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We study a diffusive superconductor-normal metal-superconductor junction in an environment
with intrinsic incoherent fluctuations which couple to the junction through an electromagnetic field.
When the temperature of the junction differs from that of the environment, this coupling leads to
an energy transfer between the two systems, taking the junction out of equilibrium. We describe
this effect in the linear response regime and show that the change in the supercurrent induced by
this coupling leads to qualitative changes in the current-phase relation and for a certain range of
parameters, an increase in the critical current of the junction. Besides normal metals, similar effects
can be expected also in other conducting weak links.

PACS numbers: 74.45.+c, 74.25.N-, 74.50.+r

Superconducting Josephson junctions are non-linear
circuit elements and therefore their state and the su-
percurrent carried through them depends sensitively on
the properties of the field driving them. Besides the
average current or voltage across the junction, fluctu-
ations in the field also modify the junction response.
In traditional superconductor-insulator-superconductor
(SIS) junctions, this can be described via the fluctuating
phase difference φ(t) inserted in the dc Josephson relation
IJ = IC sin(φ(t)) within the resistively and capacitively
shunted junction (RCSJ) model [1]. As a result of these
fluctuations, the junctions may switch to the dissipative
state at bias currents lower than the critical current IC ,
and therefore the measured critical current is often lower
than its theoretical value that does not include the fluc-
tuations. The difference between the two is proportional
to the ratio of the temperature Tenv describing the fluc-
tuations and the Josephson energy EJ = �IC/(2e) of the
junction.

In contrast to such a simplified picture, fluctuations
can nevertheless have a significant effect on the criti-
cal current even if the condition EJ � kBT is satisfied.
Such an effect arises in superconductor–normal metal–
superconductor (SNS) junctions, where the insulator is
replaced by a normal metal (N) layer. These junctions
also support finite supercurrents, but the effect of the
electromagnetic field on this system is more complicated.
In SNS junctions the supercurrent depends not only on
the phase across the junction and its fluctuations, but
also on the state of the electron system inside the normal
metal [2]. This is determined by a balance of energy cur-
rents between the electrons on the normal metal island
and the other degrees of freedom in the system: phonons
in the metal film, electrons inside the superconducting
leads and — via the fluctuations — the electromagnetic
environment of the junction (electron-photon coupling)
[3]. At temperatures low compared to the superconduct-

ing energy gap, Andreev reflection [4] suppresses the en-
ergy transfer to the electrons in the leads. Therefore,
the state of the electron system depends on the balance
between electron-phonon and electron-photon coupling.
In this Letter, we derive a linear-response collision in-

tegral describing electron-photon scattering in an SNS
junction, and show that the effect of fluctuations on the
SNS supercurrent is controlled by a parameter different
from kBTenv/EJ , and that increasing the temperature
of the environment can lead also to an increase in the
SNS supercurrent. This effect is directly related to the
Eliashberg stimulated superconductivity [5, 6] in SNS
junctions. Besides changing the critical current, we show
that this effect modifies the current-phase relation as the
field absorption is greatly phase dependent.

FIG. 1. Circuit model for an electrical environment with ad-
mittance Yenv coupling to a superconductor-normal metal-
superconductor junction with admittance YSNS.

To specify our analysis, we consider the system de-
picted in Fig. 1. There, the SNS junction, described
by its normal-state resistance RSNS, length L, and dif-
fusion constant D, is coupled to an environment with
admittance Yenv. At first we consider this impedance as
generic, but specify it more when discussing examples.
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Moreover, we assume that the SNS junction can be dc
phase biased (e.g., in a SQUID setup) with phase φ and
consider only the limit of a long junction, L � ξ0 =√

�D/(2Δ), where Δ is the superconducting energy gap.
The fluctuations related to the dissipative part of Yenv

and those of the junction itself give rise to a fluctuat-
ing voltage ΔV (ω) and a total fluctuating current ΔI(ω)
over the junction. The electron-photon coupling then re-
sults into a dissipated power Peγ = 〈ΔV (ω)ΔI(ω)〉 into
(or out of) the junction. The details of ΔV and ΔI are
sensitive to the superconducting correlations in the SNS
junction, which we take into account in the following.
First we note that the coupling of the electrons on the

