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Abstract
Magnetic resonance imaging (MRI) is a medical imaging technique that is widely
used for both clinical and research purposes. In recent years, an alternative approach
to MRI known as ultra-low-field (ULF) MRI has attracted increasing interest, as
performing measurements in the ultra-low-field regime has been demonstrated to have
certain advantages over conventional MRI. These advantages include improved tissue
contrast in certain applications, the capability to perform measurements on objects
containing metal, potential lower cost, and capacity for combined use with other
electromagnetically sensitive imaging techniques such as magnetoencephalography
(MEG).

Because ULF-MRI signals are very delicate, measurements are highly sensitive
to external magnetic noise. To alleviate this problem, ULF-MRI measurements are
usually performed inside a magnetically shielded room (MSR). However, because
MRI involves magnetic pulses, performing measurements inside an MSR typically
means the ULF-MRI pulse sequence induces eddy currents in the MSR walls. These
eddy currents can be strong enough to generate transient magnetic fields that prevent
measurements until the transients have died down sufficiently.

While it is possible to simply wait for the transients to die down on their own,
doing so can be impractical because the ULF-MRI signal also decays with time. To
attain the best signal-to-noise ratio possible, transients should be eliminated from the
system as quickly as possible. Transient cancellation techniques have been developed
to accomplish this. In a novel approach known as dynamical cancellation, transients
are nullified by adding a specifically designed cancellation pulse to the ULF-MRI
pulse sequence. This pulse is designed to couple with eddy-current modes in the
MSR walls in such a way that the ULF-MRI sequence as a whole induces minimal
eddy currents.

In this thesis, I present an algorithm for finding efficient pulse waveforms for
dynamical transient cancellation, along with measurements demonstrating the efficacy
of dynamical cancellation in practice. Further improvements are also discussed, as it
can be expected that, with various improvements to the implementation, dynamical
cancellation can be used to even greater effect than demonstrated in this thesis.
Keywords ultra-low-field, ULF, magnetic resonance imaging, MRI, eddy current,
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Tiivistelmä
Magneettikuvaus (MRI) on lääketieteellinen kuvantamismenetelmä jota käytetään
laajalti sekä kliinisiin- että tutkimus-sovelluksiin. Viime vuosina vaihtoehtoinen lä-
hestymistapa MRI:hin, nimeltään ultramatalan kentän MRI (ULF MRI) on ollut
kasvavan kiinnostuksen kohteena, sillä MRI-mittausten tekemisellä ultramatalassa
kentässä on havaittu olevan tiettyjä etuja tavalliseen MRI:hin verrattuna. Näihin
hyötyihin kuuluvat mm. parempi kudoskontrasti tietyissä sovelluksissa, kyky ku-
vata metallia sisältäviä kohteita, mahdollisesti halvemmat kustannukset sekä yh-
teensopivuus muiden sähkömagneettisesti herkkien kuvantamismenetelmien kuten
magnetoenkefalografian (MEG) kanssa.

ULF MRI -signaalit ovat hienovaraisia, ja siten herkkiä magneettisille häiriöille.
Ulkoisen häiriön minimoimisen vuoksi ULF MRI -mittaukset toteutetaan usein
magneettisuojahuoneen (MSR:n) sisällä. MSR:n käyttämisestä voi kuitenkin seurata
oma ongelmansa. MRI-mittauksia varten on pulssitettava magneettikenttiä, ja tämän
tekeminen MSR:n sisällä indusoi pyörrevirtoja huoneen seiniin. Nämä pyörrevirrat
tuottavat magneettikenttätransientteja, jotka voivat olla niin voimakkaita, että ne
estävät mittauksien tekemisen kunnes pyörrevirrat ovat riittävästi heikentyneet.

Vaikka pyörrevirtojen voi vain odottaa heikentyvän itsestään, odottaminen on
usein epäkäytännöllistä, sillä ULF MRI -signaali myös heikkenee ajan kuluessa. Paras
signaalikohinasuhde (SNR) saavutetaan, kun transientit poistetaan mahdollisimman
nopeasti. Tätä varten on kehitetty transienttien kumoamismenetelmiä. Dynaaminen
kumoaminen on uusi kumoamismenetelmä, jossa transientit kumotaan lisäämällä
ULF MRI -pulssisekvenssiin erityinen kumoamispulssi. Tämä kumoamispulssi laadi-
taan kytkeytymään MSR:n seinien pyörrevirtamoodeihin tavalla, joka minimoi koko
pulssisekvenssin yhdessä tuottamat pyörrevirrat.

Tässä opinnäytetyössä esitän algoritmin tehokkaiden kumoamispulssien löytä-
miseen dynaamista kumoamista varten, sekä mittauksia näyttämään dynaamisen
kumoamisen toimivuutta käytännössä. Käyn myös läpi jatkokehitysmahdollisuuksia,
sillä on odotettavissa, että kehittämällä käytettyjä menetelmiä edelleen on mahdol-
lista saavuttaa vielä parempia tuloksia kuin mitä tässä työssä on esitetty.
Avainsanat ultramatala kenttä, ULF, magneettikuvaus, MRI, pyörrevirta,

transientti, magneettisuojahuone, MSR, dynaaminen suojaus,
DynaCAN, transienttien kumoaminen, SQUID
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1 Introduction
Magnetic resonance imaging (MRI) is a biomedical imaging method that was brought
to clinical use in its conventional form in the 1980s [1, 2]. The method is based on
the phenomenon of nuclear magnetic resonance (NMR), which takes place when
an external magnetic field imposes a net precessing motion upon the spins of the
protons in the nuclei of the imaged object. This nuclear spin precession can be used
to produce a measurable signal, from which the structure of the imaged object can be
reconstructed. As MRI is safe, non-invasive, and capable of producing highly accurate
3D scans of human organs, it is the gold standard for structural biomedical imaging,
widely used for both clinical and research purposes [1]. The various applications of
MRI range from detecting tumors to measuring brain activity by studying the flow
of blood in the brain.

Over the years, conventional MRI has developed towards using ever larger magnetic
fields. In modern MRI devices, the strength of the main field B⃗0, which orients the
proton spins, typically ranges from 1.5 T to 3 T [3]. A stronger main field has its
advantages such as higher signal amplitude, which in turn results in clearer images.
However, producing such strong magnetic fields requires expensive, heavy and power-
consuming equipment. These inconveniences inherent in cutting-edge conventional
MRI have encouraged the development of ultra-low-field MRI (ULF MRI) in recent
years. In ULF MRI, the main field strength is many orders of magnitude less than
that of conventional MRI, with typical B0 strength ranging from 1 µT to 100 µT [3].

Convenience is not the only benefit expected from ULF MRI, as it has been shown
that MRI in the ultra-low-field regime can outperform its conventional counterpart
in some circumstances. Certain types of tissue contrast are higher in ULF MRI than
in conventional MRI [4]. In addition to improved contrast in some applications, ULF
MRI can image objects containing metal, whereas conventional MRI faces severe
safety and artefact issues when metal is present in the imaged volume [3].

Perhaps one of the most interesting properties of ULF MRI, however, is the
possibility of making it compatible with another biomedical imaging method of great
clinical importance, magnetoencephalography (MEG) [5]. MEG is a neuroimaging
method in which brain activity is imaged by measuring the faint magnetic fields
produced by electrical activity in the brain [6]. Effective use of MEG requires
knowledge of the structure of the subject’s head, which is usually obtained from an
MRI scan. As the same measurement setup can be used to measure both ULF MRI
and MEG signals, a hybrid device could perform an ULF MRI scan of the subject’s
brain and an MEG measurement in one sitting. Achieving this would be a major
step forward in MEG imaging, as current MEG setups use MRI scans made with a
separate MRI imaging device, requiring the hospital to have access to two separate
expensive measurement devices, and running the risk of introducing inaccuracies in
the MEG estimate due to errors in mapping the MRI measurement geometry to the
separate MEG coordinate system. In addition, using two separate devices makes the
whole process more inconvenient and time-consuming for both patients and hospital
staff.

Countering these upsides, the implementation of ULF MRI involves difficulties
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that conventional MRI does not have to contend with [3]. Among these issues is the
problem of the delicate ULF-MRI signal easily being drowned out by environmental
magnetic noise. To alleviate this problem, ULF-MRI measurements are often per-
formed inside a magnetically shielded room (MSR). While an MSR can eliminate
disturbances caused by magnetic noise, using an MSR can cause a problem of its
own. Magnetic pulses that are essential for MRI induce eddy currents in the MSR
walls, which in turn generate transient magnetic fields that interfere with measure-
ments. These magnetic-field transients can be many orders of magnitude larger than
the measurement range of the detectors used in ULF MRI, making measurements
impossible until the transients have died down.

Since the MRI signal also decays as time passes, simply waiting for the transients
to diminish is at best suboptimal, at worst completely unfeasible. Because of this,
effective transient cancellation methods are necessary for reaching the full potential
of ULF MRI. While it is possible to design the ULF-MRI coils in a way that greatly
diminishes the magnetic fields generated in the MSR walls, completely eliminating
all the transients with coil design alone is often unattainable in practice [7].

An alternative approach, developed by Koos Zevenhoven in early 2010s [8], is
to use Dynamical Coupling for Additional dimeNsions (DynaCAN), or dynamical
cancellation, to nullify harmful transients [9]. In dynamical cancellation, eddy-current
transients are cancelled by including an additional magnetic pulse to the ULF-MRI
sequence that reduces the total eddy currents generated by the sequence as much
as possible. While the individual pulses of the sequence would generate transient
eddy currents in the MSR walls, the added cancellation pulse takes advantage of
eddy-current dynamics and opposes the currents that would be induced by the rest of
the sequence. As a result, the pulse sequence as a whole generates minimal transients.

The eddy currents induced by ULF-MRI pulses are a superposition of numerous
overlapping spatial current patterns, or modes, that decay exponentially with different
time constants [10]. Each of these eddy-current modes couples with different coils
in different ways, making it difficult to find a DynaCAN pulse that generates the
desired transient response when driven into the cancellation coil. However, it is
possible to use the time behavior of the pulse to manipulate how it couples to different
eddy-current modes. This approach of coupling to the dynamical eddy-current system
with temporal pulse waveform features is the fundamental operating principle of
dynamical cancellation with DynaCAN.

Since the cancellation efficacy of a DynaCAN pulse is mostly determined by
the shape of the pulse waveform, DynaCAN allows for great flexibility in nullifying
transients. With DynaCAN, the geometry of the cancellation coil can be chosen
relatively freely, as the shape of the pulse waveform can be designed to generate
the desired eddy-current response. This also means it is possible to use a single
cancellation coil to cancel multiple different transients from different sources by
applying multiple DynaCAN pulses into the coil, each designed to cancel a different
transient. This thesis presents an algorithm for finding efficient cancellation pulses,
along with measurements demonstrating the efficacy of DynaCAN in practice.
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2 Background

2.1 Ultra-low-field magnetic resonance imaging
Most organic matter is rich in hydrogen atoms, the nuclei of which consist of only
single protons. Protons, among other subatomic particles, exhibit a vector quantity
known as the spin. The spin of a charged particle generates a magnetic field. A
change in the orientations of proton spins causes a changing magnetic field. Magnetic
resonance imaging (MRI) is a technique that uses this phenomenon to cause the
hydrogen nuclei of an imaged object to generate a magnetic signal [1]. This MRI
signal can then be measured in order to determine structural information about the
imaged object.

