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Abstract
The objective of speaker diarization is to determine who spoke and when in a given
audio stream. This information is useful in multiple different speech related tasks such
as speech recognition, automatic creation of rich transcriptions and text-to-speech
synthesis. Moreover, speaker diarization can also play a central role in the creation
and organization of speech-related datasets.

Speaker diarization is made difficult by the immense variability in speakers
and recording conditions, and the unpredictable and overlapping speaker turns
of spontaneous discussion. Especially diarization of meeting data has been very
challenging. Even the most advanced speaker diarization systems still struggle with
this type of data.

In this thesis, a novel speaker diarization system, named SphereDiar and designed
for the diarization of meeting data, is proposed. This system combines three novel
subsystems: the SphereSpeaker neural network for speaker modeling, a segmentation
method named Homogeneity Based Segmentation and a clustering algorithm Top
Two Silhouettes. The system harnesses up-to-date deep learning approaches for
speaker diarization and addresses the problem of overlapping speech in this task.

Experiments are performed on a dataset consisting of over 200 meetings. The
experiments have two main outcomes. Firstly, the use of Homogeneity Based
Segmentation is not vital for the system. Thus, the configuration of SphereDiar
can be simplified by omitting segmentation. Furthermore, SphereDiar is shown to
surpass the performance of two different state-of-the-art speaker diarization systems.

Keywords speaker diarization, speaker modeling, segmentation, clustering, meeting
data
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Tekijä Tuomas Kaseva
Työn nimi SphereDiar - tehokas puheen

diarisointijärjestelmä kokousäänitteitä varten
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Työn valvoja Prof. Mikko Kurimo
Työn ohjaaja DI Aku Rouhe
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Tiivistelmä
Puheen diarisaatiolla tarkoitetaan automaattista prosessia, joka pyrkii selvittämään
kuka puhui ja milloin. Tätä prosessia voidaan hyödyntää monissa puheen käsittelyyn
liittyvissä sovelluksissa kuten puheentunnistuksessa, puheen syntetisoinnissa sekä esi-
merkiksi pöytäkirjojen teossa. Näiden sovellusten lisäksi puheen diarisointia voidaan
käyttää myös puheeseen liittyvien datakokoelmien automaattiseen rakennukseen ja
organisointiin.

Puheen diarisointi on kuitenkin usein hankalaa, sillä kaikki puhujat ovat erilaisia,
ja äänitysten taso ja olosuhteet voivat poiketa huomattavasti toisistaan. Näiden
lisäksi spontaanissa puheessa puheenvuorot voivat vaihtua äkillisesti sekä sisältää
päälle puhumista. Näin käy usein varsinkin kokousäänitteissä, jotka ovat vielä tänäkin
päivänä erityisen hankalia puheen diarisoinnin kannalta.

Tämä diplomityö esittelee uudenlaisen puheen diarisointijärjestelmän, joka on
erikoistunut kokousäänitteisiin. Tämä järjestelmä, nimeltään SphereDiar, rakentuu
kolmesta osasta: SphereSpeaker-neuroverkosta puhujan mallinnukseen, Homogeneity
Based Segmentation-metodista puheen segmentointiin sekä Top Two Silhouettes-
algoritmista klusterointiin. SphereDiar hyödyntää uusimpia syväoppimismetodeita, ja
on kehitetty huomioimaan varsinkin päälle puhumisen vaikutus puheen diarisaatiossa.

Järjestelmän suorituskykyä on arvioitu kokeissa, joissa käytettiin yli 200 ko-
kousäänitettä. Näissä kokeissa saavutettiin kaksi keskeistä tulosta. Näistä ensimmäinen
oli se, että Homogeneity Based Segmentation metodin käyttö ei ollut välttämätöntä
järjestelmälle. Siten SphereDiar voitiin yksinkertaistaa jättämällä segmentointi ko-
konaan pois. SphereDiaria verrattiin myös kahteen alan parhaimpiin kuuluvaan
puheen diarisointijärjestelmään ja sen osoitettiin saavan parempia tuloksia näissä
vertailuissa.
Avainsanat puheen diarisointi, puhujan mallintaminen, segmentointi, klusterointi,

kokousäänite
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F set of speaker embeddings f
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H% homogeneity percentage
Hθ% homogeneity percentage threshold
ĥ output of the HBS neural network
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X set of feature sequences x
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1 INTRODUCTION

1.1 Speaker diarization

Speaker diarization refers to an automatic process which aims to answer the question
”who spoke and when” [1]. In this process, the first objective is to determine which
parts of a given audio stream contain speech. Next, these parts are segmented into
speaker turns which depict intervals including only one or one clearly distinguishable
speaker. Finally, each speaker turn is assigned with a suitable speaker identity, and
the speaker diarization task is completed. In this task, no visual cues are exploited,
making speaker diarization a very challenging speech processing application [1].

When using the phrase ”who spoke and when”, some care and emphasis must be
put on the words ”who spoke”. Recognizing the exact identities of the speakers and
being able to perfectly separate between the speakers may be different things. For
example, assuming an audio stream with three different speakers having three equal
length speaker turns, an output of a speaker diarization system could be

[Trump, Sanders, Clinton] or [A, B, C ].

In the latter, the speakers are separable but not known. Nevertheless, in both cases
the diarization system is capable of determining which speaker was speaking at any
given time. In the former, the task can easily get prohibitive, as the diarization
system has to have prior knowledge of all of the speakers in a given audio stream,
but the number of people in the world is in the billions and counting. Furthermore,
humans have the ability to distinguish between speakers even when they are not
familiar. Thus, a machine should be able to do the same. For these reasons, the
latter, also known as an unsupervised speaker diarization task, is more often applied
in the speaker diarization literature [1] and the same approach is adopted in this
thesis. From here on, speaker diarization refers to unsupervised speaker diarization
in this thesis.

1.2 Motivation

A task of determining which speaker spoke and when is not something humans can
not do. It is well known that humans are exceptionally good at noticing when the
speaker changes and whether an audio contains speech or not [2]. However, when the
sizes of audio streams in this task grow to, say, hundreds or thousands of hours, the
amount of time and manpower needed becomes a limiting factor in manual speaker
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diarization. In addition, even if the duration of these streams would be short enough
for manual processing, this processing could easily become monotonic and tedious.
Most importantly, speaker diarization is a necessary and beneficial subtask in many
different speech processing applications.

The first of these applications is the creation of rich transcriptions [1, 3]. In
addition to what was spoken, these type of transcriptions include also which person
spoke and when [1]. This feature is helpful whenever there is need for summarization
of the content of an audio stream. Such streams may include meetings, TV-shows,
debates and lectures [1]. Furthermore, rich transcriptions allow extracting parts
of the stream which include only one specific speaker. These parts can then be
used, for example, to create speech recognition [4] or speaker recognition datasets [5]
automatically.

Speaker diarization can also be exploited in speaker adaptation in automatic
speech recognition (ASR) [6] and text-to-speech (TTS) synthesis [7]. In these tasks,
speaker diarization is used to extract speaker characteristics which can be utilized
for training and evaluation of the systems in TTS and ASR. These characteristics
are generally compressed to a set of features which are given as an input for these
systems [6, 7].

In addition to the speech processing applications, speaker diarization can also
contribute to non-speech related tasks. In the section 3, speaker diarization systems
are shown to combine different segmentation, speaker verification and clustering
techniques. Speaker verification, the task of verifying whether two utterances are
either produces by different or by the same speaker, [8], is the speech equivalent of
face verification [5, 9, 10]. In recent years, the use of deep learning approaches has
moved these two fields even more close to each other [5, 10]. Consequently, advances
in either field can benefit the other. Such is also the case with clustering, the
unsupervised task of associating similar objects, which has applications for example
in document organization [11].

Nevertheless, speaker diarization has proven to be a difficult and complex task
that in many occasions fails to provide satisfactory results [1, 12]. This is evident
especially with meeting data which can include spontaneous and overlapping speech
and challenging recording conditions [1, 13, 14, 15]. Consequently, this thesis develops
a novel speaker diarization system which is designed especially for meeting data.
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1.3 Contributions

This thesis proposes a novel speaker diarization system, SphereDiar, which is com-
posed of three main components:

1. A neural network, named SphereSpeaker (SS), which transforms a short frame
of speech into a representation which characterizes the corresponding speaker.

2. A method for determining which partitions of an audio stream contain multiple
speakers. This method is named Homogeneity Based Segmentation (HBS). It
uses a neural network for categorizing the partitions.

3. An algorithm, named Top Two Silhouettes (Top2S), which is designed for
clustering speaker representations.

Each of these components is developed in this thesis. The SS neural network
introduces a novel architecture which creates the speaker representations as a byprod-
uct of a speaker classification task. The main feature in this architecture is a L2

normalization layer which forces the speaker representations to lie on a hypersphere.
This simple operation is shown to be very effective in this thesis.

HBS introduces a method which performs two important operations in speaker
diarization, speaker change and overlapping speech detection, simultaneously. This
is made possible by using a novel neural network which is designed for detecting if
either one or multiple speakers are vocal. Similar approach has not been published
in the speaker diarization literature.

Top2S can be divided to two main operations. In the first, the algorithm creates
multiple clustering proposals and in the second, it determines which proposal is
the best. The Top2S algorithm is especially designed to be used with the speaker
representations extracted from the SS neural network. Moreover, it exploits several
heuristic rules which have been discovered in this thesis.

SphereDiar is evaluated with a large meeting dataset which includes over 200
meeting recordings and is trained with various configurations and datasets. In
evaluation, the system surpasses previous state-of-the-art scores on two different
meeting corpora. Moreover, it is shown that the system can be simplified by omitting
the use of HBS. This is not only convenient, but also an interesting discovery since
especially overlapping speech detection, which is a subtask in HBS, has been a
prominent research direction in speaker diarization [1, 12, 16, 17]. The system is also
made available online 1.

1https://github.com/Livefull/SphereDiar

https://github.com/Livefull/SphereDiar
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1.4 Outline

The organization of the thesis can be summarized as follows. First, the data is
described. Next, the proposed speaker diarization system is introduced and elaborated.
In addition, related works concerning different components of the system are discussed
and their influence explained. Then, the different experiments conducted on the
system are presented and analysed. Finally, conclusions of the thesis are discussed.
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2 DATA

The data used in this thesis consists of two parts: a meeting corpus and a collection
of speaker corpora. This section explains what they are, what are they used for
and why they were chosen. In addition, the section introduces two important data
related concepts: the input format of the system and a novel concept which is called
homogeneity percentage.

2.1 Meeting corpus

The meeting corpus composes of the AMI (Augmented Multi-party Interaction)
and ICSI (International Computer Science Institute) corpora which in turn consist
of audio recordings of different scenario and non-scenario meetings from various
sites [18, 19]. In the scenario meetings, participants have predetermined roles and
are given specific topics to discuss, whereas the non-scenario meetings are normal
meetings which would have taken place regardless of third-party recordings. The
scenario meetings occur only in the AMI corpus. All speech is in English but both
corpora include non-native English speakers with different English accents [18, 19].
The ICSI corpus includes 75 meetings with 3 to 9 participants per meeting and the
AMI corpus has 171 meetings with number of participants varying from 3 to 5.

