The error in the measurements was studied by repeating 

10 of the measurements as shown in Appendix 13. The average error was found to 

be 3 m-%. Therefore the only considerable effects were those of size fraction, 

temperature and the iron concentration.  
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8 ROTATING RING-DISC ELECTRODE 
 

A rotating ring disc electrode was constructed, in which a pressed concentrate 

pellet was used as the disc. The Fe2+ ions formed by the dissolution of ZnS in the 

disc were detected on the platinum ring by oxidising them back to the ferric form. 

The measured current was used to determine the rate of dissolution. The method 

can be used to study the kinetics of dissolution in the very beginning of the 

reaction, before a layer of sulphur is formed on the surface. The method is fast 

and can thus be used for rapid comparison of the dissolution characteristics of 

different concentrate fractions.    

 

8.1 MATERIALS 
 

The Concentrate B <37 µm fraction was used. Sulphuric acid solution was diluted 

from concentrated H2SO4 (Merck) with MilliPore ion-exchanged distilled water. 

The ferric, cuprous and zinc sulphates (Riedel-de Haën) were of reagent grade. 

 

8.2 EQUIPMENT 
 

The rotating ring disc electrode consisted of a 1 mm thick platinum ring (inner 

diameter 15 mm), inside which is a 1 mm layer of insulator and then a space for a 

13 mm disc electrode. The exchangeable disc electrode pellets were mechanically 

pressed from the concentrate with sulphur (6 m-%) as the binder. The top and side 

views of the electrode are shown in Figure 19 and a picture of the set-up in Figure 

20. The counter electrode was a platinum net and the reference a commercial 

Ag/AgCl-electrode (REF 201 / Radiometer). 
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Figure 19. A schematic of the RRDE. 

 

 
 Figure 20. A picture of the RRDE-equipment.  

At the disc electrode (pellet): 
Fe3+ + ZnS → Fe2+ + Zn2+ + S 

At the ring electrode: 
Fe2+ → Fe3+ + e-  

Reference electrode 
and thermocouple 

Counter electrode

Rotating ring-
disc electrode 
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8.3 PROCEDURE 
 

In the basic measurements the acid concentration was 0.2 M, the iron 

concentration 8 g/l and the temperature 80 °C. To study the effect of temperature, 

this parameter was changed to 60, 70 and 90 °C. The effect of iron was studied by 

increasing its content to 25 g/l, the effect of acid by increasing the concentration 

to 0.8 M and the effect of copper by adding 1 gram of it per litre. All 

measurements were repeated at 5 rotation speeds: 5, 10, 15, 20 and 25 Hz.  

 

The measurements were conducted in a three-necked flask, with 0.25 l of solution. 

The flask was warmed with an adjustable heater connected to a thermosensor in 

the flask through a controlling device. The solution was heated and the electrode 

set down in the acid and set to rotate. Iron was introduced to the solution, once 

everything else was set, to ensure the recording of current from the very beginning 

of dissolution. 

 

8.4 RESULTS AND DISCUSSION 

8.4.1  Experimental results 
 
The plan was to do the RRDE measurements in solutions alike those in the real 

industrial process. The response was good in sulphuric acid when no zinc had 

been added, but the presence of zinc greatly disturbed the signal. The 

measurements had to be done in solutions without dissolved zinc. Figure 21 

shows the ring current in 80°C sulphuric acid (0.2M) with 8 or 25 g/l of ferric 

iron. The increase in current caused by the increased amount of iron was clearly 

evident. Thus this method is applicable to study the effect of different variables on 

the dissolution kinetics of the concentrate. Appendix 14 shows pictures taken of 

the pellet surface before an experiment (3a,0) in 80°C sulphuric acid (0.8M) with 

8 g/l of ferric iron, after measurement at various rotation rates (after 7 minutes, 

3a,k) and after 12 minutes of dissolution (3a,l). After 7 minutes the previously 

smooth surface had become rougher and the formation of an island of elemental 

sulphur was seen. After 12 minutes of dissolution, further cracking of the surface 
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was noted. However, the pellet remained intact and repeatable electrochemical 

experiments could be conducted. 
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Figure 21. Current of the ring electrode as a function of time. The 

temperature is 80 °C, concentration of sulphuric acid 0.2 M and the 

amount of iron in solution 8 or 25 g/l. 