In the presence of a magnetic field B⃗, the nuclear spins of an object tend to orient
themselves parallel to the field. This phenomenon of the spins collectively orienting
themselves in the same direction on average is referred to as spin polarization. If
these polarized spins are then perturbed away from B⃗, they start precessing around
B⃗ similarly to how a slightly tilted spinning top behaves. This spin precession causes
a changing magnetic field that can be detected from outside the imaged object. This
signal, generated by the bulk precession of the entire ensemble of polarized protons,
can be used for constructing high-resolution images of, for example, the human
brain. This synchronized collective behavior of nuclei is known as nuclear magnetic
resonance (NMR).

NMR generates a periodic signal, the frequency of which is determined by the
frequency of the spin precession. The frequency of proton spin precession in the
presence of a main field B⃗0 is known as the Larmor frequency

fL = γB0 ,

where γ is the gyromagnetic ratio of the proton [1]. The signal responses of the
detection coils used in conventional MRI are frequency-dependent, with higher
frequencies yielding stronger signals. Since the Larmor frequency is proportional to
main field strength B0, higher B0 leads to higher signal amplitude in conventional
MRI.

The increase in Larmor frequency is not the only benefit a high main field strength
offers in conventional MRI. Another factor that increases signal amplitude is the
total magnetization M⃗ of the protons, which is a measure of how polarized their spins
are. Because inhomogeneity in spin orientations causes interference that reduces
the total signal, higher spin polarization improves signal strength. The stronger the
magnetic field affecting the spin directions, the greater the magnetization M⃗ will be.
Therefore, a high B0 leads to high signal not only through higher Larmor frequency,
but also through higher bulk magnetization. These two factors lead to a B2

0 scaling
of signal strength in conventional MRI [2].

In ultra-low-field (ULF) MRI, in which B0 is many orders of magnitude smaller
than in conventional MRI, this B2

0 scaling would greatly reduce the signal-to-noise
ratio of measurements. To overcome this, ULF MRI has methods for circumvent-
ing both the problem of low frequency and that of low magnetization. The issue
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of low Larmor frequency is rendered moot by performing measurements with Su-
perconducting QUantum Interference Device (SQUID) sensors, since they have a
frequency-independent response. SQUID detectors and their operating principles
will be examined in Sec. 2.2.

Even though using frequency-independent SQUIDs resolves the problem of low
Larmor frequency, the issue of small B0 resulting in low magnetization M still remains.
This problem can be alleviated by prepolarizing the spins by pulsing a polarizing
field B⃗p that is orders of magnitude stronger than B⃗0, typically 10 mT to 100 mT [3].
As the magnetization, and thus signal strength, now scales with Bp, the small B0 is
no longer an issue. However, as Bp is still orders of magnitude weaker than the main
field of conventional MRI, signal strengths in ULF MRI will inevitably be weaker.

The polarizing field B⃗p is produced by a coil separate from the coil used to generate
the main field B⃗0. This polarizing field is generally made perpendicular to the main
field, and only pulsed long enough to properly polarize the proton spins. Once the
spins are suitably polarized, the polarizing field is ramped down and the spins are
brought to a precessing motion around B⃗0. There are two methods for ramping
down Bp [7]. In the non-adiabatic method, Bp is ramped down quickly, leaving the
magnetization perpendicular to the main field, and thus causing precession around
B⃗0. In the adiabatic method, the polarizing field is ramped down slowly. This causes
M⃗ to turn towards B⃗0, following the direction of the total magnetic field B⃗p + B⃗0.
The ramp down is still sufficiently fast that, while the direction of M⃗ changes, its
magnitude remains roughly constant during the adiabatic ramp down. Once the
magnetization has aligned with the main field, an excitation coil is pulsed to generate
an excitation field B⃗1 to tilt the magnetization away from B⃗0.

The non-adiabatic process has the potential advantages of allowing imaging to
begin almost immediately after polarization and of making the excitation coil unnec-
essary, thereby simplifying the system. However, in the adiabatic process, the use
of an excitation coil provides more control over the behavior of the magnetization.
Furthermore, stabilizing the magnetization parallel to B⃗0 before measurement im-
proves the directional homogeneity of M⃗ , as the main field can be designed to be
much more homogeneous than the polarizing field.

The MRI signal results from the changing magnetic flux pattern generated by
the precessing magnetization. Notably, the signal is generated by the bulk of protons
within the imaged object; each of the precessing protons generates its own magnetic
field, which means the measured field is a sum of the individual fields generated
by individual proton spins. To distinguish between spins at different locations in
order to determine the precise structure of the imaged object, gradient fields are used
to encode spatial information into the MRI signal by having precession frequency
depend on the location of the proton.

Three gradient fields, G⃗x, G⃗y and G⃗z, are used to alter the Larmor frequency
fL = γB. The magnitude of the total field becomes Btot(r⃗ ) = B0 + ∆B(r⃗ ), where
∆B(r⃗ ) is the contribution of the gradient fields, assuming (inaccurately) that there
is no change in the field direction. If the main field is defined as B⃗0 = B0êz, where
êz is a unit vector along the z-axis, the gradient is defined as the vector G⃗(t) with
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components Gi(t) = ∂Bz

∂i
(t), i = x, y, z. We can then define the spatial dependence

of the change in Bz as ∆B(r⃗ ) = r⃗ · G⃗(t), resulting in

fL(r⃗, t) = γ
[
B0 + r⃗ · G⃗(t)

]
. (1)

With fL being the frequency of the precession of magnetization M⃗ , and ignoring
relaxation effects for now, the rotating component M⃗xy can be expressed as a complex
number

M̃xy(r⃗, t) = Mxye−i
∫ t

0 fL(r⃗,t′) dt′ = Mxy(r⃗ )e−iγB0te−iγ
∫ t

0 r⃗·G⃗(t′) dt′
. (2)

Defining ω0 = γB0 and k⃗ = γ
∫ t

0 G⃗(t′) dt′, the above equation can be simplified into

M̃xy(r⃗, t) = Mxy(r⃗ )e−iω0te−ik⃗·r⃗ . (3)

One can construct a total complex signal Ψ , which is proportional to M̃xy(r⃗, t)
integrated over the volume of the imaged object. As the factor e−iω0t has no spatial
dependence, it can be taken outside the integral, resulting in

Ψ ∝ e−iω0t
∫
R3

Mxy(r⃗ )e−ik⃗·r⃗ d3r⃗ , (4)

where we assume an ideal detector with a uniform sensitivity profile. In signal
processing, the constant frequency factor e−iω0t can be removed with a demodulation
technique known as quadrature detection [1]. This demodulated signal ΨQD can be
expressed as

ΨQD ∝
∫
R3

Mxy(r⃗ )e−ik⃗·r⃗ d3r⃗ , (5)

which notably turns out to be the three-dimensional spatial Fourier transformation
of Mxy(r⃗ ), where k⃗ is a vector in spatial frequency space referred to as k⃗-space. By
manipulating k⃗ as measurements are made, MRI essentially directly measures the
Fourier transform of the imaged object.

To get an image out of the signal, Ψ has to be measured at a large number of
points in k⃗-space. As a rough reconstruction, after measuring over a grid in k⃗-space,
a discrete inverse Fourier transform turns the spatial frequency data of k⃗-space into
an image. The resolution of the image depends on the number of points in k⃗-space
we have measurements of—the more points we have, the more complete a picture of
the frequency-domain image we get, and thus the better the image resolution will
be. To acquire k⃗-space data, the gradient G⃗(t) is applied to alter the value of k⃗,
which was defined as k⃗ = γ

∫ t
0 G⃗(t′) dt′. Essentially, the gradients allow us to travel

in k⃗-space with velocity γG⃗.
Traditional tissue contrast in MRI arises from proton-density contrast and the

relaxation effects we have ignored until now. Because the total magnetization is
proportional to the proton density, proton-density contrast can be seen directly from
M⃗xy(r⃗ ) acquired from the inverse Fourier transform of k⃗-space data. However, in soft
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tissue imaging, proton-density contrast is much weaker than tissue contrast obtained
from relaxation effects in magnetization [1].

Relaxation effects cause the magnetization component magnitudes Mxy and Mz

to change as M⃗ precesses around B⃗0. From the typical starting point of turning the
magnetization M⃗ = M0êz by 90° to the xy-plane so that the initial magnetization is
M⃗0 = M0êx, there are two relaxation factors that affect M⃗ . Mz relaxes with time
constant T1 from zero to equilibrium value Meq determined by the applied magnetic
field, and Mxy relaxes with time constant T2 towards zero. As different tissues
have different values of T1 and T2, tissue contrast can be improved far beyond mere
proton-density contrast by designing the MRI pulse sequences so that the generated
signal greatly depends on T1 or T2. Using contrast based on relaxation times is the
standard method of achieving tissue contrast in most applications of biomedical MRI.

2.2 SQUID sensors
Superconducting QUantum Interference Devices (SQUIDs) are highly sensitive mag-
netic flux detectors, the operating principles of which are related to two phenomena
of superconducting electronics: Josephson tunneling and flux quantization [11].

When a material capable of superconductivity is transitioned into a superconduct-
ing state by cooling it below its critical temperature Tc, its electrons form Cooper
pairs that can carry a current with zero resistance. A Josephson junction consists
of two superconductors separated by a thin insulating barrier. This barrier is thin
enough that, in a superconducting state, Cooper pairs can tunnel through it and
carry current across the junction. Applying a current through a Josephson junction
does not generate voltage until a critical current is reached, after which a voltage
appears in the circuit.

Flux quantization refers to the phenomenon of the total flux passing through
a superconducting loop always being an integer multiple of the flux quantum
Φ0 = h/2e ≈ 2.07 · 10−15 Tm2, where h is Planck’s constant and e is the ele-
mentary charge [11]. The direct current (dc) SQUID is a superconducting loop with
two Josephson junctions in parallel [12]. For a superconducting loop like this, an
external magnetic field that is not an integer multiple of Φ0 induces a phase difference
in the wave function of the Cooper pairs across the Josephson junctions. Since the
magnitude of the phase difference depends on the deviation of the external magnetic
field from the nearest integer multiple of the flux quantum, the phase difference is
periodic with period Φ0.

A constant bias current Ib, larger than the critical current, is applied across
the SQUID loop, causing a voltage to appear due to the Josephson junctions. The
magnitude of this voltage depends on the magnetic flux through the superconducting
loop. This is because the phase difference induced in the Cooper pair wave function
across the Josephson junctions alters the relation between voltage across and current
through the loop. With the bias current remaining constant, this results in the voltage
across the loop being a function of the external magnetic flux. The voltage oscillates
with a period of Φ0 in accordance with the aforementioned flux quantization.

Notably, if the voltage across the superconducting SQUID loop is measured,
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the response is dependent on the magnitude of the magnetic flux, not its time
derivative like in an induction coil. Because of this, a SQUID can be thought of as
a flux-to-voltage transducer that permits direct measurement of magnetic flux by
measuring the voltage across the loop. In measuring biomagnetic signals, however, it
is conventional to operate the SQUID in a flux-locked loop, in which a feedback loop
keeps the voltage constant, and thus also the flux [12]. What is then measured is
the signal that goes into the feedback loop. This gives a direct measure of the flux
without leading to issues that can arise from voltage response periodicity, such as
loss of accuracy near the minima and maxima of the periodic response function.

