

-o
tl

a
A

D
D

5

5
/

 9
10

2

 +a
hhei

a*GM
FTSH

9 NBSI 0-7748-06-259-879)detnirp(
 NBSI 7-8748-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

ecneicS fo loohcS
ecneicS retupmoC fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

iä
ip

me
L

o
mo

uT
 g

ni
tu

p
mo

C
de

tu
bi

rt
si

D
ni

yt
ix

el
p

mo
C

dn
a

ci
go

L
 y

ti
sr

ev
i

n
U

otl
a

A

 9102

 ecneicS retupmoC fo tnemtrapeD

ni ytixelpmoC dna cigoL
 gnitupmoC detubirtsiD

 neniäipmeL omouT

 LAROTCOD
 SNOITATRESSID

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD 55 / 9102

 ni ytixelpmoC dna cigoL
 gnitupmoC detubirtsiD

 neniäipmeL omouT

fo rotcoD fo eerged eht rof detelpmoc noitatressid larotcod A
eht fo noissimrep eht htiw ,dednefed eb ot)ygolonhceT(ecneicS

ta dleh noitanimaxe cilbup a ta ,ecneicS fo loohcS ytisrevinU otlaA
 .noon 21 ta 9102 lirpA 4 no loohcs eht fo 1M llah erutcel eht

 ytisrevinU otlaA
 ecneicS fo loohcS

 ecneicS retupmoC fo tnemtrapeD

Printed matter
4041-0619

N
O

R
DIC

 SWAN ECOLAB
E

L

Printed matter
1234 5678

 rosseforp gnisivrepuS
 dnalniF ,ytisrevinU otlaA ,alemouS akkuJ rosseforP

 rosivda sisehT

 dnalniF ,ytisrevinU otlaA ,alemouS akkuJ rosseforP

 srenimaxe yranimilerP
 ecnarF ,torediD siraP ytisrevinU ,notraC reivilO rosseforP

 learsI ,noinhceT ,kemE lavuY rosseforP

 tnenoppO
 learsI ,noinhceT ,kemE lavuY rosseforP

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD 55 / 9102

 © 9102 neniäipmeL omouT

 NBSI 0-7748-06-259-879)detnirp(
 NBSI 7-8748-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

:NBSI:NRU/if.nru//:ptth 7-8748-06-259-879

 yO aifarginU
 iknisleH 9102

 dnalniF

 tcartsbA
 otlaA 67000-IF ,00011 xoB .O.P ,ytisrevinU otlaA if.otlaa.www

 rohtuA
 neniäipmeL omouT

 noitatressid larotcod eht fo emaN
 gnitupmoC detubirtsiD ni ytixelpmoC dna cigoL

 rehsilbuP ecneicS fo loohcS

 tinU ecneicS retupmoC fo tnemtrapeD

 seireS seires noitacilbup ytisrevinU otlaA SNOITATRESSID LAROTCOD 55 / 9102

 hcraeser fo dleiF ecneicS retupmoC dna noitamrofnI

 dettimbus tpircsunaM 8102 rebmevoN 31 ecnefed eht fo etaD 9102 lirpA 4

)etad(detnarg hsilbup ot noissimreP 9102 yraunaJ 51 egaugnaL hsilgnE

 hpargonoM noitatressid elcitrA noitatressid yassE

 tcartsbA
,gnittes detubirtsid eht nI .gnitupmoc detubirtsid fo yroeht eht seiduts noitatressid sihT

htiw etacinummoc yehT .stinu lanoitatupmoc tnednepedni elpitlum yb tuo deirrac si noitatupmoc
eht ni daerpsediw era dnik siht fo smetsyS .melborp a evlos ylevitcelloc dna stinu gniruobhgien
-itlum ,tenretnI eht edulcni selpmaxe emirp :dlrow larutan eht ni sa llew sa yteicos noitamrofni

.skrowten laicos namuh dna msinagro lacigoloib a fo sllec eht ,smetsys retupmoc rossecorp
fo snoitatimil dna seitilibapac latnemadnuf eht no egdelwonk niag ot tnatropmi si ti eroferehT

 .smetsys detubirtsid
sledom gnissap-egassem suonorhcnys dna citsinimreted fo txetnoc eht ni ecalp sekat krow ruO
,smetsys detubirtsid fo serutaef elbissop emos yawa tcartsba sledom hcuS .gnitupmoc detubirtsid fo

fo tnuoma eht no sisahpme gnittup elihw ,stluaf dna noitsegnoc ,ynorhcnysa sa hcus
melborp a evlos ot detcepxe era stinu lanoitatupmoc ehT .stinu eht neewteb dedeen noitacinummoc
eht yduts ew ,yllacfiiceps eroM .krowten noitacinummoc gniylrednu eht fo erutcurts eht ot detaler

eht fo stnairav rekaew lareves dna ledom gnirebmun-trop dradnats eht ,ledom LACOL dradnats
 .rettal

gniyduts rof sdohtem wen evig ew ,tsriF .dlof-owt era noitatressid siht fo snoitubirtnoc ehT
eht fo stnairav kaew lareves neewteb noitcennoc gnorts a gnihsilbatse yb gnitupmoc detubirtsid

ylppa ot elbissop ti sekam sihT .cigol ladom fo stnairav gnidnopserroc dna ledom gnirebmun-trop
.gnittes detubirtsid eht ni noitatupmoc dnatsrednu ot ,noitalumisib sa hcus ,sloot lacigol gnitsixe

hcihw ,gnitupmoc fo sledom eht neewteb spihsnoitaler eht fo noitasiretcarahc lluf a evig osla eW
 .cigol lacitamehtam fo edis eht no snoitacilpmi sah

stluser ruo fo enO .sessalc ytixelpmoc ytpme-non wen suoirav fo ecnetsixe eht evorp ew ,dnoceS
ni cipot wen ylevitaler a si hcihw ,ytixelpmoc ecaps dna emit neewteb pihsnoitaler eht seiduts

ni devlos eb nac taht melborp a fo ecnetsixe eht etartsnomed eW .hcraeser gnitupmoc detubirtsid
tnuoma tnatsnoc-non a seriuqer sselehtenon tub ledom kaew yrev a ni ecaps fo tnuoma tnatsnoc a
sseccus tnecer eht seunitnoc tluser rehtonA .gnitupmoc fo ledom regnorts hcum a ni neve emit fo
swohs hcihw euqinhcet wen a ecudortni eW .ledom LACOL eht rof yroeht ytixelpmoc gnipoleved no

 .seitixelpmoc emit levon htiw smelborp fo yhcrareih etinfini na fo ecnetsixe eht

 sdrowyeK ,ledom gnirebmun-trop ,yroeht ytixelpmoc lanoitatupmoc ,gnitupmoc detubirtsid
 noitalumisib ,cigol ladom ,smelborp LCL ,smelborp hparg ,ledom LACOL

)detnirp(NBSI 0-7748-06-259-879)fdp(NBSI 7-8748-06-259-879

)detnirp(NSSI 4394-9971)fdp(NSSI 2494-9971

 rehsilbup fo noitacoL iknisleH gnitnirp fo noitacoL iknisleH raeY 9102

 segaP 041 nru :NBSI:NRU/fi.nru//:ptth 7-8748-06-259-879

 ämletsiviiT
 otlaA 67000 ,00011 LP ,otsipoily-otlaA if.otlaa.www

 äjikeT
 neniäipmeL omouT

 imin najriksötiäV
 assanneksal assutetuajah suuvitaav aj akkiigoL

 ajisiakluJ uluokaekrok nedieteitsureP

 ökkiskY sotial nakiinketoteiT

 ajraS seires noitacilbup ytisrevinU otlaA SNOITATRESSID LAROTCOD 55 / 9102

 alasumiktuT edeitylettisäknejoteiT

 mvp neskutiojrikisäK 8102.11.31 äviäpsötiäV 9102.40.40

 äviäpsimätnöym navulusiakluJ 9102.10.51 ileiK itnalgnE

 aifargonoM ajriksötiävilekkitrA ajriksötiäveessE

 ämletsiviiT
aatneksal asseetnalit assutetuajaH .aairoet nanneksal nutetuajah naatiktut assajriksötiäv ässäT

nediökiskyatneksal netsiereiv taviokinummok eN .tökiskyatneksal tesiänesti taesu tavattirous
itlajaal yytniise äimletsejräj aisialläT .naamlegno niknohoj nusiaktar tavattout ässedhy aj assnak

nemittirous naesu ,tenretnI tavo äjekkremise äivyh :nikassonnoul niuk assannuksiethyoteit niin
tesilaaisos tamatsodoum netsimhi apakkiav iat tulos nimsinagro nesigoloib ,tämletsejräjenokoteit

aj ätsiyvyk atsisiutaalnavatsurep neimletsejräj netsiallät aoteit adaas ääekrät no iskiS .totsokrev
 .atsiskutiojar

assisinorknys aj ässitsinimreted naatneksal nuuttetuajah näätytiksek ässöyt ässäT
nejuttetuajah tesillodham niktoj attoimouh tävättäj tillam tesialläT .assiellamsytilävnitseiv

nediin aj ,nesimutnaakiv aj nesimutuakhuur ,nainorknysa iskikremise ,teduusianimo neimletsejräj
nediökiskY .äärääm noitaakinummok nesiläv nediökiskyatneksal aavattivrat tavatsorok naajis

nokrevoitaakinummok navelo allajhop nämletsejräj eeksok akoj ,namlegno navesiaktar naatetodo
ajellamitnioremunittrop aj -LACOL ajuttiktut nojlap naatiktut ässöyt neatto neellakraT .attennekar

 .ajettnairav aipmokieh nillam nutiniam iskemiiv atiesu äkes
nutetuajah äimletenem aisuu näälletise ässöyt iskisnE .atsolutääp iskak no allajriksötiäV

nejokkieh nillamitnioremunittrop nediesu syethy avhav allamatsidot neesimiktut nanneksal
neiveloassamelo aatsillodham ämäT .elliläv neittnairav nakiigolilaadom neivaatsav aj neittnairav

nanneksal nutetuajah nesimatlevos ,noitaalumisib iskikremise ,nedieniläv nakiigol
tesiläv neillam nanneksal nediän itsesilledyät naadiosiretkarak ässöyt iskäsiL .neesimäträmmy

 .alleeula nakiigol nesittaametam söym aiskuarues no ällim ,teethus
.oloassamelo neikkoulsuuvitaav neijhytäpe neisuu nediesu naatetioso assajriksötiäv iskesioT

ehia isuu nisrav no akoj ,attedhus ätsiläv neduuvitaavalit aj -akia naatiktut atsiskolut ässedhY
naadiov akoj ,amlegno assamelo no ätte ,aattioso soluT .asseskumiktut nanneksal nutetuajah
nammeruus atoikav iitaav akoj attum assillam nanneksal assokieh nivyh assalitoikav atsiaktar
atsiakiaemiiv aaktaj solut nenioT .ipmevhav nojlap isilo illam nanneksal akkiav ,aakia närääm

,akkiinket isuu näälletise ässöyT .ellillam-LACOL ätsimättihek nairoetsuuvitaav ätsäkeskytsenem
niisuu tavuluuk aktoj ,aimlegno aikrareih nöterää aatsodoum naadiov alluva aknoj

 .niikkoulsuuvitaavakia

 tanasniavA ,illam-LACOL ,illamitnioremunittrop ,airoetsuuvitaav nanneksal ,atneksal uttetuajah
 oitaalumisib ,akkiigolilaadom ,tamlegno-LCL ,tamlegno-okkrev

)utteniap(NBSI 0-7748-06-259-879)fdp(NBSI 7-8748-06-259-879

)utteniap(NSSI 4394-9971)fdp(NSSI 2494-9971

 akkiapusiakluJ iknisleH akkiaponiaP iknisleH isouV 9102

 äräämuviS 041 nru :NBSI:NRU/fi.nru//:ptth 7-8748-06-259-879

Preface

The research presented in this dissertation began a while ago – first at the
Department of Information and Computer Science of Aalto University. After
working for a while at the University of Helsinki and also obtaining my master’s
degree in mathematics there, I returned to Aalto University in 2015 to pursue
my doctoral studies. For the last few years, I worked under the auspices of the
grand unified Department of Computer Science.

Departments aside, I would like to first and foremost thank my supervisor
Jukka Suomela for providing me with an opportunity to conduct my doctoral
research in his first-class research group and for his guidance and patience over
the years. I have learned a lot from him – on the theory of distributed computing,
on how to conduct research and on how to survive in the world of research.

My other co-authors, of whom there are plenty, also played a very important
role in my research output. Many thanks to Alkida Balliu, Lauri Hella, Juho
Hirvonen, Matti Järvisalo, Janne H. Korhonen, Antti Kuusisto, Juhana Laurin-
harju, Kerkko Luosto, Dennis Olivetti and Jonni Virtema for collaborating with
me on the articles included in this dissertation.