The main purpose of the meeting corpus is to form an evaluation set for speaker
diarization. In addition, the corpus is also used in training the HBS system. The
most important reasons for choosing the AMI and ICSI corpora are their availability
and the challenge they pose. Both corpora can be downloaded for free and have clear
usage instructions. The challenge is based on the number of participants involved,
the recording conditions and having both spontaneous and overlapping speech, which
occur frequently in both the scenario and non-scenario meetings. Moreover, both
corpora have been rather popular in speaker diarization literature [13, 15, 16, 20]
making it possible to compare results.

2.1.1 Audio format

The meetings in AMI and ICSI are recorded with tabletop microphone arrays, and
lapel and headset microphones [18, 19]. As a consequence, both corpora provide
audio files in different formats. All formats have a 16 kHz sampling frequency. In
this thesis, the chosen audio format is Headset Mix in which headset microphone
recordings are summed to form a synthetic near-field audio stream [13].
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The reasons behind this choice can be summarized as follows. Firstly, the format
has the highest audio quality among the formats provided in the AMI and ICSI
corpora. In addition, the ICSI corpus does not provide recordings from individual
tabletop microphones, which would be the natural alternative to Headset Mix.
Finally, since the same format has been used previously in related literature [13, 15, 20],
the comparison of obtained results is enabled.

2.1.2 Transcription labels

The AMI and ICSI corpora provide both manually generated and ASR-based word-
level transcripts which describe what the different participants have said and when
they have spoken [18, 19]. In practice, both transcripts contain a starting and an
ending time of each uttered word of a given speaker in the meeting with an accuracy of
0.1 seconds. In addition, the transcripts include also time boundaries for occurrences
of many non-vocal sounds such as laughter and coughing.

In this thesis, these labels, named transcription labels, are generated by combining
e manually generated and ASR-based transcripts. This choice is based on preliminary
investigations which showed that both transcripts suffered from minor deficiencies.
With the manually generated ones, the problem was that short and natural silent
segments which might occur between words were labeled as speech. On the other
hand, the ASR based transcriptions excluded the silent segments but in some cases
assigned undesirable speech sounds, most notably breathing sounds, as vocal activity
inadvertently. Fortunately, these deficiencies could be countered to some extent by
creating speaker diarization labels based on both transcripts.

The combining of the transcripts is performed with the following procedure. First,
for a given meeting audio, two different preliminary transcription label sets are
generated using both transcripts. These sets include labels corresponding to either
single speaker, overlapping speech, or non-speech. The labels are assigned to every
time instance with 0.1 second interval. During this process, filler words such as ”uh”,
”uh-huh” and ”huh” are treated as silence as are all other non-vocal sounds except
laughter. The laughing sounds were included as they occur frequently in a natural
overlapping speech [16].

Then, time instances which only have a single speaker in both sets are collected to
form an instance set Is. A similar operation is also performed with labels describing
overlapping speech, giving Io. Finally, the transcription labels are obtained by
assigning all time instances in Is to unique speakers depicted in the manually
generated preliminary transcript set, time instances in Io to overlapping speech and
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all other instances to non-speech. Unfortunately, complete ASR based transcriptions
were not available for all meetings, which led to exclusions which are depicted in
Table 1. After exclusions, the number of included AMI meetings is 163 and the
number of ICSI meetings is 74, totalling 237 meetings in the meeting corpus.

Table 1: Removed meetings.

AMI EN2001a, EN2001e, EN2002c, EN2003a, EN2006a, EN2006b, IB4005, IS1003b
ICSI Bmr012

2.1.3 Gender distributions

As additional information, statistics of the number of speakers and gender distri-
butions are provided in the transcriptions. The statistics are presented in Table 2.
Interestingly, different numbers of speakers have been reported for the AMI corpus
in literature. In [20], the number is 150, but in [13] it is close to 200. In this thesis,
the number of speakers in the AMI corpus was determined using unique identifiers in
the meetings.xml file provided with the transcripts. The number of speakers found
this way is 118. This number did not increase even when including all 171 meetings.
In the ICSI corpus, the number of speakers is 53, which concurred with [19]. As one
of the participants was only recorded by the far-field microphone and only had few
vocal segments, they were excluded.

Table 2: Gender distributions expressed using speaker counts in the meeting corpus.

Female Male In total
AMI 43 75 118
ICSI 13 39 52
Meeting corpus 56 114 170

2.1.4 Framing

As was discussed, the primary purpose of the meeting corpus is to evaluate the
proposed speaker diarization designed in this thesis. Ideally, the evaluation could be
performed on each meeting by predicting a label value every 0.1 seconds and then
comparing the predictions with the transcription labels. Here, the step size of 0.1
seconds is the theoretical maximum accuracy of the transcription labels as mentioned
in subsection 2.1.2. This, however, would mean that the system would need to
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recognize speakers based on audio chunks with a duration of a less than a tenth of
a second: a task that would be extremely difficult even for humans. Therefore, a
compromise is made in this thesis by assigning predictions to considerably longer
but overlapping audio frames. Consequently, every meeting audio in meeting corpus
is transformed into the following form

S = {s1, ..., sN} , si ∈ R32000, (1)

where S depicts a sequence of N frames si with a 2 second duration which are
extracted from the given audio with a 1.5 second overlap. The 32000 dimensions
results from the sampling frequency of 16 kHz. This configuration, disregarding the
overlap duration which can vary, is also the required input format of the proposed
speaker diarization system.

The choices of frame and overlap duration are based on several factors. Firstly,
it is necessary that a frame is long enough so that proper modeling of the speaker
corresponding to the frame is possible. Secondly, the frame has to be a short enough
so that spontaneous speaker changes would not go unnoticed. As a result, a duration
of 2 seconds was chosen, which has also been used in [21, 22].

Relatively large overlapping in turn is beneficial for the clustering procedure as
it enables more samples for forming the clusters. However, an increase in overlap
duration also results in a increase in computing time as the number of frames in S

increases. In this thesis, preliminary experiments illustrated that an overlap duration
of 1.5 seconds would then be a suitable compromise.

Before the creation of S, however, all samples labeled as non-speech are excluded
from each meeting audio. In other words, a perfect voice activity detection (VAD)
is performed. This is necessary as the speaker diarization system proposed in this
thesis does not provide a VAD system. This exclusion will be discussed and justified
in section 3.

2.1.5 Speaker labels

After the creation of S for an arbitrary meeting audio with Ns participants, the next
step is to define the corresponding speakers labels

L = {l1, ..., lN} , l ∈ {−1, 1, .., Ns} , (2)

for each s in S. In this thesis, these speaker labels also include negative labels
which depict overlapping speech. Nevertheless, the negative valued labels will not be
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included in the evaluation of the speaker diarization system. The reasons for this
choice will be explained in section 4.

However, the label assignment is not straightforward. As a result of the framing
operation, a speaker content of a given s from S can be described with a set

T = {T−1, T1, ..., Tns} , (3)

where Ti ̸=−1 is a set of transcription labels corresponding to speaker i, ns the number
of speakers in s and T−1 the set of transcription labels corresponding to overlapping
speech. In this thesis, the speaker label l of s is then defined as

l = arg max
i

|Ti|, (4)

where |Ti| is the number of labels in Ti. However, it is clear from this definition that
l itself can not fully describe the speaker content of s. For example, for some of the s,
the corresponding T could include only T1 and T2 with |T1| = |T2|. Furthermore, even
though transcription labels are very precise in general, they do contain inaccuracies in
speaker change boundaries. For these reasons, an additional measure of the speaker
content in s is needed.

2.1.6 Homogeneity percentage

Homogeneity percentage, abbreviated H%, for a given s is defined as

H% = maxi|Ti ̸=o|
|T |

∗ 100%. (5)

As the name suggests, this percentage depicts the homogeneity of the speaker content
of s. For instance, if T = {T1} implying that s is uttered by a single speaker, the
percentage is 100%. On the other hand, if T = {T−1} suggesting that the frame
consists solely of overlapping speech, then the percentage is 0%. In general, the
percentage is somewhere between these two values, for example as visualized in
Figure 1. The percentage can be interpreted as a confidence metric for the label l.

Consequently, the percentage can also be used to divide frames into two categories:
ones with speaker change boundaries and overlapping speech and to ones which
can be considered to only include one dominant speaker. A suitable homogeneity
percentage threshold between these two categories was found to be 65% in preliminary
experiments. The categorization of the meeting corpus with this threshold is presented
in Table 3. Naturally, a gray area where categories are mixed does exist with frames
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Figure 1: A frame with H% = 60%.

having H% close to the threshold.

Table 3: Frame categorization in the meeting corpus.

Percentage (%) Number of frames
H>=65% 84.2 595 086
H<65% 15.8 111 592
Total 100 706 678

2.2 Speaker corpora

The speaker corpora include four different speaker datasets which are collected from
Librispeech corpus (LS) and Voxceleb2 dataset (VC) [9, 4]. Librispeech consists
of recordings of read speech from 2484 different speakers [4]. The recordings are
gathered from the LibriVox project audiobooks read by volunteers [4]. All recordings
are in English, comprise of 1000 hours of speech and have a 16 kHz sampling rate.
The corpus is initially designed for ASR purposes and as a result, the recordings
contain virtually no background noise, and the utterances have clear pronunciation
[4].

Voxceleb2 includes over a million utterances from over 6000 speakers [9]. These
utterances are collected with a semi-automatic procedure from celebrities in Youtube
videos with a high variety of recording conditions and background noise [9]. The
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dataset comes in both audio and video formats with the former at a 16kHz sampling
rate. In this thesis, only the audio format is used. In addition, the dataset includes
multiple languages, English being the most common one [9]. The dataset was created
for challenging speaker recognition purposes making it extremely relevant for speaker
diarization purposes [9, 10].

The speaker corpora are composed of two Librispeech partitions, abbreviated
LS1000 and LS2000, and two Voxceleb2 partitions V C1000, V C2000. The index in each
partition describes the number of speakers included in the partition. These partitions
will be used in the training and evaluation of the SS neural network. The motivation
for choosing VC and LS is primarily their contrasting purposes. As discussed, LS
was gathered for ASR, whereas VC is specifically developed for speaker recognition.
The big question is, does using VC then give noticeable improvements to the speaker
diarization system when comparing against LS. Moreover, their size enables creating
the partitions with the same number of speakers and the same amount of speech
material, making the evaluation relatively fair. Finally, LS and VC are both disjoint
in speakers with the meeting corpus meaning that the development of the SS neural
network is independent of the meeting corpus.

2.2.1 Partition generation

Just as with the meeting corpus, the partitions of the speaker corpora are assembled
from frames. The assembling can be divided into four steps as follows. In the first
step, 500 males and 500 females with the most speech material are gathered from
both Librispeech and Voxceleb2. Then, an additional 1000 speakers are collected
from both datasets again based on the amount of speech material, but without any
gender quotas. After this step, four different speaker identity sets with 1000 and
2000 speakers are collected, with relatively balanced gender distributions as can be
seen in Table 4.