SNS junction to the electromagnetic environment can
be envisaged as a photon exchange between two sepa-
rate electron systems, described by energy distribution
functions fSNS

ε and f env
ε . Therefore, the collision inte-

gral for this process can be written in the form (below,
� = kB = 1)

Ieγ(ε) =

∫
dωdε′K(ω, ε, ε′)[fSNS

ε+ω f
env
ε′−ω(1− fSNS

ε )(1− f env
ε′ )

− fSNS
ε f env

ε′ (1− fSNS
ε+ω )(1− f env

ε′−ω)].

Here the kernel K(ω, ε, ε′) describes the coupling
strength, and includes the effects of the superconducting
correlations. We consider a macroscopic linear normal-
metal noise source, for which the radiation absorption is
energy independent, and which is in internal equilibrium,
described by temperature Tenv. In that case the kernel
does not depend on ε′ and we can carry out the integral
over ε′ to get

Ieγ(ε) =

∫
dωωK(ω, ε)[fSNS

ε+ω (1− fSNS
ε )(nenv

ω + 1)

− fSNS
ε (1− fSNS

ε+ω )n
env
ω ]

(1)

which describes electron-boson (photon) coupling. Here
nenv
ω is the Bose distribution function of the photons at

temperature Tenv and the two parts of the collision in-
tegral describe photon emission and absorption, respec-
tively.
We consider the effect of electron-photon interaction

on the supercurrent flowing through the SNS junction at
a certain phase difference φ across it,

IS(φ) =
1

eRSNS

∫ ∞

0

dε jS(ε, φ)(1− 2f(ε)), (2)

where jS(ε, φ) = Im[jE(ε, φ)] is the spectral supercur-
rent [2] and f(ε) is the electron distribution function. In
what follows, we consider linear response changes δf of
the distribution function due to the electron-photon cou-
pling, solving the kinetic equation

Ieγ(ε) = Ieph(ε) = −Γephν(ε)δf(ε), (3)

where the collision integral Ieph(ε) describing electron-
phonon scattering is assumed to be the dominant source

of energy relaxation. The latter form is valid in the linear
response regime; ν(ε) is the spatially averaged density of
states inside the normal metal normalized to the normal
state density of states at the Fermi level and Γeph is the
electron-phonon scattering rate. Energy diffusion into
the superconductors can be disregarded due to Andreev
reflection [4] when we consider energies much below the
superconducting energy gap Δ. Equation (3) is therefore
a valid approximation for long junctions L � ξ0, where
the relevant physics takes place around the Thouless en-
ergy ET = �D/L2.
In the linear response regime, the form of the kernel

K(ω, ε) in Eq. (1) can be argued by considering the ac
response of the junction [7, 8] on a fluctuating potential
due to the environment. We get K(ω, ε) = Kqp(ω, ε) +
Ksc(ω, ε)+Kdy(ω, ε), containing three parts due to quasi-
particle, supercurrent, and dynamic responses on the ac
potential. This yields

K(ω, ε) =
4

RKτDω2

Re(Yenv)

|Yenv + YSNS|2
{
1

2
〈[1 + g(ε)g(ε+ ω)∗

+
1

2
f(ε)f(ε+ ω)∗ +

1

2
f̃(ε)f̃(ε+ ω)∗]−1〉−1

− 1

2
∂φRe[jE(ε) + jE(ε+ ω)] (4)

−Im

[
ET

2(ω − 2iΓ)

[j(ε)− j(ε+ ω)∗]2

〈g(ε) + g(ε+ ω)∗〉

]}

≡ 4

RKτDω2

Re(Yenv)

|Yenv + YSNS|2
k(ε, ω, φ),

where 〈·〉 denotes a spatial average over the normal
metal island, RK = h/e2 is the resistance quantum,
τD = L2/D is the diffusion time, YSNS(ω) is the admit-
tance of the SNS junction [7], g(ε) and f(ε) are the nor-
mal and anomalous Green’s functions inside the normal-
metal island, jE(ε) is the spectral supercurrent [2], and
ET = D/L2 is the Thouless energy of the junction. These
quantities can be calculated from the equilibrium Usadel
[9, 10] equation. Note that this approach disregards the
equilibrium effect of phase fluctuations on the supercur-
rent [1]. It is typically relevant when Tenv is of the order
EJ , or when R|| ≡ Re[Yenv + YSNS]