 

Figure 22 shows the effect of temperature on the rate of dissolution. The inverse 

of the ring current is shown as a function of the square root of the angular speed, 

so that the value of kinetic current is obtained by extrapolation. (Only the 

magnitude of the current has been considered in Figures 22-24, the negative sign 

has been omitted.) Thus, the effect of kinetics and transport processes on the 

current can be separated, allowing a closer look on the factors affecting the 

kinetics of the reaction. The slopes of the extrapolated lines in Figure 22 suggest 

that the reaction mechanism at 60°C differs from that at higher temperatures. This 

is in accordance to earlier results [46]. However, the possibility of a measurement 

error has to be considered, as the extrapolated current at infinite mass transfer lies 

in the negative region. A definite difference in the rates of reaction can be seen 

between the measurements at higher temperatures. 

 

Figure 23 shows the effect of copper on the dissolution process and it is seen that 

in solutions with copper the dissolution rates were less dependent on the rate of 
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diffusion than in solutions without copper. Possibly the copper oxidised the 

ferrous ions and diffusion of ferric ions from further in the solution was no longer 

rate-determining. In contrast, Figure 24 shows that the concentration of the 

sulphuric acid had practically no effect on the dissolution, at least not in this 

concentration range. These were a preliminary set of measurements to test the 

applicability of this method in the study of concentrate dissolution kinetics. 
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Figure 22. The inverse of the ring current as a function of the square root 

of the angular speed. The effect of temperature on the current in 0.2 M 

sulphuric acid with 8 g/l iron in solution.  
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Figure 23. The inverse of the ring current as a function of the square root 

of the angular speed. The effect of copper on the current in 0.2 M 

sulphuric acid with 8 g/l iron in solution at 80 °C. 
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Figure 24. The inverse of the ring current as a function of the square root 

of the angular speed. The effect of acid concentration on the current in M 

solutions with 8 g/l iron in solution at 80 °C. 

 

The collector efficiency [62] for the used electrode geometry was 0.19, which 

means that only 19 % of the ferrous ions formed on the disc electrode were 

detected on the ring electrode. This had to be taken into consideration when 

calculating the currents of the disc electrode. Another fact to consider was that the 

calculated area of the pellet was not the actual area of the sphalerite surface, since 

the sulphur used as a binder covered part of the surface. No chemical surface 

analysis was made to analyse the extent of the sulphur coverage, but it must be 

recognised, that the calculated rates of reaction per area are lower than the actual 

rates on the concentrate surface. Table 5 shows the rates of reaction at the 

different temperatures. The rates per area unit are very low, but the fine ground 

concentrates have a very large total surface area making the total rate of reaction 

enough for a commercial process. 

 

  Table 5. Rates of the dissolution reaction at different temperatures. 

 
T/C k/(mmol/cm2*min)
70 0.0016
80 0.0014
90 0.0026  
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8.4.2  Theoretical considerations 
 

The rate of the kinetically controlled process was calculated in the previous 

section. If the process is controlled by the rate of mass transfer to the spherical 

particles, the current can be calculated from equation: 

 

r
cFD

i oo
diff

4
=         (35) 