Table 4: Gender distribution in speaker corpora.

Number of females Number of males Number of speakers
LS1000 500 500 1000
LS2000 987 1013 2000
V C1000 500 500 1000
V C2000 731 1269 2000

In the third step, all corresponding speech data for each speaker is processed with
WebRTC VAD [23] with the aim of removing silences and non-vocal sounds. Finally,
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the processed speech data for each speaker identity set is framed with the same
procedure as with the meeting corpus, with 2 second frame duration but without
overlap. The partitions LS1000, LS2000, V C1000 and V S2000 are then formed from these
frames. In order to balance the speaker label distributions with the partitions with
the same number of speakers, the maximum number of frames corresponding to a
given speaker is limited. The limit for the partitions LS2000 and V C2000 is assigned as
670 whereas the limit for LS1000 and V C1000 is 1000. The LS1000 partition, however,
did not include quite as much speech material as V C1000, so the maximum number
of frames per speaker is only 764. The final frame compositions of the partitions are
summarized in Table 5.

Table 5: Frame compositions in speaker corpora.

Minimum number of Maximum number of Number of frames
frames per speaker frames per speaker

LS1000 382 764 654 297
LS2000 341 670 1 204 967
V C1000 838 1000 995 443
V C2000 577 670 1 337 601

Unlike with the meeting corpus, the frames in the speaker corpora are not assigned
homogeneity percentages. Or implicitly, all of the frames are assigned H% = 100%.
With the Librispeech corpus, this procedure is well justified as the audio does not
include speaker changes or overlapping speech. With the Voxceleb2 dataset however,
this assumption is not completely accurate. The varity of the recordings means that
there might be multiple or alternating speakers which are not transcribed correctly.
Nevertheless, this is probably rare and if it occurs, a dominant speaker could be still
determined with a relative ease [9]. Consequently, each frame in the partitions is
assigned an unique speaker label l which can not depict overlapping speech.
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3 SPHEREDIAR

The main objective of SphereDiar is to transform a sequence of frames S into
a sequence of speaker labels L. This transformation is obtained with four key
procedures: feature extraction, speaker modeling, segmentation and clustering which
are visualized in Figure 2. The last three are implemented by the SphereSpeaker
neural network, Homogeneity Based Segmentation and the Top Two Silhouettes
algorithm, respectively. What this system does not include, however, is voice activity
detection (VAD). This is by no means a trivial exclusion since VAD is an essential
component in any speaker diarization system [1]. However, when diarization systems
are developed, reference VAD labels are often used in order to focus on the actual
speaker distinguishing task [13, 16, 17, 20]. Such an approach is also used in this
thesis and therefore no methods for VAD will be discussed or proposed.

This section elaborates the functioning of SphereDiar and each component il-
lustrated in Figure 2. Furthermore, the relevant literature is reviewed for each
component.

S Feature extraction

Segmentation Speaker modeling

Clustering

L

Figure 2: Block diagram of SphereDiar.

3.1 Feature extraction

A frame s consists of a sequence of values which depict air pressure values discretely
in time. As an input format, s is unsuitable for speaker diarization systems since it
is not descriptive in terms of human auditory perception. It has been shown that
human hearing is mostly based on different frequency components in sound, their
relations and dynamic structure [24]. Moreover, some frequency bands are more
relevant than others [25]. However, these frequency components and their importance
are difficult to detect automatically simply based on the amplitude sequence. For
this reason, it is often necessary to extract more auditorily descriptive features from
the frames and use them instead as the input for the systems.

Yet, feature extraction is not indispensable. Recently in speaker diarization
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related tasks, such as speaker modeling and segmentation, numerous approaches
have been proposed in which feature extraction is left out [5, 9, 10, 26, 27]. In these
approaches, deep learning techniques are used to learn the features and the given task
jointly from either a raw speech waveform or from a spectrogram. The approaches
have been successful and promising, especially in [10]. It is possible that in the near
future feature extraction will lose its importance in any speech processing related
pipeline. Nevertheless, feature extraction is still currently used in many speaker
diarization related articles [21, 28] which have inspired the work presented in this
thesis.

One of the most common feature types in speaker diarization, and also in many
other speech related applications, are Mel-Frequency Cepstral Coefficients (MFCCs)
[1, 12, 15, 21, 29, 30]. In summary, MFCCs are calculated from a given speech frame
in four steps [25]. First, the frame is windowed with a chosen window length and
overlap. Next, the logarithmic amplitude spectrum based on Fourier transforms of
each window is computed. After this, the amplitude spectrum is converted to a Mel
spectrum. Finally, MFCCs are produced from the spectrum by taking a discrete
cosine transform. The Mel spectrum is a frequency representation which aims to
model human auditory perception [25]. A chosen number of the first coefficients of a
discrete cosine transform form the MFCC feature vector [25]. The resulting MFCCs
have two desirable properties: they are uncorrelated and compress the auditory
information in the frame [25].

MFCC-based features, exactly the same as in [28], are used in this thesis. The
first 20 MFCCs are extracted, with window size and shift as 32 and 10 milliseconds,
respectively. The related Fourier transforms include frequencies up to half of the
sampling rate of 16 kHz. In addition, the first and second order derivatives of the
MFCCs are calculated. The final features consist of the derivatives and of all the
MFCC coefficients except the first coefficient. This coefficient describes the energy
of the corresponding speech window, and is discarded as instructed in [28]. The
features are also normalized with zero mean and unit variance.

As a result, for a given speech frame sequence S

S → X = {x(s1), x(s2), ..., x(sN)} , x(si) ∈ R201×59, (6)

where x(si) is a sequence of features with 201 windows and 59 features. This odd
number of windows results from including also half-windows at the start and the end
of each frame si.
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3.2 Speaker modeling

Even if the extracted features would be relevant in terms of human auditory perception
they might still be incapable of describing differences between speakers. In other
words, given two sequences of features xk and xj, the features could be insufficient to
determine if the corresponding speech frames are uttered by the same speaker or by
two different speakers. In speaker diarization, this pair comparison, also known as
speaker verification [31], is a crucial operation [1, 12]. Consequently, it is necessary
to project the sequences to a space which is more suitable for the pair comparison.
The projection procedure is known as speaker modeling [32, 33].

3.2.1 Related work

Traditionally, speaker modeling has been performed with Gaussian Mixture Models
(GMM) [32, 34]. For arbitrarily chosen features x(i) from a given sequence of features
x, a GMM can be defined as a sum of multivariate Gaussians as

G(x(i)) = ΣK
k=1πkN (x(i)|µk, Σk), (7)

with

N (x(i)|µk, Σk) = 1
(2π)59/2

1
|Σk|1/2 exp{−1

2(x(i) − µk)T Σ−1
k (x(i) − µk)}, (8)

where K denotes number of mixtures, µk ∈ R59 means of the mixture, Σk ∈ R59×59

a covariance matrix and πk ∈ R a mixture weight [32]. Turns out that a GMM
configuration can be calculated for each xi in X and that the µk parameters of these
configurations can then be exploited to describe the corresponding speaker for each
xi. Each xi can then be transformed into a supervector

M(xi) ∈ RK∗59 = [µT
1 , µT

2 , ..., µT
K ], (9)

which is a more relevant representation of speaker characteristics of xi than the
features alone [34]. The features, however, have an impact on the GMM. Indeed, the
GMMs used in speaker recognition tasks are specifically designed to take MFCC based
features as input. MFCCs are uncorrelated and enable using diagonal covariance
matrices that simplify GMM computation [35].

In practice, so called supervectors are extracted by utilizing the universal back-
ground model (UBM) [34]. This model describes a GMM which is fitted with the
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expectation maximization (EM) algorithm to a large number of speakers with the
aim of finding a general representation of the speaker characteristics [32]. The UBM
enables fitting a GMM to a given xi with Maximum A Posteriori adaptation by
tuning the GMM parameters of the UBM based on the feature content of xi [32]. This
adaptation procedure results in a more robust GMM configuration when comparing
with an approach where the configuration is determined solely based on the features
in xi [32]. In general, the pair comparison between two supervectors Mj and Mk

has been performed using support vector machines (SVM) [34].
However, the supervectors extracted in this manner suffer from an unavoid-

able shortcoming: the MAP adaptation procedure can be easily influenced by the
recording conditions. In other words, the MAP adaptation may emphasize channel
characteristics of xi more than speaker characteristics. Initially, the solution for this
problem was Joint Factor Analysis (JFA) [36] which enabled decomposing M into
speaker and channel dependent factors. In [37], this method was developed further
with an interesting finding that the channel factors did have some contribution on the
speaker modeling after all. In addition, the concept of the i-vector was introduced
with a new formula for M [37]:

M = MUBM + Tv, (10)

where MUBM ∈ RK∗59 is a GMM supervector acquired from UBM, T ∈ RK∗59×D

a total variability matrix and v ∈ RD denotes the i-vector. Just as MUBM , T can
be trained externally with a chosen dimensionality D. This can be much smaller
than the dimension of M allowing estimating v for each xi [37]. Powerful channel
compensation methods such as linear discriminant analysis (LDA) and within-class
covariance normalization (WCCN) [2] can then be be used to model the corresponding
speaker of xi more compactly and accurately than with M. The most popular methods
for speaker verification between two i-vectors vi and vj have been probabilistic linear
discriminant analysis (PLDA) and SVMs [2, 38].

Recently, deep learning based methods have provided alternative approaches for
i-vectors. The approaches can be divided roughly to two categories: d-vector based
approaches and metric learning based approaches. In the former, a neural network
configuration is initially trained in a speaker identification task. In this task the
network aims to recognize an identity from a given set of speakers, but indirectly
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learns d-vectors, also known as neural speaker embeddings,

x → f(x) ∈ Rd. (11)

These embeddings, denoted from here on simply as speaker embeddings, can also
model differences between speakers which are not in the speaker set [27, 39, 40,
41]. The embeddings are extracted from some inner layer of the neural network,
traditionally from activations of the last hidden layer before an output layer. This,
in theory, allows the embeddings to characterize more general differences between
speakers [27, 39, 40, 41]. The most common methods of assessing similarity between
two embeddings fj and fk have been distance metrics such as Euclidean distance,
cosine distance, and also PLDA [27, 39, 40, 41].

However, the d-vector based methods can also be questioned to some extent.
When a neural network is assigned the task of speaker identification, the learning
process is based solely on that task and might not result in learning general speaker
characterising embeddings [5, 21]. The success in the speaker identification task does
not guarantee successful speaker modeling [21]. For this reason, a lot of effort has
been put into developing another deep learning approach known as metric learning.

In metric learning, instead of learning speaker embeddings as a side product of
speaker identification, the embeddings are learned directly. In this approach, the
embeddings corresponding to the same speaker are learned to be similar to each
other in training whereas embeddings corresponding to different speakers are forced
to be distinct [5, 21, 42, 43]. The similarity is evaluated with some chosen distance
metric, usually one of the metrics discussed previously with the d-vector [5, 21, 44].
Although more devised for the comparison of speaker embeddings, metric learning
based speaker embedding extractors are slower and more difficult to train than
d-vector based extractors [45, 46]. Moreover, metric learning based approaches have
also been criticized for not necessarily outperforming the d-vector based approaches
even if explicitly designed to do so [42].