I have also been involved in projects that are not part of this dissertation.
I would like to thank Sebastian Brandt, Orr Fischer, Barbara Keller, Patric
R. J. Östergård, Christopher Purcell, Joel Rybicki, Jara Uitto and Przemysław
Uznański for fruitful collaboration on distributed computing research. Further-
more, with regard to my earlier adventures in the area of DNA self-assembly, I
wish to thank Eugen Czeizler, Mika Göös and Pekka Orponen.

I took my first steps as a researcher in 2010 under the guidance of Pekka
Orponen – many thanks for that. I have had the privilege to interact with many
excellent researches in the course of my university career. To give one example,
Petteri Kaski has always been there, although I never worked for him directly.

The logic communities of Helsinki and Tampere have provided refreshing
variation to the research themes surrounding me. Thanks to everyone involved,
with a special mention to Juha Kontinen, to name a person not yet in my list of
co-authors. I also want to give special thanks to Antti Kuusisto for hosting me
during my visit to the University of Bremen in 2015.

I wish to thank Yuval Emek and Olivier Carton for pre-examining this disser-

1

Preface

tation. In addition, I express my thanks to Yuval Emek for also agreeing to act
as the opponent in my public examination.

Financially, the work in this dissertation was mostly supported by the Aalto
University Department of Computer Science. I also acknowledge the financial
support of the Nokia Foundation, the Helsinki Doctoral Education Network in In-
formation and Communications Technology, the Magnus Ehrnrooth Foundation
and the Helsinki Doctoral Programme in Computer Science.

Last but not least, I would like to express my gratitude to my family, in
particular my parents Anna-Maija and Olavi, as well as everyone else who has
encouraged me during my studies. Finally, I want to thank Jenni for everything,
including (but definitely not limited to) helping me improve the language of this
dissertation.

Helsinki, 5th March 2019,

Tuomo Lempiäinen

2

Contents

Preface 1

Contents 3

List of Publications 5

Author’s Contribution 7

1. Introduction 9
1.1 The distributed setting . 9
1.2 Objectives and dissertation structure 9
1.3 An overview of the results . 10

2. Preliminaries 13
2.1 Basic notation . 13
2.2 Graph theory . 13
2.3 Models of computation . 14

2.3.1 Graph problems . 15
2.3.2 Algorithms as state machines 15
2.3.3 The port-numbering model 17
2.3.4 The LOCAL model . 19

2.4 Modal logic . 21
2.4.1 Syntax . 21
2.4.2 Semantics . 22
2.4.3 Bisimulation . 23

3. Distributed Computing and Modal Logic 25
3.1 A hierarchy of weak models . 25

3.1.1 Definitions of the models 26
3.2 Characterisations by logics . 28

3.2.1 Variants of modal logic 28
3.2.2 Correspondence between formulas and algorithms . . 30
3.2.3 Bisimulation in distributed computing 34

3

Contents

3.3 Relationships between the models 35
3.3.1 Equalities between the classes 35
3.3.2 Separations between the classes 38
3.3.3 Lower bounds for simulating MV in SV 39

4. Space and Time in Distributed Computing 41
4.1 Challenges . 41
4.2 Preliminaries . 42
4.3 Constant space and linear time in path and cycle graphs 42

4.3.1 The algorithm . 43

5. Distributed Time Complexity Classes 47
5.1 Link machines . 47
5.2 From link machines to graph problems 49
5.3 New complexities for the LOCAL model 51

6. Conclusions 55
6.1 Significance of the results . 55

6.1.1 Distributed computing and logic 55
6.1.2 Constant-space distributed computing 56
6.1.3 Distributed time complexity classes 57

6.2 Future research . 57
6.2.1 Logical characterisations 57
6.2.2 Computational algorithm design 58
6.2.3 New problem classes . 59
6.2.4 New complexity measures 59

References 61

Publications 65

4

List of Publications

This thesis consists of an overview and of the following publications which are
referred to in the text by their Roman numerals.

I Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo
Lempiäinen, Kerkko Luosto, Jukka Suomela and Jonni Virtema. Weak
models of distributed computing, with connections to modal logic. Distrib-
uted Computing, volume 28, issue 1, pages 31–53, February 2015.

II Tuomo Lempiäinen. Ability to count messages is worth Θ(Δ) rounds in
distributed computing. In Proc. 31st Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2016), New York, NY, USA, pages
357–366, July 2016.

III Tuomo Lempiäinen and Jukka Suomela. Constant space and non-constant
time in distributed computing. In Proc. 21st International Conference on
Principles of Distributed Systems (OPODIS 2017), Lisbon, Portugal, pages
30:1–30:16, March 2018.

IV Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen,
Dennis Olivetti and Jukka Suomela. New classes of distributed time
complexity. In Proc. 50th Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2018), Los Angeles, CA, USA, pages 1307–1318, June
2018.

5

Author’s Contribution

Publication I: “Weak models of distributed computing, with
connections to modal logic”

The author devised and wrote the original proof of the central technical result of
the article (Theorem 2) and participated in writing the article.

Publication II: “Ability to count messages is worth Θ(Δ) rounds in
distributed computing”

The author did everything.

Publication III: “Constant space and non-constant time in
distributed computing”

The author formalised the original proof idea of Suomela and wrote the majority
of the article.

Publication IV: “New classes of distributed time complexity”

The research work and write-up are joint work, with the author being the
responsible person for Section 2 of the article.

7

1. Introduction

The world is full of distributed systems, both large and small. They can be found
in nature and in various computer and communication systems, as well as in
human societies. Therefore it is important to be able to reason about them: what
kind of operations they are able to carry out and how efficiently – and what is
impossible to them. The aim of this dissertation is to advance our understanding
of the theory behind distributed systems in several ways: by providing new tools
and connections to other fields, as well as by proving structural results about
different problem classes in the distributed setting.

1.1 The distributed setting

A distributed system consists of several independent agents that communicate
with each other. The agents are usually assumed to be identical with each other.
The aim is to solve a given task so that each agent computes its own part of the
result.

There exists a plenitude of different ways to define the details of this setting.
The agents can be deterministic or randomised, they can have different amounts
of memory or computational power, and the communication with other agents
can take various forms.

In this dissertation, we study a setting where each agent is a deterministic
computational unit, and the communication takes place in synchronous commu-
nication rounds. We define the models of computation properly in Section 2.3,
after introducing some preliminary concepts.

1.2 Objectives and dissertation structure

This dissertation consists of an overview and four published articles. Our aim is
to give (at least partial) answers to the following three questions:

(1) Can mathematical logic be used to understand distributed systems?

9

Introduction

(2) What is the relationship between different resources (specifically time and
space) in distributed computing?

(3) What kind of time complexity classes exist in the distributed setting?

First, we go over the most central background theory of this work in Chapter 2.
Then, we discuss Publications I and II, which are related to question (1) above, in
Chapter 3. Next, we present Publication III, related to question (2), in Chapter 4.
After that, Publication IV, which is related to question (3), is discussed in
Chapter 5. Finally, we consider the implications of this work and possible future
research directions in Chapter 6.

The reader is assumed to be familiar with at least the basics of discrete math-
ematics (such as notions related to sets and functions), classical propositional
logic as well as fundamentals of computational complexity theory, in particular
the asymptotic notation.

1.3 An overview of the results

In this section, we give a short, informal overview of the key results of this
dissertation. Formal definitions of the problems and detailed statements of the
results can be found in the subsequent sections.

Key result 1. We define six restricted variants of the widely-studied port-
numbering model of Angluin [2]. We denote the class of graph problems solvable
in the port-numbering model by VVc. The following problem classes and corres-
ponding model variants are studied in our work:

VVc: Input and output ports are numbered consistently.
VV: Input and output ports are numbered, but not necessarily consistently.
MV: Output ports are numbered; nodes receive a multiset of messages.
SV: Output ports are numbered; nodes receive a set of messages.
VB: Input ports are numbered; nodes broadcast one message to all neighbours.
MB: Combination of the restrictions of MV and VB.
SB: Combination of the restrictions of SV and VB.

We develop descriptive complexity theory for distributed computing by showing
that each of the above classes is captured by a variant of modal logic – either
basic modal logic, multimodal logic, graded modal logic or graded multimodal
logic – in a suitable class of structures.

Key result 2. Some of the classes defined above seem orthogonal at first sight.
However, we prove, partially by making use of the connection to modal logic,
that the classes actually form a linear order:

SB�MB=VB� SV=MV=VV�VVc.

We also establish tight upper and lower bounds for simulating the weaker SV
model in the stronger MV model.

10

Introduction

Key result 3. We study constant-space computation in a distributed setting.
In the centralised setting, notions such as finite automata and various space-
complexity classes are well understood and can be related to time complexity. In
distributed computing, this is not yet the case.

We identify a setting where it is not clear at all whether any non-trivial graph
problem can be solved by using only a constant amount of memory. It turns
out that even for a weak variant of the port-numbering model and cycle graphs,
there exists a graph problem that can be solved in constant space, but whose
time complexity is linear in the size of the graph.

Key result 4. Recently, the development of complexity theory for the standard
LOCAL [28, 31] model has progressed rapidly. We take part in this progress
by showing that there exist graph problems with a large variety of previously
unknown time complexities. We obtain, for instance, the following complexities
(with α being a positive rational number):

• Θ(logα n) for any α≥ 1,
• 2Θ(logα n) for any α≤ 1
• Θ(nα) for any α< 1/2,
• Θ(logα log∗ n) for any α≥ 1,
• 2Θ(logα log∗ n) for any α≤ 1,
• Θ((log∗ n)α) for any α≤ 1.

In particular, our results refute previously conjectured gaps in the time complex-
ity hierarchy of the LOCAL model.

11

2. Preliminaries

This chapter introduces the notation and the basic definitions on which we build
the work presented in the later chapters. We define the most important models
of computation – the port-numbering model and the LOCAL model – as well as
the basic modal logic.

2.1 Basic notation

The set of natural numbers is N= {0,1, . . .}. Given k,k′ ∈N, we write [k] to denote
the set {1,2, . . . ,k} and [k,k′] to denote the set {k,k+1, . . . ,k′}. The power set,
that is, the set of all subsets, of a set A is denoted by P (A)= {B : B ⊆ A}.

2.2 Graph theory

Let us now define the most central mathematical objects in our field: graphs. An
undirected graph is a pair G = (V ,E), consisting of a set of vertices or nodes V
and a set of edges E. Each e ∈ E is an unordered pair e = {u,v} for some vertices
u,v ∈V . On the other hand, in a directed graph G = (V ,E), the edges e ∈ E are
ordered pairs e = (u,v) of vertices.

Let G = (V ,E) be an undirected graph. The degree of a vertex u ∈V is degG(u)=
|{v ∈ V : {u,v} ∈ E}|, that is, the number of neighbours the vertex u has in G.
If degG(u) = d for all u ∈ V , graph G is said to be d-regular. A path P from
a vertex u to a vertex v is a sequence of vertices P = (v1,v2, . . . ,vk) such that
v1 = u, vk = v and {vi,vi+1} ∈ E for all i ∈ {1,2, . . . ,k−1}. The length of the path P
is defined to be k−1, that is, the number of edges between the vertices. The
distance distG(u,v) between vertices u and v of G is the length of the shortest
path from u to v. These concepts are defined analogously for directed graphs.

Given an undirected graph G = (V ,E), we denote the set of all directed edges
between vertices that are adjacent in graph G by �E = {(u,v) : {u,v} ∈ E}. In
this work, a labelled graph is a pair (G,�), where G = (V ,E) is an undirected
graph and � : V ∪�E →Σ is a function that assigns a label �(u) ∈Σ to each node

13

Preliminaries

u ∈ V and a label �(u,v) ∈ Σ to each pair (u,v) ∈ �E. An isomorphism between
labelled graphs (G,�) and (G′,�′) is a bijection f : V → V ′ such that (1) for all
u,v ∈V , we have {u,v} ∈ E if and only if { f (u), f (v)} ∈ E′, (2) for all u ∈V , we have
�(u)= �′(f (u)), and (3) for all (u,v) ∈ �E, we have �(u,v)= �′(f (u), f (v)).

We say that a graph is simple if there are no self-loops from a vertex to
itself. If a graph contains a path from each vertex to any other vertex, it is
called connected. In this work, all graphs are assumed to be simple, connected,
finite and undirected, unless stated otherwise. Occasionally, we will make use
of directed graphs. For Δ ∈ N, we denote by F (Δ) the family of all (simple,
connected, finite and undirected) graphs that have a maximum degree of at
most Δ.

2.3 Models of computation

In this section, we introduce formally the models of distributed computation
that we study in this dissertation. While there exists a huge variety of different
models in the literature, the focus of this work is on models that share the
following important properties: each node runs the same deterministic algorithm,
and communication between nodes happens in synchronous communication
rounds. Moreover, local computation inside each node is considered free, and the
size of the messages is unlimited.

