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In the space of automated captioning, the task of visual storytelling is one dimen-
sion. Given sequences of images as inputs, visual storytelling (VIST) is about
automatically generating textual narratives as outputs. Automatically producing
stories for an order of pictures or video frames have several potential applications
in diverse domains ranging from multimedia consumption to autonomous systems.
The task has evolved over recent years and is moving into adolescence. The avail-
ability of a dedicated VIST dataset for the task has mainstreamed research for
visual storytelling and related sub-tasks.

This thesis work systematically reports the developments of standard captioning
as a parent task with accompanying facets such as dense captioning, and gradually
delves into the domain of visual storytelling. Existing models proposed for VIST
are described by examining respective characteristics and scope. All the methods
for VIST adapt from the typical encoder-decoder style design, owing to its success
in addressing the standard image captioning task. Several subtle differences in the
underlying intentions of these methods for approaching the VIST are subsequently
summarized.

Additionally, alternate perspectives around the existing approaches are explored
by re-modeling and modifying their learning mechanisms. Experiments with dif-
ferent objective functions are reported with subjective comparisons and relevant
results. Eventually, the sub-field of character relationships within storytelling
is studied and a novel idea called character-centric storytelling is proposed to
account for prospective characters in the extent of data modalities.
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AI Artificial Intelligence
BLEU Bilingual Evaluation Understudy
CNN Convolutional Neural Network
CV Computer Vision
DL Deep Learning
EOS End Of Sentence
GAN Generative Adversarial Networks
GIF Graphics Interchange Format
GRU Gated Recurrent Unit
LSTM Long Short Term Memory
MDP Markov Decision Process
METEOR Metric for Evaluation of Translation with Explicit Or-

dering
ML Machine Learning
MLE Maximum Likelihood Estimation
NAACL North American Chapter of the Association for Com-

putational Linguistics
NLP Natural Language Processing
RCNN Region Convolutional Neural Network
RL Reinforcement Learning
RNN Recurrent Neural Network
SCN Semantic Compositional Network
SCST Self-Critical Sequence Training
VIST Visual Storytelling
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Chapter 1

Introduction

1.1 Problem statement

Given a sequence of images as input, the visual storytelling task is about
building a model that can generate a coherent textual narrative as output.
An image sequence would typically be a group of images portraying an event
or an episode. The output story could conceivably be up to fifty words long,
with an average of ten words per image in the input sequence. The topic grew
mainstream with advancements in deep-learning research achieving state-of-
the-art performance for standard image captioning.

The first and only curated dataset for visual storytelling task, to date, is
the VIST dataset, which is detailed under Section 2.3 and released by the
work that popularized visual storytelling [22]. All the work that has followed
has heavily relied on using the same dataset and proposed architectures that
are pseudo dependent on the composition of the data. In this setting, co-
herency is a judgmental assessment of the style of translating visual semantics
into language format.

Nevertheless, because sharing and maintaining context across sentences
is the primary objective of successful visual storytelling and approaches for
achieving it vary, several associated facets of the task remain subjective, in-
cluding coherency. The balance between incorporating relevant details and
creative abstractness coherent to the data is challenging. Moreover, other
complications include accounting for ground-truth bias and sentence-length.
These inherent difficulties and directions towards handling them will be dis-
cussed in this thesis.
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CHAPTER 1. INTRODUCTION 8

1.2 Motivation

Computer vision, together with text and language processing, is successfully
enabling new possibilities in many disciplines. With a significant surge in the
availability of multimedia content everywhere, large-scale annotated data is
becoming a reality. Automated generation of appropriate textual descriptions
for images and videos is called automatic visual description. Some direct
applications of these visual descriptions are understanding of images on social
media platforms for better recommendations and captioning of videos on
broadcasting mediums for the hearing or visually impaired. Other ancillary
applications include describing signs and symbols in different levels of detail
for the interpretability of robots in autonomous systems.

Although many works [35] have addressed the standard image and video
captioning problems, the specific task of visual storytelling is a relatively
new facet. Often more than not, the standard captioning models fail to
interpret the non-obvious structure in the visual input. They do not account
for different moments within the image or across a given sequence of images.
These shortcomings of existing captioning methods form the motivation for
generating a coherent narrative for a sequence of images or video frames
comprising of relevant, subjective, and abstract information.

The VIST models are expected to generate stories with a balance between
creativity and actuality of the data without loss of critical semantics. Ide-
ally, such models learn the space between modalities accounting for the over-
all value of knowledge from both the visual data and the human-annotated
textual interpretation.

1.3 Structure of the Thesis

This thesis intends to review the evolution of visual storytelling from the
task of standard visual description. The contemporary state of the topic is
subsequently explained with a discussion about possible sub-domains and
suggestions towards future implications. Existing models and architectures
are compared against each other illustrating respective leaps and shortcom-
ings. Alternate perspectives and impact of remodeling some existing designs
are discussed. A study on character relationships with a novel approach for
solving one of the fundamental challenges of assuring the presence of prospec-
tive characters in the generated narratives is also proposed.

Structural outline of this thesis is as follows:
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Chapter 2 discusses the relevant background, extensively covering the realms
of image, video, and sequence captioning, thereby gradually introducing vi-
sual storytelling.

Chapter 3 compares the existing models proposed for visual storytelling
by explaining the intentions behind, examining model behaviors, and re-
ports respective implementations with results.

Chapter 4 describes modifications in learning mechanisms and remodel-
ing of some existing methods and demonstrates resulting implications.

Chapter 5 discusses the difficulty of assuring prospective characters in the
generated narratives and proposes a novel approach.

Chapter 6 summarizes and discusses data sources, model designs, exper-
imental setups, and justifies the outputs of the models.

Chapter 7 concludes by reviewing the potential extent of the topic of re-
search and motivates plausible future directions.



Chapter 2

Background

Visual storytelling is an extensively derived topic. It belongs to the family
of captioning with connections to various other tasks. Automatically gen-
erated descriptions can assist people with visual or hearing impairment to
perceive multimedia content. Real-time closed captioning on social media
and broadcasting platforms solve the problems of language barriers and im-
prove outreach. To fully understand how the research field arrived at VIST
as a task, it is essential to study into respective parent and sibling domains.
This chapter details each of the related topics and respective motivations
behind them. A timeline view on the evolution of the space between vision
and language and, thereby, visual storytelling is provided.

2.1 Image captioning

Image captioning is a task of automatically producing textual descriptions
for given visual data as shown in Figure 2.1. The conception of captioning
as a task is often primarily traced back to success in the field of visual object
detection [32]. It can be viewed as a natural quest to progress towards
describing the overall image or frame once the objects and entities are well
tagged. Along with the novelty dimension, it could have been the influence of
numerous other motivations that propelled this task into mainstream focus.
Humans tend to perceive and learn visually, but communicate and share
through text, language. This is rather evident considering many aspects of
life from advertisements, social media to multimedia platforms. Therefore,
the emphasis on language processing and understanding grew with the advent
of deep language models utilizing neural networks [6]. Various improvements
have followed, enhancing both the visual detection and text processing areas
individually [40], [17]. Audio or speech is regarded arguably as a form of text

10



CHAPTER 2. BACKGROUND 11

Figure 2.1: Automatically generated captions by an AI model [25].

referring to the language modeling aspect in all standard speech processing
and recognition pipelines.

All the motivations led to the initial work by Kiros et al [28] on image
captioning using deep learning. The proposal elucidates the theme of multi-
modalities and explores relationships between them. It presents a neural
language model for generating textual output, conditioned on images without
any predefined syntactic structures and templates that were relied upon by
prior work [43]. The model uses a convolutional neural network (CNN), more
precisely AlexNet [32], as the image encoder and a Multimodal Log-Bilinear
language model [44] which is a feed-forward neural network of a single hidden
layer as the decoder. This decoder generates the next word based on the
linear combination of previous word vectors and encoded image features as
context. Meanwhile, the task of machine translation has gained traction with
recurrent-neural-network (RNN) based models making their mark [3].

Inspired by the developments in the machine translation domain, Kiros et
al [29], further proposed an encoder-decoder architecture based on RNN to
leverage the high-dimensional distributed representation space. The model
comprises an encoder of a CNN-LSTM setup in which the CNN extracts
image features while the long short-term memory network (LSTM) [19], en-
codes the textual input. These representations are then projected into a
multimodal space to achieve a joint embedding. Subsequently, a neural lan-
guage model, another LSTM network, reads the content vector (image or
text embedding) and structure vector (part-of-speech tags) and generates
each word conditioned on the auxiliary content and provided structure. The
work extensively reports on the multimodal vector space emphasizing that
similar underlying concepts should have similar spatial representations. Var-
ious advances have been made based on this idea.
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Vinyals et al’s model [61] is one such advancement that introduced an
architecture employed by most of the work that followed. It is explained in
Section 2.1.1. One incremental enhancement based on the work by Vinyals
et al [61] was that of Xu et al [64]. It applies an attention mechanism to
compensate for the dominance of any particular modality. These works also
mainstreamed the adaptation of natural language measures like Bilingual
Evaluation Understudy (BLEU) [45] and Metric for Evaluation of Transla-
tion with Explicit Ordering (METEOR) [34] for evaluating the automatically
generated captions. Some of these measures will be detailed under Section
2.4.

2.1.1 Baseline architecture

From the above-mentioned developments, it is evident that a standard un-
derlying architecture has shaped the approach towards image captioning in
recent times. Hence, on a conceptual level, it would be fitting to state that all
neural image captioning models follow a de facto encoder-decoder style ar-
chitecture [8], as depicted in Figure 2.2. This architectural design is inspired
from its earlier success in solving the machine translation task of translat-
ing text in one language to another. Neural sequence to sequence models
is another consequential term to these models. Concerning the perspective
of captioning, the modules of encoder and decoder handle dependent but
different objectives. This section details the baseline encoder-decoder setup
describing individual components and, thereby, the overall pipeline.

Figure 2.2: Illustration of encoder-decoder framework with visual input to
the encoder and textual output from the decoder.

The encoder, which is the first component in the play, is typically a
CNN owing to their viability in successful detection and summarization of
visual semantics. The motivation behind employing an encoder is for the
extraction of image features. Image features are usually vector form rep-
resentations of the actual image, that are necessary for the computational
interpretation of the network. The CNN would normally be a pre-trained
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image classifier network trained with a classification task as the objective,
using datasets such as ImageNet [10]. There are a variety of popular well-
trained CNNs available, such as AlexNet [32], VGG [56], and Resnet [18].
Each of them serves different purposes, and often Resnet, or deep residual
networks, addresses a majority of the use-cases. This popularity of Resnet
is due to the network’s efficiency in handling the vanishing gradient problem
by using residual connections to previous layers as shown in Figure 2.3.

Figure 2.3: Residual learning, a building block; X being the input to a
network layer and F(X), the output. Proposed by [18] for the Resnet archi-
tecture.

Another famous image feature extractor is the Inception model [59]. The
significant difference with other CNN models is that multiple filters are used
to convolve the same input at every level of the network. These different filter
sizes make the inception model generalize well to objects of various sizes and
provides a range of focus levels. A comparison between variants of the VGG
and Resnet architectures is shown in Figure 2.4. Typically there are several
preprocessing steps associated with feature extraction using the encoder:

• Resizing the image to match the input specifications of the extractor
network, e.g. 256×256 pixels.

• Cropping the classification layers off of the network model and select-
ing the desired level for extraction, e.g. the penultimate linear layer of
Resnet-152 yielding a 2048 dimensional vector.

The decoder module of the model is typically a standard recurrent neural
network or one of its variants. RNN being inherently sequential is a natural fit
for the generation of language or text. Consequently, the decoder networks
are autonomously called language models. At every timestep the decoder
receives individual word vector embeddings as input. Along with the words,
the decoder gets a subject vector (also called a context vector) which is
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Figure 2.4: Comparison of VGG and Resnet CNN image feature extractor
architectures from [53].
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essentially the output of the encoder module. The objective of the model is
to perceive language conditional on the image subject vector, i.e., to learn
a shared space of sentences and images. Words provided as input at each
timestep to the network need a representation that can be understood by
the model. One approach is the one-hot-vector representation, which is to
embed every word as a vector of vocabulary size R|V |×1. The one-hot vector
structures are very sparse, with 1 at respective word index in the vocabulary
and 0 everywhere else. As an improvement, Bengio et al. [6] provided a means
of encoding words as distributed continuous representations and termed them
word embeddings.

