
smroftalp tnempoleved metsys deddebmE
secived dna sepytotorp gningised edam evah

.niamod gnireenigne eht edistuo elbissop
dna ytinummoc yranilpicsidretni elihW
detpoda ylgnorts evah tnemevom rekam

sa hcus ,stikloot gnitupmoc lacisyhp tuokaerb
gnizilitu stsiybboh ylno ton si ti ,oniudrA

ni desu era stikloot ytilibissecca ysaE .meht
ni dna stcejorp cfiitneics dna hcraeser suoirav

deddebme gnisU .noitacude gnireenigne
emoceb evah smroftalp tnempoleved metsys
dna sreenigne htob fo ecitcarp daerpsediw a

yreve tsomla gnirevoc ,ekila sreenigne-non
 .dlefi

dna sloot hcihw serolpxe noitatressid sihT

fo dlohserht eht rewol dluow sessecorp
-non gnilbane ,smetsys deddebme gningised
rieht nrut ot sreenigne ecivon dna sreenigne
hcus ni sepytotorp gnikrow otni snoitavonni

swolla woflkrow eht taht yaw
otni evlove ot sepytotorp lanoitatnemirepxe

 .smetsys deddebme elbayolped

-o
tl

a
A

D
D

8

6
/

 9
10

2

 +h
gafi

a*GM
FTSH

9 NBSI 7-6058-06-259-879)detnirp(
 NBSI 4-7058-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

gnireenignE lacirtcelE fo loohcS
noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

iv
ra

K
o

m
mi

K
 n

gi
se

d
me

ts
ys

 d
ed

de
b

me
 n

o
sr

ei
rr

ab
 g

ni
re

wo
L

 y
ti

sr
ev

i
n

U
otl

a
A

 9102

 noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

no sreirrab gnirewoL
 ngised metsys deddebme

 sepytotorp otni snoitavonni gninruT

 nenivraK ommiK

 LAROTCOD
 SNOITATRESSID

smroftalp tnempoleved metsys deddebmE
secived dna sepytotorp gningised edam evah

.niamod gnireenigne eht edistuo elbissop
dna ytinummoc yranilpicsidretni elihW
detpoda ylgnorts evah tnemevom rekam

sa hcus ,stikloot gnitupmoc lacisyhp tuokaerb
gnizilitu stsiybboh ylno ton si ti ,oniudrA

ni desu era stikloot ytilibissecca ysaE .meht
ni dna stcejorp cfiitneics dna hcraeser suoirav

deddebme gnisU .noitacude gnireenigne
emoceb evah smroftalp tnempoleved metsys
dna sreenigne htob fo ecitcarp daerpsediw a

yreve tsomla gnirevoc ,ekila sreenigne-non
 .dlefi

dna sloot hcihw serolpxe noitatressid sihT

fo dlohserht eht rewol dluow sessecorp
-non gnilbane ,smetsys deddebme gningised
rieht nrut ot sreenigne ecivon dna sreenigne
hcus ni sepytotorp gnikrow otni snoitavonni

swolla woflkrow eht taht yaw
otni evlove ot sepytotorp lanoitatnemirepxe

 .smetsys deddebme elbayolped

-o
tl

a
A

D
D

8

6
/

 9
10

2

 +h
gafi

a*GM
FTSH

9 NBSI 7-6058-06-259-879)detnirp(
 NBSI 4-7058-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

gnireenignE lacirtcelE fo loohcS
noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

iv
ra

K
o

m
mi

K
 n

gi
se

d
me

ts
ys

 d
ed

de
b

me
 n

o
sr

ei
rr

ab
 g

ni
re

wo
L

 y
ti

sr
ev

i
n

U
otl

a
A

 9102

 noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

no sreirrab gnirewoL
 ngised metsys deddebme

 sepytotorp otni snoitavonni gninruT

 nenivraK ommiK

 LAROTCOD
 SNOITATRESSID

smroftalp tnempoleved metsys deddebmE
secived dna sepytotorp gningised edam evah

.niamod gnireenigne eht edistuo elbissop
dna ytinummoc yranilpicsidretni elihW
detpoda ylgnorts evah tnemevom rekam

sa hcus ,stikloot gnitupmoc lacisyhp tuokaerb
gnizilitu stsiybboh ylno ton si ti ,oniudrA

ni desu era stikloot ytilibissecca ysaE .meht
ni dna stcejorp cfiitneics dna hcraeser suoirav

deddebme gnisU .noitacude gnireenigne
emoceb evah smroftalp tnempoleved metsys
dna sreenigne htob fo ecitcarp daerpsediw a

yreve tsomla gnirevoc ,ekila sreenigne-non
 .dlefi

dna sloot hcihw serolpxe noitatressid sihT

fo dlohserht eht rewol dluow sessecorp
-non gnilbane ,smetsys deddebme gningised
rieht nrut ot sreenigne ecivon dna sreenigne
hcus ni sepytotorp gnikrow otni snoitavonni

swolla woflkrow eht taht yaw
otni evlove ot sepytotorp lanoitatnemirepxe

 .smetsys deddebme elbayolped

-o
tl

a
A

D
D

8

6
/

 9
10

2

 +h
gafi

a*GM
FTSH

9 NBSI 7-6058-06-259-879)detnirp(
 NBSI 4-7058-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

gnireenignE lacirtcelE fo loohcS
noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

iv
ra

K
o

m
mi

K
 n

gi
se

d
me

ts
ys

 d
ed

de
b

me
 n

o
sr

ei
rr

ab
 g

ni
re

wo
L

 y
ti

sr
ev

i
n

U
otl

a
A

 9102

 noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

no sreirrab gnirewoL
 ngised metsys deddebme

 sepytotorp otni snoitavonni gninruT

 nenivraK ommiK

 LAROTCOD
 SNOITATRESSID

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD 86 / 9102

metsys deddebme no sreirrab gnirewoL
 ngised

 sepytotorp otni snoitavonni gninruT

 nenivraK ommiK

fo rotcoD fo eerged eht rof detelpmoc noitatressid larotcod A
eht fo noissimrep eht htiw ,dednefed eb ot)ygolonhceT(ecneicS

cilbup a ta ,gnireenignE lacirtcelE fo loohcS ytisrevinU otlaA
yaM 71 no loohcs eht fo 1SA llah erutcel eht ta dleh noitanimaxe

 .00:21 ta 9102

 ytisrevinU otlaA
 gnireenignE lacirtcelE fo loohcS

 noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

Printed matter
4041-0619

N
O

R
DIC

 SWAN ECOLAB
E

L

Printed matter
1234 5678

 rosseforp gnisivrepuS
 dnalniF ,ytisrevinU otlaA ,ikryK elliV rosseforP

 srenimaxe yranimilerP

 ASU ,ytisrevinU imaiM ,noseimaJ reteP .forP
 ASU ,ytisrevinU stfuT ,ssorC refinneJ .rD

 tnenoppO

 nedewS ,HTK ,nedehmirG nidE nitraM .rD

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD 86 / 9102

 © 9102 nenivraK ommiK

 NBSI 7-6058-06-259-879)detnirp(
 NBSI 4-7058-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

:NBSI:NRU/if.nru//:ptth 4-7058-06-259-879

 yO aifarginU
 iknisleH 9102

 dnalniF

 tcartsbA
 otlaA 67000-IF ,00011 xoB .O.P ,ytisrevinU otlaA if.otlaa.www

 rohtuA
 nenivraK ommiK

 noitatressid larotcod eht fo emaN
 ngised metsys deddebme no sreirrab gnirewoL

 rehsilbuP gnireenignE lacirtcelE fo loohcS

 tinU noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

 seireS seires noitacilbup ytisrevinU otlaA SNOITATRESSID LAROTCOD 86 / 9102

 hcraeser fo dleiF ygolonhceT noitamotuA

 dettimbus tpircsunaM 9102 yraurbeF 82 ecnefed eht fo etaD 9102 yaM 71

)etad(detnarg ecnefed cilbup rof noissimreP 9102 lirpA 2 egaugnaL hsilgnE

 hpargonoM noitatressid elcitrA noitatressid yassE

 tcartsbA
elbissop secived dna sepytotorp gningised edam evah smroftalp tnempoleved metsys deddebmE
evah tnemevom rekam dna ytinummoc yranilpicsidretni elihW .niamod gnireenigne eht edistuo
stsiybboh ylno ton si ti ,oniudrA sa hcus ,stikloot gnitupmoc lacisyhp tuokaerb detpoda ylgnorts

 .meht gnizilitu

gnireenigne ni dna stcejorp cfiitneics dna hcraeser suoirav ni desu era stikloot ytilibissecca ysaE
fo ecitcarp daerpsediw a emoceb evah smroftalp tnempoleved metsys deddebme gnisU .noitacude

sloot elbissecca erom elihW .dlefi yreve tsomla gnirevoc ,ekila sreenigne-non dna sreenigne htob
slliks fo tes a seriuqer llits ngised metsys deddebme ,smelborp level-wol ynam morf srennigeb evas
-non rof yllaicepse emosnedrub eb nac detrats gnitteG .secivon rof gnimlehwrevo mees yam hcihw

gnignellahc htiw erawdrah dna erawtfos htob fo erutxim a era smetsys deddebme sa sreenigne
 .gnimmargorp sa hcus ,saerabus

gningised fo dlohserht eht rewol dluow sessecorp dna sloot hcihw serolpxe noitatressid sihT

otni snoitavonni rieht nrut ot sreenigne ecivon dna sreenigne-non gnilbane ,smetsys deddebme
evlove ot sepytotorp lanoitatnemirepxe swolla woflkrow eht taht yaw hcus ni sepytotorp gnikrow

 .smetsys deddebme elbayolped otni

a ,srosnes yldneirf ecivon gnitceles rof krowemarf a gnidulcni ,detneserp si dohtem a ,tluser a sA
putes yrotarobal gnipytotorp dipar ToI na ,gnipytotorp tobor gnihcaet rof hcaorppa citsilaminim

era taht esoht sa smetsysbus etilletas gnipoleved rof sloot emas eht gniyolpme yduts esac a dna
yllufsseccus spuorg tneduts lla ,spohskrow esac eht nI .esu ecivon yranilpicsiditlum rof elbacilppa

,tcejbus eht fo noitpecer ,stluser elbignat ot noitidda nI .sksat gnipytotorp nevig eht detelpmoc
 .evitisop yrev saw ,gnimmargorp sa hcus saera emosnedrub yllacipyt gnidulcni

 sdrowyeK ,sreirrab gninrael ,noitacude gnireenigne ,oniudrA ,smetsys deddebme ,srosneS
)ToI(sgnihT fo tenretnI ,erawtfos eerf ,srellortnocorcim

)detnirp(NBSI 7-6058-06-259-879)fdp(NBSI 4-7058-06-259-879

)detnirp(NSSI 4394-9971)fdp(NSSI 2494-9971

 rehsilbup fo noitacoL iknisleH gnitnirp fo noitacoL iknisleH raeY 9102

 segaP 211 nru :NBSI:NRU/fi.nru//:ptth 4-7058-06-259-879

 ämletsiviiT
 otlaA 67000 ,00011 LP ,otsipoily-otlaA if.otlaa.www

 äjikeT
 nenivraK ommiK

 imin najriksötiäV
 assulettinnuus neimletsejräj nejuttetualus nenimatladam neskynnyK

 ajisiakluJ uluokaekrok nakiinketökhäS

 ökkiskY sotial noitaamotua aj nakiinketökhäS

 ajraS seires noitacilbup ytisrevinU otlaA SNOITATRESSID LAROTCOD 86 / 9102

 alasumiktuT akkiinketoitaamotuA

 mvp neskutiojrikisäK 9102.20.82 äviäpsötiäV 9102.50.71

 äviäpsimätnöym navulylettiäV 9102.40.20 ileiK itnalgnE

 aifargonoM ajriksötiävilekkitrA ajriksötiäveessE

 ämletsiviiT
nediettial aj neippyytotorp teenatsillodham tavo tatsulasytihek neimletsejräj nejuttetualuS

ekiil-rekaM aj ösiethy nenialainom akkiaV .atsemiot neiröönisni niuk nedium söym nulettinnuus
nenimätnydöyh nediin ie ,nötyäk ,noniudrA netuk ,nejotsulasytihek teenuskamo itsavhav tavo

 .niijatsarrah utiojar

neiröönisni äkes ,assietkejorpedeit aj -sumiktut assisiukul näätetyäk ajulaköyt äisiöttyäkoppleH
tynnivel itsajaal tullut nikno ätsötyäk nejotsulasytihek neimletsejräj nejuttetualuS .asseskutepo

tävätsääs tulaköyt tämmesiöttyäkoppleh akkiaV .alliola ällisinket niuk allium söym ötnätyäk
najaal iitaav ulettinnuus neimletsejräj nejuttetualus ,atlimlegno nosat nalatam atlinom täjättyäk
nuuklA .elliojilettiola atlavatsaah naiil aattukiav iov ulettepo nedioj ,ajotiat aisialire nämletsidhy

tavo tämletsejräj tutetualus aksok ,ellieröönisni niuk ellium aaekiav nesiytire allo iov ysääp
 .aitniomlejho netuk ,atieula-aso aivatsaah nediin äkes ,aotsiettial aj aotsimlejho ämletsidhy

alletinnuus ätsynnyk tavisiksal tissesorp aj tulaköyt äktim ,aiktut no aneehia najriksötiäv nämäT

äättihek atsillodham isilo neiröönisni niuk niknedium ätte ,netis äimletsejräj ajuttetualus
netsilleekok aatsillodham ukluknöyt ätte ,no atsiannelO .äjeppyytotorp aivimiot naatsioitaavonni

 .iskimletsejräj iskiutetualus iskisiopleköttyäk nesimyttihek neippyytotorp

,atierosnes äisillävätsyajilettiola atilav navat äätläsis akoj ,idotem näätetise aneskoluT
-ToI taepon ,neesimattepo nesimatnekar neippyytotorp nakiitobor navatsimytsehäl nesitsilaminim

neesialainom ajomas näätetyäk assoj ,nikremise-esac äkes ,nissesorp navatsillodham tipyytotorp
ikkiak assiojapöyt-esaC .neesimättihek nirosnes nitiilletas ajulaköyt aivipos nööttyäkajilettiola

nedienutsinnO .itsesiakum nonnaiskemiot tipyytotorp itseenutsinno tavisnekar tämhyrajileksipo
 .neniviitisop niättire ilo ottonaatsav niriipehia nytedip anavatsaah itsesietnirep iskäsil neitkejorp

 tanasniavA ToI ,idookedhäl niova ,tirellortnokorkim ,oniudrA ,tämletsejräj tutetualus ,tirosneS

)utteniap(NBSI 7-6058-06-259-879)fdp(NBSI 4-7058-06-259-879

)utteniap(NSSI 4394-9971)fdp(NSSI 2494-9971

 akkiapusiakluJ iknisleH akkiaponiaP iknisleH isouV 9102

 äräämuviS 211 nru :NBSI:NRU/fi.nru//:ptth 4-7058-06-259-879

1

Aalto University, Core Factory, Haaga-Helia University of
Ahmad Ibrahim, Juho Jakka, Jarmo

gas, Tomi Knuutila, Kari Koskine
Media, Cem Oza

Sillitoe, Tuomas Tikka,
Ville Valtokari

Ville Kyrki, Tero Karvinen, and Jussi Suomela

And above all to my fiancée Marianna Väre whose endless support made this
thesis possible.