In our framework, distributed computing is essentially about communication
instead of computation in the traditional sense. This is reflected in the main
complexity measure we use: the number of communication rounds until all nodes
have produced their outputs. This is called time complexity. In addition, we
consider space complexity: the maximum amount of memory used by any node
during the execution.

To give the intuition, let G = (V ,E) be the communication graph. A distributed
algorithm A is executed on G as follows. In the beginning, each node u ∈ V
knows its own degree degG(u) and possibly a local input given to it. Then, each
node u performs three operations on each communication round:

(1) send a message to each neighbour v,
(2) receive a message from each neighbour v,
(3) update internal state based on the received messages.

Each node is expected to eventually stop changing its state and produce an
output. The local outputs together define a solution to a graph problem, where
the problem instance is the communication graph G.

This setting needs to be further refined by defining the way nodes can dis-
tinguish themselves from other nodes and tell their neighbours apart. This
gives rise to several different model variants. After defining graph problems in
Section 2.3.1 and a general state machine framework in Section 2.3.2, we will
proceed to give detailed definitions of two different well-established models of

14

Preliminaries

computation in Sections 2.3.3 and 2.3.4. The models considered in our research
are either one of these models or restricted versions of them defined later.

While we define the models of computation in a rigorous manner in this
section, we will mostly resort to a more high-level description of algorithms
in Chapters 3–5 – the idea being that with a serious amount of effort, each
algorithm could be defined as a state machine in the sense of this section.

2.3.1 Graph problems

Let Σ and Γ be sets of local input and output labels, respectively. An input
labelling for a graph G = (V ,E) is a mapping i : V ∪�E →Σ. That is, mapping i
gives an input label to each node and to both endpoints of each edge. A solution
for (G, i) is a mapping S : V → Γ that maps each node v to its desired local
output S(v).

A graph problem is now a function ΠΣ,Γ that maps each graph G = (V ,E) and
each input labelling i for G to a non-empty set ΠΣ,Γ(G, i) of solutions for G. We
require graph problems to be invariant under isomorphisms: if f : V →V ′ is an
isomorphism between (G, i) and (G′, i′), and S ∈ΠΣ,Γ(G, i), then S ◦ f −1 : V ′ →Γ

is a solution in ΠΣ,Γ(G′, i′). Problems without any local inputs can be modelled
by setting Σ= {�}. When only node inputs are used, we assume that i(u,v)=�
for each (u,v) ∈ �E and write simply i : V → Σ. If Σ and Γ are clear from the
context, we denote the problem ΠΣ,Γ simply by Π.

A decision graph problem is a graph problem ΠΣ,Γ where Γ = {yes,no} and
each instance is either a yes-instance or a no-instance. A yes-instance (G, i) is
such that ΠΣ,Γ(G, i) = {S} where S(v) = yes for all v ∈ V . On the other hand, a
no-instance (G, i) is such that ΠΣ,Γ(G, i)= {S : S(v)= no for some v ∈V }. That is,
all nodes have to accept a yes-instance, while at least one node has to reject a
no-instance.

2.3.2 Algorithms as state machines

To define distributed algorithms formally, we start by introducing the concept of
port numbers that allows nodes to locally distinguish their neighbours from each
other. Next, we give a general definition of state machines that is behind all the
models of distributed computing considered in this work. Then, we explain what
it means to run – or execute – a state machine on a graph. We conclude this
section by considering complexity measures and outputs of algorithms.

Port numbers. A port of a graph G = (V ,E) is a pair (v, i), where v ∈ V is a
node and i ∈ [deg(v)] is the number of the port. The set of all ports of graph G is
denoted by P(G). Now, a port numbering for G is a bijective function p : P(G)→
P(G) such that there exist i and j for which p(v, i)= (u, j) if and only if {v,u} ∈ E.
That is, adjacent nodes – and only those – are connected by the port numbering.
If p(v, i) = (u, j), then (v, i) is an output port of node v that is connected to the
input port (u, j) of node u. If it holds that p(p(v, i))= (v, i) for all (v, i) ∈ P(G), we

15

Preliminaries

say that the port numbering P is consistent.

Distributed state machines. Let Δ ∈ N and let I be a set of local node in-
formation. We define a distributed state machine for (F (Δ), I) to be a tuple
A = (S,H,σ0, M,μ,σ), where

• S is a set of states,

• H ⊆ S is a set of stopping (or halting) states,

• σ0 : I → S gives the initial state,

• M is a set of messages, with �∈ M,

• μ : S× [Δ] → M constructs the outgoing messages, with μ(s, i) =� for all
s ∈ H and i ∈ [Δ],

• σ : S×MΔ → S defines the state transitions, with σ(s,m)= s for all s ∈ H
and m ∈ MΔ.

The elements of the set I can be used to encode problem-specific local input
labels, as well as model-specific information such as node degrees or unique
node identifiers. This will become clearer as we define the concrete models of
computation in Sections 2.3.3 and 2.3.4.

Remark 1. We define distributed state machines for a given upper bound Δ

on the node degrees. However, it would be straightforward to generalise the
definition for arbitrary-degree graphs, at the expense of not necessarily having a
finite description for the functions μ and σ. As the general case is not relevant in
the present work, and the bounded-degree requirement is actually necessary for
the results of Chapter 3, we leave it to the reader to imagine the generalisation.

Executions. Given a graph G = (V ,E) ∈ F (Δ), a port numbering p for G, a
mapping f : V → I of local node information, and a distributed state machine A

for (F (Δ), I), we can define the execution of A on (G, p, f) inductively as follows.
We denote the state of node v in round r by xr(v), where xr : V → S encodes the

state of the system in round r ∈N. The initial states are given by x0(v)=σ0(f (v))
for each v ∈V . Then, assume that xr : V → S is defined for some r ∈N. Assume
that (v, i) = p(u, j) for some (u, j) ∈ P(G). Let ar+i(v, i) = μ(xr(u), j) ∈ M be the
message that node v receives through its port (v, i) from its neighbour u in
round r+1. Now, for each v ∈V , we set

ar+1(v)= (ar+1(v,1),ar+1(v,2), . . . ,ar+1(v,deg(v)), �,�, . . . ,�) ∈ MΔ,

that is, ar+1(v) contains all the messages received by node v in round r+1, as
well as Δ−deg(v) instances of the dummy value � so that ar+1 : V → MΔ. Now,
the state of each node v in round r+1 is simply

xr+1(v)=σ(xr(v),ar+1(v)).

16

Preliminaries

Note that by the definition of distributed state machines, once a node v reaches
one of the halting states s ∈ H, it stays in the state s indefinitely and keeps
sending the dummy message � – this essentially means that the execution is
terminated on the node v.

The execution of A on (G, p) is defined to be the execution of A on (G, p, f),
where f (v) = deg(v) for all v ∈ V , that is, nodes are given their degrees and
nothing else as local node information.

Complexity measures and outputs. A distributed state machine A is said to
halt on (G, p, f) if there exists t ∈N such that xt(v) ∈ H holds for all v ∈V . If A

halts on (G, p, f), we define the running time of A on (G, p, f) to be the smallest
t ∈N for which this holds. Otherwise, the running time is defined to be ∞. That
is, the running time is the number of communication rounds needed until all
nodes have entered one of the halting states.

On the other hand, the space usage of A on (G, p, f), assuming that A halts
on (G, p, f), is defined to be⌈

log2
∣∣{xr(v) ∈ S : r ∈ [0, t] and v ∈V }

∣∣⌉,

where t ∈ N is the running time of A on (G, p, f). That is, the space usage is
defined to be the number of bits needed to encode all the states visited by any
node during the execution.

If the running time of A on (G, p, f) is t ∈ N, the output of A on (G, p, f) is
xt : V → H. For each node v ∈V , the local output of v is A (v)= xt(v).

2.3.3 The port-numbering model

Given the definitions of Section 2.3.2, we can finally introduce our first model of
computation, the port-numbering model [2]. In this model, nodes are anonymous
– that is, they do not have any kind of unique identifiers to distinguish one
node from another. Instead, as the name suggests, they can make use of a port
numbering to distinguish their communication ports.

Solving graph problems. Some technicalities are needed to handle local in-
puts. Let Δ ∈N, let G = (V ,E) ∈F (Δ) be a graph, let i : V ∪�E → Σ be an input
labelling for G, and let p be a port numbering of G. For each node u ∈ V
and each j ∈ [deg(u)], denote by vu, j the neighbour of u for which p(u, j) =
(vu, j, j′) for some j′. Similarly, denote by wu, j the neighbour of u for which
p(wu, j, j′) = (u, j) for some j′. That is, vu,1,vu,2, . . . ,vu,deg(u) is the enumeration
of the neighbours of u in the order given by outgoing port numbers, whereas in
wu,1,wu,2, . . . ,wu,deg(u), the order is given by incoming port numbers.

Now, set

eo(u)= (i(u,vu,1), i(u,vu,2), . . . , i(u,vu,deg(u)),�,�, . . . ,�) ∈ΣΔ,

and similarly,

ei(u)= (i(u,wu,1), i(u,wu,2), . . . , i(u,wu,deg(u)),�,�, . . . ,�) ∈ΣΔ.

17

Preliminaries

Note that in case of a consistent port numbering, we have eo = ei – we consider
the more general case here to demonstrate that our framework of local inputs
can also handle other model variants. Define then a function f i,p : V → [0,Δ]×
Σ×ΣΔ×ΣΔ by setting

f i,p(v)= (degG(v), i(v), eo, ei)

for each v ∈V . That is, f i,p is a local node information mapping that gives the
degree as well as the local input label and the input labels of incident edges for
each node. Here IΔ = [0,Δ]×Σ×ΣΔ×ΣΔ.

Finally, let ΠΣ,Γ be a graph problem, T,T ′ : N×N→N functions, G a class of
graphs and A= (A1,A2, . . .) a sequence such that each AΔ is a distributed state
machine for (F (Δ), IΔ). We define that A solves ΠΣ,Γ in class G in time T and
space T ′ in the port-numbering model if the following holds for all Δ ∈ N, all
graphs G = (V ,E) ∈ G ∩F (Δ), all consistent port numberings p for G and all
input labellings i : V ∪�E →Σ:

(1) the output of AΔ on (G, p, f i,p) is in ΠΣ,Γ(G, i),
(2) the running time of AΔ on (G, p, f i,p) is at most T(|V |,Δ),

and furthermore,

T ′(n,Δ)=
⌈

log2
∣∣S ∣∣⌉ for all n,Δ ∈N,

where the set S consists of all the states xr(v) ∈ S that AΔ visits during its
execution on (G, p, f i,p) when

• G ranges over all graphs with n nodes in G ∩F (Δ),
• p ranges over all consistent port numberings for G,
• i ranges over all input labellings i : V ∪�E →Σ.

We also say that A is a port-numbering algorithm for problem ΠΣ,Γ in class G .
From now on, we will informally refer to both distributed state machines A

and sequences of distributed state machines A as algorithms – the precise
meaning is revealed by the notation.

Remark 2. Note that in the port-numbering model, nodes can find out their own
degree in one communication round by simply counting the number of messages
they receive. However, later we will consider restricted versions of the model,
where this is not true. Hence it makes sense to give the degree of each node as
part of the local node information.

Problem complexity. Consider a graph problem ΠΣ,Γ and a class G of graphs.
For each n ∈N, let Tn : N×N→N be a function with the following properties:

(1) There exists an algorithm A that solves ΠΣ,Γ in class G in time (space) Tn

in the port-numbering model.

(2) For any algorithm A′ that solves ΠΣ,Γ in class G in time (space) T ′ in the
port-numbering model, we have T ′(n,Δ)≥ Tn(n,Δ) for all Δ ∈N.

18

Preliminaries

Now, the time (space) complexity of problem ΠΣ,Γ on class G in the port-numbering
model is defined to be the function T : N×N→N where T(n,Δ)= Tn(n,Δ) for all
n,Δ ∈N. That is, the time complexity of a problem equals the running time of
the fastest algorithm solving it – allowing for the fact that different algorithms
could be fastest for different values of n and Δ. Somewhat analogously, the
space complexity of a problem equals the number of bits needed to encode all
the states that the most space-efficient algorithm solving it visits on any input
instance of given size and maximum degree.

Often we are only interested in time and space complexity as a function of n
in bounded-degree graphs, in which case we usually make use of the simplified
notation T : N→N.

2.3.4 The LOCAL model

In the LOCAL model [28, 31], nodes are equipped with unique identifiers. This
makes the model significantly more powerful than the port-numbering model
defined in Section 2.3.3, since symmetry breaking between nodes is always
possible. The size of the identifiers is limited by some fixed polynomial q : N→N

in the size of the graph, so that each node v has an identifier id(v) ∈ [0, q(n)−1],
where n = |V | is the number of nodes in the graph. Such an injective function
id: V →N is called an identifier assignment for a graph G = (V ,E).