The core idea is to map vocabulary-sized vectors of words to a much
smaller-dimensional encoding. Many pre-trained models like Word2Vec [41]
and Glove [48] trained on abundant text corpora such as the English Giga-
word corpus [16] are readily available. These models provide a projection
in which each word maps to a neighborhood of similar words. Addition-
ally, these word-embedder models can be fine-tuned, i.e., trained with the
overall language model for vocabulary dependent embeddings. Eventually,
the recurrent memory units of the decoder learn the shared representations.
This is presented in Figure 2.5. The architecture proposed by Vinyals et al
[61] uses LSTM [19] cells to handle the problem of vanishing gradients in
traditional RNN blocks. The output from the LSTM units is a vector of
arbitrary numbers, fed through a SoftMax layer for obtaining a probability
distribution over the vocabulary of words.

Figure 2.5: Model proposed by Vinyals et al [61].
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2.1.2 Dense captioning

Images can be inherently considered as visual scenes, comprising of various
elements. Some elements are salient, while others might be less critical ex-
isting as background objects supporting and supplying the illustration we
perceive. We described in earlier sections the evolution of visual captioning
as a task. Classification is what it all started with, wherein there exists a vi-
sual input and one corresponding word would be its expected label. Success
in the classification task inspired object detection domain of labeling various
objects of the image using appropriate words. Gradually image captioning
evolved as a task which is about describing an image using complex labels,
sentences. Therefore in the space of label complexity and label density as
axis, there was scope for a domain that deals with labeling, which is complex
yet dense. It is where dense captioning comes in.

Detecting image regions and describing them in a natural language is
called dense captioning. The initial work on dense captioning combines the
state-of-the-art architectures from both image captioning and object detec-
tion domains [25]. Due to the lack of a dedicated dataset for dense captioning,
the proposal deals with a two-step procedure. Extracting region-level anno-
tations using a region convolutional neural network (RCNN) [14] and em-
ploying multimodal RNN for generating descriptions per region. In essence,
the model performs image captioning on cropped areas of the visual input.
Flickr8K, Flickr30K [20] and MS COCO [37] are datasets used for reporting
results. There are some obvious limitations of this design, from predictions
not incorporating the overall context and computational inefficiency to the
procedure not following an independent end-to-end style.

Addressing problems from the prior work, the authors of [24] propose a re-
vamped architecture based on the idea of localization as shown in Figure 2.6.

Figure 2.6: The dense captioning architecture proposed by [24].
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Heavily inspired by Faster RCNN [50], the fully-convolutional localization
layer accepts encoded convolution features from the CNN as input and out-
puts region co-ordinates and features along with respective confidence scores.
A fully-connected recognition network flattens these obtained bounded boxes
for further refining the confidence of the proposed regions. Eventually, a
standard RNN language model conditioned on the proposed bounding box
information generates respective sentences. Taking into account that dense
captioning is an open-ended task, the Visual Genome dataset [31] obtained
through crowd-sourcing is used. It comprises 94,000 images and 4 million
region grounded captions. The work of [24] also describes the feasibility of
reversing the task to retrieve related images using region-specific captions.
Examples of the generated captions are shown in Figure 2.7.

Figure 2.7: Dense captions generated by [24].

2.1.3 Paragraph captioning

Paragraph captioning is an extended use-case of image captioning. In this
context, a paragraph is a description comprising more than one sentence.
The exact motivation behind conception of paragraph-level descriptions for
images could be affiliated with an inherent shortcoming of image captioning.
Single sentence captions generated for images predominantly focus on captur-
ing the high-level gist of the visual. Often these single sentence descriptions
serve certain use-cases very well while falling short at addressing others. Au-
tomatic video subtitling and blind navigation are some of such use-cases in
which a mere one sentence description might undermine the objective [36].

Though dense captioning methods explained in the previous section solved
this problem to an extent by generating sentences for multiple regions of the
visual, they still do not form a coherent whole. Therefore the objective is to
produce descriptions with enormous amounts of details. The initial work on
paragraph captioning meets this objective and proposes a model by making
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Figure 2.8: Paragraph captioning architecture from [30].

use of the ideas from both image and dense captioning realms [30]. The
design relies on the fact that images comprise objects which are granular
semantic units to study. It, therefore, employs a region proposal network for
detecting regions and eventually pools them into a single image feature vec-
tor. Paragraphs comprise sentences that are modular and coherent. Based
on that fact, the work in [30] introduces Sentence RNN. This module takes as
input the image feature vector and outputs a fixed set of topic vectors along
with a halting probability value (halt generation if > 0.5). The topic vectors
are inputs to the standard Word RNN modules which generate descriptions.

The Sentence RNN essentially controls the number of decomposable sen-
tences and stopping criteria. The overall model is end-to-end differentiable
with CNN and Word RNN modules pre-trained towards the dense caption-
ing task as shown in Figure 2.8. The work also introduces a dataset for the
domain, which is a subset of the MS COCO and visual genome datasets. The
results outperform all of the baseline models both in terms of the automatic
metrics (METEOR, CIDEr) and human evaluation as shown in Figure 2.9.
A particular trait of this domain is that the descriptions directly map only
to the proposed regions of the image, which allows for interpretability.

Figure 2.9: A paragraph generated by the model in [30].
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2.2 Sequence captioning

Sequence captioning is a colloquial term used in the community for referring
to automated captioning tasks dealing with more than one visual. Of course,
videos are the most popular sequential data in vision, but tasks involving any
form of an ordered collection of images or frames can be called a sequence,
e.g.an album of photographs. In the world where photo collages, GIFs, and
videos dominate a majority of today’s internet traffic, the motivation toward
automatically generating descriptions for them is on the surge. Along with
all the application domains where automated image captioning shines, se-
quence captioning opens up gates to additional areas. With the potential
for being able to comprehend events in real-time, sequence captioning can
enable human-like interaction with service robots. Smart assistants can per-
ceive environments and converse back in more coherent and meaningful ways.
There are, however, numerous challenges affiliated with sequence captioning
to overcome before achieving such advancements.

Videos or sequences of images are, in essence, elaborated visual informa-
tion captured for convenience. Therefore there is scope for a lot of redun-
dancy, unnecessary details, and misleading contexts. These inherent proper-
ties bring in difficulties related to understanding subjects, tracking various
objects, capturing the causality of multiple events, speed, direction, and over-
lap of the plausible scenes. Classical methods utilized the idea of selecting
salient elements from the data and thereby applying rule-based templates for
learning and generating descriptions. Indeed these methods quickly proved
inadequate as the datasets evolved and grew in diversity. With the success
of deep learning, researchers tried the divide-and-conquer strategy of pro-
jecting this task into the image captioning realm and failed, owing to the
complications and inherent differences above mentioned.

Valid object recognition is obviously at the core of the task, but aspects
related to activity detection such as event inference, salient relationships, and
adequately addressing diversity, influence the quality of a model. Neverthe-
less, there has been significant research interest that has continuously been
growing towards sequence captioning and related sub-fields such as video
captioning, Section 2.2.1, visual storytelling, Section 2.2.2, video question-
answering, and dense video descriptions. Recent directions toward solving
these hurdles such as audio modality accompanying videos and incorporating
prior external knowledge are fascinating.
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2.2.1 Video captioning

Video captioning is traditionally a task of conveying information about a
video clip as a whole by automatically generating a single natural sentence
[1]. Over the years, the goal of video captioning changed to comprehending
spatio-temporal information in a video clip as language. Related sibling
fields include video descriptions, paragraph generation for clips, and video
question-answering. As mentioned, video captioning was initially approached
using the method of detecting subject, verb, and object (SVO) from the
visual, and combining them using sentence templates [4]. Nonetheless, with
the advancements in deep learning and progress within the image captioning
domain, several architectures have been proposed to solve the problem of
captioning videos. A basic underlying framework is summarized in Figure
2.10.

Figure 2.10: A baseline framework for video captioning from [1].

The visual model is usually a two or three-dimensional CNN depending
on the nature of the visual data. A three dimensional CNN serves well when
there is scope for change in geometry of objects across frames, or there are
action-oriented details like hand gestures. The computational cost of training
the model increases when a three dimensional CNN is employed. Another
factor that could influence the choice of the visual encoder model is the
dataset on which it was pre-trained. It might not be optimal to choose a 3D
CNN trained on a dataset of wildlife clips when the data of the task at hand
is about indoor environments. Hence, 2D CNN is used for many use-cases,
and mean or maximum pooling techniques are applied for obtaining a single
vector. To address long video clips, sampling key frames has been shown to
perform well [55].

The encoded visual features are passed on to a standard RNN language
model for the generation of a sentence. Some methods generate multiple
descriptions for a video clip based on the pre-analysis of the ground truth [52].
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Describing long video clips remains a hard problem even today due to the lack
of a dataset with adequate and diverse vocabulary, which is a prerequisite for
detecting actions. Most of the proposed encoder-decoder models only differ
in terms of the type of video encoder and minor variations in initializing the
language model using the visual features. Some later methods introduced
attention mechanisms while maintaining the same underlying design [65]. In
recent times, the actual evolution has happened in terms of the task itself.
Dense video captioning has come into focus with the availability of new
datasets. Several possible scenarios of captioning video frames are shown in
Figure 2.11.

Figure 2.11: Illustration of differences within the video captioning realm [1].

2.2.2 Visual storytelling

All the sections above outline the time-frame of evolution, respective moti-
vations, and current status of captioning as a task. For the most part, it
has been some inadequacy that drove the need and created space for a new
domain. It is no different in the case of visual storytelling. Sequence descrip-
tions, dense or sparse, lengthy or concise, are principally restrained under the
cover of näıveness. The objective of a well-trained video captioning model is
to perceive best the visual and merely produce language comprising relevant
objects and attributes. These models lack imaginative power and inferential
intelligence that can drastically enhance vision-related use-cases driven by
automatically generated language. The necessity to generate narrative style
texts for image sequences that reflect experiences, rather than simple ele-
ments, has motivated the task of visual storytelling. Therefore the problem
statement of visual storytelling is, given a sequence of images (or frames of
a video) as input, learning a model, that can output a story with abstract,
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subjective aspects while contextualizing the input sequence. Visuals in the
input sequence typically adhere to an ascending time-frame order. Figure
2.12 exemplifies a data sample from the visual storytelling dataset (VIST)
[22] which will be detailed under Section 2.3.

Figure 2.12: An example sequence from VIST and a respective generated
story [22]. Words like great, proud, ready can be tagged as subjective
concepts within the narrative.

The initial work on visual storytelling used NYC and Disney image sets
crawled from blog posts over the web [46]. There were multiple bottlenecks
to address to use these datasets for the storytelling task. Lack of annotations
and non-event nature of the extracted images rendered the datasets futile.
Huang et al [22] released the VIST dataset, which will be described under
Section 2.3. The dataset was created exclusively for the visual storytelling
task. Along with the dataset, they published a baseline model, see Section
3.1, and reported evaluation scores of the stories generated by their model.
The baseline architecture followed the encoder-decoder structure, extending
the Show and Tell [61] image captioning model. The VIST dataset was made
public as a part of the storytelling competition which led to the conception
of several other approaches towards the idea of visual storytelling. Gonzalez-
Rico et al [15], as will be elaborated in Section 3.3, and Smilevski et al
[57], as will be elaborated in Section 3.2, were some of the first methods
to be proposed for visual storytelling. Both approaches extend the baseline
architecture, better fitting the VIST dataset.

2.3 VIST dataset

The VIST dataset includes 10,117 Flickr albums with 210,819 unique pho-
tos. The release comprises three tiers of language for the same set of images;
descriptions of images-in-isolation (DII), descriptions of images-in-
sequence (DIS), and stories for images-in-sequence (SIS). Shortlisted
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albums were from Flickr, which had storyable events, like John’s birthday
party, or Friends’ visit. Subsequently, crowd-workers through Amazon Me-
chanical Turk extracted stories for grouped photo-sequences within the al-
bums as depicted Figure 2.13.