Helsinki, 28 February 2019
Kimmo Ilmari Karvinen

3

1. Introduction ... 7
1.1 From first prototypes to deployable embedded systems 9

1.2 Related research ... 10

1.3 Research methods ...11

1.4 Maker movement and end users ... 13

1.5 Contributions.. 13

1.6 Structure of the thesis ... 15

2. Choosing novice friendly sensors ..16
2.1 Novice challenges and learning barriers ... 17

2.2 Evaluating sensor suitability for novice use .. 17

2.2.1 Protocol complexity ... 18

2.2.2 Connection type and component size... 18

2.2.3 Understandable real-life phenomena measured 19

2.2.4 Documentation .. 19

2.3 Discussion ... 20

3. Teaching robot rapid prototyping for non-engineers
- a minimalistic approach.. 22
3.1 Method and development platform .. 23

3.2 Programming challenges and solutions .. 25

3.3 Case workshop assessment ... 27

3.4 Discussion ..29

4. IoT Rapid Prototyping Laboratory Setup................................ 32
4.1 Teaching IoT prototyping ... 33

4.2 Setup for prototyping.. 36

4.3 Standalone operation and miniaturization with ESP826638

4.4 Case workshop assessment ...38

4.5 Discussion ... 40

5. Using hobby prototyping boards and commercial-
off-the-shelf components for developing low-cost
and fast-delivery satellite sub-systems 43
5.1 Small satellite subsystem Development Process44

5.2 Open-source hobby development platform and sun sensor subsystem
prototype development ... 45

5.3 Discussion ... 48

6. Conclusions .. 49
6.1 Application and future research ... 51

References ... 53

5

ADCS Attitude determination and control system

AJAX Asynchronous JavaScript and XML

API Application programming interface

CORS Cross-Origin Resource Sharing

COTS Commercial off-the-shelf

DIY Do-it-yourself

EEE Electrical, electronic, and electromechanical

FOSS Free and open-source software

GUI Graphical user interface

HIL Hardware-in-loop

I2C Inter-Integrated Circuit

IC Integrated circuit

IDE Integrated development environment

IFTTT If This Then That

IoT Internet of Things

LAMP Linux, Apache, MySQL, PHP

LDR Light-dependent resistor

NAT Network address translation

QFP Quad Flat Package

R&D Research and development

RiE Robotics in Education

RTC Real-time clock

SPI Serial Peripheral Interface

6

This doctoral dissertation consists of a summary and of the following publica-
tions which are referred to in the text by their numerals

I Karvinen K. Choosing Novice Friendly Sensors. International Journal

Electrical Engineering Education (IJEEE). First ublished Septem
 https://doi.org/10.1177/0020720918800821

II Karvinen K. Teaching robot rapid prototyping for non-engineers
malistic approach. World Transactions on Engineering and Technology

tion (WTE&TE) 14 3 .

III Karvinen K. Karvinen T. IoT Rapid Prototyping Laboratory Setup.
ternational Journal of Engineering Education (IJEE) 34

.

IV Karvinen, K., Tikka, T., & Praks, J. 2015. Using hobby prototyping boards
and commercial-off-the-shelf () components for developing low-cost,

delivery satellite subsystems. Journal of Small Satellites (JoSS), 4
1, 301-314.

7

Embedded system development platforms have made designing prototypes
and devices possible outside the engineering domain. While interdisciplinary
community and the maker movement have strongly adopted prototyping
toolkits, such as Arduino [1], it is not only hobbyists utilizing them. Easy acces-
sibility toolkits are used in various research and scientific projects [2] and in
engineering education [3]. Using embedded system development platforms has
become a widespread practice of both engineers and non-engineers alike, cov-
ering almost every field [4].

Which advantages could be provided by non-engineers participating in de-
signing and developing embedded systems? Would non-engineers provide ad-
ditional value in this field compared to engineers who have dedicated their stud-
ies to mastering technical aspects of the process? While lacking technical skills,
non-engineers can be experts in their own domain. Even though engineers have
an excellent understanding of their own area of expertise, it is likely that they
do not have more than a superficial knowledge of other areas, such as medicine,
biology or user interface design. Even the best possible R&D (research and de-
velopment) organization cannot possess expertise beyond its main field of in-
terests or to assume that it does not need input from outsiders [5]. Therefore,
having more interdisciplinary involvement from different areas of expertise can
bring out innovations and approaches that would not otherwise be possible [6].
Diverse groups participating in different technology projects also form commu-
nities that support other users and products on the market [7], [8]. An ideal goal
should be to utilize knowledge from experts from varied areas to bring out new
innovations and to support existing projects without compromising the quality
of the outcome or teaching skills that are not necessary for the process.

This thesis focuses on lowering barriers on embedded system design, making
it more straightforward to turn innovations into prototypes. Accessible tools
and workflows make getting started easier and produce more instantaneous re-
sults. On the other hand, advanced users benefit from effective workflow and
short feedback loop. In the scope of this thesis, novices are defined as students
who lack an embedded system and programming skills. Novice students can be
undergraduate non-engineers or novice engineers.

In order to gather an embedded system contribution outside the engineer do-
main, non-engineers should be able to participate in the prototyping process.
Building prototypes is a functional way to test ideas and communicate these to
others. At the same time, it provides a hands-on practical application of

8

engineering and a possibility for project-oriented design-based learning [9]. The
prototyping process can expose design weaknesses, specify technical require-
ments and ensure that a device is fit for its designed purpose. Making a proto-
type in an early stage of the development life cycle also allows one to entirely
change the approach or even discard an infeasible design. Successful prototypes
can evolve into products or become parts of other prototypes or products. Pub-
lishing open source projects makes findings available to others beyond the orig-
inal development group.

While accessible tools save beginners from many low-level problems, embed-
ded system design still requires a set of skills which may seem overwhelming for
novices [10], [11], [12], [13]. First of all, there are various prototyping kits with
different features and limitations for novices to choose from [14]. In addition,
there is a variety of electronic retailers selling large selection of components
[15], [16]. Proprietary toolkits force the user to design prototypes based on com-
ponents made available by manufacturer [10].Using a non-proprietary develop-
ment platforms allows for an ample range of further choices to be made when
selecting components to fit the desired outcomes. When the development plat-
form has been selected, the combination of software and hardware including
difficult sub-domains, such as programming [4], can create an insurmountable
learning barrier. While programming is a central part of learning embedded sys-
tems, mastering it can take about 10 years [17]. Hence to properly learn pro-
gramming before getting started with embedded systems is not a viable option
for most people. Learning programming is also generally considered to be diffi-
cult, which shows in the high drop-out rates from programming courses [18]. If
novices aim to build prototypes for commercial purposes or for real-life use,
choosing tools and components that fit the purpose can be a challenge on its
own. Many novice friendly toolkits are not designed for serious prototyping lim-
iting their use beyond learning [14].

The challenges that this research recognizes and focuses on are:

Choosing suitable hardware and software from an abundant selection
[15], [16], [14].
Embedded system programming challenges [19], [20].
Defining necessary skills and workflow that enables prototyping based
on students’ own ideas [20], [10].
Choosing tools and processes that are suitable for both novice use and
more serious prototyping [14].

The main research question of this thesis is:

Which tools and processes lower the threshold of designing embedded
systems, enabling non-engineers and novice engineers to turn their inno-
vations into working prototypes? The workflow should allow experi-
mental prototypes to evolve to deployable embedded systems.

Introduction

9

There are several approaches available that aim to make prototyping and pro-
gramming easier and less intimidating than with breakout toolkits combined
with syntax revealing IDE (Integrated development environment). Many ap-
proaches aimed at novices, such as programmable bricks and modular blocks
[11], [14], provide an easy process but fixed functionality limits development
possibilities and the potential for real-life solutions. Programming environments
aimed at novices often hide the actual code and provide a graphical user inter-
face (GUI) instead. This allows students to learn programmatic constructs and
the logic of the program before learning syntax [21]. The down side of GUI is
that it prevents users from learning to read and write the syntax. As program-
ming and understanding syntax are a central part of learning embedded sys-
tems, these solutions have a reduced usability for serious prototyping and for
creating a foundation for further development. Without learning syntax most of
the free community resources, such program and circuit examples, can not be
utilized. The ability to understand syntax can also be applied to all major pro-
gramming environments and it is indispensable for a user to be able to perform
debugging.

Any tool or development environment is a trade-off, arguably, learning visual
programming tools first could make learning syntax easier [22]. An easier start
can also enhance motivation and self-efficacy [22]. On the other hand, modern
development tools are quite straightforward to use and using syntax from the
beginning saves students from learning multiple tools and workflows.

In addition, proprietary systems limit the range of possible components, forc-
ing the user to design prototypes based on options made available by the man-
ufacturer [10]. These limitations narrow down possibilities in using learned
skills for commercial and industrial prototypes. The maker movement is an ex-
ample of how people from different fields are not primally learning embedded
systems to improve their automation and electrical engineering skills, but in or-
der to be able to build prototypes and devices based on their ideas [12].

Arduino was chosen as the development platform in the scope of this thesis,
as it is free and open-source software (FOSS) with open hardware. In addition,
it is widely available and has a strong online community. In engineering educa-
tion, Arduino is also used for its accessibility, adaptability and compatibility
[23], [4], [24]. As Arduino uses an ATmega microcontroller found also in many
commercial products, the prototype can evolve from the first tests into a final
product.

Figure 1 shows an example of development that started as an Arduino proto-
type and evolved to a space instrument. The final version of the sun sensor used
in Aalto-1 and Aalto-2 satellites uses the same program, microcontroller and
sensor as the prototype developed with Arduino. The miniaturized version in-
cludes Atmega328P in Quad Flat Package (QFP) and leaves out supporting elec-
tronics that are not necessary for the final model. The sun sensor prototyping
project is presented in Chapter 5.

10

Final version of the sun sensor used in Aalto-1 and Aalto-2 satellites.

There is ample research available regarding programming and embedded sys-
tem learning challenges [11], [12], [25], [26], [27], [28] and utilizing Arduino for
teaching and prototyping [3], [23], [4], [24]. Programming and embedded sys-
tem challenges are a combination of software and hardware issues, such as syn-
tax problems [25], [26], [27] [28], problems understanding the relationship of
virtual and physical domains [11], [12] and problems in locating errors [12].
Most research tends to agree that programming is a remarkably difficult skill to
learn [25], [26], [27], [28] and building working embedded systems is compli-
cated for novices [11], [12].

There are several advantages that research highlights about Arduino that ex-
plains its popularity and why it was chosen as the development platform in the
scope of this thesis. Open source hardware and software is often emphasized
and differentiates it from proprietary options [3], [23], [4]. A large online com-
munity provides content, support and reference implementations for Arduino
users [3], [24]. Importantly, both teachers and students often see it is a compe-
tent solution for embedded system design [3], [4], [24].

As Patiño O.A et al. point out, the Arduino workshop results also include less
obvious outcomes, such as development of code understanding and system in-
tegration skills [29]. In research by Jamieson, P., the final project results of the
Arduino course are more creative and better than in previous years [3]. A pop-
ular hobbyist magazine MAKE: summarizes reasons why the platform has be-
come a tool of choice for non-engineers, such as hobbyists and artists, in the
article “Why the Arduino Won and Why It’s Here to Stay” [30]. The impact is

Introduction

11

even compared to the early days of personal computers [30]. The main reason
provided for Arduino's success is that it allows people who lack electronics or
microcontrollers skills to realize their ideas [25]. Arduino’s strength is that that
it provides a relatively simple way to connect the necessary tasks together to
build a vast number of different devices and prototypes [25].

Arduino is also used as a development platform in numerous research and sci-
entific projects [2], [31]. However, there is no systematic research providing a
method aimed at multidisciplinary embedded system prototyping, that would
allow novices to design and build prototypes that can evolve from experimental
prototypes to deployable embedded systems. Presented research aims to fill this
gap and describe a workflow that lowers barriers and supports development be-
yond learning and practising embedded systems. The basis from which this
work builds upon is the possibility to enable multidisciplinary students to use
the same accessible toolkit for diverse purposes, from simple beginner learning
to innovative device prototypes and all the way to serious devices. Aim is not to
define a process that emphasizes learning technical skills, such as programming
or teaching physical computing, but to present and test a workflow that focuses
on the skillset that enables effective and versatile prototyping. These aspects are
covered in chapters 3 and 4 describing embedded systems workshops. Chapter
5 presents a use case where the same prototyping toolkit is utilized for serious
prototyping.

There is a vast selection of components available for different needs and de-
signs. For novices this can be a challenge, as they lack the knowledge to make
choices that match their skill level. Research prominently describes courses us-
ing LEGO MINDSTORMS with proprietary components [32], Arduino accom-
panied with a more unrestricted component selection [3], as well as various
more experimental easy accessibility prototyping systems, such as Bloctopus
[39]. However, currently there is no common best practice for choosing sensors
for teaching novice embedded system design. Chapter 2 presents a framework
for selecting sensors from any manufacturer for multidisciplinary novice groups
leaving the application field for the framework to be defined by teachers, stu-
dents and course objectives.

By using a constructive research method and inductive reasoning, a combina-
tion of tools and workflows is proposed. The suitability of the proposed method
is validated by qualitative research instantiated by pilot workshops and a case
study.