As seen in Fig. 1, the superconducting loop with Josephson junctions and the
feedback coil Lf with its related electronics are not the only building blocks of the
basic dc SQUID setup. The small size of the SQUID loop makes the flux through
it extremely small. To enhance the signal, a flux transformer is used to increase
the effective area of the SQUID loop. A simple flux transformer consists of two
connected coils, the pickup coil Lp and the input coil Li. The larger pickup coil is
used to capture the faint MRI signal, which is then replicated by the smaller input
coil near the superconducting loop. This allows the SQUID to record the flux from
a larger area than the SQUID loop itself encloses, improving signal strength. As
the superconducting parts have to be cooled down below the critical temperature of
the conductor, the SQUID setup has to be placed in a dewar containing a suitable
coolant. The coolant used for SQUIDs is usually liquid helium [12], which boils at
4.2 K, well below the critical temperature of the common superconductor niobium,
which has Tc = 9.2 K [13].

Figure 1: The schematic of a dc SQUID sensor. The external field B⃗ is picked up by
the flux transformer pickup loop Lp and the signal is replicated close to the SQUID
loop by the input coil Li. The feedback coil Lf keeps magnetic flux through the
SQUID loop constant, with the input to the feedback coil being the SQUID signal.
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2.3 Magnetically shielded rooms
A properly optimized SQUID sensor can detect tiny changes in magnetic fields, such
as changes measured in femtoteslas or even attoteslas [12]. This extremely high
resolution is necessary for properly measuring faint ULF-MRI signals. However, high
resolution is of little use in the presence of external magnetic noise equal or greater in
magnitude compared to the signal to be measured. The Earth’s magnetic field alone
can produce random noise of a magnitude measured in nanoteslas [14], and activity
from nearby electronics and moving objects can result in even greater disturbances.
Furthermore, the magnitude of the Earth’s magnetic field on Earth’s surface ranges
from roughly 20 µT to 65 µT [15]. Since that magnitude is comparable to the
typical strength of an ULF MRI main field, the Earth’s magnetic field can severely
distort ULF-MRI measurements. For these reasons, ULF MRI requires shielding
from external magnetic interference for accurate measurements to be possible. A
common approach to shielding is to perform measurements inside a magnetically
shielded room (MSR).

An MSR can be designed to protect against different types of magnetic interference
[7]. One type of magnetic interference is high-frequency magnetic interference, in
which the magnetic field changes rapidly. As this type of interference is characterized
by a changing magnetic field, it can be shielded against with eddy currents. Plates
of metal with high electrical conductivity respond to the changing magnetic field by
forming eddy currents that generate opposing magnetic fields as per Lenz’s law. The
higher the conductivity of the material, the stronger are the induced eddy currents,
resulting in increased shielding capability.

Another type of magnetic interference that can be shielded against is low-frequency
magnetic interference and (almost) static background fields. Since eddy currents
are the result of a changing magnetic field, eddy-current shielding becomes less
effective the lower the rate of change in the external magnetic field is. Shielding
against low-frequency interference or static fields is instead accomplished by providing
magnetic field lines an easier path around the shielded volume than through it. This
is usually done by using layers of highly permeable ferromagnetic metals in the MSR
walls. One common metal used for this purpose is an alloy of nickel and iron referred
to as µ metal, the permeability of which can be on the order of 104µ0 [16].

Depending on the application of the MSR, one form of shielding might be preferred
over the other. An MSR intended for low-frequency measurements can be constructed
almost entirely of µ metal, as reducing high-frequency interference is unimportant.
For applications where static external fields or low-frequency interference are not
a problem, the MSR could be made entirely of a highly conductive metal such as
aluminium.

Regardless of what type of interference the MSR is tailored to shield against, there
are certain factors to MSR design that have to be taken into account. For maximal
shielding efficacy, the MSR plates should enclose the shielded area as completely
as possible. This means that the MSR should consist of as few individual plates
as possible, as seams between plates leave small gaps that reduce shielding efficacy.
Especially in eddy-current shielding, it is conventional to weld seams to let current
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flow as freely as possible from plate to plate and from wall to wall [17]. In addition
to seams, the use of electrical equipment inside the MSR can necessitate holes and
pass-through arrangements in the MSR walls for various cables, which has an effect
on the shielding efficacy. Another problem factor is the necessity of having a door.
As the seams connecting the door to the rest of the MSR cannot be welded, the
existence of a door creates a weak point in the MSR that cannot be completely
eliminated.

The physical shape of the MSR also has an effect on its shielding factor. Spher-
ical shapes are sometimes considered more effective at reducing electromagnetic
interference than cubic shapes [11, 18]. However, most MSRs are cube-shaped, as
spherical rooms are inconvenient to build and have to be larger for there to be the
same amount of operational space inside the room.

Tailoring the MSR to excel at shielding against one type of interference, even at
the cost of inefficacy in shielding against other types, is often useful. Unfortunately
ULF MRI, especially hybrid MEG-MRI, requires shielding against both high- and low-
frequency interference. Static fields affect the magnitude, direction and homogeneity
of the main field B0, when all of those parameters should be carefully fixed. High-
frequency noise makes accurately measuring the delicate signals impossible. As such,
the design of an MSR for ULF MRI often incorporates layers of both µ metal and
aluminium for cancellation against both types of interference. This is especially true
for ULF MRI combined with MEG, as MEG measurements involve frequencies almost
down to dc. Applying multiple layers of different materials for MSR construction
is not particularly unusual, as even MSRs designed to protect against one type of
interference are often made of layers of appropriate metals. It has been demonstrated
that adding layers improves the shielding factor more than increasing layer thickness
does [19].

While eddy-current shielding is necessary to prevent high-frequency external noise
from interfering with the sensitive ULF-MRI measurements, having conductive plates
near the ULF-MRI coils during measurement can be a problem of its own. ULF-MRI
pulses such as the polarizing pulse induce eddy-current transients in the MSR walls.
While these transients may not always significantly interfere with the ULF-MRI pulses
themselves, they can easily prevent SQUID measurements for a period of time after
pulsing the ULF-MRI coils. Alleviating this problem by restricting eddy currents is
often not viable, since shielding against external high-frequency interference is based
on induction of eddy currents—preventing eddy currents from forming in the walls
of the MSR would compromise its shielding efficacy.

2.4 Eddy currents induced by MRI pulses
Changing magnetic fields induce eddy currents in conductive surfaces such as MSR
walls. At any point in the conductive surface, the current can flow in any direction
tangent to the surface. The only restriction for eddy currents is that the current
patterns must consist of closed current loops; eddy currents cannot cause charge to
accumulate in one point in the conductor [10]. Because there is an endless variety of
current distributions that fulfill that condition, there is an infinite number of possible
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eddy-current patterns an MRI pulse sequence can induce in the MSR walls.
The eddy-current patterns induced by ULF-MRI pulse sequences can differ

significantly in complexity. Some patterns might be as simple as current travelling
in a straight path across the walls of the MSR, encircling the room. Other patterns
might involve complicated current distributions spanning the floor and ceiling of the
MSR in addition to the walls. The current in each of these characteristic spatial
patterns, or modes, decays exponentially with its own time constant [10]. These
time constants can vary greatly between different modes, ranging from less than a
millisecond to several seconds.

Several factors affect the time constants of eddy-current modes. Notably, the
geometry of an eddy-current mode plays a significant part in determining its time
constant. Simple, straightforward current modes consisting of large current loops
have relatively long time constants, whereas more intricate modes tend to decay
first [7]. Another significant factor that affects time constants is the thickness of the
conductive layers of the MSR, with thicker walls resulting in longer time constants
[10]. The conductivity of the walls also affects eddy currents. The less resistance an
eddy current encounters, the longer it will take for it to decay.

Through these factors, the design of the MSR has a significant effect on the eddy
currents induced in its walls. In addition to the straightforward effects of the choice
of material and the thickness of the walls, the design of seams between conductive
plates affects the behavior of eddy currents in the MSR walls. If the seams between
the conductive plates are not highly conductive, eddy currents passing between plates
are weakened due to the extra resistance at the seams. Since eddy currents spanning
multiple plates tend to cover more surface area and thus have longer time constants,
resistive seams affect eddy-current modes with long time constants the most, whereas
modes with short time constants might be unaffected. How small areas the eddy
currents are confined to depends on the design of the plates the walls consist of. If
each wall is a single plate, there can be enough space for large current loops with long
time constants to form even if the seams between walls are highly resistive. If walls
consist of a number of weakly connected smaller plates, currents can be confined in
a way that does not leave room for modes with long time constants.

The variety of possible eddy-current modes makes the behavior of eddy currents in
conductive surfaces complicated. What makes it even more complex is that magnetic
pulses do not simply excite a single, complicated eddy-current mode with a singular
time constant. Instead, the pulse can couple to any number of modes, causing the
resulting eddy currents to be a superposition of multiple modes with different time
constants [9]. Because the current in each of these individual eddy-current modes
decays at its own rate, the time behavior of the transients as a whole cannot be
characterized with a single time constant, and the spatial pattern changes with time.
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3 Theory
Transient magnetic fields generated by eddy currents induced by MRI pulse sequences
present a significant hurdle for making accurate ULF-MRI measurements. These
exponentially decaying transients can be many orders of magnitude larger than the
signal produced by ULF MRI. Due to the limited field range of SQUID sensors,
large magnetic-field transients make measurements impossible until the fields have
decayed sufficiently, at which point the MRI signal has significantly diminished as
well. In this chapter, I provide an overview of the transient cancellation technique
known as dynamical cancellation, or Dynamical Coupling for Additional dimeNsions
(DynaCAN), along with an exploration of the physics of eddy-current transients and
how they relate to DynaCAN.

3.1 Dynamical Coupling for Additional dimeNsions – an
overview

As established in Sec. 2.4, the transient eddy currents induced in MSR walls by
ULF-MRI pulse sequences appear as a combination of multiple eddy-current modes
that decay at different rates. While the presence of multiple separate modes with
different time constants makes the transient behavior more complicated overall, it can
also be made use of in dynamical transient cancellation. This method of nullifying
transients was first developed by Koos Zevenhoven in 2011 [8], and first implemented
by Zevenhoven et al. in 2015 [9].

Each pulse in an ULF-MRI sequence induces a unique transient response that
is a linear combination of various eddy-current modes [10]. How a pulse couples to
different modes depends on the design of the coil it is driven to, the design of the
MSR, and the shape of the pulse waveform [7]. The objective of dynamical transient
cancellation is to nullify the transient eddy currents induced by ULF-MRI pulses by
adding a new pulse into the ULF-MRI sequence [9]. This additional pulse waveform
is designed to couple to the eddy-current modes in a way that reduces the transients
induced by the ULF-MRI pulse sequence as a whole. By adding a cancellation pulse
that on its own would generate eddy-current transients that are the opposite of those
induced by the rest of the sequence, the eddy currents induced by the pulse sequence
as a whole are minimized.