Figure 2.13: Dataset crowd-sourcing workflow of the VIST dataset from [22].
For each album two workers perform storytelling and three workers perform
retelling on the photo-sequences selected in the storytelling phase.

The obtained stories were post-processed by tokenizing them using the
CoreNLP toolkit [38] to replace people’s names, specific locations, and other
identifiers with generic de-identified tokens. Eventually, the final data re-
lease comprised training, validation, and test splits following 80%, 10%, 10%
proportions, respectively. The DIS data tier uses the same procedures and
interfaces with an additional instruction for the workers to follow MS COCO
[37] description styles, like “describe all the essential parts”. The DII data
tier leverages the complete MS COCO captioning interface.

In the SIS data tier, each sequence has five images with corresponding
descriptions, which together make up for a whole story. Furthermore, for
each Flickr album, there are five permutations of a selected set of its images.
In the overall available data, there are 40,071 training, 4,988 validation, and
5,050 usable testing stories. Figure 2.14 visualizes a data sample. The VIST
dataset is not perfect. It has some inherent flaws like character bias, baseless
abstract words, and limited size vocabulary. Nevertheless, being the only
available straightforward dataset for the storytelling task, it is understand-
able that many published models purvey to better-fitting the VIST data.

2.4 Evaluation measures

Human evaluation of automatically generated or translated text is the gold
standard for judging the robustness of a model. However, it is impractical,
primarily owing to the expensiveness of human labor. Additionally, human
judgment is not reusable or generalizable to minor perturbations in use-cases.
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Figure 2.14: Sample descriptions of the DII, DIS and SIS language tiers of
the VIST dataset from [22].

To handle this bottleneck, Papineni et al [45] proposed the BLEU metric
focused on evaluating machine translated hypotheses. The rationale behind
is to mimic the human way of judging the relevance of a sentence, given the
expected true sentence. Considering the candidate translation length c and
reference corpus length r, BLEU score is computed as follows:

BLEU-N = BP · exp

(
N∑
n=1

wn log pn

)
, where

BP =

{
1 if c > r
e(1−r/c) if c ≤ r

.

(2.1)

N is the range of n-grams with pn denoting precision (overlap between ref-
erence and candidate sentences) and wn representing the customizable im-
portance weights summing to 1. The motivation behind the brevity penalty
BP is to account for length matching between the references and hypothesis.
BLEU metric ranges from 0 to 1, and for this thesis, the reported scores are
BLEU-4 symbolizing the consideration of n-grams from 1 to 4 during scoring.

Nevertheless, certain shortcomings of the BLEU metric surfaced over-
time. Importantly, BLEU does not account for recall, which might result
in misleading scores. To address the challenges with BLEU, METEOR [34]
automatic evaluation metric was conceived. Alignments between words and
phrases in METEOR are based on the stem, synonym, or paraphrase match-
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ing between hypothesis-reference pairs. The exact computation process is
summarized as follows:

Precision =
number of matching unigrams

number of unigrams in predicted sequence
,

Recall =
number of matching unigrams

number of unigrams in reference sequence
,

Fmean =
10 · Precision · Recall

Recall + 9 · Precision · Recall
,

Fragmentation penalty = 0.5 · ( number of matching chunks

number of matching unigrams
)3 ,

METEOR = Fmean · (1− Fragmentation penalty) .

(2.2)

Fmean weights recall nine times more than precision and combines them using
the harmonic mean. Fragmentation penalty accounts for the correlation of
longer matches by considering the ratio of contiguous chunks to unigrams.
Additionally, the metric provides parameters for handling punctuation, to-
kenizing and weighting modules. These options are customizable to reflect
several human biases for tasks such as machine translation and captioning.
At sentence level, it is empirically debated across the community, that as-
sessment using METEOR is better than previous scorers such as BLEU [45].
Arguably, there are better scorers compared to METEOR, such as CIDEr
[60], which considers the vocabulary of the overall corpus during evaluation.
However, this thesis work largely utilizes METEOR, adhering to the norm
across publications on visual storytelling.



Chapter 3

Comparison of existing models

Since the conception of visual storytelling in 2016, various proposals ad-
dressing the task came out. Some of them were part of the 2018 Visual
Storytelling Challenge1 and others are extended approaches based on the
challenge results. This chapter details the most popular methods in the or-
der of their publishing time by discussing model architectures, implementa-
tions, and respective results. The next chapter discusses remodeled methods,
experiments, and respective results. Evaluation scores pertaining all the ex-
periments from the current and the following chapter, are consolidated in
Table 4.1 under Section 4.3.

3.1 Visual storytelling baseline

Huang et al [22] mainstreamed the domain of visual storytelling with their
work. They released the VIST (visual storytelling) dataset (detailed in Sec-
tion 2.3) which is the first and only full-fledged dataset available for the
visual storytelling task till date. Along with the dataset, this work presented
various measures and results of baseline experiments on the task. The pri-
mary intent was to introduce the problem statement of visual storytelling
rather than solving it. Therefore they proposed a sequence-to-sequence re-
current neural network (RNN) architecture shown in Figure 3.1, extending
the single-image captioning technique of [11] and [61] to multiple images.

The encoder module reads the image sequence features extracted using a
pretrained convolutional neural network based feature extractor. The images
in the sequence were read in the reverse order. The authors do not explicitly
provide reasoning behind such reversal, but it can be seen as a way to incul-

1http://www.visionandlanguage.net/workshop2018/index.html#
challenge
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Figure 3.1: Visual storytelling baseline architecture (inferred based on the
description in [22]).

cate a futuristic dependency between events of the sequence. The features
then sequentially pass through the RNN, yielding a context-vector Z as shown
in Figure 3.1. The context vector is then passed both as the initial hidden
state and as the first input to the decoder RNN module by concatenating
it with the <start> token embedding. The decoder module then learns to
produce the story word-by-word, at every time-step. Gated Recurrent Units
(GRU) [9] were used for both the image-sequence encoder and the story de-
coder. The publication does not mention other implementation details or
configurations related to model training.

Given the complexity of the task, the most reliable means of assessing
the generated stories is through human judgement. Nevertheless, for com-
putational efficiency and particularly for standardizing the aspect of bench-
marking the authors employ and report several automatic evaluation metrics
such as BLEU, METEOR, perplexity and other vocabulary diversity mea-
surements explained under Section 2.4. However, for the purpose of compari-
son, only METEOR scores are considered in this thesis, owing to the de facto
standardization by the visual storytelling challenge and community. The best
reported METEOR score of the proposed model on the VIST dataset was
0.31. The split of the dataset on which this scoring was performed was,
however, unreported.

To validate the claims and findings in the paper, the baseline architecture
was implemented for this thesis from scratch in PyTorch [47]. Preliminary
information about some of the model parameters was available from the FAQ
section of the dataset. VGG16 [56] was used as the pretrained image fea-
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ture extractor (without fine tuning). The encoder and decoder were 1,000
dimensional GRU networks without weight-sharing. Embedding layer was
employed and learned for target word embedding, with dimension sizes vary-
ing between 256 and 1024. Vocabulary was constrained to consider only
words that occur three or more times in the training stories. Other words
were mapped to the <unk> token. Dropout of 0.5 was used between all the
intermediate layers of the model. Learning rate of 0.0001 was incorporated
for 80 epochs and validation was performed on the held-out dataset after
every epoch. Training and validation were performed in batches of size 64.
To account for the variation in story lengths within each batch, zero-padding
was used. Eventually, using greedy sampling based inference, our imple-
mentation obtained a METEOR score of 0.216 on the entire validation split
compared to the 0.31 in [22]. Sample results can be seen in Figure 3.2.

3.2 Stories for Images-in-Sequence by using

Visual and Narrative Components

From Section 3.1 it is evident that the baseline model aligns an image se-
quence with the entirety of its respective story. Conversely, Smilevski et al
[57] present a multi encoder approach. The architecture is displayed in Fig-
ure 3.3. The primary intention is to align every sentence in the story with
incremental subsets of image groups from the respective image sequence.
This means that a sentence-story is generated per image while considering
a group of appropriate number of images from the same sequence. The im-
age sequence encoder RNN models the image feature vectors of the sequence
making it similar to the encoder module described in Section 3.1. The pre-
vious sentence-story encoder RNN learns the temporal behavior of words in
the sentence-story generated for the previous image of the sequence.

Both encoders generate fixed-length vector representations, one for the
image-sequence and one for the previous sentence-story. The two represen-
tations are then concatenated together to form a joint embedding, which is
used as an initial hidden state for the decoder module. The authors argue
that such a setting of encoders would allow the image sequence to have more
impact on the generated text. However, the decoder RNN module behaves
just like the baseline model decoder, detailed in Section 3.1.

The code base of the multi encoder model is publicly available. We repli-
cated the experimental runs to compare and analyze the reported results.
The implementation uses fc7 vectors from AlexNet [32] feature extractor
network to describe the images. The created vocabulary comprised the most
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Story (baseline model): a group of friends got together to have a party .
they played games . they drank and had fun too . they ended the night
with fireworks .

Story (human annotated): the friends were hanging out outside.
they sat around talking. the couple took a picture. then they started
playing with fireworks. soon they had a fountain going off.

Story (baseline model): this is the best restaurant in the city . the first
course was a salad topped with a delicious salad . the main course was
a salad with a mix of bread . the meat was to be cooked .

Story (human annotated): delicious thai dishes started with some
crispy chicken. pad thai is always one of my favorites. the dish featured
sprouts and veggies. this one was crispy and very tasty. this was a
simple meat dish with veggies sliced. my favorite!

Figure 3.2: Image sequences and corresponding stories generated by the Vi-
sual storytelling baseline [22].
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Figure 3.3: Multi encoder model architecture from [57].

frequent words, appearing four or more times. Based on the analysis of
training data stories, the maximum length of sentences was chosen as 20.
Before the sentence vectors entered the previous sentence-story encoder and
the current sentence-story decoder, they were passed through an embedding
layer. The embedding layer uses GloVe [48] pretrained word vectors. This
transforms the sentences from 22 word vectors, two words for the <start>

and <end> tokens, to a vector of 22 word embedding vector of vectors by
mapping the input words to corresponding pre-learned representations.

The image-sequence encoder RNN comprised 1,024 neurons and the pre-
vious-sentence encoder RNN 512 neurons. As the outputs from both the
encoders are concatenated to represent the context, the decoder is a 1,536
dimensional RNN. Categorical cross entropy was used as a loss function. The
learning rate was set to 0.0001 throughout the training. Adam optimization
algorithm was used during back-propagation. To avoid over-fitting the net-
work to the data, during the training process dropout of 0.3 on the input
layer and 0.5 on the pre-output layer was applied to regularize. The number
of previous images to consider was an additional parameter to choose for the
image-sequence encoder. Empirically, the model performed best when the
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number of previous images parameter was set to three. A METEOR score
of 0.225 was obtained on the validation split of the dataset. Sample results
can be seen in Figure 3.4.

For the purpose of comparison, same image sequences from results of
Section 3.1 were utilized. The blue colored words indicate good associativ-
ity level of the model with regard to emphasizing visual data while the red
colored words suggest otherwise. From a storytelling standpoint, these asso-
ciativity levels can be seen as trade-off between commonsense and creativity.
This model is interesting as it was the first model for visual storytelling to
focus on learning relationships between visual and textual data. The authors
argued that the automatic evaluation metrics can merely differentiate only
between a good and an obviously bad generated story and resorted to human
evaluation.

3.3 Contextualize, Show and Tell: A Neural

Visual Storyteller

In 2018, NAACL organized a challenge on visual storytelling2. The objective
for the participants was to create AI models that can generate stories, shar-
ing human experience and understanding. The internal track of the challenge
uses only the VIST dataset as mentioned in Section 2.3, while the external
track allowed for leveraging any publicly available dataset. There were two
parts of evaluation, i.e., automatic and human. Crowd-sourced survey meth-
ods were employed for human evaluation and METEOR version 1.5 was used
for automatic evaluation. The underlying aspects taken into consideration
during evaluation include the following:

• Structure and coherence of the story dealing with grammatical body
and hierarchy of the sentences.

• Focus on the sentence comprehensiveness, context preservation and
overall appropriateness of details from image sequences (visual modal-
ity).