Two pilot workshops were arranged to test and validate the methods. In the
first case workshop, learning robot prototyping was tested in a two-day-course
at the University of Art and Design in Linz (n=9).

Teaching IoT rapid prototyping was piloted in a four-day-workshop at the
University of Lapland with art students (n=19) (Figure 2). After the pilot work-
shop, the experiment was repeated with another group (n=27) at Haaga-Helia

12

University of Applied Sciences. The workshop in Haaga-Helia was not arranged
by the author of this thesis.

In both workshops, Lintz and University of Lapland, there were preliminary
and feedback questionnaires collected. Data for assessment was collected by pa-
per questionnaires and observation was made by the workshop teacher. The
questionnaires included topics that were used for matching teaching to the stu-
dent groups skill level. From the perspective of this thesis and the related arti-
cles, there were two key results analyzed for both workshops.

Firstly, in the preliminary questionnaire, the learners were asked to evaluate
their own programming skill-level on scale 1-5, 5 being the most positive. The
same evaluation was asked to be made again in the feedback questionnaire to
be able to see if the evaluation had changed during the course: “How would you
evaluate your programming skills?” (scale 1-5).

Secondly, in the feedback questionnaire, the learners were asked to rate the
workshop on the same scale 1-5. This result was analyzed to indicate whether
the workflow and processes were well-received by the target audience, given the
complex nature of the topic and the short timeframe of the workshops: “How
would you rate this workshop”? (scale 1-5).

A case study using Arduino and a commercial-off-the-shelf component for de-
veloping low-cost and fast-delivery satellite sub-systems is presented in chapter
5. This chapter studies if the same tools, that are suitable for multidisciplinary
novice use, are sufficient for prototyping and developing functional final prod-
ucts that can be deployed in the field. Even though, the operation of the sun
sensor presented in the use case is relatively simple, it could not be prototyped
by most toolkits aimed for novices. The requirement specifications for satellite
parts add additional challenges for component selection and the programming
environment.

Student prototyping a shirt with sleeves that can be raised and lowered with a cell phone
user interface. Teaching IoT rapid prototyping was piloted in a four-day-workshop at the Uni-
versity of Lapland with art students.

Introduction

13

Research on maker movement and end users presents challenges, possibilities
and topics related to this thesis. At the start of the 21st century, the price of the
prototyping equipment, such as 3D printers and laser cutters, became consid-
erably less expensive, enabling prototypes to be created rapidly and without tra-
ditional production processes [33]. MAKE Magazine, Maker Faire and fab labs
provided ideas, an environment and tools for creative fabrication [33]. Afforda-
ble hardware, open software, digital fabrication and sharing results brought a
possibility for a growing group of everyday people to innovate and create [8],
[34]. The maker movement is formed of people who want to learn new skills and
technologies to be able to use their creativity for designing, building and crafting
[34]. Makers also desire to be more than consumers of the products they use
[35].

The distinct features of the maker movement are focused on physical objects
instead of digital ones and a do-it-with-others mindset instead of just do-it-
yourself (DIY) [34], [36].

Development made by end users blurs the separation between designers and
consumers [18]. As work practises and requirements change over time, compu-
tational systems are never complete but must constantly evolve to meet the de-
mands of the users [18]. To flexibly meet the changing demands, users them-
selves should be able to modify the systems to suit their needs [37]. End user
development is not straightforward, and a lack of adequate programming skills
is one of the major issues that users face [37]. Despite the technical challenges,
most programs today are not written by professional programmers but by peo-
ple with expertise in other domains [38]. While the maker movement is driven
by the expression of creativity, the main motivation for the end user develop-
ment is typically a need to make applications more suitable for end users them-
selves [20].

Makers and participating end users create new products and support existing
products by their contribution [8]. Both are largely dependent on accessible
tools and community support. While methods presented in this thesis focus on
generally lowering barriers on embedded system design to turn innovations into
prototypes, they are also usable for providing a foundation for makers and end
users in order to participate in embedded system projects.

Key contributions of the thesis are as follows.

Choosing novice friendly sensors can make a substantial difference for novices
when using breakout physical computing toolkits. In this paper a framework for
selecting sensors for novice use is presented and accessibility obstacles are de-
fined.

14

Framework for selecting sensors for a novice use.
Four properties for evaluating sensor suitability for a novice use.

A method of teaching non-engineers robot rapid prototyping is proposed. A
minimalistic skill-set is defined, aiming to enable students to design and build
their own basic robot rapid-prototypes.

Minimalistic teaching approach, lowering barriers for non-engineers
engaging in robot prototyping projects and supporting utilisation of
interdisciplinary expertise.
Case study indicating that basic embedded systems skills can be sum-
marized in a package that can be presented in one day.

A setup for rapid IoT prototyping in a classroom, identifying necessary skills
and combining these into a workshop that allows students to turn their ideas
into prototypes during a four-day-workshop.

Approach that enables novice students to turn their ideas into working
IoT prototypes during a four-day-workshop.
Defining necessary basic skills for learning and prototyping IoT.
Open source setup for IoT prototyping utilizing a development board
and a computer.

The paper presents a use case where the same development platform used in

the novice workshops described in this thesis is utilized for serious prototyping.
The focus is on the Aalto-1 Sun Sensor prototype development process.

Process for developing low-cost, fast-delivery satellite subsystems us-
ing commercial off-the-shelf (COTS) components.
Presenting a use case: Aalto-1 Sun Sensor Subsystem Prototype Devel-
opment.

o The sun sensor is one of the smallest and cheapest satellite sun
sensors available.

o Use case provides evidence that despite the strong DIY back-
ground, hobby prototyping board Arduino can be used for se-
rious prototyping.

Introduction

15

This thesis consists of three parts: the introduction, four chapters introducing
the publications and the published articles. Chapter 2 presents a framework for
selecting sensors and four properties for evaluating sensor suitability for a nov-
ice user. Selective sensor exposure can make learning embedded system easier
for the novices, without hiding the program syntax or using proprietary compo-
nents. Six learning barriers in end-user programming by Ko et al. is adopted for
evaluating obstacles with sensors [27]. Four properties for evaluating sensors
and ways to overcome those obstacles are presented. The framework provided
in the article can be used for component selection for workshops or for estimat-
ing sensor suitability for external groups in projects such as described in chapter
5.

The following chapter 3 presents a minimalistic approach for teaching robot
rapid prototyping for non-engineers. Findings can be applied also to teaching
other than robot related embedded system basics. The presented method can be
used for introductory embedded system education and as a primer for more ad-
vanced workshops, such as the IoT-workshop described in chapter 3.

Chapter 4 introduces an IoT rapid prototyping laboratory setup that enables
novice students to turn their ideas into working IoT prototypes during a four-
day-workshop. Approach enables a fast prototyping cycle, using a common and
well-established development board and a computer. The entire process is
based on free software and open source tools. The article provides a method for
more advanced and specialized embedded system prototyping, while keeping
the process accessible for novices and non-engineers.

Chapter 5 shows how a hobby prototyping board can be a viable option for
serious prototyping and how external groups can bring value to a technical pro-
ject. In the case example Arduino and commercial-off-the-shelf (COTS) compo-
nents are used for developing low-cost and fast-delivery satellite sub-systems.
The use case supports the concept that the same tools, that are utilized in novice
prototyping in earlier chapters, are also suitable for serious development pro-
jects.

Results are concluded and summarized in chapter 6.

16

Breakout physical computing toolkits, such as Arduino, enable users to con-
nect sensors produced by various manufacturers with diverse properties, such
as varying protocol and connection type. Implementation difficulty can fluctu-
ate considerably between the sensors while novices are often unable to estimate
whether components are suited to their skill level. Beginning to learn embedded
systems with unsuitable sensors can have a negative effect on the user’s motiva-
tion and self-efficacy. Typically, solutions that aim to provide easy component
implementation use parts that are specially designed for easy accessibility, such
as LEGO MINDSTORMS, Topobo or Bloctopus [14], [39], [40]. The approach
presented in Publication I provides a framework that allows one to choose nov-
ice friendly sensors from a wider selection, when someone other than a novice
chooses and provides the sensor selection.
 On prototyping workshops or courses, sensor assortment is not typically se-
lected by students. Instead, users choose components from an available selec-
tion to match their desired embedded system functionality. By pre-selecting
novice friendly sensors several prototyping challenges can be reduced in ad-
vance.

Publication I has two key contributions:

1. A framework for selecting sensors for a novice use
2. Presenting four properties for evaluating sensor suitability for a novice

use

Novices are defined as non-engineers or novice engineers who lack embedded
system and programming skills. Arduino is chosen as the example development
platform. Free and open-source software (FOSS) with open hardware along with
broad compatibility, easy setup, low cost and comprehensive ecosystem make it
suitable for an educational setting [4], [31].

The main target audience for making sensor selection based on findings pre-
sented in this chapter are university and polytechnic level non-engineers and
novice engineers.

Choosing novice friendly sensors

17

Even though using embedded systems has become a multidisciplinary practice
[4], novices face considerable challenges while learning a new area combining
software and hardware [11], [12]. Programming, which is a central part of pro-
totyping process, is particularly burdensome and challenging [25], [26], [41],
[42].

Ko et al. present Six Learning Barriers in End-User Programming: design, se-
lection, coordination, use, understanding, and information [27]. In Publication
I barriers are adopted for using sensors as follows:

1) Design Barriers
The user does not know what he/she wants the embedded system to do.

2) Selection Barriers
The user does not know which tool, code or sensor to use.

3) Coordination Barriers
The user does not know how to make the selected tools, codes or sensors work
together.

4) Use Barriers
The user does not know how to use the selected tools, codes or sensors cor-
rectly.

5) Understanding Barriers
The user thought that he/she could use the selected tools, codes or sensors,
but they do not work as expected.

6) Information Barriers
The user has an idea why the sensor does not work but does not know how to
verify it.

Publication I outlines that the suitability of sensors for a novice’s use can be
evaluated based on four properties:

1) Protocol complexity
2) Connection type and component size
3) Understandable real-life phenomena measured
4) Documentation

Learning barriers in relation to sensor properties are shown in Table 1. Sensor
protocol complexity and documentation are the key factors affecting imple-
mentation challenges.

18

Table 1 Sensor properties and learning barriers

 Design
Barriers

Selection
Barriers

Coordination
Barriers

Use Bar-
riers

Understanding
Barriers

Information
Barriers

Protocol
complexity ● ● ● ●

Connection type
and component
size

 ● ●

Understandable
real-life phenom-
ena measured

● ●

Documentation ● ● ● ● ● ●

2.2.1 Protocol complexity

Protocol complexity defines the sensor program’s accessibility. It affects coor-
dination, use, understanding and information barriers. If the program is too
complex compared to a user’s skills, the development is difficult while keeping
the syntax intact. If the sensor is paired with a reference implementation, it is
possible to achieve the basic functionality even with complicated protocol. How-
ever, debugging and extending functionality is challenging if the program is only
partly understood. Protocol complexity can be divided further into four proper-
ties as follows:

Definition strictness
Amount of code needed for basic execution
Need for a library
Need for advanced coding concepts

A novice friendly sensor should have strict protocol definitions, relatively
short amount of code needed for basic execution, and it should not use librar-
ies or advanced coding concepts.

2.2.2 Connection type and component size

Connection type and component size affects coordination and use barriers. To
avoid learning additional skills in the beginning, a sensor for novices should be
connectable by using breadboard or pin headers. This condition leaves out many
industrial sensors that are connected by surface mounting. Breakout compo-
nents are easy to solder but still demand learning extra steps, adding one more
possible point of failure.

Choosing novice friendly sensors

19

A goal or a desired outcome of a workshop or a project may require using com-
ponents that demand soldering or surface mounting, as with the Aalto-1 satellite
project (Figure 3). In that case, appropriate support or guidance should be pro-
vided considering the skill level of the group building the prototype.

Surface-mount sensors used in Aalto-1 satellite project could be connected to Arduino
by using breadboard or pin headers.

2.2.3 Understandable real-life phenomena measured

Understanding what a sensor measures influences on design and selection bar-
riers. The inability to understand what a sensor measures and what it is used for
renders it useless for a novice user.

Novices should be able to select the sensor according to the real-life phenom-
ena it measures instead of how it is measured. With limited knowledge, a novice
cannot select a sensor based on how it works, but on what it measures. For ex-
ample, a proximity sensor can operate by using an infrared transmitter and re-
ceiver, however, for a novice it is important that it reacts to objects close to it.
Dividing sensors by their real-life phenomena measured also helps to assemble
a comprehensive sensor assortment. A one-sided assortment would force users
to make their design based on available components instead of their own inno-
vation [10].

2.2.4 Documentation

Documentation impacts on all learning barriers as shown in Table 2. Hence the
quality of the documentation can make a crucial difference between the success
and failure of the sensor use.

20

Table 2 Documentation and learning barriers

 Design
Barriers

Selection
Barriers

Coordination
Barriers Use Barriers Understanding

Barriers
Information

Barriers

Target of measure-
ment

● ●

Purpose of sensor ● ●

Platform specific re-
ference implementa-
tion

 ● ● ● ●

Troubleshooting sec-
tion ● ●

Documenting the target of the measurement and the purpose of the sensor
solves issues related to design barriers and selection barriers. Without them it
is difficult for a user to select a sensor to match their desired functionality.

Coordination barriers and use barriers can be lowered by including a plat-
form-specific reference implementation. A properly commented reference im-
plementation makes further development easier and more straightforward.

If the sensor does not work as expected and debugging is not successful, the
reference implementation also provides a baseline for a user to return. Together
with a troubleshooting section it helps to lower understanding barriers and in-
formation barriers.

In respect of the thesis research question on which tools and processes lower
the threshold of designing embedded systems, enabling non-engineers and nov-
ice engineers to turn their innovations into working prototypes, publication I
presents a process for selecting sensors that lowers several barriers that non-
engineers and novice engineers face when getting started with embedded sys-
tems. The presented approach provides a method for selecting sensors from any
manufacturer for teaching novice embedded system design. Currently there is
no common best practice for selecting sensors for such use.

When aiming to lower the threshold of designing embedded systems the sen-
sors that are used with selected prototyping platform can have a considerable
effect on overall difficulty. Predefined novice friendly sensor selection can lower
embedded system learning barriers. Sensor protocol complexity and documen-
tation are the most important properties affecting implementation challenges.