 

where idiff is the diffusion current per area (A/cm2), Do the diffusion coefficient of 

the oxidant, Fe3+ (cm2/s) [63], co is the bulk concentration of ferric iron and r is 

the radius of the dissolving ZnS particle. The equation can be used to study the 

effect of particle size on the rate of the diffusion current. Figure 25 shows the 

diffusion-limited current divided by the kinetic current for a solution with 8 or 25 

g/l of ferric iron at 80°C. The figure shows, that for particle sizes under 300 µm 

radius, mass transfer is considerably faster than the kinetics under the conditions 

studied. Increasing the mass transport in the solution cannot increase the rate of 

the dissolution process; the conditions have to be made more favourable for faster 

kinetics. 
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Figure 25. The ratio of the diffusion and kinetic currents as a function of 

particle radius for sphalerite dissolution in a solution with 8 or 25 g/l of 

Fe3+ in 0.2 M sulphuric acid at 80°C. 
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9 MINERAL-CARBON PASTE ELECTRODE 
 

The zinc sulphide concentrate does not conduct electricity and thus the potential 

of the RRDE pellets could not be varied. Conductivity was gained when the 

concentrate was mixed with fine carbon powder into a paste. The potential of such 

a mineral-carbon paste electrode can be adjusted and the dissolution rate at 

different potentials studied. The goal was to have a mineral-carbon paste electrode 

as the disc on the RRDE set-up. 

 

9.1 MATERIALS 
 
The Concentrate B <37 µm fraction was used. Sulphuric acid solution was diluted 

from concentrated H2SO4 (Merck) with MilliPore ion-exchanged distilled water. 

The ferric, cuprous and zinc sulphates (Riedel-de Haën) were of reagent grade. 

 

9.2  EQUIPMENT 
 
The mineral-carbon paste electrode was made by mixing the concentrate with 

finely ground carbon and paraffin oil. The paste was applied to a hole (1 cm2) in 

an insulating substrate, with a connection from the paste through the insulation. A 

schematic of this is shown in picture 26. A standard three-electrode cell was used, 

with a platinum web as the counter and commercial Ag/AgCl as the reference 

electrode. 

 

 

 

 

 

 

 

 Picture 26. A schematic of the concentrate-carbon paste electrode. 

electrode paste 

insulating substrate 

platinum wire 
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9.3  PROCEDURE 
 

The measurements were conducted at room temperature in an unmixed cell, as the 

primary target was to study the applicability of the paste electrode. A blank 

electrode was also constructed with carbon and paraffin oil, so one could be 

certain the dissolution of the concentrate and not any effects of the paraffin or 

carbon caused the current. Both potentiostatic and potentiodynamic   

measurements were conducted. The paste was also incorporated into the RRDE 

set up as the disc electrode, but it did not seem stable under the applied 

conditions. 

 

9.4 RESULTS AND DISCUSSION 
 

Figure 27 shows cyclic voltammograms measured on a concentrate-carbon paste 

electrode in a stationary solution. The figure shows the carbon-oil paste to be inert 

under these conditions, and thus the current measured on a concentrate-carbon-oil 

paste was only due to dissolution of the concentrate.  

 

The measurements done on the modified electrode show the effect of the electrode 

potential on the rate of dissolution. The oxidation reaction began at potentials just 

below 1 V vs. Ag/AgCl and current flowed as the sulphur in the mineral was first 

oxidised to elemental sulphur and then further to sulphate according to equations 

1 and 4 respectively. Figure 27 also shows a measurement where ferric iron was 

added to the solution resulting in higher currents at the same potentials as 

previously. The dissolution was enhanced as some of the sulfide was dissolved by 

the potential, some by the active iron. On the cathodic sweep the reduction of iron 

to the ferrous form was seen. 

 



  60

-500

-400

-300

-200

-100

0

100

200

0 0.4 0.8 1.2 1.6

E / V    vs.  Ag/AgCl

I /
 µ

A

hiilipasta

rikastehiilipasta

rikastehiilipasta + Fe(III)

 
Figure 27. Cyclic voltammograms on a carbon paste- and concentrate-

carbon paste -electrode in 0.2 M sulphuric acid solution at room 

temperature, with 0 or 8 g/l of ferric iron. 
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Figure 28. The effect of potential on the current of a concentrate-carbon 

paste electrode in 0.2 M sulphuric acid at room temperature. 
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Figure 28 shows the results of potentiostatic measurements, which corroborate the 

interpretations of the cyclic voltammograms and shows dissolution current as a 

function of time and potential. As was noted from the cyclic voltammograms, no 

current passed at potentials under 0.8 V vs. Ag/AgCl and no dissolution occurred. 