Nevertheless, both methods have been shown to outperform i-vector based ap-
proaches, especially when evaluating on short utterances [5, 2, 40], which is the case
in this thesis. Furthermore, in recent years, d-vector based approaches have advanced
rapidly, especially in the field of face recognition, and surpassed the performance of
the metric learning based methods [46, 47]. In [10], these methods were shown to
also work in speaker recognition with a similar increase in performance. For these
reasons, in this thesis a d-vector based speaker modeling method is chosen.
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3.2.2 SphereSpeaker

Speaker modeling in the proposed speaker diarization system is performed by a novel
neural network named SphereSpeaker (SS). It is designed to project a set of feature
sequences X into speaker embeddings F

X → F = {f(x1), ..., f(xN)} , f(xi) ∈ R1000, ∥f(xi)∥2 = 1, (12)

which are L2 normalized and consequently lie on a hypersphere. This normalization is
the main reason for naming the network SphereSpeaker. Moreover, as the embeddings
will play a crucial role in the system, the whole system is named SphereDiar. As
discussed, this projection is performed as part of a speaker identification task, resulting
in both speaker embeddings f(x) and a predicted speaker probability distribution
p(x). This feature is visualized in Figure 3 which describes the neural network
architecture of SS. The network can be divided to three main components.

In the first component, an input sequence of features x is processed with three
bidirectional recurrent neural network layers with Long Short-Term Memory (LSTM)
cells. The layers are designed to extract speaker characteristics based on information
from both the features and their temporal behavior [48]. Each of the layers has
250 hidden units and outputs a sequence of hidden states which are created in
the recurrent neural network. The dimensions of the sequences are illustrated in
Table 6. The combination of bidirectional LSTM layers with skip connections and
concatenation is adhered from [28] and is strongly influenced by [21, 49]. The number
of hidden units was determined based on preliminary experiments.

In the second component, the embedding layer, the concatenated sequences are
compressed into a 1000-dimensional speaker embedding f(x). The compression is
achieved by a combination of a fully connected layer, which has a Rectified Linear
Unit (ReLu) nonlinearity [50], and an average pooling layer. In addition, batch
normalization is applied before and after these two layers in order to reduce covariate
shift occurring in the training of the network [51, 52]. The embedding layer also
includes a final layer which performs L2 normalization

f(x) → f(x)
∥f(x)∥2

. (13)

This ensures that the embedding is spherical. The configuration of this embedding
layer was discovered in preliminary experiments.

Finally, the embedding is transformed into the predicted speaker probability
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distribution p(x) ∈ RNs , where Ns ∈ {1000, 2000} denotes the number of speakers
in the speaker identification training set. The transform is implemented by a fully
connected layer with the softmax non-linearity, which can be described with the
following equations

Si = Wi
T f + bi (14)

pi = eSi∑Ns
k=1 eSk

, (15)

where pi, Wi ∈ R1000 and bi denote the i-th sample of p(x), the i-th row of the
fully connected layer and the i-th element of the bias vector of the layer respectively
[46]. As the embedding can be extracted before the transformation, the last fully
connected layer is only used when the network is trained. Excluding this layer, the
network configuration has around 5.2 million parameters.

x

Bidirectional LSTM

Bidirectional LSTM

Bidirectional LSTM

Concatenation

Embedding layer

Fully connected (Softmax)

p(x)f(x)

Embedding layer

Batch normalization

Fully connected (ReLU)

Average pooling over time

Batch normalization

L2 normalization

Figure 3: The SphereSpeaker neural network.

The embedding layer and especially the use of L2 normalization inside the layer
are motivated by the work presented in [10]. In that paper, pi is formulated slightly
differently as

pi = eSi−α

eSi−α + ∑Ns
k ̸=1 eSk

, (16)

where α is a constant which is determined before training. In addition, the embedding
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Table 6: Output dimensions of each layer.

Layer Output dimensions
Bidirectional LSTM1 201 × 500
Bidirectional LSTM2 201 × 500
Bidirectional LSTM3 201 × 500
Concatenation 201 × 1500
Embedding layer 1000
Fully connected (Softmax) Ns

f is not L2 normalized before the last fully connected layer but the softmax non-
linearity is modified to perform the L2 normalization. In the paper, this modified
non-linearity was shown to be superior to not only a normal softmax function but
also to metric learning approaches in both speaker identification and verification
tasks [10]. A similar configuration was also tested in this thesis but preliminary
experiments illustrated that the use of the α term would not yield a considerable
performance boost. Furthermore, the use of α also complicated the convergence of
the neural network configuration in training. However, the L2 normalization before
the non-linearity was found to be very beneficial. This result is discussed in more
detail in section 4.

3.3 Segmentation

Segmentation means organizing frames si into sequences which are uttered by a unique
speaker [1]. It consists of detecting speaker change boundaries and overlapping speech.
The main objective of this procedure is to help the clustering, both in excluding
overlapping speech from the clustering evaluation and assuring that clustered frames
have homogeneous speaker content [1].

3.3.1 Related work

The concept of speaker change detection is strongly related to speaker verification but
with a few prominent differences. Firstly, instead of comparing two arbitrary chosen
sequences of features xj and xk, the comparison is performed with two adjacent
sequences xi and xi+1. In addition, the utterances from which the sequences are
generated are usually shorter in speaker change detection [1, 21]. Moreover, speaker
change boundaries can also occur in either of the speech frames from which xi and
xi+1 [26, 53] have been extracted. As a result, the most popular approaches in
speaker change detection differ slightly from the ones introduced in the speaker
modeling subsection as will be discussed next.



30

The earliest approaches have focused on comparing two hypotheses H0 and H1,
which assume the sequences xi or xi+1 to correspond to either one speaker or two
different speakers respectively [1]. The hypotheses have been defined more formally
as

H0 : xi, xi+1 ∼ N (µ, Σ) (17)

and
H1 : xi ∼ N (µi, Σi), xi+1 ∼ N (µi+1, Σi+1), (18)

where the sequences are assumed to be generated either by a single Gaussian process
or by two different Gaussian processes [1, 54, 55]. In general, the choice of an
optimal hypothesis has been made by using Bayesian information criterion (BIC) or
generalized likelihood ratio (GLR) [1, 54, 55].

Gaussian modeling has also been exploited in an approach called Gaussian
divergence. In this approach, instead of the sequences, static feature vectors xs ∈ R59

are calculated for two adjacent speech frames si and si+1 [56]. The static vectors for
the adjacent speech frames are then modelled as in H1 but the test of hypothesis is
based on the value of

(µi+1 − µi)T Σi+1Σi(µi+1 − µi), (19)

which, naturally, should be small if the speakers are the same and large when speakers
are different. In practice, the choice is determined by investigating if the value is
below or above a predetermined threshold [56].

Similarly as in speaker modeling, these traditional methods have been recently
contested by deep learning approaches. The approaches include both d-vector and
metric learning based methods, which, as discussed in the previous subsection,
compare speaker embeddings fi and fi+1 [21, 57]. The comparison is performed using
using either the cosine or the euclidean distance metric [21, 57]. In addition, methods
for determining if a given sequence of features x includes a speaker change boundary
have been proposed. In these methods, a neural network transforms the sequence
into a real valued prediction

x → h(x) ∈ R, (20)

which can be interpreted as the probability of a speaker change event [26, 53]. After
calculating the probability, the belief of whether the sequence includes a speaker
change boundary or not is determined, as in Gaussian divergence, by using a threshold.
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In literature, all the aforementioned approaches have been shown to surpass the
traditional methods in terms of speaker change detection accuracy [21, 26, 53, 57].

Overlapping speech detection refers to determining if the corresponding frame s of
x includes multiple speakers speaking simultaneously [1]. In this setting, related work
has focused on two approaches: hidden Markov models (HMM) and deep learning
methods. In the former, the sequence x is considered as observations and the ith
features x(i) assigned either with a speech, a non-speech or an overlapping speech
label, which correspond to three different hidden states in an HMM [15, 16, 58].
Emission probabilities of each hidden state have been modeled with GMMs [15, 16, 58].
Experimenting with a variety of different features has also been a trend in these
approaches. In addition to MFCC features, several other acoustic feature sets have
been proposed such as linear predictive coding residual values, spectral flatness and
harmonic energy ratio [15, 58]. In [16], long-term conversational features describing
silence and speaker change statistics have also been shown to be relevant in the
overlapping speech detection task.

Deep learning based methods have mostly applied LSTM and bidirectional LSTM
based recurrent neural network configurations [17, 59]. In [17], a recurrent neural
network with LSTM cells is used with the objective of assigning the last features x(201)

of a given feature sequence x to one of three classes mentioned previously: non-speech,
overlapping speech and speech. In this approach, the central idea has been to use a
contextual information of previous features in the sequence x to influence and justify
the prediction for the last features. In their experiments, also several other features
mentioned in previous paragraph has been exploited in tandem with MFCCs [17].
Obtained results have been comparable with the results attained by using HMMs
[17].

In [59], a bidirectional neural network with LSTM cell was used with the same
input x but with a slightly different objective. Instead of assigning x(201) to one
of the three classes mentioned in previous paragraph, the features are labeled to
four different classes. The classes depict how well the features correspond to either
male or female voice, overlapping speech or non-vocal sounds [59]. In this approach,
artificially generated overlapping speech training data was also experimented with.
The results in overlapping speech detection surpassed the ones provided in [17].

However, to the best of the writers knowledge, no approaches which perform
overlapping and speaker change detection jointly have been proposed in the literature.
In theory, this joint detection detection could be beneficial as overlapping speech
and speaker changes have been shown to often occur simultaneously, especially in
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spontaneous speech [16]. In this thesis, preliminary experiments concurred with this
hypothesis and a method for the joint detection was developed.

3.3.2 Homogeneity Based Segmentation

Homogeneity Based Segmentation (HBS) is a novel segmentation technique in which
a neural network, depicted in Figure 4, performs a binary classification for a given X

X → H = {h(x1), ..., h(xN)} , h(xi) ∈ {0, 1} , (21)

with targets Σ = {σ(x1), ..., σ(xN)}, where

σ(x) =

⎧⎪⎨⎪⎩0, if H%x ≥ Hθ%

1, otherwise
(22)

where H%x is a homogeneity percentage of the corresponding s of x and Hθ% some
threshold percentage. The classification can be equivalently interpreted as a seg-
mentation procedure for the sequence of frames S from which X is extracted, where
the segments consist of adjacent speech frames s with the same h(x) value. In
other words, S is segmented based on homogeneity percentages. Consequently, the
segments are of two types: single speaker segments, labeled as 0, and segments with
multiple speakers, labeled as 1. The motivation behind the segmentation is then to
exclude all the frames in the 1-class from the clustering procedure.