In addition to identifiers, we provide nodes with knowledge of the number n
of nodes in the graph. While it makes sense to also study variants of the
LOCAL model where nodes are given only a polynomial upper bound on n or no
information at all, our results presented in Chapter 5 are based on this stronger
variant.

Given an input labelling i : V ∪�E →Σ, a consistent port numbering p and an
identifier assignment id: V →N for a graph G = (V ,E) ∈F (Δ), define eo = ei = e
as in the case of the port-numbering model above. Define then a function
fG,i,p,id : V →N×N×Σ×ΣΔ by setting

fG,i,p,id(v)= (id(v), |V |, i(v), e)

for each v ∈V . That is, fG,i,p,id is a local node information mapping that gives
the unique identifier and the number |V | (instead of the degree, as in the case of
the port-numbering model) as well as the local input labels for each node.

Now, let ΠΣ,Γ be a graph problem, T : N×N→N a function, G a class of graphs
and A= (A1,A2, . . .) a sequence such that each AΔ is a distributed state machine
for (F (Δ),N×N×Σ×ΣΔ). We define that A solves ΠΣ,Γ in class G in time T
and space T ′ in the LOCAL model if the following holds for all Δ ∈N, all graphs
G = (V ,E) ∈ G ∩F (Δ), all consistent port numberings p for G, all identifier
assignments id: V →N and all input labellings i : V ∪�E →Σ:

(1) the output of AΔ on (G, p, fG,i,p,id) is in ΠΣ,Γ(G, i),
(2) the running time of AΔ on (G, p, fG,i,p,id) is at most T(|V |,Δ),

19

Preliminaries

and furthermore,

T ′(n,Δ)=
⌈

log2
∣∣S ∣∣⌉ for all n,Δ ∈N,

where the set S consists of all the states xr(v) ∈ S that AΔ visits during its
execution on (G, p, fG,i,p,id) when

• G ranges over all graphs with n nodes in G ∩F (Δ),
• p ranges over all consistent port numberings for G,
• i ranges over all input labellings i : V ∪�E →Σ,
• id ranges over all identifier assignments id: V →N.

We also say that A is a LOCAL algorithm for problem ΠΣ,Γ in class G .

Remark 3. In our definition of the LOCAL model, we assume that a port number-
ing is given – to make the definitions of the models of computation more uniform.
However, this is not strictly necessary.

In one communication round, each node v can gather the unique identifiers
of its neighbours. Then, virtual port numbers can be constructed by form-
ing a bijective mapping between the identifiers of the neighbours and the set
{1,2, . . . ,deg(v)}. Now it is possible to simulate port numbers by broadcasting
a message that contains the identifier id(v) of the sending node v as well as
the identifier id(u) of each intended receiver u together with the message for
neighbour u.

To allow input labels that nodes associate to incident edges, the definition
would need to make use of unique identifiers to connect the labels to correspond-
ing edges.

Problem complexity. The time and space complexity of graph problems are
defined for the LOCAL model in a manner completely analogous to the port-
numbering model above.

Locally checkable labelling (LCL) problems. The locally checkable labelling
(LCL) problems [30] are a very important subclass of graph problems when it
comes to the LOCAL model. Intuitively, a problem is an LCL problem if its
solutions can be verified by a constant-time LOCAL algorithm.

More formally, a graph problem ΠΣ,Γ is an LCL problem if the following holds:

(1) The sets Σ and Γ of input and output labels are finite.

(2) There exists a LOCAL algorithm A with a running time independent of
the size of the input graph, such that given a graph G = (V ,E) ∈F (Δ), an
input labelling i : V ∪�E →Σ, and a candidate solution i′ : V →Γ as another
input labelling, we have

AΔ(v)= 1 for all v ∈V if and only if i′ ∈ΠΣ,Γ(G, i).

LCL problems can also be described by simply enumerating all the good neigh-
bourhoods – that is, labelled neighbourhoods that the algorithm AΔ above would

20

Preliminaries

accept. Since the label sets are finite and we are working with bounded-degree
graphs, there is a finite number of such constant-size neighbourhoods. Yet
another way to define LCL problems is by non-deterministic algorithms: LCL
problems are those that can be solved by constant-time LOCAL algorithms that
have the additional ability to make non-deterministic guesses.

2.4 Modal logic

In this section, we give an introduction to modal logic [4, 5] – a non-classical
logic that we will use to characterise several models of distributed computing in
Chapter 3. While there exists several variants and extensions of modal logic, we
will concentrate on the basic modal logic for now. Other variants that correspond
to different models of computation will be introduced in Chapter 3. We will
assume that the reader is familiar with classical propositional logic.

2.4.1 Syntax

The basic modal logic extends propositional logic by adding two new operators:
♦ (“diamond”) and � (“box”). Given a (finite or countably infinite) set Φ of pro-
position symbols, the alphabet (or vocabulary) of the basic modal logic consists
of the following primitive symbols: proposition symbols p ∈Φ, the negation sym-
bol ¬, the disjunction symbol ∨, parentheses) and (as well as the diamond ♦.
The set of (well-formed) formulas of basic modal logic is now defined inductively
as follows:

(1) Each proposition symbol p ∈Φ is a formula.
(2) If φ is a formula, then its negation ¬φ is a formula.
(3) If φ and ψ are formulas, then their disjunction (φ∨ψ) is a formula.
(4) If φ is a formula, then ♦φ is a formula.

Conjunction, implication and equivalence can be defined as abbreviations by
using the primitive symbols in the usual way:

(φ∧ψ)=¬(¬φ∨¬ψ),

(φ→ψ)= (¬φ∨ψ),

(φ↔ψ)= ((φ→ψ)∧ (ψ→φ)).

Finally, the other modal operator � is defined as the dual of ♦:

�φ=¬♦¬φ.

Parentheses are usually written out only when they are necessary to make the
formula unambiguous.

21

Preliminaries

2.4.2 Semantics

To characterise the truth behaviour of modal formulas, we will next introduce
relational semantics – also known as Kripke semantics. Relational semantics is
related to the philosophical concept of possible worlds, but provides a mathem-
atically rigorous way to define truth in modal logic. It also enables the use of
modal logic as a tool for studying relational structures.

A frame for the basic modal logic is a pair F = (W ,R), where W is a non-empty
set of points and R ⊆ W ×W is an arbitrary binary relation on W. The set W
is called the domain of F and the relation R is called the accessibility relation
of F. The elements of W are sometimes called states, worlds, times or situations,
depending on the context. Note that a frame is essentially a directed graph. If
(w,w′) ∈ R, point w′ is said to be accessible from point w. We denote the set of
points accessible from w by R(w)= {w′ ∈W : (w,w′) ∈ R}.

A model for the basic modal logic is a pair M = (F,τ), where F is a frame for
the basic modal logic and τ is a function Φ→P (W). The function τ is called the
valuation of M and it assigns a subset τ(p) ⊆ W of points to each proposition
symbol p ∈Φ. If F = (W ,R), we can simply write M = (W ,R,τ).

Now we are ready to define the notion of a formula being satisfied or true. In
modal logic, satisfaction is defined in a particular point of a model. Given a
model M = (W ,R,τ) and its point w ∈W , we define the truth of a formula φ in M
at point w inductively as follows:

φ= p : M,w�φ iff w ∈ τ(p),

φ=¬ψ : M,w�φ iff M,w�ψ,

φ=ψ1 ∨ψ2 : M,w�φ iff M,w�ψ1 or M,w�ψ2,

φ=♦ψ : M,w�φ iff M,v�ψ for some v ∈W with (w,v) ∈ R.

If M,w�φ, we say that formula φ is satisfied or true in model M at point w, and
conversely, if M,w�φ, we say that φ is false in M at point w.

Observe that the dual of the diamond operator, box, gets the following se-
mantics from the previous definition:

M,w��ψ iff M,v�ψ for all v ∈W with (w,v) ∈ R.

Additionally, formulas of the form ψ1 ∧ψ2, ψ1 →ψ2 and ψ1 ↔ψ2 get the usual
semantics that are familiar from propositional logic.

Given a model M = (W ,R,τ) and a formula φ, we say that φ defines the subset

‖φ‖M = {w ∈W : M,w |=φ}

of the domain of M.

22

Preliminaries

2.4.3 Bisimulation

One of the most important concepts in modal logic is bisimulation [4]. A bisim-
ulation is a relation between two structures such that related points satisfy
the same proposition symbols and have access to points which are similarly
related. Bisimilarity characterises definability in modal logic: if two structures
are bisimilar, they cannot be distinguished by any modal formula.

Definition 4. Let M = (W ,R,τ) and M′ = (W ′,R′,τ′) be models for the basic
modal logic. A non-empty binary relation B ⊆ W ×W ′ is a bisimulation, if the
following conditions hold for all (w,w′) ∈ B:

(1) For all proposition symbols p ∈Φ, we have w ∈ τ(p) iff w′ ∈ τ′(p).
(2) If (w,v) ∈ R, then there exists v′ ∈W ′ with (w′,v′) ∈ R′ such that (v,v′) ∈ B.
(3) If (w′,v′) ∈ R′, then there exists v ∈W with (w,v) ∈ R such that (v,v′) ∈ B.

If (w,w′) ∈ B for some bisimulation B, we say that points w and w′ are bisimilar
and write (M,w) ↔ (M′,w′).

The next lemma states that bisimilar points are modally equivalent.

Lemma 5. Let M = (W ,R,τ) and M′ = (W ′,R′,τ′) be models for the basic modal
logic, and let w ∈W and w′ ∈W ′. If (M,w) ↔ (M′,w′), then for all formulas φ of
the basic modal logic we have

M,w�φ iff M′,w′ �φ.

Proof idea. Straightforward induction on the structure of the formula.

The converse does not hold in general: modal equivalence does not imply
bisimilarity. However, the converse does hold for all finite models [4].

Next, we will consider a restricted version of bisimilarity that we call r-
bisimilarity, where r is a natural number. Here the idea is that points are
required to be bisimilar only up to a certain depth in the model.

Definition 6. Let M = (W ,R,τ) and M′ = (W ′,R′,τ′) be models for the basic
modal logic. We define r-bisimilarity recursively as follows. As a base case, we
say that points w ∈W and w′ ∈W ′ are 0-bisimilar if for all proposition symbols
p ∈Φ, we have w ∈ τ(p) iff w′ ∈ τ′(p). For r ∈N+, we say that w ∈W and w′ ∈W ′

are r-bisimilar if the following conditions hold:

(1) Points w and w′ are 0-bisimilar.

(2) If (w,v) ∈ R, then there exists v′ ∈W ′ with (w′,v′) ∈ R′ such that v and v′

are (r−1)-bisimilar.

(3) If (w′,v′) ∈ R′, then there exists v ∈ W with (w,v) ∈ R such that v and v′

are (r−1)-bisimilar.

If w ∈W and w′ ∈W ′ are r-bisimilar, we write (M,w) ↔r (M′,w′).

23

Preliminaries

The corresponding notion for formulas is modal depth. The modal depth md(φ)
of a formula φ is defined recursively as follows:

φ= p : md(φ)= 0,

φ=¬ψ : md(φ)=md(ψ),

φ=ψ1 ∨ψ2 : md(φ)=max{md(ψ1),md(ψ2)},

φ=♦ψ : md(φ)=md(ψ)+1.

That is, md(φ) indicates the largest number of nested modal operators in φ. Now,
the following result holds:

Lemma 7. Let M = (W ,R,τ) and M′ = (W ′,R′,τ′) be models for the basic modal
logic, and let w ∈W and w′ ∈W ′. If (M,w) ↔r (M′,w′), then for all formulas φ of
the basic modal logic with md(φ)≤ r we have

M,w�φ iff M′,w′ �φ.

Proof idea. Straightforward induction on the structure of the formula.

24

3. Distributed Computing and Modal
Logic

In this chapter, we will study a natural connection between several models of
distributed computation and variants of modal logic. The models considered are
weaker variants of the port-numbering model defined in Section 2.3.3. First,
we will define the models of computation in Section 3.1. Then, we will outline
the connection to modal logic in Section 3.2. Finally, we will give results on the
relationships between the models in Section 3.3.

3.1 A hierarchy of weak models

In this section, we will give several different ways to restrict the communication
capabilities of the port-numbering model. This will result in a collection of seven
model variants.

To study the relationships between the models, it is natural to equate the
models of computation with the classes of graph problems that are solvable in
each model. To this end, we denote by VVc the class of all graph problems that
are solvable in the port-numbering model. The intuition behind the notation
is that on each round, nodes basically send a vector of messages and receive a
vector of messages – and the order of messages in those vectors is consistent.