Above this potential dissolution slowly began and the rate was increased with 

increasing potential until a maximum was reached at 1.2 V vs. Ag/AgCl. As the 

oxidation current correlates with the rate of sulphur oxidation from the sulphide 

lattice, the method is suitable for monitoring the reaction rate at various 

conditions and potentials. 

 

The paste was also incorporated into the RRDE set up as the disc electrode, but 

the results were not encouraging. The surface area of the RRDE electrode was 

larger than that of the electrode used for the other CPE measurements and there 

was a strong flow of solution to the electrode surface. These conditions caused the 

mineral - carbon paste electrode to be unstable and no useful measurements could 

be conducted. This problem shall be solved with the optimisation of the paste 

composition. 
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10 SUMMARY AND CONCLUSIONS 
 

The dissolution of sphalerite concentrates was studied using ferric ions and 

manganese dioxide as the oxidant. The methods used were batch dissolution 

experiments and potentiostatic measurements on a rotating ring-disc electrode 

with a mineral concentrate disc and on a mineral-carbon paste electrode. The 

effects of the concentrate fraction size, temperature and the solution iron, zinc and 

acid concentrations were studied. 

 

In the batch dissolution experiments with manganese dioxide as the oxidant, it 

was found that MnO2 affects the dissolution of a sphalerite concentrate 

(Concentrate A) by two mechanisms: by directly oxidising the sulphur in the 

mineral and by regenerating the active ferric species. When MnO2 was the only 

oxidising species in the solution, the dissolution proceeded linearly with time, 

which suggests further oxidation of the elemental sulphur layer. This was also 

suggested by the results showing an excess of MnO2 dissolution compared to the 

stoichiometric amount required by the sphalerite oxidation. Analysis of sulphur in 

the dissolution residue also corroborated the theory of further sulphur oxidation. 

 

The dissolution behaviour of two sphalerite concentrates, Concentrate B and 

Concentrate C, was studied by batch dissolution experiments using ferric ions as 

the oxidant. Fractions with particle sizes of less than 37 µm (B1 and C1) and over 

37 µm (B2 and C2) were used. The measurement parameters were chosen to 

match those in industrial scale dissolution. The average conversions for the 

fractions after 3 hours dissolution were B1: 74 m-%, B2: 74 m-%, C1: 62 m-% 

and C2: 45 m-%. The conversion of zinc was strongly effected by the size fraction 

of the concentrate, temperature and the concentration of iron in the solution. The 

conversions for the smaller concentrate fraction were by average 27 mass percent 

higher than for the fraction with the larger particle size in the case of the 

Concentrate B and 21 m-% for the Concentrate C. As expected, the concentrate 

fraction with the highest specific surface area had the highest conversion and the 

conversions decreased with decreasing surface area. Once the conversions were 
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divided by the surface area, the average conversion for the Concentrate C was 15 

m-% higher than the one for Concentrate B, which could be due to the increased 

concentration of iron in the lattice. Increasing the temperature from 80 °C to 95 

°C raised the average conversion of the Concentrate B by 15 m-%, the results for 

the Concentrate C showing only a 3 % increase. The conversion for the 

Concentrate B was increased by 11 m-% and of the Concentrate C by 7 m-% by 

the increase of ferric iron from 8 to 25 g/l. The effects of the acid and zinc 

concentrations were negligible on the conversion. 