The H%x percentages, however, are not generally known. Hence, the value of h is
in practice defined as

h(x) =

⎧⎪⎨⎪⎩0, if ĥ(x) ≤ θ

1, otherwise
(23)

where θ ∈ [0, 1] depicts a given threshold and ĥ(x) ∈ [0, 1] an output of the neural
network architecture which is trained with given target {Σ1, ..., ΣM} and feature sets
{X1, ..., XM}. The calculation of the output and the structure of the network can be
summarized as follows.

First, an input x is transformed into y consisting of 201 sequences with 600
elements using a bidirectional recurrent neural network layer with LSTM cell as
illustrated in Table 7. The number of elements results from the use of 300 hidden units
in the LSTM cell and from the fact that the recurrent neural network is bidirectional.
The number of units was determined based on preliminary experiments.
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Next, y is fed to an attention layer in which an attention matrix A

y → yT ∈ R600×201 → p(yT) ∈ R600×201 → p(yT)T ∈ R201×600 = A (24)

is created and multiplied element-wise with y. The output of this multiplication is
then processed in an average pooling and a batch normalization layer. Finally, the
output is compressed into a single value ĥ ∈ [0, 1] in a fully connected layer with a
sigmoid activation function. The class h(x) ∈ {0, 1} of each x is determined based on
rounding the output of the network ĥ(x) ∈ [0, 1] to the nearest integer. The network
has around one million parameters.

x

Bidirectional LSTM

Attention layer

Average pooling over time

Batch normalization

Fully connected (Sigmoid)

ĥ(x)

Attention layer
Transpose

Fully connected
(Softmax)

Transpose

×

Figure 4: The HBS neural network.

Table 7: Output dimensions of each layer.

Layer Output dimensions
Bidirectional LSTM1 201 × 600
Attention layer 201 × 600
Average pooling 600
Fully connected (Sigmoid) 1

The network is most influenced by the work in [17, 53, 59], in which recurrent
neural networks with LSTM cells have been used to detect either speaker changes
or overlapping speech. However, in these works, instead of a single LSTM layer,
multiple layers were used. A similar approach was also investigated in this thesis but
the increase in the number of layers did not help in the classification task.

The use of an attention layer is based on an implementation introduced in [60].
This layer is intuitively motivated. For example, when considering a frame which
includes a speaker change boundary, only feature sequences close to this boundary
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should be relevant for HBS. In other words, some features should be addressed with
more attention than others. Similar reasoning can also be applied for overlapping
speech detection. The layer was also found to be beneficial in practice as will be
shown in section 4.

All other components of the architecture were determined based on preliminary
experiments and the SphereSpeaker neural network which showed the benefit of using
batch normalization and average pooling. The output layer was also tested with a
softmax activation function and with 2-dimensional output, but this choice did not
bring any performance improvements.

3.4 Clustering

Clustering is a central task in any speaker diarization system [1]. In this task, a given
number of observations, which could be for example GMMs or speaker embeddings,
are organized into groups. These groups then determine a speaker label for each
observation.

3.4.1 Related work

One of the earliest and most popular clustering methods in speaker diarization
has been hierarchical agglomerative clustering (HAC), also known as bottom-up
clustering [1, 61]. In this approach, the first step is to initialize a cluster for each
segment in S = {S1, ..., Sn}, which are obtained from the segmentation procedure
discussed in the previous subsection. Then, these clusters are merged in an iterative
process until an optimal number of clusters, i.e. the number of speakers, is attained
[1].

In practice, each cluster Si, has been modeled either by fitting a GMM to the
corresponding Xi or by using i-vectors or speaker embeddings [1, 12, 13, 22, 61]. Of
these cluster modeling methods, GMMs have been the traditional approach. This
approach has been accompanied with HMMs which have been used for modeling the
sequence structure of S [1]. The purpose of HMMs is to represent speakers as states
and speaker changes as transitions and the GMMs serve as the emission models
[1, 61]. The choice of which clusters are to be merged has been made based on the
similarity of their corresponding GMMs. After each merging, a new GMM is fitted
for each of the new clusters. In this process, also Viterbi realignment has been used
to rearrange segments in S after each merging iteration [1, 61]. BIC and GLR have
been popular stopping criteria for cluster merging [1, 61].
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Recently, GMMs have been replaced with i-vectors and speaker embeddings
[12, 13, 22] in HAC. These representations have been also assigned to considerably
smaller segments si, or frames as they are called in this thesis, that has been beneficial
for the clustering operation [22, 62]. Otherwise, HAC is used with a similar procedure,
by first assigning a cluster for each si in S and then by iteratively merging them
based on the similarity of the representations. The similarity has been determined
based on cosine distance or PLDA [12, 13, 22, 63]. In addition, PLDA has also been
exploited to find a stopping criterion for HAC [22, 62]. The results obtained combining
HAC with the representations have been generally very promising and therefore this
combination has been considered the state-of-the-art in speaker diarization [12, 13].

However, in addition to approaches using bottom-up clustering, also so called
top-down clustering methods have been proposed [1, 61]. In these methods, the
objective is to first assign S to a single cluster and then to break it down into multiple
clusters which describe the speakers in S. Again, clustering is done iteratively,
using HMM-GMMs and realigning with the Viterbi algorithm [1, 61]. Nevertheless,
top-down clustering has not been able to outperfrom its bottom-up counterpart and
furthermore, it is not compatible with i-vectors or speaker embeddings [1, 61].

In [64], an Integer Linear Programming (ILP) based clustering method operating
on i-vectors is introduced, contrasting the iterative procedures in both bottom-up
and top-down clustering approaches. The objective of this method is to minimize

z =
K∑

k=1
yk +

K∑
k=1

N∑
n=1

D(vk, vn)xkn, (25)

where K denotes a number of clusters, N a number of i-vectors to cluster, yk ∈ {0, 1},
xkn ∈ {0, 1}, v an i-vector and D a distance metric calculated for each i-vector pair.
In addition, three conditions are assigned:

N∑
n=1

xkn = 1, xkn − yn ≤ 0, D(vk, vn)xkn ≤ δ, (26)

where δ depicts a given threshold. Interestingly, the minimization of z can then
be interpreted equivalently as an optimal clustering for i-vectors with xkn values
depicting a cluster for each vn [64]. Moreover, the results obtained with ILP have
been comparable or even better than the ones obtained using HAC with i-vector
cluster modeling [64].

In addition to the aforementioned methods, also clustering approaches in which
the number of speakers must be known beforehand have been experimented in speaker
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diarization. These approaches include K-means and spherical K-means algorithms
and the use of von Mises-Fisher distributions [65, 66]. Although these algorithms
have shown promise, they naturally can not be relied on if the number of speakers in
S is unknown [65, 66].

Nonetheless, with many audio streams such as meetings, movies and TV shows, a
reasonable estimate of the maximum number of speakers can almost always attained
prior to a speaker diarization task. Thus, the aforementioned algorithms can be
used in a two phase approach. First, multiple alternative clustering proposals are
generated for different numbers of speakers. Second, an optimal proposal is chosen
based on some evaluation measure. Yet, it seems that virtually no approaches in
speaker diarization related literature exploit the two phase approach.

Consequently, such an approach is developed in this thesis. This approach
consists of two essential components: Spherical K-means algorithm for clustering
and silhouette coefficients for the evaluation of the clustering proposals. These
components are then fused together to form a novel clustering algorithm.

3.4.2 Spherical K-means

Spherical K-means is a clustering algorithm which allows grouping given observations
into clusters. In this thesis, the observations are speaker embeddings f and clusters
their presumed speaker groups. In this context, spherical K-means finds cluster centers
C = {c1, ...cK} , with cj ∈ R1000, ∥cj∥2 = 1, which maximize a cosine similarity sum
objective [67]

O =
∑
f∈F

fT cl(f), (27)

where F is a set of speaker embeddings and

l(f) = arg max
l

fT cl ∈ {1, ..., K} , (28)

depicts the cluster, i.e. the predicted speaker label of a given f .
In other words, the algorithm locates K cluster centers in a such manner that the

sum of cosine distances from the cluster centers to a given set of speaker embeddings
F is maximized. This sum consists of smaller summations which are computed from
the cosine distances between each cluster center and their nearest speaker embeddings.
The speaker labels are then assigned based on the equation (25). With this setting,
the number of clusters K must be given as an input for the algorithm.
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In practice, the algorithm is calculated iteratively for a given F and K with
following steps [67]:

1. Initialize centers C = {c1, ...cK} , with cj ∈ R1000, ∥cj∥2 = 1.

2. Calculate labels L = {l1, ...lM} , li ∈ {1, ...K} by assigning li = arg maxj fi
T cj

for each fi in F .

3. Update values of each cj by computing

cj =
∑

f∈Fj
f∑

f∈Fj
f


2

,

where Fj = {fi | li = j} .

4. If L is left unchanged, return L and C, otherwise return to step 2.

However, although the algorithm can always find a set of {L, C} which maximize
the objective O, also other such sets may exist. In other words, the algorithm
converges to a local maximum [67]. For this reason, it is necessary to use a proper
initialization method for C [68] and run the algorithm multiple times with some
validation criterion to find an optimal set of {L, C}. In this thesis, the initialization is
performed with K-means++ [68] and validation with silhouette coefficients. The use
of K-means++ has been suggested in [68] whereas the utility of silhouette coefficients
is based on preliminary experiments.

3.4.3 Silhouette coefficients

Silhouette coefficients arise from the concept of average dissimilarity. Assuming
F with labels L computed using the spherical K-means algorithm, the average
dissimilarity of a given fi to embeddings in Fk = {fj | lj = k} can be computed as
[69]

dk(fi) = 1
M

∑
f∈Fk

fi
T f . (29)

Based on this formulation and assuming that fi is labeled as m, two more specific
dissimilarity metrics can be defined:

a(fi) = dm(fi) and b(fi) = max
k ̸=m

dk(fi), (30)



38

where a(fi) describes the average dissimilarity of fi to all speaker embeddings in the
same cluster as fi and b(fi) to embeddings in the nearest cluster in terms of cosine
similarity. The silhouette coefficient is then calculated as [69]

sc(fi) = a(fi) − b(fi)
max {a(fi), b(fi)}

. (31)

Consequently, −1 ≤ sc(fi) ≤ 1, with value 1 indicating that fi is well clustered and
value −1 suggesting the opposite. An evaluation score for clustering F is obtained
by calculating the average of all sc(fi) coefficients as

s = 1
M

∑
f∈E

sc(f), (32)

which is named the silhouette score in this thesis. This value has the same bounds
as the silhouette coefficients and can be interpreted as an overall clustering score for
the speaker embeddings in F .

3.4.4 Top Two Silhouettes

After the speaker modeling and segmentation, speaker embeddings F and a sequence
of HBS labels H have been obtained. As a final step, each f in F is assigned a
speaker label l:

F → L = {l(f1), ..., l(fN)} , l(fi) ∈ {1, ..., Ns} , (33)

where Ns depicts the predicted number of speakers. This assignment is attained by
clustering E, a subset of F consisting of embeddings fi which have the HBS label
hi = 0. The clustering is performed using a novel algorithm which can be divided
into two steps: the proposal generation and the optimal proposal determination.