The weaker model variants and corresponding problem classes that we study
are as follows:

VV: Input and output ports are numbered, but not necessarily consistently.
MV: Output ports are numbered; nodes receive a multiset of messages.
SV: Output ports are numbered; nodes receive a set of messages.
VB: Input ports are numbered; nodes broadcast one message to all neighbours.
MB: Combination of the restrictions of MV and VB.
SB: Combination of the restrictions of SV and VB.

By slight abuse of notation, we will use the above classes to refer to the corres-
ponding models of computation from now on.

25

Distributed Computing and Modal Logic

3.1.1 Definitions of the models

Let us now formally define the six restricted versions of the port-numbering
model. Recall the definitions of a distributed state machine and the port-
numbering model from Sections 2.3.2 and 2.3.3.

Given a vector a = (a1,a2, . . . ,aΔ) ∈ MΔ, we write

set(a)= {a1,a2, . . . ,aΔ},

multiset(a)= {(m,n) : m ∈ M,n = |{i ∈ [Δ] : m = ai}|}.

The intuition is that set(a) discards the ordering and multiplicities of the ele-
ments of vector a, while multiset(a) discards only the ordering.

Classes of state machines. Let us denote by V V the class of all distributed
state machines as defined in Section 2.3.2 – in essence, on each round a state
machine sends a vector of messages and receives a vector of messages. We will
now define several subclasses of V V as follows.

First, class MV ⊆ V V consists of those state machines that consider only the
multiset of messages received on each round:

MV = {A ∈ V V : multiset(a)=multiset(b) ⇒ σ(s,a)=σ(s,b) for all s ∈ S}.

A natural further restriction, S V ⊆ MV , ignores also the multiplicities of
identical incoming messages, that is, the messages are received in a set:

S V = {A ∈ V V : set(a)= set(b) ⇒ σ(s,a)=σ(s,b) for all s ∈ S}.

In addition to restricting the amount of information nodes get regarding received
messages, we can also restrict the way they are able to send messages. Class
V B ⊆ V V consists of those state machines that on each round broadcast the
same message to all the neighbours of a node:

V B = {A ∈ V V : μ(s, i)=μ(s, j) for all i, j ∈ [Δ] and s ∈ S}.

Finally, we can combine the above restriction to establish two additional classes.
In class MB, messages are received in a multiset and in class S B, messages
are received in a set, while in both classes, state machines send messages by
broadcasting:

MB =MV ∩V B and S B =S V ∩V B.

Since we work with bounded-degree graphs, our algorithms are actually infinite
sequences of state machines – one machine for each possible maximum degree
of the communication graph. Hence, we define a class of sequences of state

26

Distributed Computing and Modal Logic

machines for each of the aforementioned classes as follows:

VV= {(A1,A2, . . .) : AΔ ∈ V V for all Δ},

MV= {(A1,A2, . . .) : AΔ ∈MV for all Δ},

SV= {(A1,A2, . . .) : AΔ ∈S V for all Δ},

VB= {(A1,A2, . . .) : AΔ ∈ V B for all Δ},

MB= {(A1,A2, . . .) : AΔ ∈MB for all Δ},

SB= {(A1,A2, . . .) : AΔ ∈S B for all Δ}.

The definition of a sequence of distributed state machines solving a graph
problem is the same as given in Section 2.3.3 – in the case of VV, we just use
arbitrary port numberings instead of consistent ones. None of the other classes
make use of both outgoing and incoming port numbers, and hence the issue of
consistency can be ignored.

Both distributed state machines A ∈ V V and infinite sequences of distributed
state machines A ∈VV can be informally referred to as algorithms. The precise
meaning can be inferred from the notation.

Classes of graph problems. Next, we define a collection of classes of graph
problems – think of them as complexity classes – based on the different restric-
tions of the port-numbering model. We denote the class of all graph problems
by Π. The seven classes studied in our work are as follows:

VVc = {Π ∈Π : some algorithm A ∈VV solves Π assuming consistency},

VV= {Π ∈Π : some algorithm A ∈VV solves Π without consistency},

MV= {Π ∈Π : some algorithm A ∈MV solves Π},

SV= {Π ∈Π : some algorithm A ∈SV solves Π},

VB= {Π ∈Π : some algorithm A ∈VB solves Π},

MB= {Π ∈Π : some algorithm A ∈MB solves Π},

SB= {Π ∈Π : some algorithm A ∈SB solves Π}.

For each of the above classes, we also define a constant-time variant:

VVc(1)=
{
Π ∈Π :

some algorithm A ∈VV solves Π in constant time
assuming consistency

}
,

VV(1)=
{
Π ∈Π :

some algorithm A ∈VV solves Π in constant time
without consistency

}
,

MV(1)= {Π ∈Π : some algorithm A ∈MV solves Π in constant time},

SV(1)= {Π ∈Π : some algorithm A ∈SV solves Π in constant time},

27

Distributed Computing and Modal Logic

VB(1)= {Π ∈Π : some algorithm A ∈VB solves Π in constant time},

MB(1)= {Π ∈Π : some algorithm A ∈MB solves Π in constant time},

SB(1)= {Π ∈Π : some algorithm A ∈SB solves Π in constant time}.

3.2 Characterisations by logics

In this section, we present a connection between modal logic and the weak
models of computation considered in this work. For each of the seven models,
we establish a corresponding variant of modal logic that captures the model.

3.2.1 Variants of modal logic

Recall the definition of the basic modal logic ML in Section 2.4. The other
variants used in this work are extensions of ML. We will now introduce them by
explaining the modifications that need to be made to the definitions given for
the basic modal logic.

Graded modal logic GML. The graded modal logic GML extends basic modal
logic with the ability to count. This is achieved by adding graded modal operators
♦≥k, k ∈N, to the alphabet. The corresponding rule for creating formulas is as
follows:

If φ is a formula, then ♦≥kφ, where k ∈N, is a formula.

Frames and models for GML are identical to those for the basic modal logic. The
definition of satisfaction of a formula φ in model M = (W ,R,τ) at point w ∈W is
amended by rule

φ=♦≥kψ: M,w�φ iff |{v ∈W : (w,v) ∈ R and M,v�ψ}| ≥ k

for each k ∈ N. That is, ♦≥kψ is true at point w if and only if the number of
points that are accessible from w and that satisfy ψ is at least k.

Multimodal logic MML. The multimodal logic MML extends basic modal lo-
gic by allowing multiple primitive modal operators 〈α〉, where α ∈ I for some
index set I, instead of just a single modality ♦. That is, we have the following
additional rule for creating formulas:

If φ is a formula, then 〈α〉φ, where α ∈ I, is a formula.

A frame for the multimodal logic is of the form F = (W , (Rα)α∈I), with W �= � and
Rα ⊆W ×W for each α ∈ I. That is, there is a separate accessibility relation for
each modality 〈α〉. As previously, we get a model M = (F,τ) for the multimodal
logic by adding a valuation τ : Φ→P (W) to a frame.

28

Distributed Computing and Modal Logic

The satisfaction of the above kind of formulas in model M = (W , (Rα)α∈I ,τ) at
point w ∈W is naturally defined as follows:

φ= 〈α〉ψ: M,w�φ iff M,v�ψ for some v ∈W with (w,v) ∈ Rα

for each α ∈ I.

Graded multimodal logic GMML. Lastly, the graded multimodal logic GMML
combines the features of GML and MML. To achieve this, we extend the basic
modal logic by the following rule:

If φ is a formula, then 〈α〉≥kφ, where α ∈ I and k ∈N, is a formula,

where I is some index set. Frames and models for GMML are identical to those
for the multimodal logic. The new rule in the definition of satisfaction of a
formula φ in model M = (W , (Rα)α∈I ,τ) at point w ∈W is now

φ= 〈α〉≥kψ: M,w�φ iff |{v ∈W : (w,v) ∈ Rα and M,v�ψ}| ≥ k

for each α ∈ I and k ∈N.
Given an index set I and a set Φ of proposition symbols, the pair (I,Φ) is called

a signature. A formula φ of a logic L ∈ {ML,GML,MML,GMML} is said to be in
the signature (I,Φ) if it is constructed from modal operators given by the index
set I and proposition symbols taken from Φ. Note that for ML and GML, set I
is a singleton.

Bisimulation. For each of the variants of modal logic, there is a corresponding
notion of bisimulation. For GML, the notion is called graded bisimulation and
defined as follows.

Definition 8. Let M = (W ,R,τ) and M′ = (W ′,R′,τ′) be models for the graded
modal logic. A non-empty binary relation B ⊆W ×W ′ is a graded bisimulation,
if the following conditions hold for all (w,w′) ∈ B:

(1) For all proposition symbols p ∈Φ, we have w ∈ τ(p) iff w′ ∈ τ′(p).

(2) If X ⊆ R(w), then there exists X ′ ⊆ R′(w′) such that |X ′| = |X | and for each
v′ ∈ X ′ there is v ∈ X with (v,v′) ∈ B.

(3) If X ′ ⊆ R′(w′), then there exists X ⊆ R(w) such that |X | = |X ′| and for each
v ∈ X there is v′ ∈ X ′ with (v,v′) ∈ B.

If (w,w′) ∈ B for some graded bisimulation B, we say that points w and w′ are
g-bisimilar and write (M,w) ↔g (M′,w′).

The notions of bisimulation for MML and graded bisimulation for GMML are
the obvious generalisations of the above – we have an accessibility relation Rα

for each α ∈ I.
For each of GML, MML and GMML, the modal depth of a formula is defined

similarly as for the basic modal logic in Section 2.4.3: each generalised modality
〈α〉≥k affects the modal depth in the same way as the basic modality ♦.

29

Distributed Computing and Modal Logic

3.2.2 Correspondence between formulas and algorithms

We will now proceed to characterise the correspondence between the weak
models of distributed computing defined in Section 3.1 and the logics ML, GML,
MML and GMML.

The idea behind the correspondence is as follows. Given a graph G = (V ,E),
a port numbering p for G and an input labelling i for G, we can construct a
relational model M(G, p, i)= (W , (Rα)α∈I ,τ) that encodes the same information.
Here,

• points in W correspond to nodes in V ,
• accessibility relations Rα correspond to edge set E and port numbering p,
• valuation τ corresponds to node degrees of G as well as to input labelling i.

Let A be a constant-time distributed algorithm with binary output. Now, the
execution of A on (G, p, i) can be simulated by a modal logic formula φ on the
model M(G, p, i) – and conversely, the evaluation of φ on M(G, p, i) can be done
by algorithm A . We want φ to be true at point w if and only if A outputs 1 on
the corresponding node. The essential idea is that diamond formulas 〈α〉ψ can
be interpreted as communication between nodes:

M,w� 〈α〉ψ

holds if and only if w receives the message “ψ is true” from some w′ such
that (w,w′) ∈ Rα. This implies that in our correspondence, the modal depth of
formula φ equals the running time of algorithm A .

Without loss of generality, we assume that algorithms produce binary output,
that is, the set of halting states is H = {0,1}. More complex output labels can be
handled by defining one formula for each output bit.

In what follows, we will define the correspondence in more detail and give a
high-level outline of the proof.

From port-numbered graphs to relational models. Let us now define the
relational model M(G, p, i) based on a graph G, port numbering p for G and
input labelling i for G in more detail. We need in fact four different versions
of the model M(G, p, i) to accommodate the fact that algorithms in the lower
classes cannot use all the information that a port numbering encodes. Fix the
upper bound Δ for the maximum degree. Given a graph G = (V ,E) ∈F (Δ) and a
port numbering p for G, we define the following accessibility relations:

R(j, j′) = {(u,v) ∈V ×V : p((v, j′))= (u, j)} for each (j, j′) ∈ [Δ]× [Δ].

Note that these relations encode all the information provided by p – from the
frame (V , (R(j, j′))(j, j′)∈[Δ]×[Δ]) we could reconstruct graph G and port numbering p.
Next, we define restricted accessibility relations that ignore the information

30

Distributed Computing and Modal Logic

provided by either outgoing port numbers, incoming port numbers or both:

R(j,∗) =
⋃

j′∈[Δ]

R(j, j′) for each j ∈ [Δ],

R(∗, j′) =
⋃

j∈[Δ]

R(j, j′) for each j′ ∈ [Δ],

R(∗,∗) =
⋃

(j, j′)∈[Δ]×[Δ]

R(j, j′).

While the accessibility relations encode the port numbers, we use a valuation to
encode local node information – that is, node degrees and input labels. Our set
of proposition symbols is

ΦΔ,Σ = {pd,l : (d, l) ∈ [Δ]×Σ}.

The valuation τ : ΦΔ,Σ →P (V) is defined by

τ(pd,l)= {v ∈V : deg(v)= d and i(v)= l}.