 

A rotating ring disc electrode was constructed, in which a pressed concentrate 

pellet was used as the disc. The Fe2+ ions formed by the dissolution of ZnS on the 

disc surface were detected on the platinum ring by oxidising them back to the 

ferric form. The measured current was used to determine the rate of dissolution. 

The method is fast and thus can be used for rapid comparison of the dissolution 

characteristics of different concentrate fractions under varying conditions. In 

addition, the method allows for the effects of kinetics and transport processes on 

the current to be separated, allowing a closer study of the factors affecting the 

kinetics of the reaction. It was shown, that the reaction mechanism of sphalerite 

dissolution at 60°C differs from that at higher temperatures and the dissolution 

rate clearly corresponded to the increase in temperature. The effect of copper on 

the dissolution kinetics was also evident, while the concentration of the sulphuric 

acid seemed to have no effect on the rate of dissolution.  

 

Theoretical calculations of the rate of mass transfer showed, that kinetics are rate 

limiting under these conditions. Increasing the mass transport in the solution will 

not increase the rate of the dissolution process; the conditions have to be made 

more favourable for faster kinetics. 

 

A mineral-carbon paste electrode was constructed by mixing the concentrate with 

fine carbon powder and oil. Cyclic voltammetric measurements showed the 

carbon-oil paste electrode to be inert under the conditions used. The voltammetric 

and potentiostatic measurements done on the modified mineral electrode showed 
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the effect of the electrode potential on the rate of dissolution. The oxidation of the 

sulphide began above 0.8 V vs. Ag/AgCl and the rate was increased with 

increasing potential until a maximum was reached at 1.2 V vs. Ag/AgCl. The goal 

was to have a mineral-carbon paste electrode as the disc on the RRDE set-up; 

however, the paste used was not stable under the RRDE conditions. 
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Appendix 1 – The results of batch dissolution experiments 1/2 

 
Measurement Fraction T (C) Fe (g/l) Zn (g/l) H (g/l) X (%) 

1 B1 80 125 120 80 72.0 
2 B1 95 125 120 20 87.5 
3 B1 95 40 60 80 83.1 
4 B1 95 125 60 20 86.6 
5 B1 80 40 60 80 66.7 
6 B1 80 40 120 20 63.2 
7 B1 95 125 60 80 90.4 
8 B1 95 40 120 20 69.7 
9 B1 80 125 120 20 75.7 
10 B1 80 125 60 80 74.3 
11 B1 80 40 120 80 69.3 
12 B1 80 40 60 20 62.8 
13 B1 80 125 60 20 63.7 
14 B1 95 40 60 20 79.5 
15 B1 95 40 120 80 78.5 
16 B1 95 125 120 80 68.3 
17 B2 80 40 120 20 34.8 
18 B2 80 40 60 20 41.5 
19 B2 80 125 60 20 54.9 
20 B2 80 40 60 80 38.6 
21 B2 95 40 120 20 57.3 
22 B2 80 125 120 20 48.6 
23 B2 95 125 60 20 65.9 
24 B2 95 40 60 20 26.0 
25 B2 95 40 60 80 45.7 
26 B2 95 125 60 80 62.9 
27 B2 95 40 120 80 40.7 
28 B2 80 40 120 80 29.8 
29 B2 80 125 60 80 39.0 
30 B2 95 125 120 20 62.0 
31 B2 80 125 120 80 40.7 
32 B2 95 125 120 80 64.6 
33 C1 80 40 60 20 56.3 
34 C1 95 40 60 80 78.4 
35 C1 80 125 120 20 62.1 
36 C1 95 40 120 20 61.6 
37 C1 95 125 60 20 71.8 
38 C1 80 125 60 80 63.3 
39 C1 80 40 120 80 55.2 
40 C1 95 125 120 80 82.5 

 



Appendix 1 – The results of batch dissolution experiments 2/2 

 
Measurement Fraction T (C) Fe (g/l) Zn (g/l) H (g/l) X (%) 