Gonzalez-Rico and Pineda [15] were the winning team of the VIST 2018
challenge. In the internal track of the competition, they had the leading
METEOR score and human judgement based on the above aspects. We
reference their model as multi-decoder architecture, present it in Figure 3.5
and discuss it in this section.

2http://www.visionandlanguage.net/workshop2018/index.html#
challenge

http://www.visionandlanguage.net/workshop2018/index.html#challenge
http://www.visionandlanguage.net/workshop2018/index.html#challenge
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Story (multi encoder model): the group of friends got together to have a
night out . the men and women sang a song . the students are happy
with their ceremony . the two men pose for a picture . my son and his
son are eating a snack .”

Story (human annotated): the friends were hanging out outside.
they sat around talking. the couple took a picture. then they started
playing with fireworks. soon they had a fountain going off.

Story (multi encoder model): i had to prepare a lot of food for the party
. the dessert was <UNK> and delicious . the flowers were beautiful and
i wanted to make it special . the main course was a salad and a lot of
delicious food . and then i had to prepare the soup .

Story (human annotated): delicious thai dishes started with some
crispy chicken. pad thai is always one of my favorites. the dish featured
sprouts and veggies. this one was crispy and very tasty. this was a
simple meat dish with veggies sliced. my favorite!

Figure 3.4: Image sequences and corresponding stories generated by the multi
encoder model [57].
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Figure 3.5: Multi decoder model architecture proposed by [15].

The architecture follows the encoder-decoder style extending the model
by Vinyals et al., 2015 [61]. The encoder, the initial component of the model
is a RNN and specifically an LSTM for summarizing the sequences of images.
It is very similar to the encoder module presented in Section 3.1, reading each
image from the sequence, as input at every timestep. Eventually, the last
hidden state of the encoder represents a contextualization of the images in
the sequence. For representing the images, the authors use the Inception V3
[59] feature extractor model without fine-tuning.

The novel aspect of this model are the decoders. Owing to the pres-
ence of five images per sequence in the VIST dataset, see Section 2.3, the
model comprises five decoders. Each decoder is responsible for generating
a sentence-story for the respective image in the sequence and finally the
combined sentence-stories make up for a story. These multiple decoders are
independent of each other, i.e., they do not share any parameters (weights).
As stated above, the last hidden state of the encoder is passed on as the
initial hidden state to all the decoders. For each of the decoders, the first
input is the respective image feature extracted using a pretrained feature
extractor. The authors argue that the motivation behind such a strategy is
to provide the decoder with the context of the whole sequence and the con-
tent of the image at a particular timestep (i.e. global and local information)
to generate the corresponding text that will contribute to the overall story.
The individual decoders themselves behave in the same way as the decoder
module of the baseline model, Section 3.1. A major distinction is that the
initial input to the multi decoders is the respective image content instead of
the context of the sequence.
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Although some of the implementation details were unavailable from the
publication, we implemented the architecture by performing hyper-parameter
tuning and tried various ways of back-propagation. Later, the authors open
sourced the implementation setup. Word2Vec [41] was used for embedding
the text and categorical cross-entropy was used for loss calculation. A learn-
ing rate of 0.0005 was used along with stochastic gradient descent optimiza-
tion, scheduled decay by 0.5 every 8 epochs, and gradient clipping with a
threshold of 5. The input and output dimensionality of the LSTM was set
to be 512. The overall model was trained for 500000 steps and based on the
number of samples from the dataset, which translates to 120 epochs. The
model achieves a METEOR score of 0.34. Stories generated by the model
for external (non VIST) sequences of images can be seen in Figure 3.6 and
for a VIST sequence in Figure 3.7. From the results, it can be observed that
the model adheres to the tone and topic of the narrative very consistently.

Story (multi decoder model): We had a family get together . The family
gathered around to eat and talk . The food was delicious . We had a
great time . The dog is tired and ready to go .

Story (multi decoder model): The family got together for a party . They
had a lot of fun . The little girl was having a great time . We had a lot
of fun playing games . The cake was a success and everyone loved it .

Figure 3.6: Image sequences and corresponding stories generated for a non-
VIST image sequence by the multi decoder model [15].
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Story (multi decoder model): Today was graduation day . The students
were excited . My parents were happy too . He was very happy to be
graduating . Everyone was so proud of him .

Story (human annotated): Today was graduation, and Schyler was
extremely happy. However he was nervous about what the future would
bring. His parents assured him that he would do well in life. That helped
as little. Of course when Benny the squirrel gave him life advice his
whole demeanor turned happily. Schyler is now ready for life, after the
first big chapter ending high school.

Figure 3.7: Image sequences and corresponding stories generated for a VIST
image sequence by the multi decoder model [15].

3.4 GLocal Attention Cascading Networks for

Multi-image Cued Story Generation

The primary difference between standard captioning and sequence caption-
ing, as explained in Section 2.2, is the aspect of overall context. Sequence
captioning makes the problem more challenging and the methods compared
in Sections 3.2 and 3.3 try to address it. As part of the VIST 2018 challenge,
another idea was the GLAC net [27]. The authors try to address the difficulty
of maintaining the specificity of one image while still maintaining the domi-
nance of the overall image sequence context. This was the first architecture
to bring in attention mechanism to the visual storytelling realm. However,
at the core, it follows the familiar encoder-decoder components which are
detailed in the following part of this section. The architecture is shown in
Figure 3.8.

Similar to other methods, Resnet-152 [18] was employed for extracting
features from the visuals. These features are then sequentially passed through
a bi-directional LSTM encoder network. The encoder component functions
similar to the one described in Section 3.1, but in both directions of the
input sequence. Therefore encoded vectors at each timestep of the encoder
comprise context of the past and the future images in the sequence with
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Figure 3.8: GLocal Attention Cascading Network architecture by [27].

even aggregation. These outputs were categorized as global information.
The input to the encoder was 2048 dimensional vectors with hidden size of
1024 and dropout of 0.5. Owing to the large dimensionality of the encoder,
batch normalization [23] was employed to deal with the co-variance shift
among the extracted image features. Two layers of encoder were stacked, to
potentially incorporate more nuances within the visual features.

Before cuing the decoder component, the global vectors (extracted from
the bi-LSTM) are concatenated with the image feature vectors, otherwise
termed local vectors. The resulting vectors were referred to as glocal vec-
tors, and said to include both the overall and specific information of the
sequence. These glocal vectors pass through fully connected layers to meet
the dimensionality of the word embeddings. The decoder component is an
LSTM which receives a combination of the glocal vector and the respective
word representation at every timestep. The proposed cascading mechanism
is using the same glocal vector till an end of sentence <end> token is obtained
and working with the next glocal vector, till exhaustion. Initialized to zeros
once, the hidden state of the previous sentence is cascaded on to the following
sentence.

A set of generation phase heuristics were utilized to avoid repetition in
the resulting sentences. At every timestep, the probability distribution of the
language model (decoder) is sampled for one hundred times to create a pool
of words. Word with maximum frequency is selected and simultaneously
an additional cache holding the inverse counts of these sampled words is
maintained, until the entire sentence-story is generated. This cache is utilized
to decrease the sensitivity of choosing the already sampled words at later
timesteps. Learning rate of 0.001 was used with Adam optimizer and a
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Story (GLAC model): [female] was so happy to see her grandson . she
was happy with her . they had a lot of fun . everyone was having a great
time . even the little ones enjoyed themselves .

Story (human annotated): when we finally brought our son home
from the hospital so many people were at home with us to see him.
everyone wanted a chance to hold him! we were all so happy to have
a new addition to the family. my parents were so proud to be grand
parents! i am so happy and i love my son very much!

Figure 3.9: Image sequences and corresponding stories generated by the
GLAC-net model [27].

batch size of 64. The dimensionality of the word embeddings was 256 and
the hidden size of the language model LSTM was set to 1024. Teacher forcing
mechanism of using the expected output at current timestep as input for the
next timestep, was used for training the decoder. Batch normalization was
also used in the decoder to avoid over-fitting. The model was trained for 100
epochs and it achieves a METEOR score of 0.3005 on the test split of the
dataset. A sample story generated by their model is shown in Figure 3.9.
The authors note that the stories are slightly monotonous. Upon verifying
the model by training and testing, we emphasize the same. Additionally, we
state that the trivial nature of the texts in the VIST dataset might also be
one of the factors influencing the model to be presumptuous.

3.5 Adversarial Reward Learning

All the methods detailed in Sections 3.1 through 3.4 use the cross-entropy
function to calculate the loss on the generated predictions. Section 2.1.1 ex-
plaining the decoder module, states that it outputs a probability distribution
over the vocabulary of words. Specifically, a vector of probabilities at each
timestep. The cross-entropy between the prediction vector ŷ and the ground
truth classes y is calculated as:
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CELoss(y, ŷ) = −
∑
i

yi · log(ŷi) . (3.1)

The words in the vocabulary are considered as classes and employing a
multi-class log-loss function like cross-entropy for accessing the predictions
has its implications. Fundamentally, the function rewards or punishes the
model solely based on the probability of correct classes, by design. The loss
value calculated is completely independent of the remaining probability split
between the incorrect classes. Training mechanism based on such a criteria
works very well for mutually exclusive multi-class classification scenarios like
image classification [54]. However, for the use-case of visual storytelling or
rather image captioning, the correctness of the output is subjective in nature.
Therefore training a model based on cross entropy criterion which essentially
tries to maximize the likelihood of the observed stories will yield a model
suffering from exposure bias.

Another problem with modeling using the methods from Sections 3.1
through 3.4 is that the training and testing phases are asynchronous in terms
of their driving objectives. Cross-entropy loss trains the model but NLP
metrics like METEOR test the quality of the trained model. To address the
problem of exposure bias and the state of asynchronicity an optimization ap-
proach called self-critical sequence training (SCST), based on reinforcement
learning was proposed [51]. This was initially targeted towards regular image
captioning systems and it is explained from the visual storytelling perspec-
tive in Section 4.1. In abbreviation, the method exposes the model to its
own ongoing distribution and maximizes the expected return by optimizing
its policy. Nevertheless, the self-critical loss criterion and related variations
utilize a hand-crafted scorer (like METEOR) for rewarding and optimizing
the model. Although this approach solves the issues with cross entropy, it
brings with it the implicit limitations of automatic evaluation metrics which
prevent the model to learn more intrinsic semantic details. Therefore hand-
crafted methods are either too biased or too sparse to drive the search for
optimal policy [62].

Addressing and detailing the above mentioned bottlenecks, the authors
of “No Metrics Are Perfect: Adversarial Reward Learning for Visual Story-
telling” [62] present an alternate approach. The proposed learning framework
in Figure 3.10 is based on the paradigm of inverse reinforcement learning
(IRL) in AI. Formally, the IRL approach is considered as a process of deriv-
ing a reward function from the observed expert (typically human) behavior.
Unlike traditional RL, where reward functions need to be engineered, IRL
learns the reward functions by prioritizing corresponding actions relying on a
task oriented algorithm. Learning true reward functions is impractical owing
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to the exhaustive list of possible actions and thereby the authors resort to a
neural network based reward model.

Figure 3.10: Adversarial Reward Learning framework [62].

The policy model presented in Figure 3.11 is a standard encoder-decoder
style network which reads the image sequence as input and generates a story.
There is a pretrained CNN feature extractor module and the authors use
Resnet [18]. The visual encoder is a bi-directional RNN, specifically GRU.
For the output of the encoder module at every timestep, there are RNN
based decoder components with shared weights generating five sentence-
stories making up for a story. The policy model was denoted as πβ(W ),
where W being the word sequence of the story and β represents the model
parameters. The reward model presented in Figure 3.12 reads the image se-
quence and the story as input and outputs a reward. It follows a CNN based
architecture with different sized kernels with the motivation of extracting the
n-grams of the story provided. The same pretrained CNN (from the policy
model) is used for visually representing each image. Subsequently, max-
pooling and fully connected layers are employed for projecting the visual
and textual representations into a sentence-space. Rewards are calculated
for each of the sentence stories separately with the intention of valuing fine-
grained details. The reward model was denoted as Rθ(W ), where W is the
word sequence of the story and θ represents the model parameters.