Finally, we are ready to define the four variants of the relational model cor-
responding to graph G = (V ,E), port numbering p for G and input labelling i
for G:

M+,+(G, p, i)= (V , (Rα)α∈IΔ+,+ ,τ), where IΔ+,+ = [Δ]× [Δ],

M−,+(G, p, i)= (V , (Rα)α∈IΔ−,+ ,τ), where IΔ−,+ = {∗}× [Δ],

M+,−(G, p, i)= (V , (Rα)α∈IΔ+,− ,τ), where IΔ+,− = [Δ]× {∗},

M−,−(G, p, i)= (V , (Rα)α∈IΔ−,− ,τ), where IΔ−,− = {(∗,∗)}.

For a,b ∈ {−,+}, we write Ma,b to denote the class of all relational models of
the form Ma,b(G, p, i), and additionally, we write M c+,+ to denote the class of
relational models M+,+(G, p, i) ∈M+,+ where port numbering p is consistent.

Solving graph problems by formulas. Since we use distributed algorithms
to solve graph problems, and we want to establish a correspondence between
algorithms and formulas, we need to define the concept of formulas that solve
graph problems. Recall that we assume binary output labelling: we set Γ= {0,1}
– in essence, each solution S ∈Π(G, i) defines a subset of the node set V of G.

Let a,b ∈ {−,+}. Consider a sequence Ψ= {ψ1,ψ2, . . .} of modal formulas, such
that each ψΔ is in the signature (IΔa,b,ΦΔ,Σ). We say that Ψ defines a solution for
a graph problem Π on the class Ma,b of models if the following holds:

• For each Δ ∈N, each G = (V ,E) ∈F (Δ), any port numbering p for G and
any input labelling i for G, the function S : V → Σ defined by setting
S(v)= 1 if Ma,b(G, p, i),v�ψΔ, and S(v)= 0 otherwise, is in the set Π(G, i)
of valid solutions.

31

Distributed Computing and Modal Logic

Additionally, we say that Ψ defines a solution for Π on the class M c+,+, if the
above condition holds for a = b =+ and all consistent port numberings p for G.

Given a sequence Ψ= {ψ1,ψ2, . . .} of modal formulas, such that each ψΔ is in
the signature (IΔa,b,ΦΔ,Σ), we can also construct a canonical graph problem ΠΨ for
which Ψ defines a solution. For each graph G ∈F (Δ) and each input labelling i
for G, the set ΠΨ(G, i) consists of all functions S : V → Σ such that for some
(consistent) port numbering p for G, we have S(v)= 1 if Ma,b(G, p, i),v�ψΔ and
S(v)= 0 otherwise.

Capturing problem classes by logics. Now we have all the ingredients that
we need to go into the correspondence proper between logics and models of
computation. Let L be one of the modal logics ML, GML, MML and GMML.
Let a,b ∈ {−,+} and let C be a class of graph problems.

On one hand, we say that L is contained in C on Ma,b and write L ≤ C
on Ma,b, if for each sequence Ψ = (ψ1,ψ2, . . .) where ψΔ is in the signature
(IΔa,b,ΦΔ,Σ) for each Δ, we have ΠΨ ∈ C. On the other hand, we say that L

simulates C on Ma,b and write C ≤L on Ma,b, if for every graph problem Π ∈ C
there exists a sequence Ψ= (ψ1,ψ2, . . .) where ψΔ is in the signature (IΔa,b,ΦΔ,Σ)
for each Δ, such that Ψ defines a solution for Π on Ma,b.

If both L ≤ C and C ≤ L on Ma,b hold, we say that L captures C on Ma,b.
Finally, the notions of L being contained in C on M c+,+, L simulating C on
M c+,+ and L capturing C on M c+,+ are obtained in a natural way by considering
only consistent port numberings.

Now, we state one of the two main results of Publication I.

Theorem 9. (a) MML captures VVc(1) on M c+,+.
(b) MML captures VV(1) on M+,+.
(c) GMML captures MV(1) on M−,+.
(d) MML captures SV(1) on M−,+.
(e) MML captures VB(1) on M+,−.
(f) GML captures MB(1) on M−,−.
(g) ML captures SB(1) on M−,−.

Overview of the proof. We will now outline the high-level idea behind the
proof of Theorem 9. While there are differences in technical details, the general
structure of the proof is similar for the cases (a)–(g).

First, to show that a logic L is contained in class C on Ma,b, we need to
emulate the recursive evaluation of each formula of L by an algorithm A in the
corresponding class. To that end, let Ψ= (ψ1,ψ2, . . .) be a sequence of formulas.
For each Δ, we simulate the evaluation of formula ψΔ by algorithm AΔ on a
relational model Ma,b(G, p, i) roughly as follows.

Denote the set of all subformulas of ψΔ by ψ̂Δ. Now, in algorithm AΔ, we use
the state xt(v) of each node v to keep track of the truth value of each formula
φ ∈ ψ̂Δ with modal depth md(φ) at most t. The state set S of AΔ is

{
f : ψ̂Δ → {0,1,U}

}∪ {0,1}.

32

Distributed Computing and Modal Logic

The idea is that in round t, the state of node v is xt(v) = f , where for each
subformula φ with md(φ)≤ t, the value f (φ) ∈ {0,1} encodes the truth value of φ
in model Ma,b(G, p, i) at point v, and for each subformula φ with md(φ)> t, we
have f (φ)=U indicating that the truth value is undefined. The states {0,1}⊆ S
are halting states.

The message set M of AΔ consists of functions h that, given a formula φ with
〈α〉φ ∈ ψ̂Δ for some suitable α, map formula φ to the set {0,1,U}. The intuition
behind this is that to obtain a truth value for a subformula of the form 〈α〉φ,
node v needs to learn the truth value of φ in its neighbours u – and the truth
value of φ in encoded in the function h sent by u.

The state transition function σ of AΔ can now be defined in a natural manner.
Given the state xt(v) = f of node v in round t and a vector at+1(h1,h2, . . . ,hΔ)
of messages received in round t+1, function σ gives a new state xt+1(v) = g,
where g : ψ̂Δ → {0,1,U}. Let us consider, for example, a subformula of the
form 〈α〉φ ∈ ψ̂Δ. If f (φ) =U, the truth value of 〈α〉φ cannot be determinted in
round t+1, and hence g(〈α〉φ) = U. If, on the other hand, f (φ) ∈ {0,1}, then
g(〈α〉φ)= hi(φ) ∈ {0,1}, where hi is the message sent by a neigbour dictated by
the index α – here, the details depend on the choice of the logic L .

If in round t we have xt(v)= f with f (ψΔ) ∈ {0,1}, we move to the corresponding
halting state xt+1(v)= f (ψΔ). The end result is that A halts in round md(ψΔ)+1
and the output of A on node v is 1 if and only if Ma,b(G, p, i),v�ψΔ. It follows
that A= (A1,A2, . . .) solves the graph problem ΠΨ.

In the other direction, we show that L simulates C on Ma,b by constructing for
each graph problem Π ∈ C a sequence Ψ= (ψ1,ψ2, . . .) of formulas of logic L such
that Ψ defines a solution for Π. Suppose that A = (A1,A2, . . .) is an algorithm
that solves problem Π. We encode the states of nodes and messages sent during
the execution of AΔ on (G, p, i) as follows – the formulas given are for the case
C =VV(1); other cases are similar. Here t ∈N is the running time of AΔ.

• For each state s ∈ S and round r ∈ [t], we have formula φs,r that is true at
point v iff xr(v)= s.

• For each message m ∈ M, port number j ∈ [Δ] and r ∈ [t], we have formula
θm, j,r that is true at point v iff v sends message m to its port number j in
round r.

• For each m ∈ M, j, j′ ∈ [Δ] and r ∈ [t], we have formula χm, j, j′,r that is true
at point v iff v receives message m from its port number j in round r and
it was sent by a neighbour to port number j′.

Communication is implemented with the help of a modality 〈α〉 by defining
formula χm, j, j′,r as follows:

χm, j, j′,r = 〈α〉θm, j′,r,

where α= (j, j′). All the other formulas can be defined as Boolean combinations
of already defined formulas in a recursive manner, in such a way that they have

33

Distributed Computing and Modal Logic

the intended meaning. Finally, we can define ψΔ =φ1,t. Now, the output of AΔ

on a node v is 1 if and only if Ma,b(G, p, i),v�ψΔ. It follows that Ψ= (ψ1,ψ2, . . .)
defines a solution to graph problem Π. Additionally, the modal depth md(ψΔ) is
equal to the running time t of AΔ.

3.2.3 Bisimulation in distributed computing

Now that we have Theorem 9 at our disposal, we can transfer the power of
bisimulation from modal logic to distributed computing. This gives us a tool for
showing that a given graph problem Π is not in one of the classes C that we
defined in Section 3.1. Since bisimilarity implies indistinguishability by modal
logic, we can use bisimulation to show that the corresponding modal logic cannot
define a solution for Π, and via Theorem 9, that Π is indeed not in class C.

Noteworthily, we can apply this approach also for the non-constant-time ver-
sions of the problem classes, even though Theorem 9 only gives a correspondence
between the constant-time versions of the classes and variants of modal logic.
This is achieved by a simple trick, which we explain in the following corollary.

Corollary 10. Let G = (V ,E) ∈ F (Δ) be a graph, p a port numbering for G,
i : V →Σ an input labelling for G and X ⊆V. Assume that Π is a graph problem
such that for every S ∈Π(G, i) there exist u,v ∈ X with S(u)= 1 and S(v)= 0.

(1) If all nodes in X are bisimilar in the model M+,+(G, p, i), then Π ∉VV.
(2) If all nodes in X are bisimilar in the model M+,−(G, p, i), then Π ∉VB.
(3) If all nodes in X are bisimilar in the model M−,−(G, p, i), then Π ∉ SB.

Proof idea. Consider claim (1); the others are similar. Let AΔ ∈ V V be any
algorithm that halts on (G, p, i). Denote the running time of A on (G, p, i) by
t ∈N. Now, define an algorithm BΔ as follows: BΔ simulates the execution of
AΔ, but maintains a counter that always stops the execution after t rounds.
Algorithm BΔ clearly produces the same output on (G, p, i) as algorithm AΔ,
and furthermore, it has a constant running time.

Now, if Π ∈ VV, we can assume to have a constant-time algorithm BΔ that
solves Π on the fixed instance (G, p, i). It follows that we also have a formula ψΔ

of MML that gives us a solution S ∈Π(G, i). Since all nodes in X are assumed
to be bisimilar in M+,+(G, p, i), there cannot exist u,v ∈ X with S(u) = 1 and
S(v)= 0. Hence, we have Π ∉VV.

A similar result could be formulated also for the classes VVc, MV, SV and MB.
However, we only need the cases given in Corollary 10 in this work.

34

Distributed Computing and Modal Logic

VVc

VV

MV

SV

VB

MB

SB

(a)

VVc

VV

�=

MV

=

SV

=

VB

MB

=

SB

�=

�=

(b)

Figure 3.1. (a) Trivial containment relations between the problem classes. (b) The linear order
obtained in our work.

3.3 Relationships between the models

To begin with, we note that the following containments follow directly from the
definitions of the state machine classes:

SV⊆MV⊆VV⊆VVc, SB⊆MB⊆VB,

VB⊆VV, MB⊆MV, SB⊆ SV.

Naturally, similar containments hold for the constant-time versions of the classes
as well. These relations are depicted in Figure 3.1 (a).

On the other hand, some classes are seemingly orthogonal: for example, it is
not clear whether either of VB and SV is contained in the other. In this section,
we will present non-trivial separations and equivalences between the classes.
Put together, they establish that actually, the classes form a linear order:

SB�MB=VB� SV=MV=VV�VVc.

That is, we achieve a complete classification of the relationships between the
models. This is depicted in Figure 3.1 (b).

3.3.1 Equalities between the classes

Now, we are ready to go through the results that show certain classes of graph
problems to be equal. We will only give brief descriptions of the proof ideas; the
full proofs can be found in Publication I.

The following theorem is the most important technical contribution related
to the relationships between the classes. It shows that outgoing port numbers
can be used to reconstruct the multiplicities of incoming messages, at the cost of
increasing the running time.

35

Distributed Computing and Modal Logic

Theorem 11. Let A ∈ MV be an algorithm that solves a graph problem Π in
time T : N×N→N. Then there exists an algorithm B ∈SV that solves Π in time
T ′, where T ′(n,Δ)= T(n,Δ)+2Δ−2.

Proof idea. The proof is based on the idea that we first run algorithm CΔ ∈S V

that uses outgoing port numbers to break symmetry between incoming messages
for each node. After that, it is possible to simulate the original algorithm
AΔ ∈ MV by attaching this newly-gained symmetry-breaking information on
each message.