41 C1 95 8 60 20 42.3 
42 C1 80 25 60 20 68.0 
43 C1 80 8 120 20 56.3 
44 C1 95 25 120 20 46.4 
45 C1 80 8 60 80 50.4 
46 C1 95 25 60 80 64.9 
47 C1 95 8 120 80 58.2 
48 C1 80 25 120 80 70.4 
49 C2 95 125 120 20 56.7 
50 C2 80 125 60 20 43.1 
51 C2 95 40 60 20 42.5 
52 C2 80 40 120 20 38.3 
53 C2 80 40 60 80 36.2 
54 C2 95 125 60 80 48.6 
55 C2 95 40 120 80 49.6 
56 C2 80 125 120 80 44.2 
57 C2 80 8 60 20 41.2 
58 C2 95 25 60 20 68.5 
59 C2 95 8 120 20 24.3 
60 C2 80 25 120 20 32.7 
61 C2 95 8 60 80 46.2 
62 C2 80 25 60 80 46.2 
63 C2 80 8 120 80 64.5 
64 C2 95 25 120 80 37.5 



Appendix 2 – The effect of particle size – Concentrate B 
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T/C Fe(g/l) Zn(g/l) H(g/l)
1 80 8 120 20
2 80 8 60 20
3 80 25 60 20
4 80 8 60 80
5 80 25 120 20
6 80 8 120 80
7 80 25 60 80
8 80 25 120 80
9 95 8 120 20
10 95 25 60 20
11 95 8 60 20
12 95 8 60 80
13 95 25 60 80
14 95 8 120 80
15 95 25 120 20
16 95 25 120 80  

 



Appendix 3 – The effect of temperature – Concentrate B 
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  Fe(g/l) Zn(g/l) H(g/l) Fraction 
1 25 120 20 B1 
2 8 60 80 B1 
3 25 60 20 B1 
4 25 60 80 B1 
5 8 120 20 B1 
6 8 60 20 B1 
7 8 120 80 B1 
8 25 120 80 B1 
9 8 120 20 B2 
10 25 60 20 B2 
11 8 60 20 B2 
12 8 60 80 B2 
13 25 60 80 B2 
14 8 120 80 B2 
15 25 120 20 B2 
16 25 120 80 B2 

 
 
 



Appendix 4 – The effect of iron concentration – Concentrate B 
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  T/C Zn(g/l) H(g/l) Fraction 
1 80 120 80 B1 
2 95 120 20 B1 
3 95 60 20 B1 
4 95 60 80 B1 
5 80 120 20 B1 
6 80 60 80 B1 
7 80 60 20 B1 
8 95 120 80 B1 
9 80 60 20 B2 
10 80 120 20 B2 
11 95 60 20 B2 
12 95 60 80 B2 
13 80 60 80 B2 
14 95 120 20 B2 
15 80 120 80 B2 
16 95 120 80 B2 

 
 



Appendix 5 – The effect of zinc concentration – Concentrate B 
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  T/C Fe(g/l) H(g/l) Fraction 
1 80 8 80 B2 
2 80 8 20 B2 
3 80 25 80 B2 
4 95 8 80 B2 
5 80 25 20 B2 
6 95 8 20 B2 
7 95 25 20 B2 
8 80 8 20 B1 
9 95 25 80 B2 
10 95 25 80 B1 
11 80 8 80 B1 
12 95 8 20 B1 
13 80 25 80 B1 
14 80 25 20 B1 
15 95 8 80 B1 
16 95 25 20 B1 

 
 



Appendix 6 – The effect of acid concentration – Concentrate B 
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  T/C Fe(g/l) Zn(g/l) Fraction 
1 80 25 120 B1 
2 95 8 60 B1 
3 80 8 60 B1 
4 95 25 60 B1 
5 80 25 60 B1 
6 80 8 120 B1 
7 95 8 120 B1 
8 95 25 120 B1 
9 80 8 60 B2 
10 95 8 60 B2 
11 95 25 60 B2 
12 95 8 120 B2 
13 80 8 120 B2 
14 80 25 60 B2 
15 80 25 120 B2 
16 95 25 120 B2 