Inspired by the min-max training strategy of generative adversarial net-
works, the authors propose an adversarial reward learning algorithm for train-
ing the policy and reward models. The objective for the reward model is:

∂Jθ
∂θ

= E
W∼pe(W )

[
∂Rθ(W )

∂θ

]
− E

W∼πβ(W )

[
∂Rθ(W )

∂θ

]
(3.2)
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Figure 3.11: AREL policy model [62].

Figure 3.12: AREL reward model [62].
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and for the policy model:

∂Jβ
∂β

= E
W∼πβ(W )

[
(Rθ(W )− log πβ(W )− b)∂ log πβ(W )

∂β

]
. (3.3)

After a standalone training of the policy model for the purpose of warming
up, both the models are trained alternatively. The reward on a story gener-
ated by the policy model (in evaluation mode), combined with the reward on
the respective ground truth story, is back-propagated as the loss to the re-
ward model. The loss to the policy model is a combination of the reward for
the generated story, the cross-entropy loss, and an estimated baseline func-
tion. The described purpose of this function is to account for variance among
the timesteps and thereby within the batches. Practically, a linear parameter
was learned to estimate the baseline values at every timestep of the policy
model decoder. The model was trained for 100 epochs with a learning rate
of 0.0004 and Adam optimization. GRU was used as the RNN cell with a
hidden dimensionality of 512, a batch size of 64, and a dropout of 0.5 in the
language model decoder. The sample results can be seen Figure 3.13. ME-
TEOR was used for calculating self-critical rewards and the reported score
on the test split of the dataset was 0.35, which is state-of-the-art in visual
storytelling. However, the authors emphasize human evaluation for evalu-
ating aspects of relevance, expressiveness, and correctness of the generated
stories.

Figure 3.13: AREL results and comparison with baseline cross-entropy model
(XE-ss) [62].
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3.6 Hierarchically Structured Reinforcement

Learning for Topically Coherent Visual

Story Generation

Upon considering the challenges and limitations of the approaches in Sections
3.2 through 3.5 the authors of the Visual Storytelling [22] task propose a
hierarchical model based approach. They introduce a framework comprising
a two-level hierarchical decoder. The high-level decoder generates a semantic
topic for each image in the sequence and the low-level decoder generates a
sentence for each image based on the topics, using a semantic compositional
network [13] based language model. Reinforcement learning is used to train
the two decoders jointly, which is closely related to the adversarial reward
learning approach, detailed in Section 3.5. However, the authors differentiate
their method through the novelty of exploring a “plan-ahead” strategy by
using the topics generated by the high-level decoder. Similar to the AREL
[62] work, the authors of this method criticize the use of maximum likelihood
estimation based training criteria and opine that MLE will fail to exploit the
information wealth across the long span of stories. The proposed framework
is shown in Figure 3.14.

Figure 3.14: Proposed hierarchical framework by [21].

The encoder component is different compared to all the other methods
discussed in this chapter. After extracting the feature vectors of the images
in a sequence, using a pretrained CNN, mean pooling was applied to obtain
an image-sequence context vector v̄. Although specifics about pooling were
unavailable, one can assume that the five feature vectors were sequentially
merged and a 1D mean pooling was performed on the resulting representa-
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tion.
The authors use the terms manager add worker for the high and low

level decoders, respectively. In essence, the objective of the manager module
is to generate a topic distribution gl and a context vector cl by reading
the corresponding image feature and the last available hidden state of the
worker module, depending on the mode of training. The worker module is an
semantic compositional network (SCN) decoder which reads both the context
and the topic distribution vector for generating sentences. The objective for
the manager module is:

LMmle (θm) = −
n∑
`=1

log pθm
(
g∗` |g∗1, . . . , g∗`−1, hl−1,T

)
(3.4)

and for the worker module:

LWmle (θw) = −
n∑
`=1

T∑
t=1

log pθw
(
y∗`,t|y∗`,1, . . . , y∗`,t−1, g`, c`

)
LWrl (θw) = − (r? − r̂)

n∑
`=1

T∑
t=1

log pθw (ŷ`,t|ŷ`,1, . . . , ŷ`,t−1, g`, c`)

LWmix = γLWrl + (1− γ)LWmle .

(3.5)

In the above expressions, n denotes the number of topic sequences and T
denotes the number of words. The LMmle (θm) minimizes the negative log
likelihood of predicting the next topic in the story, given the ground truth
set of topics. The LWmix is a combination of log likelihood and self critical
sequence loss on the generated sentence with respect to the ground truth. The
intention of such a mixture is to encourage the model to generate sentences for
receiving more reward rather than merely greedily copying the true stories.
The work explores various ways of learning or training the modules together,
i.e., cascaded training, iterative training and joint training. The experimental
results reported claim that learning through joint training of the manager and
worker produces the state-of-the-art METEOR score of 0.3523 on the VIST
dataset (the split was not mentioned). Sample results reported by the paper
are shown in Figure 3.15.



CHAPTER 3. COMPARISON OF EXISTING MODELS 44

Figure 3.15: Results reported by the topically coherent manager-worker
model [21].



Chapter 4

Remodeling

From Chapter 3, it is evident that amidst a lot of common styles in ar-
chitecture, there are notable differences in terms of several moving parts of
the visual storytelling models. In this chapter various components and as-
pects of selected models from Chapter 3 are remodeled with the intention of
analyzing behaviors and detecting patterns. The choice of these hybrid se-
tups is heavily intuition driven. Empirically, other experiments with several
other combinations were performed and this chapter reports two of the most
promising scenarios in the following sections. Evaluation scores are sum-
marized in Table 4.1 at the end of this chapter together with results from
Chapter 3.

4.1 GLAC Net with SCST

Exposure bias in the sequence-to-sequence paradigm and particularly in the
task of captioning is a severe bottleneck. Formally, this problem occurs due to
the conditioning of the language model on ground truth rather than generated
words or sentences. Employing the cross-entropy loss provided under equa-
tion (3.1) for learning causes a mismatch between the training and testing
phases. While the model is trained to produce words adhering to maximizing
the likelihood of the ground truth, during inference it is evaluated and scored
subjectively using NLP metrics like METEOR. This discrepancy causes the
model to stumble and generate sentences with hitches like repetition and
sparse vocabulary. Some early enhancements like scheduled sampling [5] and
professor forcing [33] were proposed to address this issue. Scheduled sam-
pling tries to bridge the gap between training and inference by balancing the
usage of true previous tokens yt−1 and estimated previous tokens ŷt−1 dur-
ing training. Professor forcing employs an additional discriminator network
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and expects the language-generating-model to switch between teacher-forcing
[63] and non-teacher-forcing modes while learning to fool the discriminator.
However, the above-mentioned techniques only succeed to an extent.

Meanwhile, RL-based techniques started to show tremendous progress
in various modeling facets. Although RL and particularly policy gradient
methods were around for years, [2] was the first of works to apply them
for supervised learning-based sequence prediction. From the stance of cap-
tioning, [51] is the work that formalized the commonalities and paved the
way for RL-based supervised learning mechanisms. The work defines image
captioning from the RL Markov Decision Process (MDP) setting. The work
adapted architecture detailed under Section 2.1.1 considering the model as
agent and the visual features along with previous words W s

1:t−1 as the en-
vironment. Generation of the next word W s

t is an action given the models’
state and its associated probability distribution or policy. Reward r(W s)
is computed at the end of each episode, which in the case of captioning is
following the generation of the <EOS> token. Superficially, RL methods are
either value-based or policy-based. In the setting of captioning, practically,
policy-based methods which target to optimize the policy (probability dis-
tribution) of the model directly, suit well. However, neural nets (supervised
learning) learn through gradients propagated as feedback. Policy-gradient
algorithms attempt to optimize the loss function L(θ) with the objective of
minimizing the negative expected reward:

L(θ) = −EW s∼Pθ [r(W
s)] . (4.1)

Restating the motivation, using cross-entropy loss during training and a
natural-language-processing (NLP) metric for scoring the inference sentences
was a mismatch. Therefore the loss in equation (4.1) scores the generated
sentences during training using the same NLP metric r(W s) and intends
to minimize the expected negative reward. Emphasizing that the reward
function is non-differentiable, the REINFORCE algorithm [58] derives and
defines the gradient to be propagated with respect to the model parameters
θ in equations (4.2) through (4.11) as follows:

∇θL(θ) = −∇θEW s∼Pθ [r(W
s)] . (4.2)

Considering captioning is a discrete task, the expectation E of the reward
would be a summation over rewards for all possible sentences Ws, weighted
by their probabilities Pθ(W

s), that can be sampled from the model:

∇θL(θ) = −∇θ

∑
W s

r(W s)Pθ(W
s) . (4.3)
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The score-function trick from [58], i.e., multiplying and dividing by the
probability term gives:

∇θL(θ) = −
∑
W s

r(W s)∇θPθ(W
s) = −

∑
W s

r(W s)
∇θPθ(W

s)

Pθ(W s)
Pθ(W

s) . (4.4)

Applying the fact about derivatives of log functions:

∇x log f(x) =
f ′(x)

f(x)
(4.5)

to equation (4.4) yields:

∇θL(θ) = −
∑
W s

r(W s)Pθ(W
s)∇θ logPθ(W

s) . (4.6)

Converting equation (4.6) back into the expectation term using the above-
mentioned definition, leads to a formulation that is directly mentioned in the
SCST paper [51]:

∇θL(θ) = −E[r(W s)∇θ logPθ(W
s)] . (4.7)

However, in practice, the research community approximates the expected
gradient in equation (4.7) by using a single sample W s for each mini-batch
during training. Therefore using W s, the REINFORCE expression for gra-
dient is:

∇θL(θ) ≈ −r(W s)∇θ logPθ(W
s) . (4.8)

Equation (4.8) is a general expression with respect to the model param-
eters θ. Nevertheless, language-generating networks in captioning contain
Softmax as a final layer to convert logits logit1:T into probabilities Pθ(W

s
1...T )

as:

Softmax(logit1:T ) = Pθ(W
s
1:T ) =

explogiti∑
j explogitj

,∀i ∈ {1, . . . , T} . (4.9)

Because computation of the gradients and back-propagation follows the
chain rule, computing the gradients with respect to the model parameters θ
requires the gradients to be computed from the Softmax layer. This state-
ment can be formulated mathematically as:
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∂L(θ)

∂θ
=

T∑
t=1

∂L(θ)

∂logitt

∂logitt
∂θ

, (4.10)

and we intend to obtain the gradient only for one single timestep t. Therefore,
we first derive ∂Softmax(logiti)

∂logitt
as:

∂Softmax(logiti)

∂logitt
=

∂
explogiti∑
j explogitj

∂logitt
,

=⇒ applying quotient rule1

=
explogitt

∑
j explogitj − explogitt explogiti

(
∑

j explogitj)2
,

=⇒ generalizing for t = i and t 6= i

= Softmax(logitt)(1ti − Softmax(logiti)),

=⇒ from equation (4.9)

= Pθ(W
s
t )(1ti − Pθ(W s

i ))),

=⇒ plugging into the gradient of L(θ) ,

(4.11)

and finally plug the result into ∂L(θ)
∂logitt

as:

∂L(θ)

∂logitt
= r(W s)(Pθ(W

s
t )− 1W s

t
) . (4.12)

Nonetheless, the use of REINFORCE empirically indicates that the acquired
gradient estimates can have high variance, owing to the inherent leniency of
approximating using one single sample for the entire mini-batch. To tackle
the aforementioned obstacle, [49] uses a baseline reward b, based on which
the gradients either turn out positive or negative depending on the score of
the sampled sequence with respect to a baseline. Choosing a valid baseline is
challenging and several proposals suggest learning it as a parameter during
training [49], [58]. In [51] it was proposed to utilize the reward of a sequence

1https://en.wikipedia.org/wiki/Quotient_rule

https://en.wikipedia.org/wiki/Quotient_rule
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obtained through greedy sampling of the model as a baseline. The intu-
ition is to only provide a positive reward to generated sequences (predicted
training samples) which are better than the current model output (greedy
sample). This way the authors claim guaranteed model improvements. An
additional advantage is to avoid learning separate baseline functions. This
section applies self-critical learning approach to the model architecture of
[27] detailed under Section 3.4. Experiments, results and comparisons with
the cross-entropy based learning are reported in the following subsection.