A perfect sensor for a novice use would have strict protocol definitions, a basic
execution that could be undertaken with a relatively short code, it would not
need a library, code would not include advanced coding concepts, it could be
connected by using breadboard or pin headers, the real-life phenomena it

Choosing novice friendly sensors

21

measures would support the task in hand and it would be understandable for
the user. Documentation should explain the purpose of the sensor, the target of
measurement, and it should include platform specific reference implementation
as well as a troubleshooting section.

Ko et al. expects a growing demand for lowering barriers towards program-
ming as more and more jobs require programming skills, and millions of end-
user programmers face difficulties they need to overcome [27]. Instead of end-
users, the approach described in Publication I focuses on lowering barriers for
novices who are designing their first prototypes, preferably based on their own
innovation.

The usability of the framework is limited for more advanced students and es-
pecially for experts. In particular, selection, coordination and use barriers are
not significant issues for experts [27]. They face understanding and information
barriers caused by more complicated problems and projects [27]. While debug-
ging tools and software architecture have a key role in overcoming these chal-
lenges [27], well-made documentation can save experts from unnecessary work
and reduce misunderstanding.

The presented approach focuses on selecting sensors which would support the
task in hand and which would be suitable for novice use. In his thesis, Sadler J.
presents barriers to novice electronics prototyping, including issues that affect
the sensor usability but fall out of the scope of the Publication I [11]. As tools are
designed for different audiences, their suitability for a novice can vary [11]. Sen-
sor cost does not directly affect novice usability, but it can form a financial bar-
rier [11]. The presented framework takes into account that sensor selection
needs to be suitable for the desired outcome of the prototype or the workshop.
However, a surprising need for a specific sensor can cause a significant time
barrier [11]. Also, even if the sensor would be suitable for the designed function-
ality, the toolkit can prevent a user from achieving the desired outcome, for ex-
ample, by lacking sufficient computational power [11].

The findings of Publication I are usable with breakout toolkits that do not have
a graphical programming interface or predefined component selection. Toolkit
features, such as lack of an analog-to-digital converter, may have an effect on
sensor implementation difficulty.

22

In Publication II a method for teaching robot rapid prototyping is proposed.
Traditionally, teaching graduate and undergraduate robotics is not focused on
robot design and prototyping except in engineer education [43]. Robots are used
for example in teaching computer science [44], [45], artificial intelligence [46]
and programming [47]. One of the reasons for using robotics in education (RiE)
is to make subjects more interesting and to increase motivation [48].

The aim of Publication II is to provide a minimalistic skill-set that enables stu-
dents to build simple robot prototypes based on their own designs. The devel-
opment platform used is free and open-source software with open hardware.
Proprietary components are not needed, making the approach suitable for var-
ious environments.

The method was studied in a pilot workshop at the University of Art and De-
sign in Linz with 2nd and 3rd year students in the department of Timebased and
Interactive Media (n=9). Most students had limited knowledge about embedded
systems, robots and programming. Some had participated in basic processing
lectures and tested Arduino, while some had almost no experience in these do-
mains.

The main goal was to familiarize students with embedded system basics, ena-
bling them to build a simple robot prototype without predefined functionality.
The timeframe was short, two days, so one of the main interests was to see if
turning designs into working prototypes would be too overwhelming for the stu-
dent group with no engineer background, or if that goal could be obtained in the
given timeframe with no drop-outs. Moreover, objectives included finding out
how the topic was received overall and if self-evaluations of the students’ own
programming skills changed during the course.

To support achieving the goals, a basic skill-set was determined. The work-
shop included teaching the necessary embedded system skills, designing and
building functional robots without following ready-made instructions or prede-
fined functionality.

The first day was used for teaching the basic embedded system and robot de-
sign skills and the second one for building a robot prototype in groups of two.
The robot behavior and sensors used were defined by the student groups, in-
stead of following ready-made instructions. Support and guidance were pro-
vided through the process by the teacher. All groups successfully completed the

Teaching robot rapid prototyping for non-engineers - a minimalistic approach

23

task, indicating that basic embedded system skills can be learned during one
day.

Publication II makes two key contributions:

1. A minimalistic teaching approach, lowering barriers for non-engineers
engaging in robot prototyping projects and supporting utilization of in-
terdisciplinary expertise.

2. A case study supporting the concept that basic embedded system skills
can be learned during one day.

In this context basic embedded system skills are defined as a skill-set that en-
ables students to build simple embedded systems based on functionality they
have designed. Key skills for novice Arduino users are summarized in Table 3.

The central concept is to understand how input, data processing and output
form all embedded systems, robots included as shown in Figure 4. Simple em-
bedded systems can consist of a single sensor, a microcontroller and an output
component while complex embedded systems have more advanced processing
and more inputs and outputs. Often outputs are routed back to inputs, forming
feedback loops controlling the behavior of the embedded system. During the
workshop students tested input, data processing and output to comprehend
how they work individually and how they connect to each other.

In scope of this thesis a robot is defined as an embedded system with an actu-
ated mechanism programmable in two or more axes and with a degree of auton-
omy [19]. To qualify as a robot, the device has to be able to move and/or manip-
ulate the environment, and it has to be autonomous enough to complete its tasks
based on sensor input without human interference [19].

Input, data processing and output.

The learning process is divided into manageable steps as shown in Figure 5.

Students complete each step by building it with the support of a ready-made
reference implementation and circuit diagram. Programming theory is not
taught before this part, but the most important program structures and parts of
the syntax are learned as part of the reference implementations.

The first step is a “Hello World” program that verifies that the development
environment and the development platform are working. This is also a point

24

where students can return if their embedded system does not work as expected
and the problem cannot be solved by debugging. In the development platform
used in the workshop, Arduino Uno, the standard “Hello World” involves com-
piling and uploading a program that makes an on-board LED connected to pin
13 blink.

Each step is then tested with a preselected input or output component. After
the input and output components have been individually tested, they are com-
bined into a simple embedded system. In the workshop example an IR sensor
was combined with a piezo speaker. When something comes near the sensor,
the speaker alarms.

Hobby servo motors were used as actuators. Instead of using typical limited
rotation servos, continuous rotation models were chosen to be used as motors
for wheels. It is not necessary for students to understand how the square wave
pulse makes the servos move, as long as they learn how servo position is con-
trolled by changing the pulse length.

 Moving two servos is almost as straightforward as moving just one. When stu-
dents can move servos, an input component is added. Together with a pre-built
platform, these create a simple wheeled mobile robot platform that can react
according to sensor readings. The pre-built platform used in the workshop did
not include any electronics. It solely worked as a simple chassis for mounting
wheels, a breadboard and Arduino. Compared to providing a ready-made robot
platform this approach enables students to individually test each part and to get
familiar with their programs before starting the development of their own de-
vices. Reference implementations do not use libraries but reveal the whole syn-
tax to students.

Sample setup steps.

Teaching robot rapid prototyping for non-engineers - a minimalistic approach

25

Arduino was used as a development platform solving many low-level issues of
prototyping. Utilizing a development platform allows for the development of
embedded systems without comprehensive understanding about electronics or
programming.

The key skills for novice Arduino users can be divided into basic embedded
system structure and operation, basic IDE skills, connecting sensors and out-
puts and utilizing the online community resources as shown in Table 3. After
understanding the concept of input, data processing and output the user needs
to be able to utilize IDE for connecting hardware to IDE, compiling, uploading
and using a serial monitor. This allows uploading and testing programs that do
not demand extra input or output components. A serial monitor provides a cen-
tral tool for debugging and for understanding communication between the com-
puter and Arduino. In order to successfully connect sensors and output compo-
nents, it is necessary to understand how to use digital, analogue and power pins
on Arduino. Arduino has a strong online community that provides help, pro-
gramming examples and tutorials. By combining and editing programs students
can utilize the online community resources to further develop their designs and
ideas. To make use of community resources users need to be able to edit syntax,
combine programs and perform basic debugging.

Table 3
Key skills for novice Arduino users

Basic embedded system
structure and operation

Basic IDE skills Connecting sensors and outputs Utilizing the online community resources

Input Connecting hardware to
IDE

Using digital pins Editing syntax

Processing Compiling Using analogue pins Combining programs

Output Uploading Using power pins Basic debugging

Using serial monitor

Programming is an indispensable skill for embedded system and robot proto-
typing. This is a major challenge as programming has a vast amount of different
things to learn, it is commonly considered difficult and programming courses
have high drop-out rates [41]. Learning to be a good programmer demands a
substantial amount of time and effort. The path from novice to becoming an
expert programmer takes about ten years [17]. Hence in a short workshop and
especially with a non-technical audience, it is important to focus on basic con-
cepts and structures that support understanding the examples. Findings of
Lahtinen et al. cited in the article “Choosing novice friendly sensors” helps to
separate advanced and more basic programming concepts [28], [49].

In our case workshop, control structures and syntax that were not included in
the reference implementations were taught based on the needs of the students'
own robot designs. Programming and debugging issues can be diminished in

26

advance by providing students with novice friendly sensors, as described in
chapter 2.

Before starting to make their own programs, students should be able to create
a mental model of the program [41]. It does not need to be technical but rather
explain in small steps what should happen. Ability to make a mental model for
solving a problem and then executing it with the syntax is an essential part of a
programming task [42]. Creating a block diagram, as shown in Figure 6, helps
to split the program in parts and to understand what kind of functions are
needed in order to achieve the desired behavior. Students should be encouraged
to think of programming as a series of small challenges and then build and test
one step at a time.

Wall avoiding behavior block diagram and code.

Coding style can make a major difference in how easy the code is to under-

stand and to alter. Figure 7 shows two ways of writing the main program. Us-
ing simple blocking conditional statements and function calls keeps the pro-
gram both readable and reflects the block diagram structure.

Teaching robot rapid prototyping for non-engineers - a minimalistic approach

27

Two ways of writing main program for wall avoiding robot.

The case study was focused on following if the students could use the theory
and examples to design and build simple robots. Also, it seemed likely, that if
the building day would not have been successful, it would have had an impact
on students’ self-efficacy and would have demotivated learning embedded sys-
tems further.

The case workshop indicated that the skills needed for designing and building
basic robots and embedded systems can be summarized in a package that can
be presented in one day. At the Linz workshop, every group successfully de-
signed behavior and built their robots in one day, after only one day of learning
theory and embedded system basics. The workshop agenda is presented in Table
4.

TABLE 4

WORKSHOP AGENDA

Day 1
Technology, theory and personal innovation

Day 2
Utilizing and publishing results

Preliminary knowledge review
Introduction
Key skills for novice Arduino users
Building the Sample setup steps together
Overview of available sensor
Forming groups of two
Assembling the pre-built robot platform
Designing group's robot behavior and component re-
quirements

Designing group's robot behavior and component
requirements
Building the group project
Group project presentations
Feedback questionnaire

Both days were eight hours in length, including lunch break and shorter

breaks between lectures and building. The first day consisted of an introduction

28

to embedded systems, presenting key skills shown in Table 3, building the sam-
ple setup steps shown in Figure 5 together, taking an overview of available sen-
sors, dividing students into groups of two, assembling the pre-built robot plat-
form, giving an assignment for the next day and starting the planning of the
robot behavior for the next day. In each phase it was confirmed by the teacher
that all students had successfully executed the given assignments.

At the beginning of the day two, student groups defined the behavior, inputs
and outputs for the robot. Selection of about 40 sensors was provided and stu-
dents were encouraged to design a straightforward reaction for the robot ac-
cording to sensor input. During the second day, support for design, building and
debugging was provided. While the first day was focused on learning by follow-
ing directions and reference implementations, during the second day students
applied the skills learned without pre-made instructions.

Problems were not solved for the students, but they were advised to build in
small steps, deal with one problem at a time and use code examples to isolate
the problem. When Arduino did not seem to work as expected, a “Hello World”
program was compiled to make sure that the development environment and the
development platform were still working. On several occasions, this helped to
quickly find random problems, such as issues with the USB-connection and
short circuits. Likely, if support would not have been available at this point, new
and confusing problems could have led to frustrating and ineffectual debugging
attempts. The most prominent slowdowns during the first day were caused by
the Arduinos losing connection with the computers. The main reason for this
seemed to be that some computers stopped communicating with the connected
device if it drew too much power via USB port. This seemed to occur especially
when using servo motors and did not happen on majority of the computers. The
final robot prototypes included, for example, flame following (Figure 8), prox-
imity sensing and color changing robots.

Measuring whether the workshop goals were obtained were done by three
ways. Firstly, there were no drop-outs during the course indicating that the pre-
sented workflow was suitable for the audience. Secondly, all groups were able to
produce devices based on their own design. Lastly, data was collected from the
students by a preliminary and a feedback questionnaire to determine how they
felt about the course workflow and their own programming skills.

A preliminary and a feedback questionnaire were used to measure change in
students’ self-evaluation of their programming skills and to allow students to
rate the course. The average rating for the workshop was 4.4 on a scale from 1
to 5, 5 being the most positive (n=8). Self-evaluations of programming skills
raised from an average of 2.3 to 2.9. Because of the small sample size and the
values based on self-evaluation, conclusions about the change in the actual pro-
gramming skills should not be made. Rather this can be interpreted so that dur-
ing the workshop students programming self-efficacy did not drop despite the
technical context. All self-evaluations of programming skills either raised or
stayed the same. Moreover, due to the small sample size, calculating statistical
significance was not reasonable.

Teaching robot rapid prototyping for non-engineers - a minimalistic approach

29

Related research reports similarly very positive student reception on using Ar-
duino as a development platform [50] [3]. In the case workshop, students did
not appear to be overwhelmed by the new skills and technology in contrast to
some related research [50]. Arguably, practices used in the case workshop, such
as understanding the concept of input, data processing and output, utilizing
sample setup steps and building in small steps, supported learning without frus-
trating students by unsustainable amount of information. While programming
courses traditionally have high drop-out rates [41], the case workshop had no
drop-outs, despite the non-technical audience.

Learning robot prototyping in two days was tested in a robot workshop at the University
of Art and Design in Linz. Here a student tests a flame following behavior.

In respect of the thesis research question on which tools and processes lower
the threshold of designing embedded systems, enabling non-engineers and nov-
ice engineers to turn their innovations into working prototypes, publication II
describes a process, tools and key skills for teaching embedded systems and ro-
botics during a two-day-workshop.