For each Δ ∈N, the algorithm CΔ runs for 2Δ−2 rounds and essentially gathers
all the information available in the (2Δ)-neighbourhood of a node: port numbers,
node degrees and the graph structure that they reveal. The non-trivial part is
showing that this is actually enough. To that end, we say that nodes u and w
are a pair of indistinguishable neighbours of v of order k in round t if they are
distinct neighbours of node v such that in the execution of CΔ, they necessarily
send the same message to v in each round from 1 to t, and furthermore, there
are k distinct neighbours (possibly including u and w) that are in the same state
with each other and with u and w in round t−1.

In the crucial part of the proof, we show that if u and w are indistinguishable
neighbours of v of order k in round t, then they are a pair of indistinguishable
neighbours of v of order k+1 in round t−2. This is based on the observation
that to make two neighbours u and w indistinguishable, they need to have k
neighbours of their own that are in the same state as node v in round t−2.
However, due to the outgoing port numbers, those k neighbours of u and w each
receive a message with distinct port number – but otherwise identical content –
from u and w in round t−2, which implies that v also has to receive the same k
messages. As v also receives two entirely identical messages, the total number
of messages, and thus neighbours, is at least k+1.

With the above in mind, we can show by induction that no node can have
indistinguishable neighbours in round 2Δ−1. In other words, after executing
the algorithm CΔ for 2Δ−2 rounds, for each node v, all the neighbours of v
are in such states that they are able to send different messages to v. Now, we
can define the algorithm B = (B1,B2, . . .) ∈ SV as follows. For each Δ, we first
execute the algorithm CΔ. Then, we simulate the algorithm AΔ, but amend each
message sent by AΔ with the state produced by algorithm CΔ. Each node v then
receives deg(v) distinct messages on each round during the simulation and can
thus reconstruct the multiset of messages.

This immediately implies the following result.

Corollary 12. We have the equalities SV=MV and SV(1)=MV(1).

Next, we take a look at the case of recovering incoming port numbers from a
multiset of messages. Note that the proof we have for Theorem 11 could be used
to show also Theorem 13 (a): the symmetry-breaking information created by
algorithm C ∈SV⊆MV could be used to order incoming messages in a consistent

36

Distributed Computing and Modal Logic

manner and hence simulate incoming port numbers that are available to an
algorithm in VV. However, a different approach allows us to avoid the increase
in running time, and moreover, the same approach proves also Theorem 13 (b).

Theorem 13. (a) Let A ∈ VV be an algorithm that solves a graph problem Π

in time T : N×N→N. Then there exists an algorithm B ∈ MV that solves Π in
time T.

(b) Let A ∈VB be an algorithm that solves a graph problem Π in time T : N×N→
N. Then there exists an algorithm B ∈MB that solves Π in time T.

Proof idea. Given an algorithm AΔ ∈ V V and a graph G with port numbering p
and input labeling i, we construct an algorithm BΔ ∈MV that simulates the
execution of AΔ on (G, p′, i), where p′ is another port numbering for G.

The simulation is achieved by augmenting each message sent by AΔ with
the full communication history. On each node v and for each j ∈ [deg(v)], al-
gorithm BΔ stores all messages sent to port (v, j) in AΔ, and on each round,
attaches the full message history to the message sent. We fix some linear order
for the message set M of AΔ. On each round, the received message histories are
stored and ordered lexicographically by BΔ to construct a vector.

The lexicographical ordering essentially creates incoming port numbers –
denote this virtual port numbering by p′. Note that incoming port numbers given
by p′ are possibly different from those given by the actual port numbering p.
This is not an issue, since by definition, AΔ produces a valid solution for Π, given
any port numbering for G. Hence, the solution produced by BΔ on (G, p, i) is
also valid.

The method for simulating an algorithm AΔ ∈ V B by an algorithm BΔ ∈MV

is the same as above; in this case, each node just broadcasts the same message
to each neighbour.

We note that the proof idea for Theorem 13 first appeared implicitly in the
work of Åstrand and Suomela [3]. An explicit, more detailed proof was given in
Publication I, but the presentation contained a minor defect: it was not taken
into account that in the simulated algorithm AΔ, some nodes may halt earlier
than others – and hence start sending the dummy message �. This was remedied
by a proof given in the author’s master’s thesis [27].

Again, we immediately obtain the following result.

Corollary 14. We have the equalities MV =VV, MV(1) =VV(1), MB=VB and
MB(1)=VB(1).

When we put together Corollaries 12 and 14, as well as the trivial containment
relations, we obtain

SB⊆MB=VB⊆ SV=MV=VV⊆VVc.

Thus, the only thing left is to show that the subset relations are proper.

37

Distributed Computing and Modal Logic

3.3.2 Separations between the classes

Next, we present the results of Publication I that separate one class of graph
problems from another. Many of the separation results are essentially known
from the earlier work of Yamashita and Kameda [36], but their proof techniques
are different. The purpose of our work is to demonstrate the usefulness of the
connections to modal logic, and in particular bisimulation. We note that none of
our separations rely on local node inputs.

To separate two classes, it is enough to construct a graph problem that is in
one class but is not in the other. Let us start with an easy one.

Theorem 15. There exists a graph problem Π ∈ SV(1)\VB.

Proof idea. Let Π be the problem of selecting a node in a star graph: If G = (V ,E)
is a star, a binary labelling S : V → {0,1} is a valid solution if and only if we have
S(v)= 1 for exactly one leaf node v and S(v)= 0 for all other nodes v of G. For
other graphs G, any S : V → {0,1} is a valid solution.

This is solved by a constant-time algorithm A ∈SV: Each node sends message 1
to only one neighbour and 0 to all others. Then, the node of degree 1 that received
message 1 outputs 1, others output 0.

To see that Π ∉VB, consider a star graph G = (V ,E) and let X ⊆V consist of
all the leaf nodes. For any port numbering p for G, all nodes in X are bisimilar
in the model M+,−(G, p, i), and hence Corollary 10 implies the result.

Theorem 16. There exists a graph problem Π ∈MB(1)\SB.

Proof idea. Let Π be the problem of detecting whether the number of neighbours
of an odd degree is odd.

Consider the following algorithm A ∈ MB: Each node v with an odd degree
deg(v) broadcasts message 1 to its neighbours, while all other nodes broadcast 0.
Then, each node counts the number of messages 1 it received, and outputs 1 if
and only if this number was odd. This shows that Π ∈MB(1).

To see that Π ∉ SB, consider the graph G pictured below.

u v

Let X = {u,v}. The nodes u and v are bisimilar in M−,−(G, p, i) for any port num-
bering p, but they are required to produce different output. Hence, Corollary 10
applies.

Theorem 17. There exists a graph problem Π ∈VVc(1)\VV.

38

Distributed Computing and Modal Logic

Proof idea. This is more involved than the previous two separation results.
Briefly, the idea is to show that there exists a graph G that (1) has a port
numbering p such that in M+,+(G, p, i), all nodes are bisimilar with each other,
but that (2) does not have a consistent port numbering with the same property.
In such a graph G, an algorithm AΔ ∈ V V can produce different output in two
nodes if and only if the port numbering is guaranteed to be consistent. This is
enough to separate VVc(1) from VV.

The below graph is an example of a graph with the desired property.

To show the existence of a port numbering p that makes all nodes bisimilar, it
turns out to be enough that the graph is regular. On the other hand, the crucial
property that makes it impossible for this port numbering p to be consistent is
the lack of a perfect matching in the graph.

When we put all the equivalence and separation results together, we obtain
the following result, which fully characterises the relations between the classes.
Together with Theorem 9, this is the main result of Publication I.

Corollary 18. SB�MB=VB� SV=MV=VV�VVc.

3.3.3 Lower bounds for simulating MV in SV

Recall that Theorem 11 established the equivalence of classes SV and MV, as
well as their constant-time variants, but at the cost of increasing the running
time by 2Δ−2 rounds. In Publication I, it was left open whether the overhead in
running time is really necessary.

The results of Publication II answer this in the affirmative. The first result is
a tight lower bound for the simulation overhead:

Theorem 19. For each Δ ≥ 2, there exists a graph G = (V ,E) ∈ F (Δ), a port
numbering p for G and nodes v,u,w ∈ V such that when executing any al-
gorithm A ∈S V on (G, p), node v receives identical messages from its neighbours
u and w in rounds 1,2, . . . ,2Δ−2.

This is an exact counterpart to Theorem 11 in the sense of showing that the
symmetry-breaking procedure employed in the proof of Theorem 11 cannot be
made any faster.

39

Distributed Computing and Modal Logic

(a) (b)

Figure 3.2. An algorithm in MV can distinguish the bottommost nodes of graphs (a) and (b)
in one communication round, while any algorithm in S V needs at least three
communication rounds.

The second result of Publication II extends the linear-in-Δ lower bound to graph
problems as follows.

Theorem 20. There exists a graph problem Π that can be solved in just one
communication round by an algorithm in MV but that requires at least time T,
where T(n,Δ) ≥Δ for each odd Δ ∈N+ and T(n,Δ) ≥Δ−1 for each even Δ ∈N+,
when solved by an algorithm in SV.

The proof technique behind both of these results is that we construct a family of
graphs with very intricate port numberings. These port numberings make it as
hard as possible for algorithms to distinguish nodes from each other. Figure 3.2
illustrates Theorem 20 by giving the construction for Δ= 3.

Again, we use bisimulation to prove that certain nodes are indistinguishable
by distributed algorithms in certain classes. However, in this case, we use
the finite approximation we call r-bisimulation. Thus, Publication II further
demonstrates the power of bisimulation – and logical tools in general – in the
realm of distributed computing.

40

4. Space and Time in Distributed
Computing

In this chapter, we consider the relationship between space and time complexity
in distributed computing. The question we ask is the following: is there a graph
problem that can be solved in constant space but that requires a non-constant
amount of time? A constant time complexity trivially implies a constant number
of states visited during the execution, but the other direction is more interesting.
We answer the question affirmatively: we construct a non-trivial graph problem
that can be solved in constant space in a very limited model of computation, while
requiring a linear amount of communication rounds even in the class of path and
cycle graphs and in a much stronger model of computation. In Section 4.1 we
outline the aspects that make our question challenging, in Section 4.2 we give
definitions needed later in this chapter, and finally, in Section 4.3, we present
our graph problem and an algorithm for solving it.

4.1 Challenges

At first, it may seem like it is straightforward to obtain a constant space complex-
ity and non-constant time complexity. After all, even if every node is executing a
constant-space algorithm, the total amount of space available in the distributed
system is linear. This makes it possible, for example, to simulate a linear-space
Turing machine in a path graph and spend an exponential amount of time.

However, our question is not about wasting time – it is about the existence of a
graph problem with certain time and space complexities. Additionally, we do not
want to assume that the input graph is for example a path – instead, we want
to have a graph problem without any promises. Recall that in our framework
of distributed computing, we require each node to halt execution after a finite
amount of communication rounds. Even though this is easy to achieve in for
instance path graphs, cycle graphs are a different matter.

Consider the t-neighbourhood of a node v in a graph G. If all nodes in this
t-neighbourhood have a degree of 2, it is impossible for node v to tell whether
G is a path or a cycle graph – or something completely different – based on
this neighbourhood. In a constant amount of space, node v can remember its

41

Space and Time in Distributed Computing

t-neighbourhood only for some fixed t ∈N. Still, node v is required to terminate
after a finite amount of time. It might seem natural to think that any graph
problem solvable in constant space in this kind of setting would also be solvable
in constant time. However, it turns out that this is not true.

4.2 Preliminaries

Models of computation. The model of computation that we mainly consider in
this chapter is the weakest variant of the port-numbering model that we defined
in Section 3.1 – namely the SB model. Recall that a distributed state machine
in class S B receives messages in a set and broadcasts the same message to
each neighbour. We also discuss the LOCAL model defined in Section 2.3.4. Our
upper bound will be given for the SB model and our lower bound for the LOCAL

model – note that while SB is a very limited model, this actually makes our
result stronger.

Thue–Morse sequence. The central notion behind our curious graph problem
is the Thue–Morse sequence [1], and in particular, the recursive definition of its
prefixes.

Definition 21. The Thue–Morse sequence is the infinite binary sequence (ti)
where t0 = 0, and for each i ∈N, t2i = ti and t2i+1 = 1− ti.

Thus, the beginning of the Thue–Morse sequence is

01101001100101101001. . .

Definition 22. Let T0 = 0. For each i ∈ N+, let Ti be obtained from Ti−1 by
substituting each occurrence of 0 with 01 and each occurrence of 1 with 10. We
call Ti the Thue–Morse word of length 2i.

It can be seen by an induction argument that for each i ∈N, the word Ti is the
prefix of length 2i of the Thue–Morse sequence.

4.3 Constant space and linear time in path and cycle graphs

The main result of Publication III is the following.

Theorem 23. There exists a decision graph problem ΠTM with O(1) space com-
plexity and Θ(n) time complexity in the class of path and cycle graphs in the
SB model. Furthermore, the time complexity of ΠTM is Θ(n) also in the LOCAL
model.