Because the coils used for MRI pulses are usually not designed to couple strongly
with the eddy-current modes of the MSR, the cancellation pulse waveform is driven
into a separate cancellation coil. This can also reduce the magnetic disturbance
caused by the pulse in the imaging volume. Because the design of the coil plays
a part in determining how a pulse couples with different modes, driving the same
waveform into two different coils will not induce the same eddy currents. This means
that simply using a cancellation pulse identical but opposite to another pulse in the
sequence, multiplied with some suitable scaling coefficient, is unlikely to produce the
exact opposite transient response required to properly nullify eddy currents. Instead,
the cancellation pulse uses a specifically designed waveform in order to couple with
the eddy-current modes of the MSR in a way that cancels the transients generated
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by the rest of the sequence.
The coupling of a magnetic pulse waveform to eddy-current modes with different

time constants depends on the features of the waveform at different time scales [9].
For example, low-frequency features of the magnetic pulse couple stronger to eddy-
current modes with long time constants than high-frequency features, which in turn
couple stronger to eddy-current modes with short time constants. By constructing the
cancellation waveform out of various features with different time scales, it is possible
to design a pulse that induces eddy currents with desired magnitudes to particular
eddy-current modes. This way, harmful transients induced by ULF-MRI pulses can
be eliminated by finding a waveform that couples with the relevant eddy-current
modes in a way that induces the opposite current to them. This approach of using
pulse features with different time scales to manipulate eddy-current modes is known
as DynaCAN. Figure 2 shows an example of a DynaCAN transient cancellation
pulse waveform designed to zero the 12 eddy-current modes with the longest time
constants induced by its accompanying polarizing pulse [8].

What gives transient cancellation with DynaCAN an advantage over approaches
to transient cancellation based on coil or MSR design is its flexibility. Tackling
eddy currents by designing the MSR and the coil setup in such a way that minimal
transients are produced, while effective, does not lend itself well to tweaking the
transient response should the need arise. Should changes be made to the coil system
such as changing the location of a coil, or should a new measurement scheme have
different requirements for transients, the affected coils have to be redesigned and
reconstructed in order to retain optimal cancellation efficacy. With DynaCAN, there
is no need to make changes to the cancellation coil, as the transient response can be

Figure 2: An example pulse for cancelling transients generated by a polarizing pulse.
Figure reproduced from Ref. [8].
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optimized to meet new requirements simply by changing the waveform of the pulse
driven in the coil accordingly.

While there is leeway in cancellation coil design thanks to the flexibility of the
pulse waveform, some coil designs work better for DynaCAN than others. The
stronger the field generated by the coil is at the MSR walls, the stronger its coupling
with eddy-current modes will be. Because of this, having the DynaCAN coil be close
to the walls can improve the efficacy of dynamical cancellation while also reducing
interference caused by the DynaCAN pulse in the center of the room. Additionally,
the shape of the magnetic field generated by the coil determines how easy it is to
couple to particular modes. The closer the shape of the magnetic field produced by
the cancellation coil is to the magnetic field produced by another coil, the easier it is
to generate transient responses similar to what that coil could produce. Since the
shape of the magnetic field is determined by coil design alone, it is useful to design
the coil to generate a similar magnetic field as the coils that cause the most harmful
transients during the ULF-MRI pulse sequence. As the polarizing pulse is orders
of magnitude stronger than other magnetic pulses used in ULF MRI, this usually
means that designing the DynaCAN coil to be concentric with the polarizing coil
is preferable for efficient transient nullification. An illustration of this type of coil
setup can be found in Fig. 3.

The flexibility of DynaCAN can also enable a greater cancellation efficacy than
what can be accomplished with coil design alone. While it is theoretically possible
to construct the coils and the MSR so that eddy-current transients are practically
nonexistent, space limitations and other practical considerations impose constraints
on MSR and coil designs that restrict the cancellation efficacy that can be achieved
with such methods in practice. Of course, DynaCAN is not without its practical
limitations either—for example, the amplifier used for driving the pulse into the
DynaCAN coil limits the maximum amplitude and slope of the waveform. Still, in
suitable conditions, it can be expected that dynamical cancellation can be made

Figure 3: A schematic depiction of an example coil setup showing a cancellation coil
coplanar with the polarizing coil. Figure reproduced from Ref. [8].
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more effective at cancelling transients than methods based on coil design alone.

3.2 Eddy-current transients
In this section, we examine the theory of a system of eddy currents in more detail to
see that the eddy currents remaining after magnetic pulses indeed are a combination
of various exponentially decaying modes with their individual time constants.

The physics of eddy currents in MSR walls has been studied in detail by Zeven-
hoven et al. in Refs. [10] and [7]. Approximating the layers of aluminium and µ
metal in the MSR walls as ohmic conductors, eddy-current transient generation can
be thought of as a time-invariant linear process. Expressing eddy currents as a linear
combination of n basis functions that each have their own amplitude and mutual
inductance with the MRI pulses, transient behavior is modeled as an n-dimensional
system with input g(t) and state j(t). Both g(t) and j(t) are vectors of size n where
each element corresponds to a particular eddy-current basis function. The state
vector j(t) contains the current amplitudes of each basis function, and the input
vector g(t) displays the electromagnetic induction of new current into the various
basis functions. A simple model for a time-invariant linear system with n degrees of
freedom is

d

dt
j(t) = Aj(t) + g(t) , (6)

where A is an n × n constant coefficient matrix that describes the properties of the
system. Because there is an infinity of possible eddy-current patterns, a perfectly
accurate model would require n to be infinitely large. However, in practice, the
number of eddy-current modes that produce a notable transient is limited. Simply
taking into account the ten to twenty most significant modes can be enough to model
the transient behavior of the system with reasonable accuracy. Therefore, n can be
limited to a computationally manageable number.

Equation (6) has a known solution

j(t) = etAj(t0) +
∫ t

t0
e(t−s)Ag(s) ds , (7)

where the first term describes homogeneous behavior with initial condition j(t0)
and the second term shows the effect of outside input. In the case of eddy-current
transients in ULF-MRI applications, this outside input is the induction of new eddy
currents caused by the ULF-MRI pulse sequence as a whole.

If A is diagonalized as A = SΛS−1, where Λ is a diagonal matrix consisting of
the eigenvalues λk of A and matrix S contains the eigenvectors sk corresponding to
λk, Eq. (7) can be expressed as

j(t) = SetΛS−1j(t0) + S
∫ t

t0
e(t−s)ΛS−1g(s) ds . (8)

The above expression describes transient behavior in terms of the vector quantities
j(t) and g(t), which describe, respectively, the current magnitude and the induction
of new current at any given time separately for every eddy-current basis function.
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However, if in practical measurements the measured quantity is a scalar magnetic
field component and the input is a combination of scalar pulses driven into coils, it is
more useful to look at these scalar qualities as opposed to the vectors j(t) and g(t).

The magnitude of a scalar magnetic field component generated by eddy-current
transients at a particular point of interest can be expressed as

B(t) = q∗j(t) , (9)

where * denotes the conjugate transpose and vector q(t) describes the coupling
between the n eddy-current patterns and a magnetic-field component B(t) at a point
of interest.

Since the input g(t) of the system arises from a set of coils each with their own
pulse I(t) and coupling vector p, the total input can be expressed as a sum over all
the coils in the system,

g(t) =
∑

i

dIi

dt
pi , (10)

where vectors pi describe the coupling between the scalar pulses Ii(t) in particular coils
and the n eddy-current patterns of the system. Because electromagnetic induction is
caused by change in magnetic field, the vector input g(t) is expressed in terms of the
time derivatives of the pulses Ii(t).

By applying the definitions in Eqs. (9) and (10) into Eq. (8), we get the scalar
expression

B(t) = q∗S
(

etΛS−1j(t0) +
∑

i

∫ t

t0
e(t−s)ΛS−1pi

dIi

dt
(s) ds

)

=
∑

i

q̃∗
(

etΛj̃(t0) +
∫ t

t0
e(t−s)Λp̃i

dIi

dt
(s) ds

)
, (11)

where S has been absorbed into redefinitions of the coupling vectors and the system
state as p̃i = S−1pi, q̃(t) = S∗q(t) and j̃(t) = S−1j(t).

We can examine the transient response of a single coil by setting the current in
other coils to zero. The same essential physics of eddy-current transients will be
found regardless of whether the system has one or more coils. In a single-coil system,
g(t) = dI

dt
p, where I(t) is the pulse driven into the coil and p the eddy-current

coupling vector corresponding to the coil. This simplifies the above expression of
B(t) into

B(t) = q̃∗
(

etΛj̃(t0) +
∫ t

t0
e(t−s)Λp̃

dI

dt
(s) ds

)
. (12)

Writing Eq. (12) as a sum over the n eddy-current modes k results in

B(t) =
∑

k

q̃∗
k

(
eλktj̃k(t0) +

∫ t

t0
eλk(t−s)p̃k

dI

dt
(s) ds

)

=
∑

k

q̃∗
ke

− t
τk

(
j̃k(t0) +

∫ t

t0
e

s
τk p̃k

dI

dt
(s) ds

)
, (13)
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where τk = −1/λk. This expression for the generated magnetic-field component B(t)
shows that the transient is composed of exponential components with time constants
τk. The scalar j̃k(t0) is the state of transient mode k at the starting time t0, whereas
the integral

∫ t
t0

es/τk p̃k
dI

dt
(s) ds expresses the induction of new current into mode k

caused by the changing magnetic field resulting from dI/dt. For a pulse I(t) that
ends at t1, and choosing a t0 before any eddy currents have been induced in the walls
yet, Eq. (13) can be expressed as

B(t) =
∑

k

q̃∗
ke

− t
τk

∫ t1

t0
e

s
τk p̃k

dI

dt
(s) ds when t ≥ t1 , (14)

since j̃k(t0) = 0 for all k and dI
dt

(t) = 0 for t ≥ t1. As the integral is no longer a
function of t, it is clear that without external magnetic pulses inducing new currents
into the system, the magnetic-field transient is a linear combination of exponentially
decaying components. The magnitudes of these transients are determined by the
pulse generated by I(t) and its coupling with the various eddy-current modes.

All coils in the ULF MRI setup produce transients in accordance with Eq. (13).
What differs between coils is the coupling p̃ between the pulse I(t) and the eddy-
current modes j̃(t), resulting in the same pulse driven to different coils producing a
different transient response. The aim of removing transients with DynaCAN is to
find a cancellation waveform Ic(t) that, when driven into a separate DynaCAN coil,
excites j̃(t) in a way that opposes the transients produced by the other pulses in
an MRI sequence, despite the different coupling p̃ of the DynaCAN coil. In ideal
cancellation, when ULF-MRI measurements are being performed, j̃(t) has been
reduced to zero by the cancellation pulse.

When directly measuring eddy currents j̃(t) in the MSR walls or accurately
characterizing the coupling p̃ between coil pulses and eddy-current modes is difficult, it
is simpler to find a suitable DynaCAN waveform by focusing on the easily measurable
magnetic-field transient rather than the eddy currents themselves. By finding a
waveform that produces a magnetic-field transient that is the opposite of the transient
produced by ULF-MRI pulses, the total transient field in the system becomes zero
when the cancellation pulse is added to the ULF-MRI sequence. Because the
magnetic-field transient is generated by the multiple eddy-current modes in the MSR
walls, the field being reduced to zero means that the eddy currents generating the
magnetic field have been nullified.