Based on successful group projects, the presented workflow is a suitable way
of engaging novices in basic embedded system design. Despite the short
timeframe students were able to define the functionality of their projects instead
of following ready-made instructions. The practices that helped novices to deal
with embedded system challenges can be summarized as follows:

Understanding the concept of input, data processing and output
Utilizing sample setup steps

30

Learning the key skills for novice Arduino users
Starting with “Hello World”
Creating a mental model of the desired functionally
Utilizing the online community resources
Using coding style that keeps the program readable and reflects the
mental model structure.
Building in small steps
Dealing with one problem at the time
Compiling “Hello World” when embedded system or program does not
seem to work as expected

These practices were determined in order to obtain the goals set for the work-
shop. It cannot be concluded that the list is complete or that some of the prac-
tices could not be left out and still achieve the desired outcomes. However, by
using these practices, all goals of the workshop were met.

Even though the group projects were successful in the case workshop, many
of the students needed repetitive support from the teacher in the building phase,
such as advice with debugging. With a larger non-technical novice group, more
time or teachers may be necessary. Also, without the pre-built chassis for the
wheeled robot, the time frame would have been inadequate.

While one day for learning the basics may seem like an unrealistically short
amount of time, though more likely with a more technically orientated audience,
tangible results could be achieved with an even shorter introduction. In research
by Jamieson and Herdtner, they describe how Arduino is introduced to electri-
cal and computer engineering students over two 55 minute lectures [51]. After
the introduction, students utilize online community resources to build the as-
signed projects [51].

Botelho et al. describes a pedagogical methodology for RiE that aims to help
students to create a working prototype without following ready-made instruc-
tions [48]. This approach has some similarities with the process that starts with
a mental model described above. Steps suggested by Botelho et al. are virtual
sketch, functional sketch, concrete sketch, prototype construction and presen-
tation [48]. These approaches could complement each other by splitting the
mental model planning into virtual model and functional model. Prototype
presentation including evolution process would be a natural way of summariz-
ing the findings by different groups.

LEGO MINDSTORMS is a popular option for teaching novices robot proto-
typing and embedded system basics, such as in research by Kim et al. [32] or
Bilotta et al. [52]. Similarly, as in the minimalistic approach described above,
MINDSTORMS enables students to build prototypes without comprehensive
knowledge about embedded systems [32]. The main weaknesses of MIND-
STORMS are a proprietary component selection and a GUI-based programming
environment. The component selection not only limits the possible outcomes
but can also make prototypes less reliable [32]. The downside of utilizing GUI is
that students do not learn traditional programming skills that can be applied to
all major programming environments. MINDSTORMS has a syntax-based

Teaching robot rapid prototyping for non-engineers - a minimalistic approach

31

programming option instead of GUI [53] but students may end up learning both
approaches as in the course described by Kim et al. [32]. While LEGO MIND-
STORMS and similar kits have drawbacks compared to the presented approach,
they provide an appropriate solution for building mechanical structures, such
as a chassis for a robot. For future courses, 3D printing could be used for me-
chanical parts. Publishing a free printable version of the chassis would also al-
low a straightforward use of the presented method. One viable option for a plat-
form could be combining Arduino's functionality with commercially available
Parallax Boe-Bot chassis described by Balogh R. [54].

MINDSTORMS also provides a less demanding teaching platform than the
presented solution. Using Arduino combined with non-proprietary component
selection requires a teacher to be more proficient with embedded system than
with a fully productized MINDSTORMS package. Despite the approachability
and popularity of the LEGO MINDSTORMS, presumably learning more tradi-
tional embedded systems would allow easier participation in serious develop-
ment projects and produce more diverse results.

 Programming is the most prominent obstacle in learning robot rapid proto-
typing. Platform specific reference implementations help novices to get working
results that can be then altered, mixed and developed further. Creating a mental
model of the program can help to define desired behavior and to divide it into
smaller pieces. This also helps to see the program as a combination of small,
separate challenges and then deal with one of them at the time. Suitable pro-
gramming style supports the mental model and keeps the program readable.

Findings in chapter 2, “Choosing novice friendly sensors” provide guidelines
on how to choose suitable sensor selection for students. The next chapter de-
scribes a novice friendly method for more advanced and specialized embedded
system prototyping.

32

Successful IoT prototyping requires a diverse skill set, including embedded
systems knowledge combined with using network and servers. With suitable
workflow and a development environment, necessary basic skills that allow
turning ideas into working prototypes can be taught in four days to novice engi-
neers and even to students who are not technically oriented. IoT is a particularly
interesting prototyping area as IoT development is expected to be an important
leap in the ICT sector, influencing a vast amount of different fields, such as
smart cities, environmental monitoring, health-care, and security [55], [56].

This approach allows students to use and learn the new technology in a mean-
ingful context. Prototyping, design and project oriented approaches have suc-
cessfully been used in engineering education [9], [57].

The presented approach enables a fast prototyping cycle, using a common and
well-established development board and a computer. Arduino Uno is used for
prototyping and a Python program running on the same computer handles the
needed Internet communications. Related research shows that Arduino is used
for purpose of engineering education for its accessibility, adaptability and com-
patibility [2], [23], [4], [58].

It is common to add extra components to Arduino to enable wireless connec-
tivity, such as using Wi-Fi Shield or ESP8266 [59]. This raises the difficulty level
as it demands more complex setup with a wireless connection. The presented
method makes it possible to learn the needed basic skills in manageable steps,
allowing students to focus on the actual prototype instead of struggling with the
wireless and Internet communication problems.

After the prototyping phase, a device can be easily ported to an inexpensive
and small ESP8266 based microcontroller. Compared to developing IoT proto-
types directly with ESP8266, the setup presented is considerably faster. The
whole process is based on free software tools which provides a possibility to uti-
lize prototypes commercially, without a risk of a third party changing or discon-
tinuing services.

We arranged a four-day-workshop at the University of Lapland with art stu-
dents from diverse backgrounds and varying levels of technical skills (n=19).
The students were from various departments, such as art education, industrial
design and interior & textile design. Regarding technical skills, a majority re-
ported that they had not received a single credit from programming course be-
fore. The main goal was to teach embedded system and IoT basics allowing stu-
dents to design and build their own IoT-devices. The course was divided into

IoT Rapid Prototyping Laboratory Setup

33

teaching basic skills for the whole class and to supporting building projects by
two teachers. Similarly, as in the Lintz workshop, the defined timeframe, four
days, was short given the complexity of the topic. The aim was to see if it was
possible for the target group to build functional IoT-devices in the given time
without ready-made and pre-defined outcomes. One of the goals was also to ob-
serve whether the drop-out rate could be kept at zero despite the technical topic
and non-engineer audience. Moreover, an aim was to find out how the topic was
received overall and if self-evaluations of the students’ own programming skills
changed during the course.

All teams successfully built a working IoT prototype based on their own ideas.
The experiment was later repeated with another group (n=27) at a university of
applied sciences, getting similar results. Results indicate that this method is ef-
fective for learning IoT prototyping skills during a 4-day-workshop.

Lessons learned in chapter 2 “Choosing novice friendly sensors” and chapter
3. “Teaching robot rapid prototyping for non-engineers - a minimalistic ap-
proach” are useful for teaching basics of embedded systems without cloud con-
nection as well as for choosing suitable component selection for education.

Publication III makes three key contributions:

1. Approach that enables novice students to turn their ideas into working

IoT prototypes during a four-day-workshop.
2. Defining necessary basic skills for learning and prototyping IoT.
3. Open source setup for IoT prototyping utilizing a development board

and a computer.

Supporting the goal of the workshop, basic skills for learning and prototyping
IoT are defined as a skill-set that enables students to build IoT device prototypes
based on their own designs. As the area is broad, the aim is to leave out every-
thing that is not necessary to attain this goal. Figure 10 summarizes these skills.

Like all embedded systems, [60] IoT devices consist of input, processing and
output. Unlike traditional embedded systems, IoT devices can have input, out-
put or both connected to cloud as shown in Figure 9. In addition to cloud con-
nections, an IoT device can have local sensors and outputs, but without connec-
tion to cloud, the system would not qualify as an IoT device.

34

Structure of an IoT device.

IoT device structure can be divided into “embedded system”, “embedded sys-

tem and cloud communication” and “cloud deployment and development”. Fig-
ure 10 presents this subdivision including the most central skills needed in
building a basic embedded system and in creating a foundation for understand-
ing how IoT devices operate. Before moving to cloud communication students
need to have a basic understanding of how embedded systems work. It is neces-
sary to understand how input, processing and output work separately and to-
gether. In-depth understanding of programming is not necessary, but students
must be familiar with basic program structure and syntax. Without any com-
mand of these skills, utilizing reference implementations and online community
resources would be challenging. IDE's built-in serial monitor is needed for de-
bugging as well as for understanding serial communication when communi-
cating with cloud. Teaching basic embedded system skills is described in detail
in chapter 3: “Teaching robot rapid prototyping for non-engineers - a minimal-
istic approach”.

After understanding the basics of input, processing and output, it is effortless
to develop the embedded system into an IoT device with cloud communication.
Writing to cloud is not significantly different from using any traditional output:
instead of outputting data to Arduino’s pins, a value is written to the serial port.
Python proxy program then transfers data to the server. To read from the cloud,
data is received by writing request to the serial port, instead of reading it from
a local sensor.

IoT Rapid Prototyping Laboratory Setup

35

IoT prototype building basics.

With the presented setup, IoT prototyping is possible without server program-

ming, as the internet communication is limited to passing floating point num-
bers. Students only need to understand how the communication works between
the cloud and the embedded system. On day four there was an optional cloud
deployment and development learning session for advanced students.

For utilizing the setup, a computer with Arduino IDE and Python 3 installed
is required. All software required is free and open source. Necessary programs
can be installed to Linux, Windows or OS X making it suitable for almost any
environment. The agenda of the workshop is presented in Table 5.

TABLE 5

WORKSHOP AGENDA

Day 1
Technology, theory and personal in-
novation

Day 2
Utilizing and publishing results

Day 3
Debugging and cloud services

Day 4
Demo day

Preliminary knowledge review
Introduction to IoT
Designing embedded system
Designing IoT device
Successful prototyping process
Group project plan
Presenting project plan

Serious results with acces-
sible tools
Documenting projects
Publishing
Building the group project

Common problems and solu-
tions
For advanced students: cloud
service deployment and opera-
tion
Building the group project

Finalizing the prototype
Building the group project
Group project presentations
Feedback

36

The prototype is built with Arduino Uno which is connected to a desktop com-
puter running Arduino IDE as shown in Figure 11. Only one cable is needed for
connecting Arduino to a computer, while all data is written to a serial port and
read from the serial port by a Python program run on the computer. As the setup
is wired and limits the number of needed physical components, there is a re-
duced change for user errors. Implementation components are shown in Table
6.

Setup for prototyping.

When developing prototypes, students only write code in Arduino IDE. The

program is compiled and uploaded with a single click, making the development
cycle fast and straightforward. This also allows students to focus on one pro-
gramming language and environment. Editing the Python proxy or the server
end is not mandatory for successful prototyping. Python Proxy does however
provide an additional and useful tool for debugging as all requests are shown on
it.

Table 6
Components chosen for implementation

Hardware Arduino Uno Desktop computer Virtual Private Server

OS No OS Linux/Windows/Mac Linux

Software Student's code BotBookEspy http://one.api.botbook.com, Apache,
Flask, PostgreSQL

Language C++ Python 3 Python 3, SQL

Arduino can either send a value to a server or ask for a value from a server via
the Python proxy. Server API (application programming interface) supports
three types of GET requests: storing a data point, returning value for last data
point and returning all stored data points, as shown in Table 7. An API key is
used for authenticating the requests. When asking for data, Python proxy only
forwards the first line of HTTP response body to Arduino containing the data
point value in a string form. From the user’s point of view this is not noticeably
different from reading a value from a local sensor.

IoT Rapid Prototyping Laboratory Setup

37

Table 7

API endpoints provided by BotBookAPI v 1.0.0

Path Feature

/add/<addkey>/?x= Store a data point [currentTime, x]

/last/<viewkey> Return x value for last data point

/json/<viewkey>/index.json Return all stored data points

The server handling GET requests is configured to be used as a backend for a

web page. A static web page on an external server can perform AJAX (asynchro-
nous JavaScript and XML) requests, enabling students to develop web and mo-
bile interfaces for their devices. Students can utilize any web tools and formerly
learned skills to build web interfaces or even cell phone apps by using mobile
application development frameworks, such as Apache Cordova [61]. This fea-
ture was applied by students both in creating control and visualizing web inter-
faces, as shown in Figure 12. Importantly, web tools are constantly evolving, and
they are also widely used outside the engineering domain. This allows students
to utilize formerly learned skills to elaborate their IoT-device.

Student made, visual web interface reacting to a number of Bluetooth devices present
in another space. This is an example of utilizing common web tools for creating an aestheti-
cally pleasing presentation of the IoT-device measurements.

The server code is based on free tools stack (Linux, Apache, PostgreSQL,

mod_wsgi, Python 3, Flask) and was provided for students. This allows

38

developing the system further and keeping the control of the IoT solution with-
out third party commercial operators. During the workshop, one advanced stu-
dent also created his own backend with similar architecture utilizing LAMP
(Linux, Apache, MySQL, PHP) stack.

Internet access is programmed into separate functions, which allows a user to
replace them and connect to the internet without a computer or Python proxy.
With minor program changes, the prototype can be developed to a wireless
standalone device using, for example, Arduino WiFi Shield or ESP8266. Taking
advantage of this workflow, IoT prototypes can be developed reliably with a ro-
bust wired setup.

The ESP8266 is a small low-cost Wi-Fi capable microprocessor, designed by
Espressif systems [62]. It is possible to miniaturize the whole IoT device into a
single ESP8266 board. In addition to an accessible and reliable setup, using pre-
sented workflow also enables a faster prototyping cycle compared to developing
with ESP8266 from the start.

ESP-12E and ESP-01 were tested with sample code to find out how fast pro-
gram uploads they would enable. The sample program had 9 lines of code. Using
Arduino IDE with ESP-12E, the upload took about 30 seconds including time to
compile the program. With ESP-01 the upload time was approximately 34 sec-
onds. Upload to Arduino Uno took under 4 seconds. While the difference is not
remarkable for a single upload it clearly has an effect on the prototyping speed
as the program is changed and uploaded repeatedly during the development.