4.1.1 Experiments and results

For experiments using SCST, the original GLAC-net settings are maintained
to ascertain comparability. The model comprises a bi-directional LSTM net-
work which reads the image features obtained from Resnet-152 [18], sequen-
tially. The glocal vectors are made from the concatenation of encoder outputs
at each timestep with respective image features. The decoder reads the glocal
vectors individually and produces sentences that make up for a story. The
<end> token marks the completion of exploiting each glocal feature vector of
the sequence, by the decoder. Before training, the images of VIST dataset
are resized to have a resolution of 256, and during training, the images are
horizontally flipped, cropped randomly with a resolution of 224 and normal-
ized to have pixel values between 0 and 1. For optimization, a learning rate
of 0.0001 with Adam optimization and weight decay of 0.00001 are employed.
Embedding layer is learned for representing each word with 256-dimensional
vectors. The model is warmed-up for 85 epochs with a batch size of 64 and
cross-entropy criterion before considering the SCST objective for 15 more
epochs. The SCST loss is considered in 1 : 1 ratio with the regular cross-
entropy loss during training. METEOR scoring on the VIST dataset test
split across the epochs is visualized with and without using SCST objective
in Figure 4.1. Additionally, the batch level advantage between epochs is pre-
sented in Figure 4.2. Sample stories generated by the model are provided in
Figure 4.3. Assessment of the model behavior and quality of the generated
results are discussed in Chapter 6.
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Figure 4.1: Visualization of METEOR scores across epochs for GLAC-net
under both cross-entropy and SCST objectives.

Figure 4.2: Advantage over the baseline among mini-batches during the learn-
ing.



CHAPTER 4. REMODELING 51

Story (GLAC-SCST model): the family was excited for their baby ’s birthday
. the boy was so happy to be able to see his new grandson . the grandparents
were very happy . the younger brother was playing with his new toy . the
baby was having a great time .

Story (GLAC-XE model): [female] was so happy to see her grandson . she
was happy with her . they had a lot of fun . everyone was having a great
time . even the little ones enjoyed themselves .

Story (human annotated): when we finally brought our son home from the
hospital so many people were at home with us to see him. everyone wanted
a chance to hold him! we were all so happy to have a new addition to the
family. my parents were so proud to be grand parents! i am so happy and i
love my son very much!

Story (GLAC-SCST model): the stadium was packed . the seats were empty
. the fans were excited . the game was very exciting . the game was a lot of
fun .

Story (GLAC-XE model): the car was very fast . the seats were empty . the
traffic was good . the stadium was not crowded . the fans were excited .

Story (human annotated): i took the family to a baseball game and we saw
this awesome car before the game , that you had a chance to win in a raffle .
we were lucky enough to get to the game early and our seats were amazing .
of course we had to get a family selfie during the game . the scoreboard was
so huge , i had to get a photo of it . the girls loved being so close to the field
that they could reach out and touch the ground if they wanted to .

Figure 4.3: Stories generated by GLAC-net model under SCST learning com-
pared with MLE based training (GLAC-XE).
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4.2 AREL framework with GAN objective

The authors of the AREL [62] work argued against the aspect of likelihood
estimation based methods for visual storytelling, which was discussed in Sec-
tion 3.5. A major highlighted flaw is the exposure bias problem. During the
training process, the model learns to generate text sequentially and predicts
the next token based on the already predicted words. During inference, the
model generates sentences that might not necessarily be part of the training
data. Therefore, using likelihood estimation methods like cross-entropy as
objectives to train the model does not adhere to the expectation of language
generation tasks like captioning. Moving away from MLE, the community
has adapted RL based policy gradient methods for standard captioning and
thereby visual storytelling. Section 4.1 provided specifics about those ap-
proaches. However, the approaches using NLP metrics for policy search
bring with them a different difficulty of choosing the automatic metric for
guiding and rewarding the model.

All the automatic evaluation measures are hand-crafted to perform some
form of string-based matching between the generated sentence and the ground
truth. Nevertheless, they do not correlate well with the human judgment of
quality and coherency, particularly in the case of long stories.

We had a great time to have a lot of the. They were to be a
of the. They were to be in the. The and it were to be the. The,
and it were to be the.

is one example story which achieves a high METEOR score of 0.402, but is
mostly incomprehensible [62]. Additionally, these measures are not heavily
inter-correlated either. Although they share some underlying steps, their
assessment of the hypothesis text is rather distinctive. Consequently, they
fail to drive policy-search for a language model.

A new direction towards addressing these bottlenecks is employing adver-
sarial frameworks. Traditionally, generative adversarial networks served the
purpose of learning continuous data distributions. However, text generation
is a discrete problem and standard language models do not allow for prop-
agation of discontinuous gradients. So employing the adversarial pipeline
naturally calls for RL based policy-gradient estimation techniques. The ini-
tial breakthrough towards such variation is SeqGAN [66]. The authors of
the AREL model heavily rely on the idea of sequence GAN [66], presenting
reward and policy models as discriminator and generator, respectively. They
compare their model against a standard GAN model and report results. This
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section reports experiments using the standard GAN objective and compares
the results. The gradient computation for the generator model is:

∂Jβ
∂β

= E
W∼πβ(W )

[Rθ(W )] , (4.13)

and for the discriminator model is as follows:

∂Jθ
∂θ

= E
W∼pe(W )

[
∂Rθ(W )

∂θ

]
− E

W∼πβ(W )

[
∂Rθ(W )

∂θ

]
. (4.14)

4.2.1 Experiments and results

This section reports experiments performed employing the above-mentioned
objectives for the policy and reward models. The VIST dataset described
under Section 2.3 is utilized for both the training and evaluation phases. As
a preprocessing step, the policy model is trained for 100 epochs using the
cross-entropy objective for the purpose of stabilizing the learning process.
Similar to the other experiments, a pretrained Resnet-152 [18] model is used
for extracting the visual features of the five images per sequence. The vocab-
ulary/dictionary of words is built to include words appearing three or more
times in the training text corpus yielding a size of 9,837. Upon obtaining
the image sequence features from the CNN, the visual encoder module of the
policy model, which is a bi-directional GRU RNN with 256 hidden units for
each direction, represents them. The hidden states in both directions of the
encoder are concatenated and the module learns to incorporate context into
these 512-dimensional vectors.

The overall image sequence subject and bi-directional context obtained
at the five timesteps of the encoder are passed on to the decoder module.
Authors of AREL employ five parallel decoders with shared weights. Each
decoder is a unidirectional GRU RNN that generates sentences making up
for a story. Scheduled sampling [5] with a threshold probability of 0.25 is
employed for training the decoders. A uniform distribution U(0, 1) is sampled
per mini-batch to decide between choosing the estimated and true previous
token. Adhering to the same setup, a consolidated story from the policy
model W ∼ πβ(W ) is then provided to the reward model for obtaining the
reward Rθ(W ).

The reward model is a CNN based design as shown in Figure 3.12 to
extract n-gram features of a sentence. For this purpose, convolution kernels
fconv of sizes 2, 3 and 4 with stride 1 are employed. These kernels stride
through the sentence representations incorporating uni/bi/tri-gram abstrac-
tions. One-dimensional max-pooling is applied on these extractions before
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concatenating with the respective visual feature representation of the respec-
tive image from the sequence, obtained using Resnet-152 [18]. Embedding
layer is learned for representing words in the policy and reward networks.
The word embedding vectors of the reward model and the CNN filters are
128 dimensional. Eventually, the reward is computed as a linear projection
Wr of the combined vector with soft-sign non-linearity applied:

Rθ(W ) = softsign(Wr(fconv(W ) +WiICNN) + br),where

softsign(z) =
z

1 + |z|
.

(4.15)

The alternating/cascading training strategy of the AREL model is also fol-
lowed for our experiments with the GAN model. During the training phase,
a batch size of 64, a learning rate of 2 ·10−4 with Adam optimizer, a dropout
of 0.5 for the reward model and a visual dropout of 0.2 for the policy model
visual encoder module are used. For generating sentences during inference
a beam size of 3 was used to search the probability space. Learned rewards
upon experimenting with both the AREL and GAN objectives are visual-
ized in Figure 4.4. Sample results produced by the model during inference
are provided in Figures 4.5 and 4.6. For the purpose of scoring, AREL [62]
combines all the stories belonging to the same album as a single reference
against the generated hypothesis, and we abide by this process also for the
GAN model scoring. The model achieves a METEOR score of 0.3540 on the
VIST dataset test split. Evaluation measures on the stories generated by
other models for the VIST test split are summarized in Table 4.1. Assess-
ment of the model behavior and quality of the generated results are discussed
in Chapter 6.

(a) AREL model (b) GAN model

Figure 4.4: Comparison of learned rewards visualization of ground truths
and generated stories by AREL and GAN models.
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Story (GAN model): there were a lot of people at the convention today . ev-
eryone was there to support the event . the speaker gave a speech about the
students . the speaker gave a speech . after the presentation , the speaker
gave a speech to the audience .

Story (AREL model): there were a lot of people at the convention . there
were a lot of people there . there were many speakers there . there were a lot
of people there . the presentation was a success , and everyone had a great
time .

Overall story (human annotated): there was a huge american day at school
today . everyone came to visit . even parents decided to show up ! ms. [fe-
male] was able to teach some adults the proper way to be an american . while
mr. [male] discussed his value of being american . it was very nice to have
mr. chang give us the final announcements for [female] day . it was career
day , how exciting . a man gave a speech . then another man gave a speech
. then a man and a woman gave a speech . then two women gave a speech .,
he was career day at my college . people showed up from different companies
to set up an informative booths . you got to listen to guest lecturers talk
about their companies . the whole day was very informative and i managed
to enjoy myself . i think i have finally found the career i want to be in .
the conference held a book store as well . you can purchase patriotic books
. some of the authors were present . the speakers took turns talking about
issues . they took questions afterwards . the people who work for the county
recorder’s are a dedicated bunch and very patriotic . they go to classrooms
and educate people on the importance of voting and on the history of voting
in location, but there most important job is to educate the volunteers for the
polling places .

Figure 4.5: An image sequence (boxed in purple) from the VIST test split
for which stories produced by the models are compared against each other.
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Story (GAN model): my sister and i went to a halloween party . the kids are
having a great time . my sister and i got to see the pumpkins . my son was
a little scary and i think it was a little scary . my sister and my sister and
my brother , [male] , and [male] ’s a great time .

Story (AREL model): the pumpkins are ready for halloween . [female] and
[female] were all dressed up and ready for the party . my sister and her
favorite pumpkin was a little scary . the little girl was having a great time .
[female] and her friends are having a great time and had a great time .

Overall story (human annotated): the whole family went out to the pumpkin
patch together . the brother and sister chose one pumpkin each . the sister
was so happy with hers ! the brother also loved his pumpkin . the other sister
was happiest of all , though , because she got four pumpkins . halloween is
her favorite holiday . this boy and girl picked the pumpkins they wanted to
carve . she said she is going to carve a princess on her pumpkin . he wants
to carve batman on his pumpkin . she can’t decide which pumpkin she wants
to take home . can i take them all ,i got to pick out my first pumpkin to carve
, today ! my sister and brother were there , too . i really think my sister got
the biggest one out of all of us ! my brother insists his is the best , though . i
’m just happy that i had fun today , and i want to do it again , sometime !, it
’s been two weeks since the pumpkins first appeared , the kids do n’t seem to
know any better . these pumpkins have murdered over 40 people nation wide
, it ’s good that the kids do n’t know we ’re being held hostage . this pumpkin
could snap at any second and cut off my daughters head , i almost vomited
after this picture . look how happy he is , he does n’t know the damage this
pumpkin has caused . it ’s like the pumpkins are mocking me , they know
how much these pictures hurt my soul .,the family went to a pumpkin patch .
they had tons of fun with pumpkins . they loved how big and round they were
. even the youngest got in on the fun . they loved their time at the patch .