3.3 DynaCAN based on inverse step responses
As established in Sec. 3.2, eddy currents in the MSR walls are a superposition of
various modes of exponentially decaying modes with overlapping spatial patterns. To
find effective DynaCAN waveforms for cancelling these transients, we characterize the
behavior of the system of eddy currents. If the transient response of the cancellation
pulse can be calculated from the applied pulse waveform, various computational
methods can then be used to find DynaCAN pulses that nullify the harmful transients
generated by ULF-MRI pulses.
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The generated magnetic-field transient of any coil can be expressed as a function
of the pulse driven into the coil by characterizing the transient response with what is
called the inverse step response (ISR) of the coil [9]. Since the inverse step response
of a coil is relatively easy to determine with simple measurements, this allows us easy
access to a mathematical model for magnetic-field transients generated by pulses in
a particular coil. In this section, we go through the derivation of the inverse step
response expression for the magnetic-field transient, as established by Zevenhoven et
al. in Ref. [9]. Furthermore, we use the expression to demonstrate a fundamental
property of eddy-current transients that makes DynaCAN possible: that eddy-current
modes with different time constants respond differently to pulse features at different
time scales.

The various possible eddy-current patterns in the MSR walls are coupled with the
MRI coils and other eddy-current patterns via mutual inductances [10]. Describing
the mutual inductances between different eddy-current modes with matrix M and
the mutual inductances between modes and a particular coil with vector m, the
dynamics of the system can be described as

M
dj

dt
+ Rj + m

dI

dt
= 0 , (15)

where the vector j(t) describes the amplitude of each eddy-current mode, the diagonal
matrix R contains the respective resistances of the current modes and I(t) is the
pulse driven to the coil of interest [9]. This expression can be used to describe the
eddy-current dynamics of any coil in the system, with each coil having its own unique
M and m.

By applying a Fourier transform to the above equation, the frequency-domain
solution for j(t) becomes

ĵ(ω) = −(iωM + R)−1m × iωÎ(ω) , (16)

where ˆ denotes the Fourier transform. Next, we show that (iωM + R)−1m is the
frequency-domain eddy-current response induced by a particular type of pulse, the
inverse step pulse. By using the inverse step pulse I(t) = 1 − θ(t) where θ(t) is
the Heaviside step function, we get dI/dt = −δ(t), with δ(t) being the Dirac delta
function. Inserting this pulse into Eq. (15) and applying a Fourier transform, and
noting that δ̂ = 1, we get

ĵISR(ω) = (iωM + R)−1m , (17)

where ĵISR(ω) is the frequency-domain expression for how the currents in the eddy-
current modes respond to the inverse step pulse. By inserting Eq. (17) into Eq. (16)
and applying an inverse Fourier transform, we get

j(t) = −
(

jISR ⊛
dI

dt

)
(t) , (18)

where the inverse Fourier transform has turned the product ĵISR(ω) × iωÎ into a
convolution.
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As established in the previous section, the total magnetic-field transient at any
point in space is a linear combination of the individual fields generated by the indi-
vidual modes. Therefore, a component of the magnetic-field transient at a particular
point in space can be calculated as B(t) = q∗j(t), where q is a vector describ-
ing the magnetic coupling of the individual modes to a magnetic field component
at particular point in space, and * denotes the conjugate transpose. Multiplying
Eq. (18) with q∗, the equation becomes

B(t) = −
(

BISR ⊛
dI

dt

)
(t) , (19)

where the inverse step response BISR(t) is the magnetic-field transient induced by
an inverse step pulse driven in a coil of interest, with every coil having its own
BISR(t). This result shows that, if the ISR of a coil is known, the magnetic-field
transient produced by any arbitrary pulse I(t) driven in the corresponding coil can
be calculated for any point in time. This is convenient, as the ISR of a coil can be
determined with relatively simple measurements, whereas properties such as mutual
inductances can be very difficult to measure. Because of this, Eq. (19) is much easier
to use for calculating transient responses than, for example, Eq. (14).

Equation (19) can then be used to great effect in dynamical cancellation. In
a system that has a known BISR(t) for the cancellation coil, a cancellation pulse
Ic(t) can be found for a harmful transient by using Eq. (19) to find a waveform that
produces the opposite transient. Defining the harmful transient as Btr(t) and the
transient generated by the DynaCAN pulse Ic(t) as Bc(t), a suitable waveform can
be found by minimizing the total transient

|Btot(t)| = |Btr(t) + Bc(t)| =
⏐⏐⏐⏐⏐Btr(t) −

(
BISR ⊛

dIc

dt

)
(t)
⏐⏐⏐⏐⏐ (20)

over a period of time relevant to measurements, so that |Btot(t)| is as small as possible
for all t in the chosen time interval. This can be accomplished in practice by, for
example, minimizing the root-mean-square of |Btot(t)| in a time interval that starts
from the end of the pulse sequence and lasts until the end of measurements.

If both Btr(t) and BISR(t) are known, various mathematical methods can be
applied to use Eq. (20) in order to find a cancellation pulse Ic(t) that minimizes
|Btot(t)|. However, minimizing |Btot(t)| without constraining the shape of the pulse
waveform can result in a waveform that is unusable in practice. For example,
the maximum amplitude of the waveform can be larger than what the electronics
used to drive the pulse into the cancellation coil can produce. Because of this,
what is minimized in DynaCAN waveform generation is a penalty function that
includes penalty based on pulse shape in addition to penalty based on |Btot(t)|.
Detailed discussion on practical implementation of this approach to DynaCAN pulse
optimization can be found in Sec. 4.

In ideal cancellation, |Btot(t)| is reduced to zero in the relevant time interval,
meaning Bc(t) is the exact opposite of the harmful transient. This in turn means
the eddy currents induced by the cancellation pulse are the exact opposite of those
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induced by the rest of the ULF-MRI sequence, resulting in zero eddy currents induced
by the pulse sequence as a whole.

While it is not readily apparent from Eq. (19), this model can be used to demon-
strate a key property of transient behavior that makes DynaCAN possible: that
eddy-current modes with different time constants respond differently to pulse fea-
tures with different time scales. Fig. 4 demonstrates how sine pulses with different
frequencies couple with different eddy-current modes by showing pulses and their
transient responses calculated with Eq. (19) using an example ISR. It can be seen
from the calculated transient responses that sine pulses with low frequency couple
stronger to eddy-current modes with large time constants, whereas high-frequency
pulses couple primarily to eddy-current modes with small time constants.

Because the convolution in Eq. (19) is a linear operation, a pulse that is a
linear combination of different sine waves has a transient response that is a linear
combination of the responses of the individual sine components. The individual
components can, through their features at different time scales, cancel different
modes of the harmful transients. Therefore, a cancellation pulse that incorporates
multiple sine components can nullify a wide range of eddy-current modes, which
would be impossible to accomplish with a pulse operating at only one time scale.
This makes it possible to cancel highly complex transients by carefully manipulating
the different eddy-current modes using components with varying frequencies in
the cancellation pulse. This is the principle which forms the basis of DynaCAN,
though a DynaCAN waveform need not necessarily be a linear combination of specific
component waveforms, let alone sine components in particular. Any kind of pulse
waveform with features at different time scales can be used as a DynaCAN waveform,
regardless of how it is constructed.
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Figure 4: Sine pulses of different frequencies and their corresponding calculated
magnetic-field transients. The pulse amplitudes have been scaled to produce a
transient of the same magnitude at t = 0. As the frequency of the pulse increases, eddy-
current modes with short time constants become increasingly significant compared
to modes with long time constants.
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4 Methods
Implementing DynaCAN for cancelling a given eddy-current transient in an MSR
requires an algorithm for finding a suitable cancellation pulse to null the transient.
In this section, I present an algorithm for finding effective DynaCAN waveforms,
along with an analysis on how sources of error result in residual transients, and a
description of the setup used for the measurements displayed in Sec. 5.

The algorithm for generating DynaCAN pulse waveforms for cancelling a known
transient is a three-step process. First, the ISR of the cancellation coil is determined.
Second, the ISR is used with Eq. (20) in order to find a first-iteration DynaCAN
pulse to nullify the known transient. Third, the remaining residual transient after
cancellation is measured, and a new pulse component is generated to nullify the resid-
ual transient. The third step is then iteratively repeated until suitable cancellation
efficacy has been reached, or the efficacy can no longer be improved.

4.1 DynaCAN pulse waveform generation
4.1.1 Characterizing the eddy-current system

The inverse step response is used to calculate the transients generated by pulses
driven in the cancellation coil by using Eq. (19). Accurately determining the ISR is
necessary to ensure that the pulse waveforms found by the algorithm are effective
in cancelling real transients. Differences between the ISR used for computational
cancellation pulse optimization and the real ISR of the system result in the candidate
DynaCAN pulses having a different transient response than predicted from Eq.
(19). This means that DynaCAN pulse waveforms that are optimized to perfectly
cancel harmful transients according to the mathematical model will leave residual
transients when applied in real measurements. The more accurately the ISR has
been determined, the smaller the residual fields will be. While residual fields can be
reduced by iterating the pulse optimization algorithm as detailed later in Sec. 4.1.3,
smaller residuals mean fewer iterations are necessary to achieve high cancellation
efficacy. Furthermore, inaccuracies in the ISR can limit the maximal cancellation
efficacy that can be reached by iterating the pulse optimization algorithm.

Since accurately determining the ISR is important for finding effective DynaCAN
waveforms, it would be convenient if the ISR could be measured directly. In theory,
this can be done by simply pulsing the cancellation coil with an inverse step pulse and
measuring the induced magnetic-field transient. Unfortunately, this is not feasible if
the practical electronics are unable to produce pulses that would be close enough to
an inverse step pulse for our purposes.

When measuring the ISR itself is not an option, a less direct method must be
used. The transient response from the DynaCAN pulse, Bc(t) = −

(
BISR⊛dIc/dt

)
(t),

is determined by the cancellation pulse Ic(t) and the ISR of the cancellation coil,
BISR(t). Therefore, if we measure the response of a known pulse, the only unknown
left is the ISR. This means we can numerically estimate the ISR by minimizing
the difference between the measured transient Bmeas(t) and the transient calculated
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using a candidate ISR. In this work, the difference to be minimized was expressed
as the root-mean-square difference between the measured and calculated transients
over a time interval [T1, T2],√ 1

T2 − T1

∫ T2

T1

⏐⏐⏐⏐⏐Bmeas(t) + fx(t) ⊛ dI

dt
(t)
⏐⏐⏐⏐⏐
2

dt , (21)

where the time interval contains as much reliable transient measurement data as
possible, and fx(t) is the candidate ISR expressed as a linear combination of basis
functions characterized by a set of parameters x. As each basis function can be
thought of as the magnetic-field transient generated by one exponentially decaying
eddy-current mode with its own time constant, it makes sense to define our function
basis as

fx(t) = fa,b(t) =

⎧⎪⎨⎪⎩
0 when t < 0∑

i

aie
−bit when t ≥ 0 , (22)

where ai defines how strongly mode i appears, and bi is its time constant. The number
of modes should be chosen such that the important eddy-current modes are included.
Figure 5 shows an example ISR that is a linear combination of exponential functions
with different time constants, along with the individual exponential components it
consists of.