There were no drop-outs during the course indicating that the presented
workflow was suitable for the target audience. The most important result to
measure however was the student groups’ ability to design and build working
IoT prototypes. In the case workshop, all student groups were able to design and
build a working prototype based on the assignment. Final prototypes included,
for example, a shirt with sleeves controllable by a cell phone, imitation candle
that lights up when a real candle is lit up in a different location and a felt owl
that reacts to the number of Bluetooth devices present in another space (Figure
13).

IoT Rapid Prototyping Laboratory Setup

39

Student group turning felt into an animatronic IoT owl.

The most notable challenge during the workshop was a lack of technical, and
especially programming, skills. Some students had virtually no experience in
those areas. On the other hand, most groups managed to utilize skills learned
from their own domains, such as designing clothes, and combining them to IoT
prototypes. Students also started fluently innovating concepts when asked to
plan an IoT device based on their own idea.

To see how the workshop was received overall and if self-evaluations of the
students’ own programming skills changed during the course, data was collected
from the students by a preliminary and a feedback questionnaire. In the prelim-
inary questionnaire students reported that they are interested in learning IoT,
for example, to combine embedded systems with their art, to make interactive
pieces, building home automation, to learn prototyping tools and to combine
electronics to textiles. An example of the most challenging topic in IoT that stu-
dents mentioned was programming and connecting devices to Internet. Seven
of the students also reflected that their main challenge was the total lack of
knowledge and experience on the subject.

Despite the technical topic, the reception and evaluation of the workshop was
positive. On a scale of 1 to 5 (5 being the most positive), students scored the
course 4.3 on average. All participants would also recommend the course to
other students. In the preliminary knowledge review, over half of the students
evaluated their programming skills with the lowest available number 1 while the

40

average rating was 1.5 (n=19). In the feedback, the average was raised to 2.5 and
no one selected the lowest rating. The result was statistically significant at p <
.05 calculated with Wilcoxon Signed-Rank test. Again, this more likely indicates
change in self-efficacy than in actual objective programming skills. It is note-
worthy that every self-evaluation rating either raised or stayed the same.

In the feedback questionnaire students indicated that the single most chal-
lenging topic in IoT for them was, for example, programming generally, com-
bining programs, understanding server-side, understanding syntax, python and
debugging. Related research also brings out that students with limited technical
skills can be overwhelmed by the Arduino even when they have an overall posi-
tive impression of the platform [50]. In the case workshop, guidance by teacher
accompanied with practises presented in chapter 3 helped to keep the students
from frustrating with the embedded system and IoT challenges.

According to feedback the most interesting things during the workshop were,
for example, problem solving, individual support, Arduino in general, getting
things to work despite the lack of prior experience and realizing new possibili-
ties. Examples of the most complex things at the workshop that students listed
included, combining a device with a website, learning a completely new domain,
programming challenges, understanding causalities, the fast pace of teaching,
choosing the right components and server operation.

Based on feedback and successful projects, the chosen approach was appro-
priate for the diverse group. However, the pace of the workshop including many
new skills and techniques for most of the students, render it relatively demand-
ing for novices. If the group would have been less motivated or there would have
been less individual support this could have caused some students to give up.

After the pilot workshop, the course was repeated with another group (n=27)
in Haaga-Helia University of Applied Sciences by Tero Karvinen, with similar
results. All groups successfully built a working IoT prototype during the work-
shop. Differences in educational background showed in prototyping results be-
tween the two workshops. Art students focused more on aesthetic factors while
ICT students developed more advanced technical solutions. In Haaga-Helia
University, students rated the workshop 4.8 on average on a scale of 1 to 5.
Change in self-evaluation on programming skills was not measured for this
course.

Regarding the thesis research question, publication III presents tools, process,
open source setup and a skillset that enables non-engineers and novice engi-
neers to turn their innovations to IoT-devices prototypes.

The teaching method with the setup combining Arduino, Python Proxy and
desktop computer for IoT prototyping was successful. Students were able to de-
sign and build working prototypes based on their own ideas. The presented ap-
proach extended the traditional embedded system prototyping process by add-
ing a possibility to communicate with the cloud, without raising the threshold
too high for novice use.

IoT Rapid Prototyping Laboratory Setup

41

The practices used in the workshop can be summarized as follows:

Using a common and well-established development board and a com-
puter
Using free software and open source tools
Teaching the basic program structure and syntax
Using wired setup for prototyping
Using process that does not demand server programming
Understanding the concept of input, processing and output
Utilizing code examples and Internet resources
Utilizing text output of the Python proxy program and Arduino IDE’s
serial monitor for debugging
Using GET to send and receive data

Wired platform effectively eliminated random errors which could be caused by
wireless protocols and components. The workflow did not require server pro-
gramming which allowed students to focus on developing their prototypes with
Arduino. Non-engineers and novices could benefit from preliminary embedded
system workshop, as most issues derived from the lack of basic technical skills.
Writing a working syntax is a major novice challenge. Even though the approach
leaves all unnecessary technical details out, the combination of programming,
embedded systems, new concepts and techniques can become overwhelming for
a novice student. Personal support from a teacher or teachers can be invaluable
to solve the issues before they become insurmountable.

Using GET to send and receive data was easy to understand and advancing
from embedded system to IoT device was not a prominent challenge. Several
groups also utilized the possibility to use IoT server as the backend for web page
interfaces.

The prototyping cycle is considerably faster when prototyping is done with Ar-
duino instead of ESP8266. When tested the upload time from Arduino IDE to
ESP-12E was 750% of the upload time to Arduino. Setup allows the prototyping
with the wired setup, and with minor program changes, the prototype can be
changed to a wireless standalone device. Time frame did not allow students to
further develop their prototypes into standalone ESP8266 devices, leaving that
phase to be tested on future courses.

Combining student-made devices with available IoT-devices and platforms
could make prototypes more versatile and allow students to focus on designing
the missing parts of the IoT-ecosystems. Several applications can be connected
to the setup described above simply by sending and receiving GET-requests.
One of the student groups utilized this feature for timing device events by load-
ing the HTTP API from the cell phone calendar event. With a suitable setup, it
would be possible, for example, to enable a student made prototype to control
Philips Hue lights or react to a click of a Flic button.

There are various solutions available for controlling IoT devices from separate
ecosystems. IFTTT (If This Then That) is a popular web service that connects
other web services and IoT devices to each other [63], [64]. IFTTT demands

42

permission for the services it controls, including the personal data associated
with the accounts [64]. This may raise privacy concerns in some users making
it an unsuitable solution.

Li et al. propose the mobile programming system Epidosite that uses
smartphone as a hub for IoT automation [65]. Epidosite connects different de-
vices by manipulating their mobile apps, aiming to provide a solution mainly for
smart home automation [65]. Programming automation is done by the user
demonstrating the desired set of actions which the system records [65]. Com-
bining a smartphone hub with automation applications, such as Tasker [66] or
Automagic [67], would allow creating automated workflows utilizing a diverse
selection of IoT devices combined with cell phone or tablet functionalities. Local
hub could also be built so that the user does not need to give all application per-
missions to a single third party service provider.

The next chapter (chapter 5: “Using hobby prototyping boards and commer-
cial-off-the-shelf components for developing low-cost and fast-delivery satellite
sub-systems”) shows how the Arduino prototype can develop from an early pro-
totype into a space ready device.

Using hobby prototyping boards and commercial-off-the-shelf components for developing low-
cost and fast-delivery satellite sub-systems

43

The use of small satellites has increased remarkably in the past years and the
community participating in the process is growing [68]. The lower cost has en-
abled satellite and subsystem development for new groups such as start-up
companies and universities [69]. The traditional space industry has also started
to use faster, better and cheaper (FBC) approaches to increase the number of
research missions without raising costs [70].

Publication IV proposes a development process that allows participants with
multidisciplinary backgrounds to contribute to satellite projects. Development
is undertaken by combining commercial off the shelf components (COTS) with
readily available open source hobby development board (Arduino).

The use case of the Aalto-1 sun sensor prototype development using this pro-
cess is presented. Requirements for the sensor are defined by an internal devel-
opment group while the prototyping is executed by an external group. The use
case shows how an Arduino prototype can evolve from the early tests into a
space ready component.

Publication IV makes two key contributions:

1. Demonstrating a process for developing low-cost, fast-delivery satellite
subsystems using commercial off-the-shelf (COTS) components.

2. Presenting use Case: Aalto-1 Sun Sensor Subsystem Prototype Develop-
ment.

o Sun sensor is one of the smallest and cheapest satellite sun sen-
sors available.

o Use case shows that despite the DIY background, hobby proto-
typing board Arduino can be used for serious prototyping.

The research question defined that “The workflow should allow experimental

prototypes to evolve to deployable embedded systems.” In this regard the most
interesting aspect of the publication IV is whether the same accessible tools that
are suitable for novice prototyping, are usable for developing functional final

44

products. As presented earlier, basic Arduino and embedded systems skills can
be learned in a relatively short amount of time. While being accessible, Arduino
can be directly used as a part of commercial and research hardware [31]. This
narrows the gap between early prototypes and deployable embedded systems.

Satellite subsystem prototyping also provides an interesting use case as the
requirements of a space instrument are more demanding than in most casual
embedded systems. These requirements rule out most toolkits aimed for learn-
ing that include a proprietary component selection.

Research and public information of the small satellite projects and about the
actual practices used in development and testing is limited. Publication IV con-
tributes to this field by describing both the organization and the technical solu-
tion of the development project.

The organizational structure used in Aalto-1 nanosatellite project is shown in
Figure 14. The internal group is formed of space technology experts responsible
for project planning, specifications, management, and the final implementation.
External groups contribute to individual subprojects and can be formed of in-
terdisciplinary participants. This structure allows for the bringing in of outside
expertise and ideas into the project, while controlling the quality of the outcome.

Small satellite project organizational structure.

The internal group defines requirement specifications for the subsystems, as

shown in Table 8. The external group then proposes suitable components,

Using hobby prototyping boards and commercial-off-the-shelf components for developing low-
cost and fast-delivery satellite sub-systems

45

designs a prototype and carries out prototype verification. The final design and
final verification are performed by the internal group.

Table 8

Sun sensor subsystem key requirements defined by the internal group.

Requirement Value

Mass 30 g

Power 30 mW

Dimensions 6 mm * 6 mm * 6 mm (external)

Interface I2C

Performance 5 deg accuracy (1) in 90 deg FOV

Environmental durability Standard / Analysis

Given requirement specifications control how innovative the outcome can be.

Stricter requirements increase prototype suitability for the main project, but at
the same time they diminish the possibility for new innovations and unconven-
tional approaches.

Using a hobby development board, such as Arduino, lowers the threshold of

participating in a satellite project as it solves many of the low-level require-
ments, such as connecting input and outputs. This is especially valuable when
the external group members are not embedded system professionals.

After the prototyping phase, it is usually necessary to optimize the component
price, mass and volume. As Arduino uses the ATmega microcontroller, it is pos-
sible to use the same program, microcontroller and sensor in the final product.
Often support electronics used in the development platform can be left out,
making the device considerably lighter and smaller.

Requirement specifications in Aalto-1 prevented the use of commercially
available sun sensors, as the external envelope of the component had to fit in 6
mm * 6 mm * 6 mm space.

The external group proposed using Elmos E910.86 Integrated Solar Angle
Sensor [71] combined with Arduino. The approach was validated by the internal
group before moving on to the prototyping phase.

Elmos E910.86 is a tiny surface mounting sensor that can not be connected to
Arduino by using breadboard or pin headers. As it also demands adding resis-
tors and capacitors, a custom protoboard was manufactured, as shown in Figure
15.

46

E910.86 uses Serial Peripheral Interface (SPI) to communicate with Arduino.
As noted in the article “Choosing novice friendly sensors” [49] SPI is a loosely
defined protocol making its implementation relatively demanding without suit-
able documentation. Writing the SPI interface for Arduino based on its
datasheet took over one week of work. For an external group with less experi-
ence in programming, this would likely have been an insurmountable challenge.
This also emphasizes how sensor selections have an effect on the level of the
difficulty of a project. For comparison, an unrelated SPI component, a
HMC5983 magnetometer from Honeywell, was tested by the external group. By
using platform-specific reference implementation, it was working in less than
10 minutes.

Custom protoboard for Elmos E910.86 Integrated Solar Angle Sensor.

In the flight-ready satellite, the onboard attitude determination and control
system (ADCS) will ask for a sun vector from the sun sensors. As the ADCS was
not yet available during the prototyping process, one Arduino was built to mimic
ADCS to allow early testing for the sun sensor, as shown in Figure 16. Arduino
was programmed to communicate with two different protocols to support the
sensor’s SPI and the I2C used by ADCS.

Using hobby prototyping boards and commercial-off-the-shelf components for developing low-
cost and fast-delivery satellite sub-systems

47

Sun sensor subsystem connected to an ADCS simulator.

After the prototype fulfilled the given requirement specifications tested by the

external group, an environmental test campaign was conducted by the internal
group. The sensor was successfully thermal-cycled while being operational for
one week from –70 to +100°C.

In radiation testing the sensors stopped working after being exposed to a total
dose of 11 krad. As this was not adequate for the mission, a cover class was added
to protect the sensor. After the modification, the sun sensor was successfully re-
tested for accuracy and the final version was designed, as shown in Figure 17.

Final version of the sun sensor.

48

The development process and Arduino as a development platform were suita-
ble for the satellite sensor subsystem development. The final space-instrument
was implemented on the same hardware as Arduino Uno and utilized the pro-
gram from the prototyping phase. This also made early testing possible and val-
idated the program and the component choices. As this case example only pre-
sents the building of one subsystem, the results cannot be generalized.

The case shows that despite the strong hobby and DIY background, Arduino
is a viable option for serious prototype development, allowing prototypes to
evolve to deployable embedded systems. Arduino has also been successfully uti-
lized by other groups for accessible satellite development, such as described in
research by Geeroms et al. and Holman et al. [72], [73]. The prototype described
could not have been developed with available proprietary kits as it required us-
ing components that fit to requirement specifications. Also, the software devel-
opment needed to communicate with the SPI sensor would not have been pos-
sible with commonly available programming environments that have graphical
user interface instead of syntax. This should not be interpreted as meaning that
proprietary kits or tools with graphical user interface would not be suitable for
any serious prototyping. Rather it shows that tools described in earlier chapters
are flexible enough to suit real-life prototyping needs.