In the first step, E is fitted with multiple different spherical K-means configurations
with K ranging from 2 to Nmax, where Nmax is chosen to be higher than the true
number of speakers in E. Each configuration is run with R different initializations,
from which the final configuration is determined based on the run which yielded the
highest silhouette score. The proposals Pi, consisting of a set of cluster centers Ci

and speaker labels Li, are then created based on these final configurations.
It is worth noticing that the proposals could also be chosen based on their O

values in equation (23). This approach, however, was outperformed by the use of
silhouette coefficients in preliminary experiments. In these experiments, the use of



39

coefficients decreased the number of initializations needed but still attained similar
or better final silhouette scores.

In the second step, the optimal proposal Popt is chosen. First, the proposals
corresponding to the two largest silhouette scores, Ptop−1 and Ptop−2 are recovered. If
(i) Ptop−1 has more clusters, or (ii) the silhouette score of Ptop−2 is below a threshold
δ, then Popt = Ptop−1. This is a heuristic rule which was found experimentally and
can be interpreted as further evidence that Ptop−1 is the optimal proposal.

Otherwise, if both (i) and (ii) are unsatisfied, the algorithm deduces that also
Ptop−2 could be chosen. As Ptop−2 has then more clusters than Ptop−1, the algorithm
investigates if any of the clusters in Ptop−1 would contain inner clusters. This
investigation is performed in a similar fashion as in the first step but for each cluster
in Ptop−1. The assignment Popt = Ptop−2 is then obtained if for any initialization
or cluster, both the maximum silhouette value is above δ and the corresponding
K ∈ {2, 3}. In this condition, the maximum number of inner clusters is restricted to
3 since a higher number would be highly improbable. However, if this condition is
not satisfied the algorithm chooses Popt = Ptop−1.

Top Two Silhouettes is described more formally in Algorithm 1. In this description,
spherical K-means is denoted with ϕ and the calculation of the silhouette score with
a variable υ. Moreover, instead of two steps, the description consists of three main
steps consisting of the calculation of the silhouette scores, the evaluation of the
conditions (i) and (ii) and the possible inner cluster search.

The motivation behind the inner cluster search in the second step is based on
the preliminary experiments. In these experiments, the speaker embeddings and
their predicted clusters were visualized with t-SNE [70] in 2D. The visualizations
illustrated that in many cases, Ptop−1 would result in an underestimate of the number
of clusters. An example of this is shown in Figure 5. This Figure describes two
clustering proposals Ptop−1 and Ptop−2 projected to 2D. The proposals are created
for an example meeting taken from the ICSI corpus with 5 participants. As can
be seen from this Figure, all clusters are distinguishable but Ptop−1 has merged two
of these clusters. However, Ptop−2 has assigned all the clusters correctly. In this
Figure, it is clear that such an inner cluster search as described in the second step is
beneficial. In general, however, this inner cluster search needs to be regularized in
some manner since some meeting recordings in the meeting corpus do have Ptop−1 as
the best choice. The heuristic rules in both the first and second steps were developed
for this reason.

Finally, the labels L for F are generated using the associated cluster centers Copt



40

Figure 5: Example clustering proposals in 2D, Ptop−1 in the left and Ptop−2 in the
right.

of Popt. As the proposals corresponding to the two largest silhouette scores are central
for the algorithm, it is named Top Two Silhouettes. The validity of this algorithm is
demonstrated in the experiments section where it is compared with Top Silhouette
(TopS) which is essentially the same as Top2S but always assigns Popt = Ptop−1.

As a final remark, it must be mentioned that Top2S is rather ill suited for
situations were some of the clusters contain significantly less speakers than other
clusters. For instance, if one speaker would only speak for 2 seconds, this utterance
would be described by a single speaker embedding. Naturally, spherical K-means will
be unable to cluster this speaker correctly and this also applies to Top2S. Preliminary
experiments suggested that this problem was still present in situations were the
total amount of speech material for speaker would be close to 10 seconds. This is
due to the fact that Top2S does not utilize the time varying structure of a given
set of speaker embeddings in any meaningful way. That is, the algorithm treats
the embeddings as they would be independent from each others. This statement is
not completely true since in some cases the differences between adjacent speaker
embeddings may imply speaker change boundaries. This was discussed in subsection
3.3.1. The imbalance is present in the ICSI corpus to some extent but not in the
AMI corpus.



41

Algorithm 1: Top Two Silhouettes
Input: Speaker embeddings E, a number of initializations R, a maxi-
mum number of centers Nmax and a threshold δ

Output: Proposal P = {L, C}.
Steps:

1. Initialize K = {2, ..., Nmax} and
s = {0, ..., 0} , |s| = |K|

2. for r = 1 to R do
for i = 1 to |K| do

ϕ(Ki, E) → Li → υ(Li, E) → ŝi

if (ŝi > si) → si = ŝi.

3. Find largest and second largest silhouette values stop−1 and stop−2,
respectively.
If not top-2 > top-1 ∧stop−2 > δ)
→ return Ltop−1, Ctop−1

4. Repeat step 2 for each Ej ∈ E = {fi | li = k ∈ Ltop−1} In the
process, for any j, r:
If (maxi υ(Lij, Ej) > δ ∧ Ki ∈ {2, 3})
→ return Ltop−2, Ctop−2

5. return Ltop−1, Ctop−1.
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4 EXPERIMENTS

This section presents the conducted experiments and discusses the obtained results.
It consists of four subsections of which the first introduces the evaluation metrics.
The following three investigate the performance of the proposed segmentation and
speaker modeling methods separately and finally illustrate the results obtained with
SphereDiar. These results also include comparisons with two other state-of-the-art
speaker diarization systems.

4.1 Evaluation metrics

4.1.1 Adjusted Rand score

Let us assume that a set of speaker embeddings F can be partitioned to either
FL = {FL1, ..., FLp} or FL̂ =

{
FL̂1, ..., FL̂q

}
based on a reference label set L and

a predicted label set L̂, respectively. Equivalently, FLi = {fj ∈ F | li = i} and
FL̂i =

{
fj ∈ F | l̂i = i

}
. In this case, it is assumed that speaker labels l, l̂ do not

depict overlapping speech labels. In addition, let us define three variables:

nij =|FLi ∩ FL̂j|,

ai =
q∑

j=1
|FLi ∩ FL̂j|,

bj =
p∑

i=1
|FLi ∩ FL̂j|.

(34)

Then, adjusted Rand score AR can be written as [71]

AR =
∑

i,j

(
nij

2

)
− ∑

i

(
ai

2

) ∑
j

(
bj

2

)
/

(
N
2

)
1
2(∑

i

(
ai

2

)
+ ∑

j

(
bj

2

)
) − ∑

i

(
ai

2

) ∑
j

(
bj

2

)
/

(
N
2

) , (35)

which is bounded in [−1, 1] and can be interpreted as a clustering performance
measure with the value 1 representing optimal clustering and the value −1 the
opposite. In this thesis, the score is used in speaker modeling evaluation. The use
of this score is motivated based on its computational simplicity and success as a
clustering evaluation measure [71].
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4.1.2 Mean average precision

In this thesis, mean average precision (MAP) is used to evaluate HBS models.
In this setting, the idea is to validate a binary classification task performed on
X = {x1, ..., xN} with target labels Σ = {σ1, ..., σN} and predicted labels H =
{h1, ..., hN} when θ which is utilized in the creation of H is varied. The validation
and computation of MAP is based on precision and recall which are defined for each
θ as [72]

Prθ = | {xi| σi = 1} ∩ {xi| hi = 1} |
| {xi| hi = 1} |

(36)

Reθ = | {xi| σi = 1} ∩ {xi| hi = 1} |
| {xi| σi = 1} ∩ {xi| hi = 1} | + | {xi| hi = 0} \ {xi| σi = 0} |

. (37)

Assuming T different threshold values θi with θi > θi−1, MAP can then be approxi-
mated as

MAP =
T∑

i=1
(Reθi

− Reθi−1)Prθi
, (38)

where θ0 = 0 and Reθ0 = 1. With this definition, MAP can be understood as the
area under the precision-recall curve.

In summary, MAP is targeted for a binary classification evaluation when the
classification is based on some given threshold. However, this task could also be
addressed by using area under the receiver operating characteristics (ROC) curve
[73]. This measure was also investigated in preliminary experiments but it was found
to be overoptimistic. The deficiency was due to a rather high class imbalance in the
meeting corpus. Even when the imbalance was addressed in many ways, as will be
discussed later, the measure was found to be suboptimal compared to MAP.

4.1.3 Diarization error rate

Similarly as previously, let us assume F with predicted and reference speaker labels
L̂ and L. Diarization error rate (DER) is then calculated between L and L̂ with the
following steps. First, all speaker embeddings with corresponding H% smaller than
a given Hθ% threshold are excluded. This means that all frames with overlapping
speech and also some frames which include multiple speakers are not considered in
the evaluation process. As a result, a speaker embedding subset E and speaker label
subsets Ls and L̂s are generated.
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Secondly, the partitions ELs and EL̂s
are composed based on Ls and L̂s similarly

as discussed with adjusted Rand index. In this setting, the variable nij is defined as

nij = |ELsi ∩ EL̂sj|, (39)

with a so called confusion matrix, which is formulated as

C ∈ NNs×Ns = {nij| i, j ∈ {1, ..., Ns}} , (40)

where Ns is the number of unique labels in Ls. Finally, DER is computed as

DER = 1 −
∑Ns

k=1 Ak

|Ls|
, (41)

where {A1, ..., ANs} describe nij values which are the solution to a linear assignment
which minimizes the confusion in C. These values are obtained using the Hungarian
algorithm [74]. In this formulation, the DER calculation in this thesis is essentially
the same as generally performed in the speaker diarization literature [1, 74].

4.2 Speaker modeling

Experiments conducted on speaker modeling concentrate on evaluating the SS neural
network based on the identification accuracy and the relevance of speaker embeddings
when

1. the L2 normalization layer is either used or not

2. the training and evaluation sets are varied

In practice, 8 neural network configurations are trained in total with model archi-
tectures SS and SS∗, where the L2 normalization layer is excluded. Training and
evaluation are performed with all four partitions of the speaker corpora.

4.2.1 Training procedure

The training and evaluation sets for each partition are generated by randomly choosing
45 frames from each speaker for testing and leaving the rest for training. As a result,
evaluation sets for LS1000 and V C1000 consist of 45000 frames and the sets for LS2000

and V C2000 of 90000 frames. Model training is performed with the configuration
depicted in Table 8. In this process, the model candidate is saved after each epoch
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and the final model is chosen based on the candidate with the lowest categorical
cross-entropy value on an evaluation set.