The numerical method used in this work to optimize parameters a and b to
minimize the expression in Eq. (21) was the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [20] as implemented in the Python package scipy.optimize. The
RMS error was calculated over a time interval that began as soon after the pulse
ramp down as possible and extended until the end of the measurement. Due to
acquired measurement data being unreliable for roughly 5 ms after pulse ramp down,
T1 was set to 5 ms after ramp down.

4.1.2 Finding a cancellation pulse waveform

Once the cancellation coil ISR is known, the next step is to measure the harmful
transient Btr(t) and apply Eq. (20) to find an effective DynaCAN waveform Ic(t)
to cancel Btr(t). Since the ISR of the DynaCAN coil can be used to calculate the
transient responses of candidate cancellation pulses, a DynaCAN waveform for a
known transient can be optimized entirely in software.

In a linear system, the total transient generated by a pulse sequence is the sum
of the transients individually generated by the pulses. In this work, instead of using
a full ULF-MRI pulse sequence, only the polarizing pulse was studied, as using
a single pulse made measurements easier to perform. Since the polarizing pulse
is much stronger than other ULF-MRI pulses, the transients generated by it are
correspondingly larger, making the polarizing pulse a natural first choice for transient
cancellation.

Assuming linearity, the polarizing pulse induces a harmful magnetic-field transient
Btr(t) and the cancellation waveform induces its own transient Bc(t), resulting in total
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Figure 5: An example ISR and the four exponential components with different time
constants it consists of.

field Btot(t) = Btr(t) + Bc(t). The task is to find a DynaCAN waveform that opposes
the harmful transient and brings the total field to zero. In perfect cancellation, this
means Bc(t) = −Btr(t), where the waveform couples with the eddy-current modes in
the walls in a way that perfectly nullifies the transients induced by the polarizing
pulse.

Finding a cancellation pulse for a given transient is straightforward in principle.
By minimizing a penalty function that depends on total remaining transient calculated
with Eq. (20), we can find a waveform that minimizes the total generated transient.
To ensure that the maximum amplitude of the pulse stays within reasonable limits,
the penalty function can also depend on the maximum amplitude of the cancellation
waveform. In this work, the penalty function fp{Ic(t)} was defined as a weighted
sum of the root-mean-square total transient and the square of the cancellation pulse
maximum amplitude

fp{Ic(t)} = cB

√
1

t1 − t0

∫ t1

t0
|Btot(t)|2 dt + cI

(
max

t
Ic(t)

)2
, (23)

where |Btot(t)| can be found in Eq. (20), and cB, cI are weighing coefficients for the
two types of penalty. The time interval from t0 to t1 is where transients would affect
ULF-MRI measurements. In this work, t0 was 15 ms and t1 200 ms, where the
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polarizing pulse ramp down ended at t = 5 ms. While it would have been preferable
to have t0 = 5 ms, the measurement data acquired was unreliable for roughly 10 ms
after polarizing pulse ramp down, making a small delay necessary.

In order to minimize the penalty function with respect to Ic(t), we parametrize
Ic(t) as a linear combination of a suitable set of basis functions. Since the cancellation
pulse must be continuous and zero at boundaries, a sine basis is a natural choice,
although it is by no means the only viable option. A DynaCAN waveform expressed
as a linear combination of n sine functions bounded between tc0 and tc1 can be
written as

Ia(t) =

⎧⎪⎨⎪⎩
0 when t < tc0 or t > tc1∑

n

ansin
(

nπ
t − tc0

tc1 − tc0

)
when tc0 ≤ t ≤ tc1 .

(24)

With this parametrization, one can find an a that minimizes Eq. (23) in order to
find a cancellation pulse. However, finding a suitable waveform with numerical
optimization is not without its difficulties. Minimizing the total transient with an
iterative optimization method such as BFGS can result in the optimization ending in
a local minimum with suboptimal cancellation efficacy even if better waveforms exist.
For example, the more sine basis functions were included in waveform optimization,
the more likely it was for the optimization to end prematurely in a local minimum. In
order to find efficient DynaCAN waveforms without restricting the algorithm to using
only a small number of basis functions, the waveform optimization was performed in
steps with increasing numbers of sine basis functions. First, pulse optimization was
performed with only a small amount of sine bases. After an initial round using only a
few basis functions, successive rounds of optimization were performed using the results
of the previous iterations as their starting points, with each round using more basis
functions than the previous one. This process was repeated until a specified number
of basis functions was reached. An example of a DynaCAN waveform produced with
BFGS minimization of Eq. (23), along with the sine components it consists of, is
shown in Fig. 6.

4.1.3 Iterating residual transient cancellation

Even with great care taken when performing the transient measurements and the
DynaCAN pulse optimization, the waveform obtained in the previous step of the
algorithm may not reach a sufficient cancellation efficacy such as 0.999. Even if the
calculated efficacy of the found DynaCAN pulse was as high as 0.999, various sources
of error can cause the actual transient cancellation efficacy to be lower. Errors in the
ISR estimate cause the calculated transient response of the DynaCAN coil to differ
from its real transient response. Errors in the measurement of the transients induced
by the polarizing pulse directly result in imperfect cancellation. Furthermore, the
assumption that eddy currents in the MSR are a linear system might not be entirely
accurate.

The cancellation efficacy can be improved by iterating the pulse waveform opti-
mization on the residual transient left after initial cancellation. By measuring the
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Figure 6: An example cancellation pulse and the individual sine components it
consists of. For clarity, only the first five sine components are included, one of which
is close to zero.

remaining field and treating it as a new transient to be cancelled, we can find a new
component to the DynaCAN waveform that cancels the residual field. Assuming
the eddy currents are a linear system, we can simply take the sum of the original
DynaCAN pulse and the residual cancellation pulse to create a new waveform that
aims to cancel also the leftover transient. If efficacy is still not sufficient, this process
of measuring the remaining transient and adding a new pulse component to cancel
it can be repeated until the desired efficacy is reached or until the sources of error
prevent further increase of cancellation efficacy. An example waveform after one
iteration of residual nullification can be found in Fig. 7.

Adding multiple residual cancellation pulses to the original DynaCAN pulse runs
the risk of each iteration increasing the pulse amplitude, eventually resulting in
amplitudes higher than permissible. To prevent this from happening, the residual
removal optimization algorithm does not impose amplitude penalties based on the
amplitude of the residual nullification pulse by itself. Instead, in the penalty function
shown in Eq. (23), the total cancellation pulse was used as Ic(t) for calculating
amplitude penalty

However, it is not always necessary to completely prevent residual cancellation
components from increasing the total pulse amplitude. As long as care is taken to
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ensure the pulse amplitude does not increase beyond acceptable limits, permitting
some increase in signal amplitude can result in more efficient transient removal. The
pulses shown in Fig. 7 are an example of this. The best waveform found by the
first iteration of DynaCAN pulse optimization had a maximum amplitude of roughly
4 A, whereas the electronics driving the pulse into the cancellation coil were capable
of generating amplitudes up to 10 A. Because of this, the residual cancellation
component was allowed to increase the total pulse amplitude, as the new maximum
amplitude of 7.5 A was still well within the limits of what the pulse-generating
electronics could produce.

4.2 Error analysis
Measurement errors at various stages of the DynaCAN pulse optimization process
can cause transient cancellation to work less efficiently than the calculations would
indicate. Errors in the measurements of Bc(t) for determining the ISR results in
an inaccurate BISR(t), which will cause error in all attempts to generate DynaCAN
pulses with said ISR. Measurement errors also occur when measuring the harmful
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Figure 7: An example second-iteration DynaCAN pulse, consisting of a first-iteration
cancellation pulse and a single residual cancellation pulse. Because the amplitude of
the first-iteration pulse was low, the addition of a residual cancellation pulse was
allowed to significantly increase the maximum amplitude of the pulse as a whole.
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transient to be cancelled, Btr(t). All of these errors result in residual transients.
The effect of measurement errors in ISR estimation can be found by examining

Eq. (19), which describes the transient generated by a pulse given the pulse waveform
and ISR of the pulsed coil. In ISR estimation, the transient generated by a known
pulse is measured, and Eq. (19) is used to determined the ISR of the coil. In case
of an erroneous measurement Bmeas(t) = Breal(t) + δB(t), where Breal(t) is the real
transient and δB(t) is an arbitrary measurement error, Eq. (19) takes the form

Breal(t) + δB(t) = −
(

Best
ISR ⊛

dI

dt

)
(t) , (25)

where Best
ISR(t) is the estimated ISR warped by the measurement error.

Expressing the ISR estimate as Best
ISR(t) = Breal

ISR(t) + δBISR(t), the equation above
can be written as

Breal(t) + δB(t) = −
(

Breal
ISR ⊛

dI

dt

)
(t) −

(
δBISR ⊛

dI

dt

)
(t) , (26)

where Breal(t) = −
(
Breal

ISR ⊛ dI/dt
)
(t) and δB(t) = −

(
δBISR ⊛ dI/dt

)
(t). This means

that a measurement error δB(t) in ISR estimation results in a corresponding error
δBISR(t) in the ISR estimate, where the shape of δBISR(t) depends on the measure-
ment error δB(t).

DynaCAN waveforms for cancelling a harmful transient Btr(t) are found by
solving for a cancellation pulse waveform Ic(t) that produces the opposite transient
so that Bc(t) + Btr(t) = 0. With an erroneous ISR estimate, using Eq. (19) to find a
DynaCAN pulse Ic(t) that results in zero total transient gives us

Best
tot(t) = Best

c (t) + Btr(t)

= −
(

Breal
ISR ⊛

dIc

dt

)
(t) −

(
δBISR ⊛

dIc

dt

)
(t) + Btr(t) = 0 ,

(27)

where Best
tot(t) is the estimated total transient and Best

c (t) is the estimated cancellation
coil transient response calculated with Eq. (19). The above expression can be written
as

Breal
tot (t) = Breal

c (t) + Btr(t) =
(

δBISR ⊛
dIc

dt

)
(t) , (28)

where Breal
tot (t) is the real total transient and Breal

c (t) is the real transient produced
by the candidate cancellation pulse Ic(t). This means that instead of the pulse
optimization finding a DynaCAN waveform Ic(t) that results in Bc(t) + Btr(t) = 0,
the error in the ISR causes the optimization algorithm to find a waveform that leaves
a residual field

(
δBISR ⊛ dIc/dt

)
(t).

The analysis above examined the propagation of an arbitrary measurement error
δB(t) in ISR estimation, and the result was a general expression for the residual
transient caused by the measurement error. However, this general expression is
difficult to use to calculate residual transients given a particular measurement error.
More specific results can be found by examining the effects of systematic error,
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where the measurement error is a function of the real magnetic-field transient.
The two most common types of systematic error are constant error and relative
error. In constant error, the measurement is shifted by a constant δBconst, resulting
in Bmeas(t) = Breal(t) + δBconst. Measurements with relative error will result in
Bmeas(t) = (1 + δb)Breal(t), where δb characterizes a shift in the measured magnetic
field that is proportional to the magnitude of the real magnetic field.