−1 is of the order of
RK . In what follows, we thus assume R|| � RK and a
large enough critical current to satisfy Tenv � EJ .
Below, we describe the external noise source by as-

suming it to consist of a resistance Renv in parallel with a
capacitance C (as in Fig. 1). The change in the supercur-
rent due to electron-photon coupling at linear response
is then given by

δIS(φ) =
1

eRSNS

Renv

RKΓe−phτD

∫ ∞

−∞
dε

∫ ∞

−∞

dω

ω

jS(ε, φ)

ν(ε, φ)
×

k(ε, ω, φ)

ϕ(ω̃, r, ωC)
sech

(
ε

2TSNS

)
sech

(
ε+ ω

2TSNS

)
sinh

(
ω

2TSNS

)

×
[
coth

(
ω

2Tenv

)
− coth

(
ω

2TSNS

)]
, (5)
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where the circuit parameters constitute a frequency-
dependent term ϕ = |1− iω/ωC + rỹSNS(ω)|2 describ-
ing the matching between the SNS junction and the en-
vironment, containing the parameters r = Renv/RSNS,
ωC = 1/(RenvC) and ỹSNS ≡ RSNSYSNS. The presence
of a finite ωC cuts the contribution from high frequencies
— if ωC > max{TSNS, Tenv}, the cutoff is provided by
the temperature. In the opposite limit, we can expand
the coth(·) functions at low frequencies, and find that the
effect is proportional simply to Tenv − TSNS.
From Eq. (5) we find that the overall magni-

tude of the change induced in the supercurrent by
electron-photon coupling is described by the param-
eter α ≡ Renv/(RKΓe−phτD)(Tenv − TSNS)/ET =
(Renv/RK)(Tenv − TSNS)/(Γe−ph). The characteristics
of the effect depend mostly on the following four pa-
rameters: temperature TSNS of the SNS junction, phase
φ across the junction, the charge relaxation rate ωC ≡
(RenvC)−1 and the matching factor r ≡ Renv/RSNS. In
the following, we analyze their effect in more detail.
The effect of electron-photon coupling on the super-

current at phase φ = π/2 (close to the phase giving the
maximum supercurrent) as a function of the tempera-
ture TSNS of the phonons in the SNS junction is depicted
in Fig. 2. The inset shows the overall supercurrent as
a function of temperature in the presence and absence
[2, 11] of the electron-photon coupling (corresponding,
hence, to the cases Tenv > TSNS and Tenv = TSNS, re-
spectively). We find out that at low TSNS, the supercur-
rent decreases as the SNS junction heats up due to the
absorption of power from the electromagnetic environ-
ment. However, at higher temperatures, kBTSNS � 5ET ,
the electron-photon coupling to a high-temperature noise
source leads to an increase in the supercurrent. This is a
true nonequilibrium effect and resembles the stimulation
of superconductivity encountered also in the presence of
monochromatic driving of the junction [5, 12]. Note that
this happens strictly speaking at the linear response of
the junction to the electron-photon coupling: increasing
Tenv further eventually leads to a decrease of the overall
supercurrent.
The strongest enhancement of the supercurrent can be

found for phases around φ ≈ π/2. This effect can be
traced to the existence of a minigap of size ∼ ET in the
excitation spectrum (and the kernel k(E, φ)). On the
other hand, for phases φ ≈ π, the minigap closes and the
electron-photon coupling only suppresses the supercur-
rent. This characteristics is shown in Fig. 3, which shows
the supercurrent change δIS as a function of the phase.
A similar shape of the current-phase relation has been
found for monochromatic driving, both theoretically [5]
and experimentally [13].
The effect of electron-photon coupling is naturally

strongest when the resistance describing the electromag-
netic environment equals the SNS normal-state resis-
tance, i.e., r = Renv/RSNS ≈ 1, and as much noise as