Figure 4.6: An image sequence (boxed in purple) from the VIST test split
for which stories produced by the models are compared against each other.
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4.3 Summary of scores

This section consolidates and summarizes the NLP evaluation scores obtained
by several models for the visual storytelling task. The Baseline model is
evaluated on validation split of the VIST dataset, considering the relevance
when comparing with the respective reported scores. All the other models
are evaluated on the test split of the VIST dataset. In the table below,
“replicated” inside the parentheses indicate that experiments are performed
and validated for this thesis and “reported” implies that the scores are taken
from respective published papers.

Section METEOR
v 1.5

BLEU-4

Baseline model [22] (reported) — 0.3142 —

Baseline model [22] (replicated) 3.1 0.2160 —

Multi encoder model [57] (reported) — 0.2390 —

Multi encoder model [57] (replicated) 3.2 0.2250 —

Multi decoder model [15] (replicated
and reported)

3.3 0.3400 —

GLAC-net model [27] (reported) — 0.3014 —

GLAC-net model [27] (replicated) 3.4 0.3005 —

AREL model [62] (reported) — 0.3500 0.1410

AREL model [62] (replicated) 3.5 0.3482 0.1354

Topically coherent manager-worker
model [21] (reported)

3.6 0.3523 0.1232

GLAC-SC-net model (remodeled) 4.1 0.3029 —

GAN model (remodeled) 4.2 0.3540 0.1409

Table 4.1: NLP metrics detailed under Section 2.4, computed and compared
for stories generated by models explained in Chapters 3 and 4.



Chapter 5

Character-centric storytelling

Although existing visual storytelling models generate narratives that read
subjectively well, there could be cases when these models miss out on gener-
ating stories that account for and address all prospective human and animal
characters in the image sequences. An example case is presented in Figure
5.1. Considering this scenario, we propose a model that implicitly learns
relationships between provided characters and thereby generates stories with
respective characters in scope. We use the VIST dataset for this purpose
and report numerous statistics on the dataset. Eventually, we describe the
model, explain the experiment, and discuss our current status and future
work.

Story (GLAC model): [female] was so happy to see her grandson . she
was happy with her . they had a lot of fun . everyone was having a great
time . even the little ones enjoyed themselves .

Story (human annotated): when we finally brought our son home
from the hospital so many people were at home with us to see him.
everyone wanted a chance to hold him! we were all so happy to have
a new addition to the family . my parents were so proud to be grand
parents! i am so happy and i love my son very much!

Figure 5.1: An image sequence and corresponding story generated by [27]
that lacks many prospective characters.

58
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5.1 Data analysis

We used the VIST dataset comprising of image sequences obtained from
Flickr albums and respective annotated descriptions collected through Ama-
zon Mechanical Turk. More details about the composition and collection
process of the dataset are under Section 2.3.

5.1.1 Character extraction

We extracted characters out of the VIST dataset. To this end, we considered
that a character is either “a person” or “an animal.” We decided that the
best way to do this would be by making use of the human-annotated text in-
stead of images for the sake of being diverse (e.g., detection on images would
yield “person”, as opposed to father).

The extraction takes place as a two-step process as shown in Figure 5.2.

1. Identification of nouns: We first used a pre-trained part-of-speech
tagger [39] to identify all kinds of nouns in the annotations. Specifically,
these noun categories are NN – common, singular or mass, NNS –
noun, common, plural, NNP – noun, proper, singular, and NNPS –
noun, proper, plural.

2. Filtering for hypernyms: WordNet [42] is a lexical database over
the English language containing various semantic relations and syn-
onym sets. A hypernym is one such semantic relation constituting
a category into which words with more specific meanings fall. From
among the extracted nouns, we thereby filtered those words that have
their lowest common hypernym as either “person” or “animal.”

Figure 5.2: Character extraction process.
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5.1.2 Character analysis

We analyzed the VIST dataset from the perspective of the extracted charac-
ters and observed that 20405 training, 2349 validation, and 2768 testing data
samples have at least one character present among their stories. Approxi-
mately 50% of the data samples in the entire dataset satisfy this condition.
To pursue the prominence of relationships between these characters, we an-
alyzed these extractions for both individual and co-occurrence frequencies.
We found a total of 1470 distinct characters with 1333 in training, 387 in the
validation, and 466 in the testing splits. These numbers can be considered as
an indication of the limited size of the dataset because the number of distinct
characters within each split is strongly dependent on the respective size of
that split.

Figure 5.3: Training split character frequencies (left) and characters co-
occurrence frequencies (right).

Figure 5.3 plots 30 sampled characters and co-occurring character pairs
from the training split of the dataset for visualizing the skew of the frequen-
cies. Further analysis reveals that apart from the character “friends”, there is
a gradual decrease in the occurrence frequencies of the other characters such
as “mom” and “grandmother.” Similarly, co-occurrence pairs such as (“dad”,
“mom”), (“friend,” “friends”) occur drastically more number of times than
other pairs in the stories leading to an inclination bias of the story generator
towards these characters, owing to the data size limitations discussed.

In the process of detecting characters, we also observed that ∼5000 dis-
tinct words failed on WordNet due to their misspellings such as (“webxites”),
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for being proper nouns (“cathrine”), for being an abbreviation (“geez”), and
simply because they were compound words (“sing-a-long”). Though most of
the models ignore these words based on a vocabulary threshold value (typi-
cally 3), language model creation without accounting for these words could
adversely affect the behavior of narrative generation.

5.2 Proposed model

Our model in Figure 5.4 follows the staple encoder-decoder structure. The
encoder module incorporates the image sequence features, obtained using
a pre-trained convolutional network, into a subject vector. The decoder
module, which is capable of considering semantics (we try several variants
from [13]), uses the subject vector along with relevant character probabilities,
and generates a story. Some of the variants are elaborated under Section
5.2.3.

Figure 5.4: Character-centric storytelling model architecture following the
encoder-decoder structure.
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5.2.1 Character semantics

For semantics, we collect relevant characters concerning all data samples as
a preprocessing step. We denote the characters extracted directly from the
human-annotated stories of respective image-sequences as active characters.
Using the active characters, we obtain other characters that can potentially
influence the intended narrative and denote them as passive characters. Pas-
sive characters can be obtained using various methods. Section 5.3 describes
some of these methods. The individual frequencies of these relevant charac-
ters, active and passive, are then normalized by the vocabulary size of the
corpora. We identify the resulting probabilities as character semantic vectors
and use them for the decoder module, as explained below.

5.2.2 Encoder

Using Resnet [18] we first obtain respective feature vectors for images in se-
quences. The features extracted are then provided to the encoder module,
which is a standard RNN employed to learn parameters for incorporating the
subjects in each of the individual feature sets into a subject vector accumu-
lating context.

5.2.3 Decoder

Figure 5.5 presents the SCN-LSTM variant [13] of the recurrent neural net-
work for the decoder module. The network extends each weight matrix of
a conventional LSTM as an ensemble of a set of tag-dependent weight ma-
trices, subjective to the character probabilities. Conventionally, to initialize
the first timestep, we use the subject vector resulting from the encoder. The
character probabilities influence the LSTM parameters utilized when decod-
ing. Gradients propagated back to the network, nudge the parameters W
towards adhering to respective character probabilities s and image sequence
features v, as follows:

∇(Wgates, states | s, v) = α · ∇gates, states . (5.1)

Consequently, the encoder parameters move towards incorporating the con-
text of the image-sequence features better. Along with the SCN-LSTM, we
use two other variants of LSTM, namely LSTM-RT and LSTM-RT2 [13].
Specifically, in the network names, R denotes visual features, T denotes se-
mantic features, and RT denotes the concatenation of both visual and se-
mantic features.
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The module is denoted as LSTM-RT if only the initial time step of the
network receives the concatenated features input. Similarly, the module is
denoted as LSTM-RT2 if the network receives visual Resnet features R at
the first time step and the semantic features vector T at every time step of
rollout. We experiment using all three semantic dependent RNN network
variants for our decoder module and perform qualitative analysis.

Figure 5.5: v and s denote the visual and semantic features respectively
and each triangle symbol represents an ensemble of tag dependent weight
matrices [13]

5.3 Experiments and results

The experimental setup is an extension of the baseline setting described un-
der Section 3.1. The VIST dataset training and validation splits comprising
40071 and 4988 sentence-story pairs are utilized for learning. Before feature
extraction using Resnet-152, the images are resized to be 224 dimensional
and re-sampled using bi-linear interpolation. Additionally, the images are
normalized with a mean of [0.485, 0.456, 0.406] and a standard deviation of
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[0.229, 0.224, 0.225] to adhere to the ImageNet [10] collection, used for pre-
training the feature extractor. Upon pre-processing the images, respective
features are extracted and passed through the typical encoder module that
yields a subject vector comprising the context across the image sequence. A
dropout of 0.5 is applied on the extracted 2048 dimensional features and a
two-layered GRU of hidden size 1000 makes up for the encoder.

As mentioned in Section 5.2.3 for the semantic decoder, experiments were
performed by employing SCN, LSTM-RT, and LSTM-RT2. However, in this
section, we only report details on LSTM-RT2 which worked the best for the
visual storytelling task. For extracting the passive character semantics, ex-
plained in Section 5.2.1, two approaches were taken. One way was to tag
all the characters co-occurring with each of the active characters as passive.
The other approach was to limit the passive characters by selecting only
K (hyper-parameter) most co-occurring characters. Empirical observations
show that in the case of the VIST dataset, which is sparse with characters,
the approach of selecting all co-occurrences as passive, worked better. The
semantic feature vector of size 1470 and the sequence feature vector of size
10240 are linearly transformed to have a dimensionality of 250 for adhering to
the word embedding layer dimension. At the first timestep t0, the projections
obtained for the semantic and image sequence features are concatenated as
input. For the following timesteps t1,...,T , respective ground truth word em-
beddings are concatenated with the linear projection of the semantic features
and provided to the decoder GRU abiding to teacher forcing.

Other details pertaining the semantic decoder include a hidden size of
1000 for a two-layered GRU with a dropout of 0.5. Cross-entropy loss is em-
ployed as the training criterion with the Adam optimization algorithm and
the learning rate of 0.0001. The model is trained for 100 epochs with a batch
size of 64 and then used to generate stories for the VIST test split. The char-
acters from the generated stories are then plotted against the true characters’
distributions of the VIST test data split, to understand the influence of the
trained model. Additionally, characters from the stories generated by the
visual storytelling baseline model are also plotted for the purpose of compar-
ison. All the distributions are visualized in Figure 5.6. Although the spread
of characters is not obvious from the plots, the relative difference between the
character-centric and baseline models is evident. Sample stories generated
by the model are provided in Figure 5.7. Assessment of the model behavior
and quality of the generated results are further discussed in Chapter 6.
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Characters from the VIST test split with frequencies above 100.

Characters from the VIST test split with frequencies above 5 and below 100.

Characters from the VIST test split with frequencies below 5.

Figure 5.6: Characters’ frequency distributions in the ground truth and sto-
ries generated by the trained models. Frequencies of the true 466 distinct
characters from the VIST test split was found to be heavily skewed. There-
fore for the purpose of analyses, the characters were segregated into three
tiers, i.e., those with frequencies above 100, between 5 and 100, and below 5.
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Story (Character-centric model): i went to the museum to see the dolphins at
the museum . i saw some really interesting coral . there were some amazing
art installations . i also saw some penguins . i also saw some dinosaurs .

Story (Baseline model): i went to an art museum . there were many unique
paintings . some of them were very detailed . i had a great time . i ca n’t
wait to go back .

Story (human annotated): there are many types of horns and bone . this is
a ram horn and it has been shined well . next there is a horn that has been
made into a pipe . a curved horn has been rubbed and shined . finally there
is a straight piece of bone that has been shaped .

Story (Character-centric model): the crowd gathered for the awards ceremony
. the speaker gave a great speech . the director gave a brief speech . the audi-
ence listened to the speaker . the cameraman was a little shy after the speech
ended .

Story (Baseline model): i went to a meeting last night . there were a lot of
people there . i had a great time with all of them . they were all very happy
. i invited all of my friends .

Story (human annotated): everyone from the town gathered to attend the
homeowner ’s association meeting . [female] did n’t agree with some of the
proposals raised at the meeting . [male] was just thinking about going home
to eat some pizza and watch tv . the presenters made a joke about pooper
scoopers . [male] looked at his wife who arrived late to the meeting .