Since the magnetic-field transients consist of exponentially decaying components,
waiting long enough should cause the fields generated by any pulse sequence to die
down. This means that with suitably long measurements, what remains after the
measured magnetic field has stopped changing can be thought of as constant error.
By shifting the measurement results so that the transients die down to zero, constant
error can be dealt with before the measurements results are used for estimating ISRs
or optimizing cancellation pulses. However, one must be cautious to make sure the
transients have truly died down—some transient components can have very large
time constants and thus decay very slowly. Mistaking transient components for
measurement error results in constant error appearing in the data.

Unlike with constant error, there is no simple method for dealing with relative
error by post-processing the measurement data. Because of this, relative error in
measurements used for ISR estimation will propagate throughout the pulse optimiza-
tion process, causing residual transients to appear. With erroneous measurement
data Bmeas(t) = (1 + δb)Breal(t), we can find the effect this type of error has on the
ISR estimate by multiplying Eq. (19) with (1 + δb), resulting in

(1 + δb)Breal(t) = −(1 + δb)
(

Breal
ISR ⊛

dI

dt

)
(t) = −

(
(1 + δb)Breal

ISR ⊛
dI

dt

)
(t) , (29)

which can be expressed as

Bmeas(t) = −
(

Best
ISR ⊛

dI

dt

)
(t) , (30)

where the ISR estimate is Best
ISR(t) = (1 + δb)Breal

ISR(t). This means that a consistent
relative error δb causes the same relative error to appear in the ISR estimate.

When this incorrect ISR estimate is applied to find a cancellation pulse with
Eq. (19), the equation appears as

Best
tot(t) = Best

c + Btr(t) = −
(

(1 + δb)Breal
ISR ⊛

dIc

dt

)
(t) + Btr(t) = 0 . (31)

Since −
(
(1 + δb)Breal

ISR ⊛ dIc/dt
)
(t) = −(1 + δb)

(
Breal

ISR ⊛ dIc/dt
)
(t) = (1 + δb)Breal

c (t),
the above expression results in

Breal
tot (t) = Breal

c (t) + Btr(t) = −δbBreal
c (t) . (32)

This expression can be further refined by substituting Breal
c (t) = Breal

tot (t) − Btr(t) to
Breal

tot (t) = −δbBreal
c (t), resulting in Breal

tot (t) = −δb(Breal
tot (t) − Btr(t)), which in turn

can be simplified into
Breal

tot (t) = δb

1 + δb
Btr(t) . (33)
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This means relative error in ISR estimation causes residual transients directly pro-
portional to the relative error δb and the harmful transient Btr(t). With small δb,
the residual can be approximated as δbBtr(t).

Errors in the measurement of the harmful transient Btr(t) convert into residual
transients in a rather straightforward way. If the measured harmful transient is
Bmeas(t) = Btr(t) + δBtr(t), where δBtr(t) is a measurement error of any shape, with
perfect DynaCAN waveform optimization the cancellation pulse will produce the
opposite transient, meaning Bc(t) = −Bmeas(t) = −Btr(t) − δBtr(t). This results
in the total field becoming Btr(t) + Bc(t) = Btr(t) − Btr(t) − δBtr(t) = −δBtr(t),
which means that a measurement error δBtr(t) will result in a corresponding residual
transient −δBtr(t).

4.3 Measurement setup
The measurements were performed in the Aalto University MEG–MRI laboratory us-
ing parts of the ULF-MRI setup designed a hybrid MEG–MRI device. Measurements
were performed with a two-coil setup; one coil for generating a harmful transient,
and one coil to use as the cancellation coil. The polarizing coil would have been a
natural choice for the transient generating coil, but since it was not accessible at
the time the measurements were performed, a substitute polarizing coil was used
instead. This substitute coil was a small coil placed where the head of a patient
would be located in an MEG–MRI scan. Since there was no coil designed specifically
for DynaCAN in the coil setup, a shielding coil designed to be operated in series
with the polarizing coil was chosen as the cancellation coil. This shielding coil was
selected because it was roughly concentric with the substitute polarizing coil—the
center of the substitute polarizing coil was approximately 4 cm below the center of
the shielding coil. The average radius of the substitute polarizing coil was 7 cm, and
that of the shielding coil was 30 cm. These coils are shown in Fig. 8.

The MSR the measurements were performed in suits the needs of both MEG and
ULF MRI. Its walls were made of layers of both aluminium and µ metal for shielding
against high- and low-frequency interference. The walls of the MSR consist of two
layers, both made of slabs of aluminium and µ metal. The thickness of aluminium
in the layers was 8 mm, and the thickness of µ metal was 1 mm. The layers were
constructed so that the µ metal formed the inner surface of each layer [7].

The detector used for the measurements was a three-axis fluxgate magnetic field
sensor (MAG03MC1000, Bartington Instruments Ltd., England). The detector was
placed in the center of the substitute polarizing coil. That was taken as the location
where transient cancellation matters most. The measured magnetic field component
was the component perpendicular to the plane the two coils were located in, as this
was the strongest component of the magnetic-field transients.

The pulses driven into the coils were defined and generated by Python-based MRI
sequencing software and analog-to-digital conversion hardware. The pulses driven
into the cancellation coil were fed with an AE Techron 2105 gradient amplifier (AE
Techron Inc., USA), whereas the pulses driven into the polarizing coil were fed with
a Kepco BOP72-6ML bipolar amplifier (Kepco Inc., USA).
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Figure 8: The coils used for measurements in this work. The small coil in the middle
is the substitute polarizing coil applied to generate a harmful transient. Nearly
concentric with the polarizing coil is the shielding coil used as the cancellation coil.
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5 Results
The ISR used for DynaCAN pulse optimization was determined from three sets
of measurements, each set using a different pulse driven in the cancellation coil.
These sets of measurements were performed by driving a trapezoid pulse into the
DynaCAN coil and averaging over 200 measurements with each pulse. The first pulse
had amplitude 4 A and ramp time 2 ms, the second had amplitude 6 A and ramp
time 4 ms, and the third had amplitude 8 A and ramp time 6 ms. All three pulses
were 500 ms long, with each measurement lasting 1 second after ramp down. After
averaging the measurements, zero-level correction was performed by taking the mean
of the last 2000 points of each measurement time series, corresponding to roughly 0.2
seconds of measurement data, and subtracting these values from the measurements.

Figure 9 shows the ISR estimate that was found by minimizing Eq. (21), using
the three pulses described above. The individual exponential components the ISR
estimate consists of are also shown. Figure 10 shows results from the measurements
with the three ISR optimization pulses together with their corresponding calculated
transients determined with the found ISR estimate. The calculated transients closely
match the measured transients for all three pulses.

Transient cancellation measurements were performed with a trapezoid polarizing
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Figure 9: The ISR estimate of the cancellation coil and the four individual exponential
components with different time constants it consists of.
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Figure 10: The measured transients generated by the three trapezoid pulses used
for ISR optimization, along with their corresponding calculated transients. The
transients calculated with the ISR estimate accurately reproduce the measured
transients.

pulse of amplitude 10 A and ramp time 10 ms. The pulse lasted 510 ms, ending
at t = 5 ms. The transient generated by this pulse was cancelled by optimizing
a DynaCAN waveform to minimize the generated field from t = 15 ms onwards.
While it would have been preferable to minimize the transient immediately after the
polarizing pulse ended, the measurements were not reliable immediately after ramp
down. Three iterations of DynaCAN waveform optimization were performed. The
cancellation pulses lasted 500 ms, ending when the polarizing pulse finished ramping
down. The polarizing pulse and the three iterations of DynaCAN waveforms can be
found in Fig. 11.

The cancellation efficacy of a DynaCAN pulse can be quantified in many ways.
Two approaches were used in this work. The first was to define it as relative maximum
cancellation 1−Bcancel

max /Borig
max, where Bcancel

max is the maximum absolute value of the total
magnetic-field transient after ramp down with the DynaCAN pulse applied, and Borig

max
is the maximum absolute magnitude of the field after ramp down without DynaCAN.
Using this metric, a cancellation efficacy of 0.95 would mean the magnitude of the
cancelled transient at its highest is only 5% of the maximum magnitude of the
uncancelled transient. The other approach to characterizing efficacy was to look at
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Figure 11: The polarizing pulse and the three iterations of DynaCAN waveforms
used as cancellation pulses. The first-iteration cancellation pulse is similar in shape
to the polarizing pulse, whereas the following iterations are more complex.

how long it took for the absolute value of the field to decay below a chosen threshold
Bthres. This means finding td such that |Btot(t)| < Bthres for t ≥ td. In this work,
the threshold was chosen as 1% of the maximum measured absolute value of the
uncancelled transient after ramp down, Borig

max/100.
Because noise greatly distorts these metrics of cancellation efficacy, noise was

removed by fitting multiexponential functions to the measurement data. While noise
results in these exponential functions being imperfect representations of the real
transients, their maximum values are expected to be closer to the real maxima than
the maximum values of the raw measurement data. Estimating the point in time
when the transient has decayed below a specific value also becomes easier when using
multiexponential fits in place of raw measurement data.

The transient generated by the polarizing pulse alone and the transient generated
by the polarization and first-iteration cancellation pulses together are shown in
Fig. 12. The first-iteration DynaCAN waveform already significantly reduced the
measured field magnitude. Its cancellation efficacy was 0.977, meaning the remaining
transient was at worst 2.3% of the maximum value of the uncancelled transient.

The uncancelled transient has its maximum at the beginning of the data set at
t = 15 ms. This transient becomes consistently less than 1% of its maximum value
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Figure 12: The transients generated by the polarizing pulse without cancellation
and with the first iteration DynaCAN waveform. The cancellation pulse significantly
decreases the total field, but a noticeable residual transient still remains.

from td = 429 ms onwards. With the first-iteration DynaCAN pulse, the measured
field becomes consistently smaller than 1% of the maximum uncancelled transient at
td = 127 ms, roughly 300 ms earlier than without cancellation.

The second-iteration cancellation pulse was more effective than the first-iteration
pulse. Figure 13 compares the remaining transients when the first- and second-
iteration cancellation waveforms are applied. The overall shape of the transient
response is very similar between the two cancellation pulses, but the second-iteration
waveform successfully cancels a significant amount of the residual field from approx-
imately t = 20 ms to t = 200 ms. However, a short-lived transient spike remains
at the very beginning of the data set, where the remaining field is at its highest
magnitude. The cancellation efficacy of the second-iteration pulse was 0.988, with
the transient dropping below 1% of the maximum of the original transient almost
immediately, at roughly td = 15.3 ms. If the spike at the beginning of the data set is
ignored by skipping the first 2 ms of data, the cancellation efficacy becomes 0.994.
This means that, from t = 17 ms onwards, the remaining transient is, at worst, 0.6%
of the magnitude of the uncancelled field at t = 17 ms.

The transient responses of the polarizing pulse together with the second- and
third-iteration DynaCAN waveforms are shown in Fig. 14. This figure also displays
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Figure 13: The transients generated by the polarizing pulse together with the first
and second-iteration cancellation pulses. The second-iteration waveform reduces
the early residual transient so that its magnitude remains small throughout the
measurement interval.

the multiexponential fits to the measurement data that are used in efficacy calculation.
According to calculations, the third-iteration pulse should have resulted in smaller
residual transients than the second-iteration waveform from roughly t = 20 ms
onwards. However, when the third-iteration cancellation pulse was applied and
the transient response measured, the resulting residual field increased in magnitude
compared to the results with second-iteration waveform until approximately t = 135
ms. From t = 135 ms onwards, the cancellation efficacy of the third-iteration pulse
was superior to that of the second-iteration pulse.