Related research describes Arduino as a very student-friendly development
platform for small satellite development, being sufficiently easy for beginners
and versatile enough for more advanced users [74]. In the case project, the re-
quirement specification for the sun sensor demanded using components that
raised the required skill level for the prototype. With a less technically oriented
group this could have led to failure with given requirement specifications. The
experience level and need for guidance of the external group should be esti-
mated in each subproject. The challenges caused by the surface mounting SPI
sensors are consistent with the findings presented in chapter 2 “Choosing novice
friendly sensors”.

The final subsystem has an external envelope of only 6 mm * 6 mm * 1 mm for
integrating its sensor part, allowing it effortlessly to fit to solar panels and with
it being one of the smallest and inexpensive satellite sun sensors available at the
time of publishing. The satellite sun sensor prototype tutorial was published
online along with the source codes to enable other groups to utilize and further
develop the sensor [75].

Conclusions

49

This thesis makes two key claims:

With the presented tools and processes, the threshold of designing em-
bedded system prototypes can be lowered, enabling non-engineers and
novice engineers to turn their innovations into working prototypes.
Presented tools and processes create a foundation that enables inno-
vation to develop from the first experimental prototypes to deployable
embedded systems.

The key components presented in the previous chapters are:

o Utilizing non-proprietary open-source software with open

hardware.
o Using hardware that is suitable for both prototyping and pro-

duction.
o Utilizing the online community resources.
o Choosing novice friendly sensors.
o Learning programming with syntax revealing IDE.
o Utilizing a presented minimalistic approach for learning basic

embedded systems to achieve instant tangible results.
o Developing IoT-prototypes with a presented wired setup that

does not demand server programming or using multiple pro-
gramming tools.

o Utilizing an expert internal group for validating contributions
of the interdisciplinary external group.

Choosing suitable sensors for a novice use helps to prevent various issues that

beginners face when getting started with embedded systems, as is discussed in
chapter 2. Guidelines for selecting novice friendly sensors and to overcome nov-
ice learning barriers are defined.

In chapter 3 a minimalistic approach for learning basic embedded systems
and robot prototyping is presented. With the workflow presented, the basics can
be learned in one day. The use case shows that even with limited knowledge and
skillset, novices can design and build simple devices based on their own design.

50

IoT prototyping demands tools and skillset beyond basic embedded system
prototyping. Chapter 4 introduces an approach that enables novice students to
turn their ideas into working IoT prototypes during a four-day-workshop.

Chapter 5 presents a process for developing low-cost, fast-delivery satellite
subsystems using commercial off- the- shelf (COTS) components combined to
Arduino platform. The use case shows how Arduino prototypes can evolve from
early tests into ready products.

In the case workshops, all student groups successfully completed given proto-
typing tasks. In contrast to the complexity of the area, pilot workshops show
that with suitable tools and workflow, learning to build basic embedded system
prototypes can be surprisingly fast and easy. In addition to tangible results, re-
ception of the subject, including typically burdensome areas such as program-
ming, was very positive. Students’ self-evaluation of their programming skills
also raised during the workshops.

Student self-evaluation on their programming skills likely tells more about
self-efficacy than objective skill-level. The skill-level of the group and educa-
tional background can also have a substantial impact on this. In a non-technical
group, a mediocre programmer can seem advanced compared to the beginners.
On the other hand, objectively advanced students can be modest about their
knowledge and skills.

Most importantly, the feedback reveals that students found the technical sub-
ject useful and felt that their programming skills had increased. This positively
affects students’ self-efficacy and creates a foundation for learning more in the
area that is traditionally considered difficult.

Presented processes offer a different approach to the multidisciplinary em-
bedded systems teaching challenges compared to the other solutions described
in related research. Often easy accessibility components with limited function-
ality, such as LEGO MINDSTORMS, are offered for non-engineer novice proto-
typing, [32]. Even though these types of systems allow novice rapid prototyping,
arguably some very basic embedded system skills, such as using protocols and
connecting non-proprietary components, are not learned by using them. Pro-
prietary component selection can also hamper even a basic prototyping process
[32].

In contrast, platforms and tools used in the previous chapters are free and
open-source software (FOSS) with open hardware. As proprietary tools or com-
ponents are not required, the approach is suitable for various environments and
for further development.

The strength of the dedicated easy accessibility prototyping kits is that they
can be used to create tangible results very quickly, as shown in the research by
J. Sadler, using modular sensor system Bloctopus [11].

When learning programming, some processes hide the syntax from novices
and a graphical user interface (GUI) is provided instead. Block-based program-
ming languages like Scratch and Blockly are popular examples of this approach
[76], [77]. While hiding code can make code less intimidating for some groups,
it prevents users from learning some of the most central skills needed to develop
more advanced prototypes. The ability to read and write syntax is invaluable as

Conclusions

51

it can be applied in different environments with different tools, and also allows
for the development of early prototypes into ready products. In most environ-
ments it is not possible, for example, to edit code examples, combine programs,
take advantage of community resources and to perform debugging without
some level of programming skills. By including the syntax in the novice learning,
combined with a setup that allows instant tangible results, it can help to lower
sociological barriers on programming [25] and to make it a natural part of the
design process.

In their research, Jamieson and Herdtner bring out a valid question on how
embedded system student projects that utilize open source projects should be
assessed [51]. This issue is emphasized especially with electrical engineers who
should understand the inner workings of the embedded systems instead of just
combining and editing existing open source resources. Jamieson and Herdtner
suggest some solutions [51] that could be useful when assessing results created
by the processes presented in this thesis. In particular, the approach where stu-
dents document the code used, combined, added and designed [51], would pre-
sumably be well suited for multidisciplinary courses. It would make the assess-
ment of the projects easier as well as clarify the process for students themselves.

The findings are largely usable with other breakout toolkits that do not have a
graphical programming interface or a proprietary component selection. The
methods and findings of this thesis should be adapted to the target groups skill
level. In particular, students’ programming experience should be considered.
With novice students, the focus should be on learning embedded systems basics
and on turning their ideas into simple prototypes. On the other hand, advanced
students can benefit from the presented workflows and tools, that allow rapid
prototyping by focusing on design instead of technical challenges.

The workshops and the case study were executed at a university level. Findings
from “Choosing Novice Friendly Sensors” and “Teaching robot rapid prototyp-
ing for non-engineers - a minimalistic approach” could also be particularly use-
ful at a significantly lower educational level, such as in high schools.

Future research and workshops could investigate how the presented method
is suited for diverse audiences and what kind of benefits could be achieved by
varying the goals, timeframe and educational background. Longer workshops
would allow prototyping more advanced and finalized devices. However, the
short duration of the case workshops prevented undertaking a follow-up to
learn if the students would have been able to elaborate their knowledge and
skills beyond embedded system basics.

Chapter 4 introduced an approach for a single more advanced and specialized
embedded system area. Similar workshops could be designed for other interest-
ing areas, such as swarm intelligence or embedded systems utilizing neural net-
works. Workshops suitable for novices would help to bring interdisciplinary
contributions to the new areas.

52

As our case study was limited to building one satellite subsystem, it cannot
confirm the advantages of using external groups for increasing innovation and
knowledge. To test this, several interdisciplinary groups could be used to simul-
taneously provide different solutions for the same requirements or problem. Us-
ing loose requirement specifications would allow the possibility for more inno-
vative and surprising approaches. To utilize interdisciplinary external groups,
one solution especially related to an academic setting would be to arrange a
workshop for the target groups and focus on building prototypes within require-
ment specifications. This would allow provision for technical support for the ex-
ternal group and, on the other hand, enabling collecting possible new innova-
tions and insight for the R&D internal group.

References

53

[1] C. Severance. “Massimo Banzi: Building Arduino.” Computer, vol. 47, pp. 11-
12, Jan. 2014.

[2] A. Soriano, L. Marin, M. Valles, A. Valera and P. Albertos. “Low Cost Plat-
form for Automatic Control Education Based on Open Hardware.” IFAC Pro-
ceedings Volumes, vol. 43, pp. 9044-9050, Dec. 2014.

[3] P. Jamieson. “Arduino for teaching embedded systems. are computer scien-
tists and engineering educators missing the boat?” in Proc. FECS, 2010, pp.
289-294.

[4] C. Parikh. “Introducing Arduino Platform to Sophomore's using an apt rec-
ipe,” in Proceedings of the 2014 ASEE North-Central Section Conference,
2014, pp. 1-8.

[5] E. K. Huizingh. “Open innovation: State of the art and future perspectives.”
Technovation, vol. 31, pp. 2-9, Jan. 2011.

[6] H. Chesbrough, W. Vanhaverbeke and J. West. Open Innovation A New Par-
adigm. Oxford, UK: Oxford University Press, 2006, pp. 0-19.

[7] L. Zhao and S. Elbaum. “Quality assurance under the open source develop-
ment model.” Journal of Systems and Software, vol. 66, pp. 65-75, Apr.
2003.

[8] C. Anderson. Makers: The New Industrial Revolution. USA: Crown Busi-
ness, 2012, pp. 99-118.

[9] S. Chandrasekaran, A. Stojcevski, G. Littlefair, and M. Joordens. “Project-
oriented design-based learning: aligning students' views with industry
needs.” International Journal of Engineering Education, vol. 29, pp. 1109-
1118, Mar. 2013.

[10] A. Bonarini, M. Matteucci, M. Migliavacca and D. Rizzi. “R2P: An open
source hardware and software modular approach to robot prototyping.” Ro-
botics and Autonomous Systems, vol. 62, pp. 1073-1084, Jul. 2014.

[11] J. A. Sadler. “The Anatomy of Creative Computing: Enabling Novices to
Proto-type Smart Devices.” Doctoral dissertation, Stanford University, USA,
2016.

[12] T. Booth. “Making Progress: Barriers to Success in End-User Developers'
Physical Prototyping,” in Visual Languages and Human-Centric Computing
(VL/HCC), 2015 IEEE Symposium, 2015, pp. 299-300.

[13] T. Booth and S. Stumpf. “End-user experiences of visual and textual pro-
gramming environments for Arduino,” in International Symposium on End
User Development, 2013, pp. 25-39.

54

[14] P. Blikstein. “Gears of our childhood: constructionist toolkits, robotics, and

physical computing, past and future,” in Proceedings of the 12th international
conference on interaction design and children, 2013, pp. 173-182.

[15] ”Adafruit.” Internet: https://www.adafruit.com/, [February 26, 2019].
[16] ”Sparkfun.” Internet: http://www.sparkfun.com/, [February 26, 2019].
[17] L. E. Winslow. “Programming pedagogy - a psychological overview.” ACM

SIGCSE Bulletin, vol. 28, pp. 17-22, Sep. 1996.
[18] G. Fischer. "End-user development and meta-design: Foundations for cul-

tures of participation," in International Symposium on End User Develop-
ment, Springer, Mar. 2009, pp. 3-14.

[19] “ISO 8373:2012 (en), Robots and Robotic Devices – Vocabulary.“ Internet:
https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en, [January 20,
2018].

[20] A. Repenning and A. Ioannidou. “What makes end-user development tick?
13 design guidelines,” in End user development, Springer, 2006, pp. 51-85.

[21] D. Malan, and H. Leitner. "Scratch for budding computer scientists." ACM
Sigcse Bulletin, vol. 39, pp. 223-227, Jun. 2007.

[22] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari. "From scratch to “real”
programming." ACM Transactions on Computing Education (TOCE), vol. 14,
pp. 25, Feb. 2015.

[23] A. Araujo, D. Portugal, M. S. Couceiro, and R. P. Rocha. “Integrating Ar-
duino-based educational mobile robots in ROS.” Journal of Intelligent & Ro-
botic Systems, vol. 77, pp. 281-298, Feb. 2015.

[24] P. Hertzog and A. Swart. “Arduino-Enabling engineering students to obtain
academic success in a design-based module”, in Global Engineering Educa-
tion Conference (EDUCON), IEEE, 2016, pp. 66-73.

[25] C. Kelleher and R. Pausch. “Lowering the barriers to programming: A taxon-
omy of programming environments and languages for novice programmers.”
ACM Computing Surveys (CSUR), vol. 37, pp. 83-137, Jun. 2005.

[26] J. F. Pane and B. A. Myers. “Studying the language and structure in non-pro-
grammers' solutions to programming problems.” International Journal of
Human-Computer Studies, vol. 54, pp. 237-264, Feb. 2001.

[27] A. J. Ko, B. A. Myers and H. H. Aung. “Six Learning Barriers in End-User
Programming Systems,” in Visual Languages and Human Centric Compu-
ting, 2004 IEEE Symposium, 2004, pp. 199-206.

[28] E. Lahtinen, K. Ala-Mutka and H-M Järvinen. ”A study of the difficulties of
novice programmers.” Acm Sigcse Bulletin, vol. 37, pp. 14-18, Jun. 2005.

[29] O. A. Patiño, S. Contreras-Ortiz and J. C. Martínez-Santos. “Evolution of Mi-
crocontroller’s Course under the Influence of Arduino,” in Proc. 14th LACCEI
Int. Multi-Conf. Eng., Edu., Technol., 2016, pp. 1-7.

[30] P. Torrone. “Why the Arduino won and why it’s here to stay.” Make: Technol-
ogy on your time. Internet: https://makezine.com/2011/02/10/why-the-ar-
duino-won-and-why-its-here-to-stay/, [February 26, 2019].

[31] J. M. Pearce. “Building research equipment with free, open-source hardware.”
Science, vol 337, pp. 1303-1304, Sep. 2012.

References

55

[32] S. H. Kim and J. W. Jeon. "Introduction for freshmen to embedded systems

using LEGO Mindstorms." IEEE Transactions on Education, vol. 52, pp. 99-
108, Feb. 2009.

[33] P. Blikstein. "Digital fabrication and ‘making’in education: The democratiza-
tion of invention." FabLabs: Of machines, makers and inventors, vol. 4, pp.
1-21, 2013.

[34] E. R. Halverson and K. Sheridan. "The maker movement in education." Har-
vard Educational Review, vol. 84, pp. 495-504, Dec. 2014.

[35] D. Dougherty. “The maker movement.” Innovations: Technology, Govern-
ance, Globalization, vol. 7, pp. 11-14, Jul. 2012.

[36] K. Peppler and S. Bender. "Maker movement spreads innovation one project
at a time." Phi Delta Kappan, vol. 95, pp. 22-27, Nov. 2013.

[37] H. Lieberman, F. Paternò, M. Klann and V. Wulf. “End-user development:
An emerging paradigm,” in End user development, Springer, 2006, pp. 1-8.