Table 8: Training configuration

GPU Quadro P5000
Optimizer Adam [75]
Loss function Categorical cross-entropy
Batch size 256
Epochs 45

4.2.2 Results

The results can be divided into two categories: identification accuracy scores, depicted
in Table 9, and speaker embedding validation scores in Table 10. The accuracy scores
are calculated based on the identification predictions on the evaluation sets of each
partition. The validation scores are adjusted Rand scores, which are determined
based on the following procedure. First, all frames in a given partition test set are
transformed into speaker embeddings. Next, these embeddings are clustered using
spherical K-means with K being the number of speakers in the partition. Then, the
obtained predicted labels are compared with the reference and the adjusted Rand
score is computed. This procedure allows investigating both the intra-class and the
inter-class variation of the created embeddings.

The identification accuracy of each model with the corresponding partition evalu-
ation set is presented in Table 9. The implications of these scores can be categorized
as follows. Firstly, the identification task on LS partitions is easier than with V C par-
titions for both model architectures. This result is as expected, since the Librispeech
corpus includes a lot less variation in recording conditions and noise backgrounds.
However, the results with the V C partitions are also fairly promising. For instance,
the identification accuracy with Voxceleb, a predecessor of Voxceleb2, containing
around 1200 speakers, has been reported to be around 80% in [5].

Secondly, the number of speakers does not seem to affect the identification
accuracy drastically. A decrease in the accuracy is only seen with the V C partitions
and even then it is not very significant considering a substantial increase in the
number of speakers. One hypothesis for this result is the variation in the training sets.
Even though the difficulty of the identification task increases when more speakers are
involved, so does the number of different speakers which the neural network processes
in training. Thus, the model needs to learn more specific ways to discriminate
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between speakers in training which in turn benefits the identification accuracy on an
evaluation set. This hypothesis, however, can be reasonable only when the number
of frames for each speaker is high enough and balanced as is the case with the LS

and V C partitions.
Most importantly, the scores illustrate that L2 normalization is beneficial in terms

of identification accuracy with each model. This increase is not substantial when
considering LS but on the V C partitions the benefit of L2 normalization is noticeable.
A similar result has also been obtained in [10] on the previously mentioned Voxceleb
dataset.

Table 9: Identification accuracies (%)

SS∗ SS
LS1000 99.2 99.8
LS2000 99.4 99.8
V C1000 88.8 90.2
V C2000 87.1 88.7

The results in Table 10 in turn indicate that the use of an L2 normalization
layer is also advantageous in terms of speaker embedding quality. With the LS

partitions the relative improvement is around 25%, which, given the magnitudes
of the adjusted Rand scores, is a considerable upgrade. However, with the V C

partitions, the improvement exceeds 100% for both V C1000 and V C2000.
Moreover, the adjusted Rand scores on the LS partitions suggest that the SS

architecture does succeed in creating relevant speaker embeddings. Even when the
numbers of clusters are in the thousands, the scores are very high. The scores
attained with SS∗ are also promising, implying that the general model architecture
of SS is suitable for speaker embedding generation.

With the V C partitions and SS, however, the adjusted Rand scores are only
about half as good as they are with the LS partitions. With SS∗, these scores
are less than 30%. The reasons for this performance drop are essentially the same
as the ones discussed with identification accuracy results but lead to a question:
have the neural networks trained on the V C partitions actually learned relevant
ways to discriminate between different speakers? If the answer were only based
on the adjusted Rand scores in Table 10, it would most certainly be no, especially
when considering SS∗. However, the clustering objective from which the adjusted
Rand scores are obtained is not easy to reach, especially considering the challenging
recordings of V C. Furthermore, the speaker modeling ability of the neural networks
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also needs to be tested with speakers which are not in the training set. Thus, the
validation of the proposed speaker embedding extraction approach continues in the
SphereDiar subsection.

Table 10: Adjusted Rand scores

SS∗ SS
LS1000 0.75 0.94
LS2000 0.71 0.89
V C1000 0.20 0.51
V C2000 0.18 0.42

4.3 Segmentation

Experiments in segmentation are rather similar to the ones previously discussed with
speaker modeling. Namely, the experiments investigate

1. The effect of an attention layer and dropout on the HBS neural network

2. The performance of the HBS neural network with different training and evalu-
ation sets

The training and evaluation sets are extracted from the meeting corpus. 6 different
neural network configurations are trained and compared in total.

4.3.1 Training procedure

Two different training and evaluation set configurations are collected from the meeting
corpus. In the first, the same evaluation set as in [13] is used, here named AMIeval,
and all other meetings are used as the training set. In this division, the speakers in
AMIeval are disjoint from the speakers in the training set. In the second configuration,
9 meetings from the ICSI corpus are collected to form an evaluation set, ICSIeval,
leaving the rest of the ICSI meetings as training data. The choice of meetings
included in ICSIeval, depicted in Table 11, is based on maximizing the number of
speakers in the evaluation set which are not in the training set. This is a compromise
since a completely disjoint evaluation set in terms of speakers can not be formed if
the evaluation set consists of ICSI meetings.
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Table 11: ICSIeval

Bed017, Bmr014, Bed009, Bro017
Bsr001, Buw001, Bmr003, Bro024, Bns002

In addition, only speech frames from either H100% or H≤65% are used, both in
training and evaluation, with the targets being

σ(x) =

⎧⎪⎨⎪⎩1, if H%x ≤ H65%

0, if H%x = H100%

This choice is based on preliminary experiments which showed that the corresponding
binary classification task would be more difficult if the speech frames from both
targets could have a similar H%. Furthermore, in training, only every second speech
frame with H100% is used in order to balance the target distributions and to remove
redundancy caused by the large overlap duration used in the meeting corpus.

Otherwise, the training configuration is the same as depicted in Table 8 but with
two differences. Firstly, the loss function is binary cross-entropy. Secondly, as a final
counter measure against class imbalance, the targets of the 1-class are weighted twice
as much as the 0-targets in the training. The best neural network is again chosen in
a similar fashion as in the speaker modeling experiments.

4.3.2 Results

The results obtained in the HBS binary classification task are illustrated in Table 12.
In this table, (B) refers to a neural network which is the same as the HBS neural
network but without the attention layer. Consequently, (B+A) adds the attention
layer to the original HBS neural network. The architecture titled (B+A+D) adds
both regular and recurrent dropout [76] in the bidirectional LSTM layer. Dropout
rates are set to 0.2. This value was found in preliminary experiments.

Table 12: mAP scores

AMIeval ICSIeval

B 0.867 0.884
B + A 0.927 0.902
B + A + D 0.953 0.935

Based on the results in Table 12, it is clear that both the attention layer and the
use of dropout are beneficial. The intuition behind the attention layer was explained
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in the previous section, and here this intuition is further confirmed. The success of
dropout is also not surprising. Although the classification task includes only two
classes it is still difficult since in many cases the labels themself are inaccurate. This
is very natural because transcribing human conversations with a high precision is
extremely hard. Many frames labeled as 1 could easily belong to the opposite class
as the speaker change or overlapping speech would be hard to detect in these frames
even for humans. Some of these frames were actually listened in this thesis and the
remark was confirmed. The wrongly labeled frames could then lead to an overfitting
which dropout tries to prevent. On top of that, overfitting could occur simply because
of a relatively small training set.

Enlarging the training set artificially was also tested. In this approach, frames
with H% ≤ 65% were created artificially using the Librispeech corpus. In practice,
the frames were generated by cutting and adding frames together with either a small
overlap or none. The frames sounded fairly natural. Multiple different sized artificial
data inclusions were experimented with, but none of them resulted in a performance
improvement. This was a rather disappointing result in general when considering
HBS. It implied that the real data would be needed for improving the HBS neural
network. This real data, at least for now, is still quite difficult to acquire.

Table 12 shows that the MAP scores are higher on AMItest than on ICSItest with
all the different neural network configurations. This result is as presumed since the
ICSI corpus can be considered more challenging than AMI for several reasons. Firstly,
the meetings in ICSI corpus have generally more participants and in many cases some
of the participants speak significantly less than others. This problem was addressed
briefly in the Top Two Silhouettes subsection. Furthermore, the meetings in the ICSI
corpus have lower quality. The quality difference is not only based on differences in
the microphone configurations but also on the training of the participants [18, 19]. In
the ICSI corpus, the participants were prone to produce very loud breathing sounds
near the headset microphones [19]. In the AMI corpus, the participants were advised
to avoid this behavior [18].

Despite the difficulties, the best MAP scores are overall promising. Nevertheless,
HBS is yet to be tested as part of the speaker diarization system. Similarly as with
speaker modeling, the evaluation of HBS continues in the next subsection which
illustrates the experiments with SphereDiar. From now on, all references to the HBS
neural network will assume that this network uses the previously discussed dropout
configuration (B+A+D).
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4.4 SphereDiar

In the final experiments, the performance of the speaker diarization system proposed
in this thesis is investigated. These investigations focus on three main aspects:

1. Experiments with SphereDiar using multiple different configurations but without
using HBS.

2. Experiments with SphereDiar with the best configuration and with HBS.

3. Comparing the best SphereDiar configuration with two other state-of-the-art
speaker diarization systems.

The investigations are a natural continuation to the previous subsections since they
evaluate SS and HBS as a part of the speaker diarization system. The configurations
will include all trained SS and SS* neural networks and the best HBS neural networks
discussed in the previous subsection.

4.4.1 Parameters of Top Two Silhouettes

The parameters of Top Two Silhouettes and also Top Silhouette consist of a number of
initializations R, a maximum number of speakers Nmax and a threshold δ as depicted
in Algorithm 1 in subsection 3.4.3. In all experiments, R is 50 and Nmax = 11. R is
set this high since, as discussed, spherical K-means has a tendency to converge to a
local maximum [67]. The value of Nmax is selected to exceed the highest possible
number of participants, 9, of all the meetings in the meeting corpus. In addition, δ is
assigned as 0.1. This value was attained by conducting a grid search on a clustering
development set Clustdev, consisting of 12 meetings, which are listed in Table 13.
This set is disjoint from both AMItest and ICSItest. In the grid search, each threshold
was evaluated using DER, the use of HBS was omitted and the speaker modeling
was performed with SphereSpeaker trained on V C1000.

Table 13: Clustdev

IS1003d, ES2016b, ES2010a, ES2006a, TS3012b, TS3008b,
TS3011d, Bro008, Bed013, Bed016, Bmr022, Btr002
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Figure 6: Average DER over 225 meetings from the meeting corpus with different
SphereDiar configurations which omit HBS.

4.4.2 Results

In Figure 6, the speaker diarization results with 225 meetings from the meeting
corpus are visualized. The meetings consist of all of the meetings in the meeting
corpus excluding Clustdev. These results are obtained using all possible SphereDiar
configurations introduced in this thesis but without using HBS (hi = 0, ∀i) as most
of the meetings have been used in HBS training. The results illustrate that the SS
network outperforms the SS* network, especially when these neural networks are
trained with Voxceleb2 partitions. This result concurs with the Tables 9 and 10 which
were provided in the previous speaker modeling experiments subsection. Moreover,
the results show that both the increase in the number of training speakers and the use
of Voxceleb2 partitions over Librispeech partitions are preferable in speaker modeling
training. Clearly, the low adjusted Rand scores which were discussed in the speaker
modeling subsection are not problematic.