The cancellation efficacy of the third-iteration pulse was 0.979, with the transient
response dropping below 1% of the maximum uncancelled transient at approximately
td = 50 ms. By those metrics, the third-iteration waveform is less effective than the
second-iteration waveform. However, the goal of transient cancellation for ULF MRI
purposes is to reduce transients enough to bring the magnetic field at the SQUIDs
within the field range of the detectors. Whether the second- or third-iteration pulse
better accomplishes this goal depends on how the field ranges of the SQUID sensors
are situated. If, for example, the absolute value of the magnetic-field transient must
be brought below 1 nT for measurements to be possible, the third-iteration pulse
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Figure 14: The transients generated by the polarizing pulse together with the second
and third-iteration cancellation pulses. The multiexponential fits to the measurement
data that are used in efficacy calculation are also shown. The early residual transient
was larger with the third-iteration pulse, but the field from t ≈ 135 ms onwards is
smaller than that of the second-iteration waveform.

accomplishes this earlier, at roughly t = 200 ms, whereas it takes until roughly
t = 400 ms for the second-iteration pulse. If the SQUIDs can perform measurements
with absolute transient magnitude 2 nT, then the second-iteration waveform is
superior as it reduces the field magnitude below that threshold almost immediately,
at approximately t = 16 ms, while the third-iteration waveform reaches low enough
transient magnitude at roughly t = 70 ms.
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6 Discussion
The measurement results demonstrate that dynamical cancellation with DynaCAN
can significantly reduce transients induced in MSR walls by coil pulses inside the
room. Notably, the second-iteration DynaCAN waveform reduced the magnetic-field
transient below one hundredth of the original test transient starting at approximately
12 ms after the end of the polarizing pulse, whereas without cancellation it would
have taken roughly 415 ms for the transient to decay to that extent.

However, the measurement results also deviated from the calculated transients
acquired in pulse waveform optimization to varying degrees, especially at short time
scales. Expected residual transients are compared with multiexponential fits to
measured residual fields using the second- and third-iteration cancellation pulses
in Fig. 15. The calculated transient response of the second-iteration DynaCAN
pulse is fairly close to the multiexponential fit to the corresponding measurement
data, with minor differences that have little effect on the cancellation efficacy of the
pulse. However, the function fitted to the residual field measured when using the
third-iteration DynaCAN waveform differs significantly from the expected transient,
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Figure 15: The transients generated by the polarizing pulse together with the second
and third-iteration cancellation pulses, along with the calculated transients found by
the pulse optimization algorithm. For clarity, the measured transients are expressed
as multiexponential functions fitted to the measurement data.
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resulting in considerably less effective removal of transients than predicted.
These discrepancies between the calculated and measured transient responses

could be the result of flaws in the ISR estimate. The ISR was estimated using three
sets of measurements averaged over 200 measurements. Individual measurements
lasted for one second after ramp down, which may have been too little time for eddy-
current modes with the longest time constants to die down, resulting in inaccuracies
in the ISR estimate, especially in the modes with long time constants. Furthermore,
the acquired measurement data was unreliable for roughly 5 ms after pulse ramp
down. These 5 ms of lost data could have resulted in eddy-current modes with very
short time constants being mischaracterized or completely ignored in ISR estimation.
Constant-frequency electronic noise visible in Fig. 14 can also be expected to distort
the ISR estimate, especially modes with short time constants. As shown in Fig. 15, the
differences between measured and calculated transients were at their largest in short
time scales, suggesting that eddy-current modes with short time constants were indeed
improperly represented in the ISR estimate. The above issues could be alleviated
by performing longer measurements and by improving the measurement setup in
order to reduce the delay between pulse ramp down and reliable data acquisition.
Eliminating noise further by averaging over more than 200 measurements could also
improve the accuracy of the ISR estimate.

It is also possible that refining the penalty function that is minimized to find
an ISR estimate could result in better ISR estimates. The penalty function used in
this work was a sum of RMS errors of transient responses calculated with the ISR
estimate compared to measured transients. Other approaches to defining the penalty
function may potentially yield better results. Furthermore, applying more varied
pulses for the measurements used for ISR estimation could improve the estimate.
In this work, only simple trapezoid pulses with fairly similar transient responses
were used. It is possible that these trapezoid pulses failed to sufficiently excite some
eddy-current modes that the DynaCAN waveforms did excite, resulting in those
modes being ignored in the ISR estimate. Optimizing the ISR estimate to accurately
reproduce a wide variety of different transient responses, generated by pulses that
differ greatly from one another, would likely make ISR estimation more reliable.

In addition to the above measures, the accuracy of the ISR estimate could be
further improved by performing measurements at multiple points inside the MSR.
While the ISR of the cancellation coil will change depending on location, the ISR will
always be a linear combination of the same eddy-current modes with the same time
constants. This means that the different ISRs should still be linear combinations of
the same set of exponential basis functions. Finding a set of time constants that can
be used to construct ISR estimates in multiple locations makes it more likely that
modes corresponding to those time constants are truly present in the real ISR of the
coil.

Errors in the ISR estimate is not the only explanation for why the calculated
transients could differ from the measured fields. The transient response of the room
might not be perfectly linear. The electronics that drive the DynaCAN waveform
into the cancellation coil might be unable to perfectly replicate the intended pulse,
for example if the waveform has slopes steeper than what the electronics can generate.
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While there is little that can be done about nonlinearity in the system, using a
cancellation coil designed to couple strongly to the eddy currents in the MSR walls
could help with pulse generation. A specifically designed cancellation coil allows for
weaker pulses to achieve the same effects as waveforms with high amplitudes and
slopes driven into coils not designed for dynamical cancellation. Using pulses with
smaller amplitudes and slopes places less strain on electronics, making it less likely
that the amplifier fails to generate the exact specified pulse. Using a coil designed
for DynaCAN could also be expected to improve cancellation efficacy beyond what
was shown in the measurements presented in this thesis. These measurements were
performed using a shielding coil that was not designed for dynamical cancellation,
which may have significantly limited how strongly the cancellation pulses coupled
with various eddy-current modes.

The measurement setup is not the only part of the transient cancellation process
that has room for improvement. The implementation of the cancellation pulse
waveform optimization algorithm could also be refined further. While the basic
principle of finding a DynaCAN waveform by minimizing the penalty function found
in Eq. (23) is straightforward, making it work efficiently in practice can be challenging.
For example, waveform optimization with BFGS using sine bases was likely to end
in a local minimum that resulted in an ineffective cancellation pulse when more than
10 basis functions were used in optimization.

The implementation in this work decreased the likelihood of the optimization
ending prematurely in local minima by performing multiple rounds of optimization
with increasing numbers of sine bases in order to find an optimal pulse waveform to
minimize Eq. (23). However, BFGS optimization of a sine basis might not be the
most effective approach for finding efficient DynaCAN waveforms in the first place.
A numerical optimization algorithm other than BFGS could be better suited for the
task. Using a function basis other than a sine basis could make pulse generation
more flexible, potentially improving cancellation efficacy.

Furthermore, the penalty function used for pulse optimization was rather sim-
ple, consisting only of a weighted sum of RMS remaining transient and maximum
amplitude of the DynaCAN waveform squared. Refinements such as increasing
the significance of early transients in penalty calculation could result in improved
cancellation efficacy. It could also be worthwhile to explore alternatives to RMS
transient penalty, such as penalty based on maximum transient amplitude. While
the cancellation pulses presented in this work were effective, there is still consid-
erable room for exploring alternative implementations of the DynaCAN waveform
optimization algorithm.
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7 Conclusions
Eddy-current transients induced by ULF-MRI pulses in magnetically shielded rooms
limit imaging accuracy by preventing measurements until the transients have died
down sufficiently. In order to get as accurate ULF-MRI images as possible, it is
necessary to minimize the magnetic interference caused by these eddy currents.
Dynamical cancellation with DynaCAN is a novel transient nullification technique
that uses an individual DynaCAN pulse driven into a cancellation coil to minimize
the eddy-current transients induced by the ULF-MRI pulse sequence. The pulse
waveform makes use of features at different time scales to couple with the dynamical
eddy-current system in a way that counteracts transients generated by the rest of
the pulse sequence. Transients can be nullified with dynamical cancellation alone or
by using dynamical cancellation together with other cancellation methods.

In this work, I presented an algorithm for finding efficient DynaCAN waveforms.
First, the magnetic field inverse step response of the cancellation coil is determined.
The inverse step response can then be used to calculate the transient responses of
candidate DynaCAN pulses. This allows a measured harmful magnetic-field transient
to be cancelled by using numerical optimization to find a DynaCAN pulse waveform
that generates the opposite field. Once a suitable candidate cancellation pulse
has been found, the pulse is included in the ULF-MRI sequence and the resulting
field measured. If significant residual transients still remain, the cancellation pulse
waveform optimization can be iterated on by finding a waveform that cancels the
remaining transient. This residual nullification pulse can then be summed with the
original waveform to create a new pulse that attempts to cancel both the original and
the residual transient. This process of updating the DynaCAN pulse with residual
cancellation waveforms can be repeated until more effective pulses can no longer be
found.

Measurements were performed to demonstrate in practice the efficacy of dynamical
cancellation, using DynaCAN waveforms generated with the pulse optimization
algorithm. The transient to be cancelled was generated with a 500 ms long 10 A
trapezoid pulse with a 10 ms ramp time driven into a polarizing coil. Three iterations
of cancellation pulse optimization were performed, using waveforms that were 500 ms
long linear combinations of sine waves that ended at the same time as the polarizing
pulse. The resulting transients with each iteration of the algorithm were measured,
measurements starting 10 ms after polarizing pulse ramp down due to technical
limitations.

The first-iteration cancellation pulse reduced the transients in the measured
interval down to 2.3% or less of the maximum measured magnitude of the transient
without cancellation. The pulse reduced the field to under 1% of the maximum
uncancelled field from 122 ms after ramp down onwards, whereas without cancellation
it took 424 ms for the field to decay to 1% of its maximum magnitude. The second-
iteration cancellation pulse was more efficient, with the transient reduced to below
1.2% of the maximum uncancelled field in the measurement interval. Notably, after
12 ms from ramp down, the remaining field was consistently below 0.6% of the
maximum uncancelled transient. The third-iteration cancellation waveform was less
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effective than the second-iteration waveform until roughly 130 ms after ramp down,
after which it was more effective than the second-iteration pulse.

The measurements demonstrated that DynaCAN can be used for effective transient
cancellation. The algorithm for finding DynaCAN waveforms was capable of finding
cancellation pulses that greatly diminished the transients generated by the test pulse.
However, the measurements also showed that there is still room for improvement in
the implementation of dynamical cancellation. Both the measurement setup and the
implementation of the pulse waveform optimization algorithm could be improved in
numerous ways. With better cancellation coil design, better measurement equipment,
and refinements to the implementation of the measurements and the waveform
optimization algorithm, it can be expected that the efficacy of dynamical cancellation
with DynaCAN could be increased well beyond what was demonstrated in the
measurements presented in this work.
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