FIG. 2. (Color online): Electron-photon coupling induced
change in the supercurrent vs. temperature of the SNS junc-
tion for φ = π/2, r = 1 and �ωC = 5ET . The blue solid line
shows the result calculated with the coherent kernel k(E, φ)
from Eq. (4) and the red dashed line the result that would
be obtained in the incoherent limit where k(E, φ) = 1. In-
set shows the total supercurrent in the absence of electron-
photon scattering (blue solid line) and a sketch of the effect
of electron-photon scattering with Tenv > TSNS (red dashed
line). The arrows point the direction of the change in the
supercurrent as the noise temperature of the environment is
increased. Note that in practice when considering δIS(T ), one
should take into account the temperature dependence of the
electron-phonon scattering Γeph ∝ T 3

SNS.

possible is coupled to the junction, and therefore ωC is
as large as possible [14]. For completeness, we show the
effect of varying these parameters in Fig. 4. We find
out that the major effect on the current increase comes
from frequencies ω ≈ ET , so that a further increase of
the cutoff frequency beyond a few ET does not affect
the increase much. On the other hand, the incoherent
reduction of the supercurrent (at low temperatures, for
example) increases in strength as the noise bandwidth is
increased. We also point out that the “optimal” match-
ing of noise takes place at Renv somewhat larger than
the normal-state resistance RSNS of the SNS junction,
but the order of magnitude of the effect depends quite
weakly on their ratio.

Let us estimate the typical parameters for the electron-
photon coupling in SNS junctions [11]. A Cu wire of
length 1 μm, diffusion constant D = 0.02 m2/s and
normal-state resistance RSNS = 0.2 Ω has a Thouless
energy ET ≈ 13 μeV and a zero-temperature critical
current of 650 μA. This corresponds to the Josephson
energy EJ = �IC/(2e) = 1.3 eV, allowing to increase
the (noise) temperature of the electromagnetic environ-
ment to very large values before any phase diffusion could
be observed. Increasing TSNS decreases the critical cur-
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FIG. 3. (Color online): Electron-photon coupling induced
change in the supercurrent vs. phase φ with r = 1 and
�ωC = 5ET and three temperatures kBTSNS: 3ET (blue
solid line), 10ET (red dashed line) and 15ET (black dash-
dotted line). Inset shows the normalized current-phase re-
lation IS(φ)/maxφ IS(φ) in the absence of electron-photon
scattering (solid lines) and a sketch of the effect of electron-
photon scattering with Tenv > TSNS (dashed lines) at the same
three temperatures. There, the arrows point the direction of
the supercurrent change as Tenv is increased.

rent and thereby EJ , but the observation of phase dif-
fusion would require quite high TSNS. On the other
hand, the change in the supercurrent due to electron-
photon coupling compared to electron-phonon coupling
is δIS/IS ∼ aR2

SNSkB(Tenv − TSNS)/(cRKRenv�Γeph),
where we assume RSNS < Renv, a is the dimensionless
number plotted in Figs. 2-4 at perfect matching, and
c = eISRSNS/ET ≈ 10 at TSNS � ET /kB . For Cu,
a typical electron-phonon scattering rate at T = 100
mK is 20 kHz [15], corresponding to the temperature
scale of �Γeph/kB ≈ 0.15 μK. Therefore, for a typi-
cal Renv = 50 Ω, we get δIS/IS = a/c ∼ 0.2 for
Tenv − TSNS = 24 K. As the SNS junctions are typi-
cally connected to a measurement equipment residing at
higher temperatures, the noise coupling from such equip-
ment may well result in noise temperatures of this or-
der of magnitude. Moreover, many experiments are con-
ducted on higher-resistance samples than those consid-
ered above, in which case the required temperature dif-
ference decreases. Therefore, our results may explain the
typically encountered difference between the experimen-
tal results and the standard theoretical predictions [11] as
being caused by electron-photon coupling. However, to
really probe the effect we are predicting, the environmen-
tal noise should be systematically varied while measuring
the supercurrent. The previous can be done for example
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FIG. 4. (Color online): Electron-photon coupling induced
change in the supercurrent at φ = π/2 vs. the parameters of
the circuit at the temperatures indicated in the figure. Main
figure: effect of the changing charge relaxation rate ωC =
1/(RenvC) acting as an effective high-frequency cutoff on the
electron-photon coupling. The curves have been calculated
with Renv = RSNS. Inset shows the effect of changing the ratio
Renv/RSNS while keeping �ωC = 5ET (note the logarithmic
scale on the horizontal axis). The two figures show the same
quantity (with the same scaling).

by passing a large heating current through a macroscopic
shunt resistor of the SNS junction.