Figure 5.7: VIST test split image sequences with stories generated by the
character-centric storytelling and baseline models respectively.



Chapter 6

Discussion

Applied machine learning is about realizing the salience and validity of the
theoretical concepts, from the standpoint of real-world problems. Image cap-
tioning is one such area and visual storytelling is one specific task of interest
inside that area. This thesis elaborated several approaches and underlying
concepts for visual storytelling. With experiments performed and results re-
ported in the form of stories and scores, this chapter discusses the strengths,
difficulties, and weaknesses by providing insights on the previous chapters.
Besides, a commentary on the extended tasks that share the basic motiva-
tions and follow the same research patterns is put forth.

6.1 Closer look

Approaches for visual storytelling explained in Chapter 3 follow a very steady
incremental trend. They attempt to pander to the structure and composi-
tions of the VIST dataset while adhering to the regular captioning archi-
tectures that already proved successful. Visual storytelling formulated as
a multi-class classification task inherently calls for entropy-based learning,
which all the methods explained in Sections 3.1 through 3.4 followed. En-
tropy is without a doubt sacrosanct for understanding the behavior of the
network weights, gates, and gradients. However, owing to the fact that there
could never be one truly good story with respect to a visual sequence, us-
ing merely entropy as guidance, often lead to loops or dead-ends. Stories
generated by the VIST baseline model in Section 3.1 are mostly sparse with
both the vocabulary and maintaining consistency of the sequence context.
Although the multi encoder model in Section 3.2 tries to address the aspect
of context consistency by employing a previous-sentence encoder, it some-
times misguides itself into mistakes. From the sample stories provided under
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Figure 3.4, the words “two men” could be an overstatement as a consequence
of modeling the previous sentences within the story.

Both the multi decoder and GLAC models in Sections 3.3 and 3.4 shift the
focus towards balancing the overall context and local relevance in each image
of the sequence. Sentences generated by the five independent decoders of the
multi decoder model and the cascading decoder of the GLAC model achieve
the ambitious balance to an extent. The generated stories maintained tonal
correctness with respect to the events in the sequences in their context. Sam-
ple story provided in Figure 3.7 with words “excited, proud, happy” signify
the relevance of the tone. Upon empirical verification, stories generated by
the GLAC model are more natural in flow without articles at the beginning
of each sentence. However, stories by both the multi decoder and GLAC
models are monotonous in nature, with average story length ranging from
30 to 40 words. Some of the shortcomings of these models can very well be
associated with the trivial nature of the dataset.

RL based policy-gradient methods solve the restraint of the models try-
ing to greedily fit to the ground truth story. They bring in the freedom of
exploration and solve the exposure bias problem with using MLE objectives.
Upon incorporating the SCST objective to optimize the GLAC model for
METEOR in Section 4.1.1, the model produces a slightly better score on the
VIST dataset test split. Figure 4.1 can be interpreted as a sign of the model
trying to move towards yielding better METEOR scores. In the realm of
this thesis, advantages of data samples at a mini-batch level are the rewards
(METEOR scores) for multinomially sampled stories baselined on a single
greedily inferred story. Figure 4.2 shows advantage value plots between every
five epochs of training and a gradual increase in the density of samples ob-
taining positive advantage. However, the stories have conflicting tones and
are qualitatively inferior to the regular GLAC model with cross-entropy. A
comparison of story samples was provided in Figure 3.9.

The problem with vanilla policy gradient methods aiming to optimize
the NLP metrics such as METEOR was explained in Section 3.5 motivating
the AREL model. Alternatively, adversarial reward learning attempts to
approximate a customized reward function for the VIST task. The model
achieves state-of-the-art scores and generates longer stories. Experiments in
Section 4.2.1 examine the behavior of AREL policy and reward models under
the standard GAN objectives. Rewards for the generated and true stories by
the reward model during the training, visualized in Figure 4.4, show that the
generator (policy model) learns to produce stories that receive scores from
the discriminator (reward model) which correlate well with the true stories.
The model also achieved the highest METEOR score, summarized in Table
4.1, among all the models implemented for this thesis.
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6.2 The big picture

Visual storytelling has many related sub-topics1 such as temporal structure
identification, event-episodes annotation, and character relationship model-
ing. Character-centric storytelling model and experiments detailed in Chap-
ter 5 attempt to learn the underlying spread of characters and generate them
in the stories with relevancy and creativity. The frequency distributions plot-
ted in Figure 5.6 depict that the character-centric model is learning to match
the true spread of characters better, compared to the regular baseline model.
From among the three tiers of characters in the VIST test data split, i.e,
those with frequencies above 100 (most frequent), between 5 and 100, and
below 5 (least frequent), characters’ distributions of the most and least fre-
quent are moving towards the ground truth. However, for some of the sample
sequences, such as the one in Figure 5.7 about “horns and bone”, the model
exaggerates and overstates the story with characters such as coral, dinosaurs
and other animals. This behavior can be due to the static character semantics
vector used in the decoder module, without any fine-tuning.

Similar to the aspect of character relationships, several other facets, such
as human actions, emotion modeling, and event extractions lie within the
realm of visual storytelling. Related research works such as Persona based
Grounded Story Generation [7] and Analysis of Emotion Communication
Channels in Fan-Fiction [26] were part of the proceedings at ACL Story-
telling 2019, where we also presented our work on character-centric story-
telling [12]. Besides, recent developments in scene-graph tasks for repre-
senting visual information can be adapted for the visual storytelling task by
extracting and learning regions within image sequences with relationships.

1http://www.visionandlanguage.net/workshop2019/cfp.html

http://www.visionandlanguage.net/workshop2019/cfp.html


Chapter 7

Conclusions

This thesis discussed the visual storytelling task to its fullest current extent.
Upon introducing the problem formally and providing the motivations behind
its conception, an extensive background coverage of respective parent and
sibling domains pertaining captioning was reported. Captioning as a topic
is interesting considering its uniqueness in amalgamating both visual and
textual modalities. With this motivation, details about relevant methods
from the literature were outlined. Analyses were performed on the VIST
dataset, a publicly available source for the visual storytelling task. The
present state and challenges with automatically evaluating and scoring the
texts generated by machine learning models were discussed.

Existing architectures which were proposed for the visual storytelling task
were discussed in detail with relevant motivations and objectives in perspec-
tive. Results were presented in the form of both image sequence-story pairs
and NLP scores. Along with replicating and re-implementing the existing
designs, remodeling by utilizing distinctive learning mechanisms was carried
out. Behavior of policy-gradient methods, which are gaining traction in every
domain of deep learning, were examined from the visual storytelling angle.
Also, the realm of adversarial learning models were scrutinized and compared
against each other qualitatively.

Additionally, the sub-domain of character relationships within the topic
of visual storytelling was investigated. Character semantics of the VIST
dataset were extracted and broadly analyzed. A design for modeling the
extracted semantic features along with the standard visual features was pro-
posed. Learning behaviors, inference stage performances, and subjective as-
pects of the generated results were comprehensively discussed.

Means for analyzing the actual influence of visual and textual modalities
on the model outcomes are essential for a thorough understanding of the
paradigm and is one of the directions in which this work can be taken for-
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ward. Granular experimentation with region-level features of the visual data
and understanding of sentence-level rewards within stories can potentially
improve the results. Reverse engineering a customized scorer from models
which learn through reinforcement, for automatically assessing the generated
stories is another facet to research forward.
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[21] Huang, Q., Gan, Z., Çelikyilmaz, A., Wu, D. O., Wang, J.,
and He, X. Hierarchically structured reinforcement learning for topi-
cally coherent visual story generation. CoRR abs/1805.08191 (2018).

[22] Huang, T. K., Ferraro, F., Mostafazadeh, N., Misra, I.,
Agrawal, A., Devlin, J., Girshick, R. B., He, X., Kohli,
P., Batra, D., Zitnick, C. L., Parikh, D., Vanderwende,
L., Galley, M., and Mitchell, M. Visual storytelling. CoRR
abs/1604.03968 (2016).

[23] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings
of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37 (2015), ICML’15, JMLR.org, pp. 448–
456.

[24] Johnson, J., Karpathy, A., and Li, F. Densecap: Fully convolu-
tional localization networks for dense captioning. CoRR abs/1511.07571
(2015).

[25] Karpathy, A., and Li, F. Deep visual-semantic alignments for gen-
erating image descriptions. CoRR abs/1412.2306 (2014).

[26] Kim, E., and Klinger, R. An analysis of emotion communica-
tion channels in fan fiction: Towards emotional storytelling. CoRR
abs/1906.02402 (2019).

[27] Kim, T., Heo, M., Son, S., Park, K., and Zhang, B. GLAC
net: Glocal attention cascading networks for multi-image cued story
generation. CoRR abs/1805.10973 (2018).

[28] Kiros, R., Salakhutdinov, R., and Zemel, R. Multimodal neural
language models. In Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32 (2014),
ICML’14, JMLR.org, pp. II–595–II–603.

[29] Kiros, R., Salakhutdinov, R., and Zemel, R. S. Unifying visual-
semantic embeddings with multimodal neural language models. CoRR
abs/1411.2539 (2014).

[30] Krause, J., Johnson, J., Krishna, R., and Fei-Fei, L. A hier-
archical approach for generating descriptive image paragraphs. CoRR
abs/1611.06607 (2016).



BIBLIOGRAPHY 75

[31] Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K.,
Kravitz, J., Chen, S., Kalantidis, Y., Li, L., Shamma, D. A.,
Bernstein, M. S., and Li, F. Visual genome: Connecting lan-
guage and vision using crowdsourced dense image annotations. CoRR
abs/1602.07332 (2016).

[32] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In Proceedings
of the 25th International Conference on Neural Information Processing
Systems - Volume 1 (USA, 2012), NIPS’12, Curran Associates Inc.,
pp. 1097–1105.

[33] Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A., and
Bengio, Y. Professor forcing: A new algorithm for training recurrent
networks, 2016.

[34] Lavie, A., and Agarwal, A. Meteor: An automatic metric for mt
evaluation with high levels of correlation with human judgments. In
Proceedings of the Second Workshop on Statistical Machine Translation
(Stroudsburg, PA, USA, 2007), StatMT ’07, Association for Computa-
tional Linguistics, pp. 228–231.

[35] Li, S., Tao, Z., Li, K., and Fu, Y. Visual to text: Survey of
image and video captioning. IEEE Transactions on Emerging Topics in
Computational Intelligence PP (01 2019), 1–16.

[36] Liang, X., Hu, Z., Zhang, H., Gan, C., and Xing, E. P. Re-
current topic-transition GAN for visual paragraph generation. CoRR
abs/1703.07022 (2017).

[37] Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,
R. B., Hays, J., Perona, P., Ramanan, D., Dollár, P., and
Zitnick, C. L. Microsoft COCO: common objects in context. CoRR
abs/1405.0312 (2014).

[38] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. The Stanford CoreNLP natural
language processing toolkit. In Association for Computational Linguis-
tics (ACL) System Demonstrations (2014), pp. 55–60.

[39] Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R.,
Bies, A., Ferguson, M., Katz, K., and Schasberger, B. The
penn treebank: Annotating predicate argument structure. In Proceed-
ings of the Workshop on Human Language Technology (Stroudsburg,



BIBLIOGRAPHY 76

PA, USA, 1994), HLT ’94, Association for Computational Linguistics,
pp. 114–119.

[40] Mikolov, T., Kopecky, J., Burget, L., Glembek, O., and
?Cernocky, J. Neural network based language models for highly in-
flective languages. In Proceedings of the 2009 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (Washington, DC,
USA, 2009), ICASSP ’09, IEEE Computer Society, pp. 4725–4728.

[41] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and
Dean, J. Distributed representations of words and phrases and their
compositionality. In Proceedings of the 26th International Conference
on Neural Information Processing Systems - Volume 2 (USA, 2013),
NIPS’13, Curran Associates Inc., pp. 3111–3119.

[42] Miller, G. A. Wordnet: A lexical database for english. Commun.
ACM 38, 11 (Nov. 1995), 39–41.

[43] Mitchell, M., Han, X., Dodge, J., Mensch, A., Goyal, A.,
Berg, A., Yamaguchi, K., Berg, T., Stratos, K., and Daumé,
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