 
 



Appendix 7 – The effect of particle size – Concentrate C 
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T/C Fe(g/l) Zn(g/l) H(g/l)
1 80 8 60 20
2 95 25 60 20
3 95 8 120 20
4 80 25 120 20
5 95 8 60 80
6 80 25 60 80
7 80 8 120 80
8 95 25 120 80
9 80 8 60 80
10 80 8 120 20
11 80 25 60 20
12 80 25 120 80
13 95 8 60 20
14 95 25 60 80
15 95 8 120 80
16 95 25 120 20  

 



Appendix 8 – The effect of temperature – Concentrate C 
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  Fe(g/l) Zn(g/l) H(g/l) Fraction 
1 8 120 20 C1 
2 25 60 20 C1 
3 8 60 80 C1 
4 25 120 80 C1 
5 8 60 20 C1 
6 25 120 20 C1 
7 25 60 80 C1 
8 8 120 80 C1 
9 25 60 20 C2 
10 8 120 20 C2 
11 8 60 80 C2 
12 25 120 80 C2 
13 8 60 20 C2 
14 25 60 80 C2 
15 8 120 80 C2 
16 25 120 20 C2 

 



Appendix 9 – The effect of iron concentration – Concentrate C 
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  T/C Zn(g/l) H(g/l) Fraction 
1 80 120 20 C1 
2 80 60 80 C1 
3 95 60 20 C1 
4 95 120 80 C1 
5 80 60 20 C1 
6 95 120 20 C1 
7 95 60 80 C1 
8 80 120 80 C1 
9 95 60 20 C2 
10 80 120 20 C2 
11 80 60 80 C2 
12 95 120 80 C2 
13 80 60 20 C2 
14 80 120 80 C2 
15 95 60 80 C2 
16 95 120 20 C2 

 
 



Appendix 10 – The effect of zinc concentration – Concentrate C 
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  T/C Fe(g/l) H(g/l) Fraction 
1 80 8 80 C1 
2 80 25 20 C1 
3 95 8 20 C1 
4 95 25 80 C1 
5 80 8 20 C1 
6 95 25 20 C1 
7 95 8 80 C1 
8 80 25 80 C1 
9 95 8 20 C2 
10 80 25 20 C2 
11 80 8 80 C2 
12 95 25 80 C2 
13 80 8 20 C2 
14 80 25 80 C2 
15 95 8 80 C2 
16 95 25 20 C2 

 
 



Appendix 11 – Effect of acid concentration – Concentrate C 
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  T/C Fe(g/l) Zn(g/l) Fraction 
1 80 8 120 C1 
2 80 25 60 C1 
3 95 8 60 C1 
4 95 25 120 C1 
5 80 8 60 C1 
6 95 25 60 C1 
7 95 8 120 C1 
8 80 25 120 C1 
9 95 8 60 C2 
10 80 25 60 C2 
11 80 8 120 C2 
12 95 25 120 C2 
13 80 8 60 C2 
14 80 25 120 C2 
15 95 25 60 C2 
16 95 8 120 C2 



 
Appendix 12 – Conversions of B1, B2, C1 and C2 
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Appendix 13- The repeatability of measurements – Concentrate C 
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Fr T/C Fe(g/l) Zn(g/l) H(g/l) 
C2 80 8 60 80 
C2 80 8 120 20 
C2 80 25 60 20 
C2 95 25 60 80 
C2 95 25 120 20 
C1 80 8 60 20 
C1 80 25 120 20 
C1 80 25 60 80 
C1 95 25 60 20 
C1 95 8 60 80 

 
 
 



Appendix 14- Pictures of the RRDE-pellet before, during and after measurement 

 
 

 
 

 