Conclusions. We have shown that whereas the typical
and well-known mechanism of the effect of phase fluc-
tuations on the supercurrent through superconductor-
normal-metal-superconductor junctions, dependent on
the parameter kBT/EJ , can often be disregarded, the
heat current due to the temperature difference between
the electromagnetic environment and the SNS junction
leads to much more pronounced effects. At low temper-
atures kBTSNS � 5ET , this results into a suppression of
the observed supercurrent, but what is more remarkable,
for kBTSNS � 5ET , we predict an increased supercurrent,
competing with the exponentially suppressed bare super-
current. Our predictions should be tested by simply vary-
ing the temperature of the electromagnetic environment
while keeping that of the SNS junction constant. Be-
sides weak links fabricated of normal metals, similar ef-
fects can be expected for other types of conducting weak
links, such as those made of graphene, carbon nanotubes
or semiconductor nanowires.

We thank M.A. Laakso, J.C. Cuevas and F.S. Bergeret
for discussions. This work was supported by the Finnish
Foundation for Technology Promotion, the Academy
of Finland and the European Research Council (Grant
No. 240362), and the Emmy-Noether program of the
Deutsche Forschungsgemeinschaft.
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Environment-controlled change in the current

In this supplementary material, we give details on how the effect of fluctuations on a superconductor–normal
metal–superconductor junction can be derived from microscopic theory.
We describe the effect of fluctuations by considering the Keldysh path integral action [1] of the circuit of Fig. 5:

S[Φ, χ] = SSNS[Φ + χ] + Senv[Φ] , (6)

where Φ(t) = 2e
�

∫ t
dt V (t) is the electromagnetic phase drop across the SNS junction, with the quantum and classical

components Φcl/q(t) = (Φ+(t) ± Φ−(t))/2 related to its values Φ± on the two Keldysh branches. We also add a
generating field χ, so that the current in the SNS can be written as

I(t) =

∫
D[Φ]eiSenv[Φ]+iSSNS[Φ] δSSNS[Φ + χ]

δχq(t)
|χ=0 . (7)

We assume the environment is characterized by an admittance Yenv describing a circuit element at equilibrium. We
also assume that the saddle point of the action corresponds to a constant phase difference ϕ0 over the junctions,
corresponding to a dc supercurrent I0 through the SNS. In terms of fluctuations φ = Φ−Φ0 around the saddle point
Φ0, the environment action can be written as:

Senv[φ] = −I0

∫ ∞

−∞
dt φq(t) +

∫ ∞

−∞

dω

2π

(
φcl(ω)
φq(ω)

)† (
0 [iωYenv(ω)]

∗

iωYenv(ω) 2iω coth( ω
2Tenv

)ReYenv(ω)

)(
φcl(ω)
φq(ω)

)
, (8)

which produces the correlators 〈φφ〉 expected of a classical circuit element. Here and below, we use natural units in
which e = � = kB = 1.

FIG. 5. SNS junction and its electromagnetic environment. Φ is the electromagnetic phase across both elements.

Consider now the action of the SNS junction similarly expanded in fluctuations:

SSNS[φ, 0] = I0

∫ ∞

−∞
dt φq(t) +

∫ ∞

−∞

dω

2π

(
φcl(ω)
φq(ω)

)† (
0 [iωYSNS(ω)]

∗

iωYSNS(ω) 2iω coth( ω
2TSNS

)ReYSNS(ω)

)(
φcl(ω)
φq(ω)

)
+A[φ] (9)