[38] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C.
Scaffidi, J. Lawrance, H. Lieberman, B. Myers and M. B. Rosson. “The state
of the art in end-user software engineering.” ACM Computing Surveys
(CSUR), vol. 43, pp. 21, Apr. 2011.

[39] J. Sadler, K. Durfee, L. Shluzas and P. Blikstein. "Bloctopus: a novice modu-
lar sensor system for playful prototyping," in Proceedings of the Ninth Inter-
national Conference on Tangible, Embedded, and Embodied Interaction,
ACM, 2015, pp. 347-354.

[40] H. S. Raffle, A. J. Parkes and H. Ishii. "Topobo: a constructive assembly sys-
tem with kinetic memory," in Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, ACM, 2004, pp. 647-354.

[41] A. Robins, J. Rountree and N. Rountree. “Learning and teaching program-
ming: A review and discussion.” Computer science education, vol. 13, pp.
137-172, Jun. 2003.

[42] J. F. Pane and B. A. Myers. "Studying the language and structure in non-pro-
grammers' solutions to programming problems." International Journal of
Human-Computer Studies, vol. 54, pp. 237-264, Feb. 2001.

[43] D. Alimisis, M. Moro, J. Arlegui, A. Pina, S. Frangou and K. Papanikolaou.
“Robotics & constructivism in education: The TERECoP project.” EuroLogo,
vol. 40, pp. 19-24, Aug. 2007.

[44] B. S. Fagin, L. D. Merkle and T. W. Eggers. 'Teaching Computer Science with
Robotics Using Ada/Mindstorms 2.0,” in Proceedings of the 2001 annual
ACM SIGAda international conference on Ada, 2001, pp. 73-78.

[45] B. Fagin. and L. Merkle. “Measuring the effectiveness of robots in teaching
computer science.” ACM SIGCSE Bulletin, vol. 35, pp. 307-311, Feb. 2003.

[46] F. Klassner. “A Case Study of LEGO Mindstorms TM Suitability for Artificial
Intelligence and Robotics Courses at the College Level.” ACM SIGCSE Bulle-
tin, vol. 34, pp. 8-12, Feb. 2002.

[47] P. B. Lawhead. “A road map for teaching introductory programming using
LEGO© mindstorms robots.” ACM SIGCSE Bulletin, vol. 35, pp. 191-201,
Jun. 2002.

56

[48] S. S. Botelho, L. G. Braz, and R. N. Rodrigues. "Exploring creativity and so-

ciability with an accessible educational robotic kit," in Proceedings of the 3rd
International Conference on Robotics in Education (RiE 2012), 2012, pp.
55-60.

[49] K. Karvinen. “Choosing Novice Friendly Sensors.” First Published September
18. https://doi.org/10.1177/0020720918800821

[50] J. Sarik and I. Kymissis. “Lab kits using the Arduino prototyping platform,” in
2010 IEEE Frontiers in Education Conference (FIE), 2010, pp. T3C-1.

[51] P. Jamieson and J. Herdtner. "More missing the Boat—Arduino, Raspberry
Pi, and small prototyping boards and engineering education needs them."
Frontiers in Education Conference (FIE), IEEE, 2015, pp. 1-6.

[52] E. Bilotta, L. Gabriele, R. Servidio and A. TAvernise. "Edutainment robotics
as learning tool," in Transactions on edutainment III, Springer, 2009, pp.
25-35.

[53] F. Klassner. “A Case Study of LEGO Mindstorms TM Suitability for Artificial
Intelligence and Robotics Courses at the College Level.” ACM SIGCSE Bulle-
tin, vol. 34, pp. 8-12, Feb. 2002.

[54] R. Balogh. “Educational robotic platform based on Arduino,” in Proceedings
of the 1st international conference on Robotics in Education, RiE2010, 2010,
pp. 119-122.

[55] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. “Internet of things:
Vision, applications and research challenges.” Ad hoc networks, vol. 10, pp.
1497-1516, Sep. 2012.

[56] S. Madakam, R. Ramaswamy and S. Tripathi. “Internet of Things (IoT): A lit-
erature review.” Journal of Computer and Communications, vol. 3, pp. 164-
173, May 2015.

[57] A. M. Agogino, S. L. Beckman, C. Castaños, J. Kramer, C. Roschuni, and M.
Yang. “Design Practitioners’ Perspectives on Methods for Ideation and Pro-
totyping.” International Journal of Engineering Education, vol. 32, pp.
1428-1437, Jan. 2016.

[58] P. Hertzog and A. Swart. “Arduino—Enabling engineering students to obtain
academic success in a design-based module,” in Global Engineering Educa-
tion Conference (EDUCON), IEEE, 2016, pp. 66-73.

[59] T. Sarkar and N. Das. “Exploring Web of Things with embedded devices.” In-
ternational Journal of Advanced Networking and Applications, vol. 7, pp.
2719-2723, Nov. 2015.

[60] P. Laplante and S. Ovaska. Real Time System Design and Analysis. USA:
Wiley-IEEE Press, 2011, pp. 3-4.

[61] “Apache Cordova.” Internet: https://cordova.apache.org/, [January 20,
2018].

[62] K. K. Patel, J. Patoliya and H. Patel. “Low cost home automation with
ESP8266 and lightweight protocol MQTT.” Transactions on Engineering
and Sciences, vol. 3, pp. 14-19, Dec. 2015.

[63] B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard, D.
Schultze and M. L. Littman. “Trigger-action programming in the wild: An

References

57

analysis of 200,000 IFTTT recipes,” in Proceedings of the 2016 CHI Confer-
ence on Human Factors in Computing Systems, ACM, 2016, pp. 3227-3231.

[64] S. Ovadia. “Automate the internet with “if this then that” (IFTTT).” Behav-
ioral & social sciences librarian, vol. 33, pp. 208-211, Oct. 2014.

[65] T. J. J. Li, Y. Li, F. Chen and B. A. Myers. “Programming IoT Devices by
Demonstration Using Mobile Apps,” in International Symposium on End
User Development, Springer, 2017, pp. 3-17.

[66] “Tasker for Android.” Internet: http://tasker.dinglisch.net/, [February 25,
2018].

[67] “Automagic.” Internet: http://automagic4android.com/en/, [February 25,
2018].

[68] M. Swartwout. “The First One Hundred CubeSats: A Statistical Look.” Jour-
nal of Small Satellites, vol. 2, pp. 213-233, Dec. 2013.

[69] K. Woellert, P. Ehrenfreund, A. J. Ricco and H. Hertzweld. “Cubesats: Cost-
effective science and technology platforms for emerging and developing na-
tions.” Advances in Space Research, vol. 47, pp. 663-684, Feb. 2011.

[70] L. J. Paxton. “"Faster, better, and cheaper" at NASA: Lessons learned in
managing and accepting risk.” Acta Astronautica, vol. 61, pp. 954–963, Nov.
2007.

[71] “Integrated Solar Angle Sensor E910.86.” Internet:
www.mouser.com/ds/2/594/910_86-224506.pdf, [January 20, 2018].

[72] D. Geeroms, S. Bertho, M. De Roeve, R. Lempens, M. Ordies and J. Prooth.
“ARDUSAT, an Arduino-based cubesat providing students with the oppor-
tunity to create their own satellite experiment and collect real-world space
data,” ESA Publications Division C/O ESTEC, 2015.

[73] W. T. Holman, B. D. Sierawski, R. Reed, R. A. Weller, and A. L. Sternberg.
“The small satellite (cubesat) program as a pedagogical framework for the
undergraduate ee curriculum,” Age, vol. 24, pp. 1, 2014.

[74] D. Geeroms, S. Bertho, M. De Roeve, R. Lempens, M. Ordies and J. Prooth.
“ARDUSAT, an Arduino-based Cubesat providing students with the oppor-
tunity to create their own satellite experiment and collect real-world space
data.” ESA Publications Division C/O ESTEC, 2015

[75] K. Karvinen and T. Karvinen. “Satellite Sun Sensor Prototype Tutorial.” In-
ternet: http://botbook.com/satellite/, September 4, 2013 [January 20,
2018].

[76] S. Papadakis, M. Kalogiannakis, V. Orfanakis and N. Zaranis. "Novice pro-
gramming environments. Scratch & app inventor: a first comparison," in
Proceedings of the 2014 Workshop on Interaction Design in Educational
Environments, ACM, 2014, pp. 1.

[77] Y. Xia. "Using Blockly to Create Simple Sensor & Actuator Based Applica-
tions on the SensibleThings Platform." Bachelor thesis, Mid Sweden Univer-
sity, Sweden, 2014.

smroftalp tnempoleved metsys deddebmE
secived dna sepytotorp gningised edam evah

.niamod gnireenigne eht edistuo elbissop
dna ytinummoc yranilpicsidretni elihW
detpoda ylgnorts evah tnemevom rekam

sa hcus ,stikloot gnitupmoc lacisyhp tuokaerb
gnizilitu stsiybboh ylno ton si ti ,oniudrA

ni desu era stikloot ytilibissecca ysaE .meht
ni dna stcejorp cfiitneics dna hcraeser suoirav

deddebme gnisU .noitacude gnireenigne
emoceb evah smroftalp tnempoleved metsys
dna sreenigne htob fo ecitcarp daerpsediw a

yreve tsomla gnirevoc ,ekila sreenigne-non
 .dlefi

dna sloot hcihw serolpxe noitatressid sihT

fo dlohserht eht rewol dluow sessecorp
-non gnilbane ,smetsys deddebme gningised
rieht nrut ot sreenigne ecivon dna sreenigne
hcus ni sepytotorp gnikrow otni snoitavonni

swolla woflkrow eht taht yaw
otni evlove ot sepytotorp lanoitatnemirepxe

 .smetsys deddebme elbayolped

-o
tl

a
A

D
D

8

6
/

 9
10

2

 +h
gafi

a*GM
FTSH

9 NBSI 7-6058-06-259-879)detnirp(
 NBSI 4-7058-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

gnireenignE lacirtcelE fo loohcS
noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

iv
ra

K
o

m
mi

K
 n

gi
se

d
me

ts
ys

 d
ed

de
b

me
 n

o
sr

ei
rr

ab
 g

ni
re

wo
L

 y
ti

sr
ev

i
n

U
otl

a
A

 9102

 noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

no sreirrab gnirewoL
 ngised metsys deddebme

 sepytotorp otni snoitavonni gninruT

 nenivraK ommiK

 LAROTCOD
 SNOITATRESSID

smroftalp tnempoleved metsys deddebmE
secived dna sepytotorp gningised edam evah

.niamod gnireenigne eht edistuo elbissop
dna ytinummoc yranilpicsidretni elihW
detpoda ylgnorts evah tnemevom rekam

sa hcus ,stikloot gnitupmoc lacisyhp tuokaerb
gnizilitu stsiybboh ylno ton si ti ,oniudrA

ni desu era stikloot ytilibissecca ysaE .meht
ni dna stcejorp cfiitneics dna hcraeser suoirav

deddebme gnisU .noitacude gnireenigne
emoceb evah smroftalp tnempoleved metsys
dna sreenigne htob fo ecitcarp daerpsediw a

yreve tsomla gnirevoc ,ekila sreenigne-non
 .dlefi

dna sloot hcihw serolpxe noitatressid sihT

fo dlohserht eht rewol dluow sessecorp
-non gnilbane ,smetsys deddebme gningised
rieht nrut ot sreenigne ecivon dna sreenigne
hcus ni sepytotorp gnikrow otni snoitavonni

swolla woflkrow eht taht yaw
otni evlove ot sepytotorp lanoitatnemirepxe

 .smetsys deddebme elbayolped

-o
tl

a
A

D
D

8

6
/

 9
10

2

 +h
gafi

a*GM
FTSH

9 NBSI 7-6058-06-259-879)detnirp(
 NBSI 4-7058-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

gnireenignE lacirtcelE fo loohcS
noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

iv
ra

K
o

m
mi

K
 n

gi
se

d
me

ts
ys

 d
ed

de
b

me
 n

o
sr

ei
rr

ab
 g

ni
re

wo
L

 y
ti

sr
ev

i
n

U
otl

a
A

 9102

 noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

no sreirrab gnirewoL
 ngised metsys deddebme

 sepytotorp otni snoitavonni gninruT

 nenivraK ommiK

 LAROTCOD
 SNOITATRESSID

smroftalp tnempoleved metsys deddebmE
secived dna sepytotorp gningised edam evah

.niamod gnireenigne eht edistuo elbissop
dna ytinummoc yranilpicsidretni elihW
detpoda ylgnorts evah tnemevom rekam

sa hcus ,stikloot gnitupmoc lacisyhp tuokaerb
gnizilitu stsiybboh ylno ton si ti ,oniudrA

ni desu era stikloot ytilibissecca ysaE .meht
ni dna stcejorp cfiitneics dna hcraeser suoirav

deddebme gnisU .noitacude gnireenigne
emoceb evah smroftalp tnempoleved metsys
dna sreenigne htob fo ecitcarp daerpsediw a

yreve tsomla gnirevoc ,ekila sreenigne-non
 .dlefi

dna sloot hcihw serolpxe noitatressid sihT

fo dlohserht eht rewol dluow sessecorp
-non gnilbane ,smetsys deddebme gningised
rieht nrut ot sreenigne ecivon dna sreenigne
hcus ni sepytotorp gnikrow otni snoitavonni

swolla woflkrow eht taht yaw
otni evlove ot sepytotorp lanoitatnemirepxe

 .smetsys deddebme elbayolped

-o
tl

a
A

D
D

8

6
/

 9
10

2

 +h
gafi

a*GM
FTSH

9 NBSI 7-6058-06-259-879)detnirp(
 NBSI 4-7058-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

gnireenignE lacirtcelE fo loohcS
noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

iv
ra

K
o

m
mi

K
 n

gi
se

d
me

ts
ys

 d
ed

de
b

me
 n

o
sr

ei
rr

ab
 g

ni
re

wo
L

 y
ti

sr
ev

i
n

U
otl

a
A

 9102

 noitamotuA dna gnireenignE lacirtcelE fo tnemtrapeD

no sreirrab gnirewoL
 ngised metsys deddebme

 sepytotorp otni snoitavonni gninruT

 nenivraK ommiK

 LAROTCOD
 SNOITATRESSID

	Aalto_DD_2019_068_Karvinen_verkkoversio