Top2S performs markedly better than TopS with all configurations. Thus, the
results provide some proof that their main difference, the inner cluster search, is
reasonable and effective. The best configuration is attained by combining SS trained
with V C2000 and Top2S and it achieves a 3% average DER over the 225 meetings.

The results in Table 14 show that HBS fails to benefit the speaker diarization
task. However, the results also show that even when using an oracle HBS, which
assigns hi based on the reference HBS labels, no significant improvement for the
task is attained. This result is especially clear when the evaluation set consists
of all of the 225 meetings. Interestingly, these results imply that SphereDiar is
not heavily dependent on overlapping speech detection or speaker change detection
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Table 14: Average DER (%) over different evaluation sets and HBS setups with the
best SphereDiar configuration.

Segmentation AMIeval ICSIeval 225 meetings
- 2.4 2.9 3.0
HBS 3.5 4.8 -
Optimal HBS 2.0 2.5 2.8

which have been previously shown to be important factors in speaker diarization
[1, 12]. This outcome might be due to two reasons: good generalization ability of the
speaker embeddings and a relatively low significance of HBS for the Top2S algorithm.
Especially the latter can be emphasized, since the HBS labels are only utilized to
exclude some of the embeddings from the clustering procedure but not in any other
manner. For example, the labels could have also been used in the initialization of
the spherical K-means algorithm. Nevertheless, based on the results in Table 3, it is
clear that SphereDiar achieves good results even without HBS.

Table 15: Average DER (%) comparison.

Test set Previous best SphereDiar (Hθ% = 55%)
AMIeval 4.8 [13] 3.6
ICSI subset 13.1 [14] 4.5

In Table 15, a comparison between the best SphereDiar configuration and two
other speaker diarization systems which have obtained top scores on AMI and ICSI
subsets in the literature is provided. These systems include a state-of-the-art i-
vector based speaker diarization system [13] and the ICSI RT07s speaker diarization
system, which uses both MFCCs and deep learning based features [14, 77]. The
average DER for both systems has been calculated from the segments which do not
include overlapping speech and by using a forgiveness collar around speaker change
boundaries [13, 14]. With [14], this collar is ±0.25 seconds, whereas [13] uses the
collar of ±0.5 seconds.

The computation of DER for SphereDiar is based on using the frames which have
homogeneity percentages above the threshold Hθ% = 55%. Due to the formulation
of the percentage, this means that virtually all overlapping speech is removed from
the DER calculation. Furthermore, decreasing the Hθ% from 65%, which was used
previously, to 55%, can be interpreted as shrinking the collar around speaker change
boundaries. This decrease allows the average DER comparison to be as fair as
possible since any further decrease in the value of Hθ% results in severe difficulties
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of labeling the frames accurately. Consider, for instance, the example given in
subsection 2.1.5. If a frame would have H% = 50%, and would contain two speakers
without any overlapping speech, then, the speaker label of this frame could not be
determined.

In addition, [14] does not specify which meetings were included in the ICSI subset,
they only inform that it consists of 55 meetings. For this reason, the ICSI subset
used in this thesis consists of all 69 ICSI meetings from the 225 meeting subset.

The results illustrate that SphereDiar is able to outperform the systems in [13, 14].
In particular, the average DER of SphereDiar is better compared to [14] but it must
be mentioned that SphereDiar was trained with Voxceleb2, which was not available
at the time for [14]. However, the system in [13] was trained with very similar
data as in this thesis, using Voxceleb [5] and other relevant datasets, but the result
obtained with SphereDiar is still better. Furthermore, as HBS is not used in the
comparison, the domain adaptation is only based on 12 meetings in Clustdev. This is
significantly less than used in either [13] or [14] and further emphasizes the generality
of SphereDiar.
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5 CONCLUSIONS

This thesis proposed a novel speaker diarization system named SphereDiar. This
system was constructed from three main components: the SphereSpeaker neural
network, the Homogeneity Based Segmentation neural network and the Top Two
Silhouettes clustering algorithm. The first of these components is used in speaker
modeling, whereas the last two perform segmentation and clustering, respectively.
It was illustrated that these three separate tasks can be fused successfully into one
speaker diarization task. SphereDiar was evaluated with over 200 meeting recordings
and the average DER over these meetings was only 3%. Furthermore, the system
was compared with two other state-of-the-art speaker diarization systems which
both had larger average DER than SphereDiar over two meeting recording subsets.
Interestingly, the conducted experiments also revealed that the use of HBS would not
be crucial for the system. As a result, SphereDiar could be simplified by omitting
segmentation. The diagram of this simplified system configuration is visualized in
Figure 7.

S Feature extraction

Speaker modeling

Clustering

L

Figure 7: Updated block diagram of SphereDiar, which excludes segmentation
(recall Figure 2 in section 3).

The remainder of this section discusses the operation, motivation, performance
and future work suggestions for each individual component of the SphereDiar speaker
diarization system. Finally, some recommendations for the usage of SphereDiar are
given.

5.1 The SphereSpeaker neural network

The SS neural network was designed to transform a short utterance to a represen-
tation which describes the speaker of the utterance. The main idea behind this
transformation adheres to the so called d-vector method. In this method, a neural
network is devised to classify a given utterance to a speaker identity. In the process,
the d-vector, i.e. a neural speaker embedding, is extracted from the last hidden layer
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of the network, and this vector is used as a speaker representation. In recent years,
the d-vector based methods have been proven both efficient and successful in speaker
modeling.

In this thesis, the d-vector method was developed further by studying the effect
of L2 normalization on the speaker embedding. The experiments showed that this
relatively simple operation has a significant positive impact both on the performance
of the SS and the whole speaker diarization system. With this normalization, the
speaker embeddings are spherical. This was the main reason for naming the neural
network SphereSpeaker and, consequently, naming the speaker diarization system
SphereDiar.

Furthermore, the experiments conducted in this thesis emphasized the effect of
a training dataset. The SS neural network was trained both using Librispeech and
Voxceleb2 datasets, of which Voxceleb2 was shown to be the better choice. This
result was not surprising since Voxceleb2 had a lot more variety in both recording
conditions and noise backgrounds. Moreover, Voxceleb2 has been an extremely
successful training set in the speaker verification literature. In this thesis, the
importance of Voxceleb2 was also verified in speaker diarization.

The SS neural network can be considered the greatest individual contribution of
this thesis. The experiments revealed that the speaker embeddings extracted from
this neural network are suitable for clustering even in the presence of spontaneous
and overlapping speech. Yet, the network architecture of SS is still far from optimal.
That is, the embedding dimension could and should be smaller and the network could
use an attention mechanism and dropout. Furthermore, the network could be also
trained with a significantly larger dataset. For instance, there are still around 4000
speakers more in Voxceleb2 which were not used in this thesis. In future work, all
these possible improvement suggestions will be investigated.

5.2 Homogeneity Based Segmentation

The purpose of the HBS neural network was to determine if a 2 second length audio
sample contains one dominant or multiple speakers. In this approach, overlapping
speech detection and speaker change detection are performed jointly. To the best of
the writer’s knowledge, this thesis was the first to investigate such an approach. The
experiments illustrated that the HBS neural network is successful in the classification
task but not as a part of the speaker diarization system. However, the experiments
also pointed out that even the use of perfect oracle HBS segmentation improved
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DER only 0.2% compared to diarization without any segmentation information. This
discovery was especially surprising since it differs from the general consensus in the
speaker diarization literature regarding the importance of overlapping speech and
speaker change detection.

The result might still be due to the fact that the exploitation of HBS was rather
limited in this thesis. In practise, HBS was used to simply select speaker embeddings
for the clustering procedure. It remains future work to utilize HBS also in the
initialization of the clusters. However, it is important to consider also the limitations
of HBS. While acquiring labeled overlapping speech data is difficult, experiments
indicated that adding artificially overlapped training data does not improve the
performance of HBS. Moreover, the use of HBS does add one additional component
to the speaker diarization system, which increases complexity. Nevertheless, HBS
could be used in other speech related applications such as ones considering privacy.

5.3 Top Two Silhouettes

This thesis introduced also a novel clustering algorithm Top2S. The main idea behind
this algorithm was to use a two stage approach which consists of generating different
clustering proposals and searching for the optimal one. The proposals were created
using spherical K-means whereas the search was based on using silhouette scores and
heuristic rules. The proposals with the two largest silhouette scores were central to
the algorithm and the main reason for its name. The algorithm differed from the
mainstream approaches in speaker diarization but achieved promising results in the
conducted experiments. It outperformed a similar clustering algorithm TopS with a
wide margin and also surpassed the results of two state-of-the-art speaker diarization
systems.

But on the other hand, the Top2S algorithm also had deficiencies. Firstly, it
was not optimal for speaker diarization tasks which include speakers speaking only
in few utterances. Secondly, the clustering algorithm could not be used for online
speaker diarization, and it did not exploit the time varying structure of clustered
embeddings. Moreover, the proposal generation related to Top2S was not the most
efficient since it also included the computation of unnecessary clusterings. Future
work will focus especially on developing Top2S for online speaker diarization and for
detecting briefly appearing speakers.
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5.4 For users

When using the SphereDiar speaker diarization system, the first thing to address is
that SphereDiar does not include any VAD system. This means that the VAD needs
to be acquired or to be developed externally for tasks which require complete speaker
diarization. Fortunately, free and user friendly VAD systems do exist, with one
example being the webRTC VAD [23]. Furthermore, this thesis has not conducted
any experiments in which the effect of possible errors of a non-optimal VAD would
have been taken into account. As a result, the performance of SphereDiar may suffer
when it is used alongside an external VAD.

Secondly, the Top2S algorithm is not well suited for speaker diarization tasks
involving speakers which are vocally active only briefly (in the ballpark of less than
10 seconds in total). For further information, revise the end of subsection 3.4.3.
The problem can be countered to some extent by using a large overlap in the frame
extraction procedure, but this operation may not result in sufficient performance
improvements.

In addition, the input format of the system should not be altered. In section 2,
this format was defined as a sequence of frames with 2 second duration and sampled
at 16 kHz frequency. However, it is not impossible to use a different frame duration
or sampling frequency. Nevertheless, the alteration of these two is not advisable since
the SS and the HBS neural networks have been trained based on the standard input
format. More specifically, the input of these networks have been MFCC based feature
sequences which have been extracted from the 2 second duration frames. Keeping
the dimensions of the sequences the same, which would be required, and modifying
the frame duration could lead to more rapid changes in the time structure of the
sequences. There is no guarantees how the networks would react to this change.
Moreover, the change in sampling frequency would alter the frequency bands which
the MFCCs have aimed to describe in the training of the networks.

The system can be acquired from the repository2 introduced in section 1. This
repository includes a demo in which SphereDiar is used to diarize one of the meetings
in the ICSI corpus. It is highly recommended to take a look at this demo before using
the system. Hopefully, the repository provides a good baseline speaker diarization
system which is easy to use.

2https://github.com/Livefull/SphereDiar

https://github.com/Livefull/SphereDiar
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