= SSNS,0[φ] +A[φ] , (10)

where I0 = Ieq(ϕ0) is the equilibrium supercurrent. The form of the second-order term is fixed by the fact that it
describes the linear response of the SNS junction around equilibrium. It is similar to Eq. (8), but with the admittance
(for which approximations are known[2]) and temperature replaced by those of the SNS junction. The term A
describes higher-order corrections to the behavior of the SNS due to the fluctuations. When Tenv �= TSNS , part of
these corrections comes from nonequilibrium associated with the energy transfer from one subsystem to the other by
phase fluctuations.
The next step would be to compute SSNS[φ] based on a microscopic model. This problem is however equivalent

to finding the full counting statistics [3] of the SNS junction under a general time-dependent drive, which for long
junctions is a difficult problem. Below, we argue that nevertheless, in the limit of small phase fluctuations, the physics
we are interested in here is described by the response of the junction to classical fluctuations.
We first expand the higher-order SNS part A in Eq. (7) in φ, and obtain:

I(t) =

∫
D[φ]eiSenv[φ]+iSSNS,0[φ]

{
Ieq + 2

∫ ∞

−∞
dt′ VR(t− t′)φcl(t′) +

δÃ[φ+ χ]

δχq(t)
|χ=0 + . . .

}
(11)

=

〈
δSSNS[φ+ χ]

δχq(t)
|χ=0

〉
φ

+O(φ3) = 〈ISNS [φ]〉φ +O(φ3) . (12)
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where Ã contains only the third-order terms, and the averages are computed with the quadratic part of the action.
The second term on the first line vanishes, 〈φ〉φ = 0, but the third is finite. Note the structure of this approach: one
first computes the current ISNS [φ] through the junction using a fixed time dependence of the phase fluctuation φ,
and finally averages the result over Gaussian fluctuations as determined by the admittances.
We now observe the following: Eq. (8) implies that the temperature of the environment Tenv appears in Eq. (12)

only in correlation functions
〈
φclφcl

〉
φ
. Therefore, if we consider only the effect of Tenv on the current, we find that

in the leading order in the phase fluctuations, the change in the current due to Tenv �= TSNS is

δI(t) ≡ I(t)− I(t)|Tenv=TSNS
= 〈ISNS [φ]〉φcl − 〈ISNS [φ]〉φcl |Tenv=TSNS

, (13)

where the field averages are taken considering φ as a classical field, φq = 0. This observation considerably simplifies
the approach: we can first compute the current for a given time dependence of a classical phase difference over the
junction, and then average the result over Gaussian fluctuations. The effect of such classical fluctuations on the
supercurrent can be obtained as an extension of our earlier results [2, 4] for the effect of a monochromatic classical
drive. This is outlined in the next section.
We now comment on how small the phase fluctuations must be for the validity of our model. The criterion is that

truncating the expansion Eq. (12) must remain accurate. The first requirement is that the average phase fluctuations
should be small, 〈φ(t)φ(0)〉 � 1. Assuming total parallel admittance Y = R−1+1/(iωL) of the SNS junction and the
environment, this is equivalent to the restrictions R � RK and LkBT/(�RK) � 1. The former is satisfied for typical
SNS junctions. If the inductance comes from the Josephson inductance of the SNS junction, the latter is equivalent
to EJ � kBT , which is the typical condition for fluctuations to have a small effect. There is also a requirement that
the nonequilibrium corrections to the SNS current are small enough to remain in the linear regime. As noted in the
main text, this condition can be written as R/RK × kB(Tenv − TSNS) � Γe−ph, where Γe−ph is the electron-phonon
relaxation rate, which should dominate energy relaxation inside the SNS junction.

Effect of classical phase fluctuations

The effect of small classical phase fluctuations on the dc current in a SNS junction can be studied by expanding
the time-dependent Usadel equation [5, 6] in the fluctuating electric field associated with the time-dependent phase
difference φ(t). Such a calculation was done in Ref. 4 for a monochromatic excitation φ(t) = φ0 cos(ω0t). A kinetic
equation for an arbitrary small perturbation φ(t) can however also be derived following the same steps. Our starting
point here is the kinetic equation for the dc component of the electron distribution obtained in Ref. 4, which does not
make assumptions about the time-dependence of the small perturbation:

16Γe−phρ(ε)[h(ε, ε+ ω)− h0(ε, ε+ ω)] = tr[Aτ3, ĵ
K ]◦(ε, ε+ ω) +O(A3) , (14)

where ω → 0, and the commutator involves a convolution over energy arguments. Here, h is the energy mode
(longitudinal) electron distribution function, ĵK ≡ (ǧ ◦ ∇̌ǧ)K is the current related to the Keldysh Green’s function
ǧ, and ∇̌ is the gauge-invariant gradient. In particular, the charge current is proportional to tr τ̂3ĵ

K . Moreover,
A(ω, ω′) = φ(ω−ω′)/L is the Fourier-transformed vector potential corresponding to a constant electric field associated
with the fluctuation φ in a junction of length L, ρ(ε) the position-averaged density of states in the absence of

fluctuations, and h0(ε, ε
′) = δ(ε− ε′)h0(ε), h0(ε) = tanh

(
ε

2TSNS

)
.

Averaging Eq. (14) over the fluctuating fields, we find:

16Γe−phρ(ε)[〈h(ε, ε′)〉φ − h0(ε, ε
′)] =

∫ ∞

−∞
dε1

〈
A(ε− ε1) tr τ̂3ĵ

K(ε1, ε
′)−A(ε1 − ε′) tr τ̂3ĵK(ε, ε1)

〉
φ
. (15)

In Ref. 2 we showed that in linear order in the field, the quantity tr τ̂3ĵ
K can be approximated as

tr τ̂3ĵ
K(ε, ε+ ω) � L2τ−1

D k(ω, ε)A(−ω)[h0(ε)− h0(ε+ ω)] . (16)

Here k(ω, ε) is a known function that depends only on the equilibrium superconducting correlations inside the junction.
Combining this result with the kinetic equation, we find

16Γe−phρ(ε)[h(ε)− h0(ε)] =

∫ ∞

−∞
dω Sφ(ω, Tenv, TSNS)τ

−1
D k(ω, ε)[h0(ε)− h0(ε+ ω)] , (17)
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where 〈h(ε, ε′)〉φ = δ(ε− ε′)h(ε), and

Sφ(ω, Tenv, TSNS) = 2
Re[Yenv(ω)] coth

(
ω

2Tenv

)
+Re[YSNS(ω)] coth

(
ω

2TSNS

)
ωRK |Yenv(ω) + YSNS(ω)|2

, (18)

is the symmetrized phase fluctuation spectrum, appearing from the field correlators, 〈A(ω)A(ω′)〉φ =

L−2
〈
φcl(ω)φcl(ω′)

〉
= L−2δ(ω + ω′)S(ω, Tenv, TSNS).

As we argued in Ref. 4, when the electron-phonon relaxation is small compared to the inverse dwell time in the
junction, Γe−ph � ET = �D/L2, the change in the supercurrent through the junction is mainly determined by the
change in the distribution function. Applying now the result in Eq. (13) gives

δI =
1

eRSNS

∫ ∞

−∞
dε jS(ε)δh(ε) , (19)

4Γe−phρ(ε)δh(ε) = 4Γe−phρ(ε)[h(ε)− h(ε)|Tenv=TSNS
] (20)

=
1

4

∫ ∞

−∞
dω [Sφ(ω, Tenv, TSNS)− Sφ(ω, TSNS , TSNS)]τ

−1
D k(ε, ω)[h0(ε)− h0(ε+ ω)] (21)

=
1

4

∫ ∞

−∞
dω ωK(ω, ε)

[
coth

(
ω

2Tenv

)
− coth

(
ω

2TSNS

)]
[h0(ε)− h0(ε+ ω)] (22)

=

∫ ∞

−∞
dω ωK(ω, ε)[fε+ω(1− fε)(n

env
ω + 1)− fε(1− fε+ω)n

env
ω ] , (23)

where fε =
1−h0(ε)

2 is the equilibrium Fermi function. We therefore find that the change in the current is determined
by an electron-boson collision integral, and we obtain the kernel K(ω, ε) given in Eq. (3) of the main text. The
approach we used to derive this result here, however, is restricted to the leading order in the field amplitude and small
nonequilibrium effects.
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