To define the graph problem ΠTM, we need to adapt the definition of the
Thue–Morse sequence slightly.

42

Space and Time in Distributed Computing

Definition 24. Define a set of words over {0,1,_} recursively as follows:

(1) _0_ is valid.

(2) If X is valid and Y is obtained from X by applying the substitutions
0 �→ 0_1_1_0 and 1 �→ 1_0_0_1 to each occurrence of 0 and 1 in X , then Y
is valid.

Observe that one can obtain valid words from the prefixes T2i, i ∈ N, of the
Thue–Morse sequence by inserting an underscore at the beginning, in between
each symbol and at the end.

Definition 25. Let Σ = {0,1,2}× {0,1,_} be a set of local input labels and let
and Γ= {yes,no} be a set of local output labels. Given a labelling i : V →Σ for a
graph G = (V ,E), we write i(v)= (i1(v), i2(v)) for each v ∈V . The decision graph
problem ΠTM is now defined as follows. An instance (G, i) is a yes-instance of
ΠTM if and only if the following conditions hold:

(1) The graph G = (V ,E) is a path graph.

(2) For each v ∈V with deg(v)= 2, we have

{i1(u) : u = v or u ∈ N(v)}= {0,1,2}.

That is, by defining v < u iff i1(v)+1 = i1(u) mod 3, we get a consistent
orientation for the path.

(3) If we write V = {v1,v2, . . . ,vn} such that {vi,vi+1} ∈ E and vi < vi+1 for each
i ∈ {1,2, . . . ,n−1}, the word

i2(v1)i2(v2) . . . i2(vn)

defined over {0,1,_} by the second parts i2(·) of the input labels is valid.

4.3.1 The algorithm

We will now give an overview of the constant-space algorithm that solves prob-
lem ΠTM. The detailed definition can be found in Publication III.

Part I. We divide the execution of the algorithm into three parts. Consider an
instance (G, i) of problem ΠTM. In the first part, each node v of G collects the
input labels of its neighbours and checks the following:

• Its own degree deg(v) is either 1 or 2.
• If deg(v)= 2, then {i1(u) : u = v or u ∈ N(v)}= {0,1,2}.

Recall that we assume graphs to be finite and connected. If both of the above
conditions hold for every node v, it follows that (1) G is either a path or a cycle
graph and (2) we can consistently orient the edges of G by orienting each edge

43

Space and Time in Distributed Computing

e = {v,u} from v to u iff i1(v)+1= i1(u) mod 3 (unless G is a path of length 2). In
this case, we call v the left neighbour of u and u the right neighbour of v.

From now on, we can utilise the orientation of the edges to aid communication.
By attaching the label i1(v) to each message sent by node v, receiving nodes
can distinguish between messages received from left and right. Similarly, each
message sent can be equipped with the label i1(u) if the intended recipient is u.
Essentially, this causes our algorithm in class S B to have capabilities that are
available in the standard port-numbering model.

Part II. Then, in the second part, each node v of G checks that the word defined
by the labels i2(·) is locally valid:

• If deg(v)= 1 and the neighbour of v is u, then i2(v)= _ and i2(u)= 0.

• If deg(v)= 2 and the left and right neighbour of v are u1 and u2, respect-
ively, then the word i2(u1)i2(v)i2(u2) is in the set {0_0, 1_1, 0_1, 1_0, _0_,
1}.

These conditions guarantee that in the input word (note that the word can
be circular), symbols in {0,1} are separated from each other by exactly one
underscore, and that in the case of a path graph, the input word begins and ends
with the underscore symbol.

Part III. In the final part, the validity of the input word is verified in a recursive,
non-local manner. This is done in several phases. Each node v holds a current
symbol c(v). Initially, c(v)= i2(v). From a global viewpoint, what happens to the
word consisting of the current symbols is the following. During each phase, for
i ∈N+, each subword

_0i_1i_1i_0i_1i_0i_0i_1i_

is substituted with
_0i00i00i00i_1i11i11i11i_,

and similarly, each subword

_1i_0i_0i_1i_0i_1i_1i_0i_

is substituted with
_1i11i11i11i_0i00i00i00i_.

Compare this to Definition 24. If the input word is a valid word, then on each
phase, we are essentially going backwards in the recursive definition of valid
words – with the difference that each symbol 0 or 1 is represented by a sequence
of 0s or 1s, respectively. We call such a word a padded valid word. In particular,
the substitution is unambiguous: the new current symbol of a node does not
depend on where we choose to match the given subword. This means that
ultimately, the current word will be either

0i or _0i_1i_1i_0i_

44

Space and Time in Distributed Computing

for some i ∈N+. At that point, the algorithm halts and accepts the input. On
the other hand, if the input word is not valid – regardless of whether of graph
is a path or a cycle – we can show that eventually, the current word contains a
subword that cannot be substituted according to the above rules, or alternatively,
the substitution would be ambiguous. In that case, the algorithm halts and
rejects.

Here the essential observation is the following. When gathering the current
symbols in the r-neighbourhood of a node v, we do not need to store the entire
word – instead, we can collapse sequences of 0s and 1s. In other words, we only
need to check whether the pattern

_0+_1+_1+_0+_1+_0+_0+_1+_

or the pattern
_1+_0+_0+_1+_0+_1+_1+_0+_,

where a+ matches to a sequence of one or more symbols a, matches the neigh-
bourhood of node v. Thus, even though the number of communication rounds
needed increases after each phase, the amount of space needed remains constant.

Details. We implement the word substitution locally as follows. Each node v
maintains two buffers, one for its left neighbourhood and another for its right
neighbourhood. On each round, the left buffer is sent to the right neighbour
and vice versa. As v gathers its neighbourhood, it collapses subsequent 0s and
1s on the fly – the current symbol c(v) of v is appended to the end of the buffer
received from the left neighbour if and only if the last symbol of the buffer is
different from c(v), and similarly for the buffer received from the right. When
both buffers of v contain either 8 occurrences of the separator _ or cannot be
grown further due to reaching the end of a path graph, node v is finished with
gathering its neighbourhood and performs the substitution explained above.

Correctness. For our algorithm to be well-defined and work correctly in
Part III, several conditions need to hold. First, we need the phases to hap-
pen in synchrony: each node starts a new phase in the same round. Related to
this, the length of each block of subsequent 0s and 1s needs to stay equal. Second,
the local substitutions made by nodes need to result in the correct behaviour
globally. On one hand, if the current word is a padded valid word of length 2k,
the new word is a padded valid word of length 2k−2. On the other hand, if the
current word is not a padded valid word, the new word must also not be one, so
that the substitution eventually fails and the input gets rejected. While these
properties are not deep in any sense, the detailed proofs are somewhat technical.

Time complexity. Consider then the time complexity of our algorithm. Each
phase takes an amount of communication rounds linear in the number of the
phase, and a logarithmic number of phases is enough. This results in a total
running time of O(n). We also get a matching lower bound. It is clear that the
time complexity of ΠTM is in Ω(n): a node at the end of a path has to receive

45

Space and Time in Distributed Computing

information from the other end of the path to be able to verify that the instance
is a yes-instance. This holds also in much stronger models of computation, for
example in the LOCAL model. We have now concluded our overview of the proof
of Theorem 23.

46

5. Distributed Time Complexity Classes

In this section, we introduce a new general technique for constructing LCL

problems with specific time complexities. We use the technique to construct
infinitely many problems with complexities not previously known to exist. The
new complexities can be divided into two distinct categories: the high and the
low. In the high category, we obtain for example Θ(logα n) for any α≥ 1, 2Θ(logα n)

for any α ≤ 1 and Θ(nα) for any α < 1/2. On the other hand, the low category
contains complexities such as Θ(logα log∗ n) for any α ≥ 1, 2Θ(logα log∗ n) for any
α ≤ 1, and Θ((log∗ n)α) for any α ≤ 1. The constant α is a positive rational
number.

The high-level idea of our technique is as follows. We define a centralised
model of computation we call a link machine model. A link machine consists of a
constant number of registers that can store unbounded positive natural numbers,
as well as a finite program that operates on the registers. We define a way for
link machines to compute functions g : N→ N – we say that machine M has
growth g. Then, given a link machine M with growth g and an LCL problem Π

with time complexity T on directed cycles, we construct a new LCL problem ΠM

whose time complexity is smaller than T, by an amount that is controlled by
function g.

A lot of care is needed to ensure that the resulting problem ΠM is actually an
LCL problem and has the desired complexity. We will proceed by defining the
concept of link machines in Section 5.1 and the method for constructing new
graph problems in Section 5.2. Finally, we put the ingredients together to obtain
new complexities in Section 5.3.

5.1 Link machines

Definition and growth. Given a set of register labels {r1, r2, . . . , rk}, we define
a program P to be a sequence (i1, i2, . . . , i p) of instructions that operate on k
registers containing natural numbers. Each instruction i j is one of the following,
for some register labels a, b and c, and s ∈N+:

47

Distributed Time Complexity Classes

• Addition: a ← b+ c.
• Copy: a ← b.
• Reset: a ← 1.
• Conditional execution: if a = b (or a �= b), skip the next s instructions.

Now, a link machine M consists of a finite set of register labels and a program P
that operates on the corresponding registers. The link machine M can have
designated input and output registers x and y among its k registers.

An execution of a link machine M is a single run through its program P.
Before the first execution, each register is assumed to contain value 1. On
each execution, the program P modifies the register values according to its
instructions in the obvious way. For each � ∈N, we denote the final value of each
register a after � executions by a(�). Additionally, we denote by a(�, j) the value
of register a after executing the machine �−1 times and then executing the
first j instructions i1, i2, . . . , i j of P.

A link machine M with registers r1, r2, . . . , rk has growth g : N→N if

g(�)=max{ri(�) : i ∈ [k]} for all � ∈N,

that is, the growth of M keeps track of the maximum register value after each
execution. For a growth g, we write g−1 : N→N to denote the function given by

g−1(�)=min{m ∈N : g(m)≥ �} for all � ∈N.

We note that even though register values are unbounded, the growth of a link
machine is not able to exceed 2O(�).

Composition. Let M1 and M2 be link machines with programs P1 = (i1
1, i1

2, . . . ,
i1

p) and P2 = (i2
1, i2

2, . . . , i2
q), respectively. Assume that M1 has an output register y

and M2 has an input register x. By relabelling the registers, if necessary, we can
assume that M1 and M2 do not share any register labels. Now, we define the
composition P2 ◦P1 as follows:

P2 ◦P1 = (i1
1, i1

2, . . . , i1
p, x ← y, i2

1, i2
2, . . . , i2

q).

The corresponding new machine M2 ◦M1 consists of the union of the register
labels of M1 and M2 and the program P2◦P1. If M1 has input register x′, M2◦M1

also has input register x′, and if M2 has output register y′, so has M2 ◦M1. Now,
the composition Mi ◦ · · · ◦M2 ◦M1 of multiple link machines can be defined in a
natural way.

Basic building blocks. To achieve the different growths that we need to es-
tablish our new time complexities for LCL problems, we start by constructing
a collection of basic link machines. We then use these machines to obtain the
desired growths by taking compositions.

The basic link machine programs that we introduce in Publication IV are the
following.

48

Distributed Time Complexity Classes

• COUNT: output register y= � and growth �,

• ROOT′
k for each k ∈N+: output register y in Θ(�1/k) and growth in Θ(�1/k),

• ROOTk for each k ∈N+: input register x, output register y in Θ(x1/k) and
growth in Θ(x),

• POWk for each k ∈ N+: input register x, output register y in Θ(xk) and
growth in Θ(xk),

• EXP: input register x, output register y in 2Θ(x) and growth in 2Θ(x),

• LOG: input register x, output register y in Θ(log x) and growth in Θ(x).

Then, we use the above building blocks to get the following more complicated
programs and growths.

• POWp ◦ROOT′
q for each p, q ∈N+: growth in Θ(�p/q),

• EXP ◦POWq ◦ROOT′
p for each p, q ∈N+, p ≥ q: growth in 2Θ(�q/p),

• EXP ◦ POWq ◦ ROOTp ◦ LOG ◦ COUNT for each p, q ∈ N+, p ≥ q: growth in
2Θ(logq/p �).

Many more growth complexities could be obtained by link machines, but the
above are enough for our purposes.

5.2 From link machines to graph problems

In this section, we explain the basic idea on how to encode link machines into
locally checkable graphs, and furthermore, how to construct graph problems
based on these graphs.

Link machine encoding graphs. Let M be a link machine with k registers,
with a program of length p and with growth g such that g : N → N is non-
decreasing and is in ω(1) as well as in 2O(n). We will next define link machine
encoding graphs for M. They are directed grid graphs, with a set of labels for
each node and incident edge. For each h ∈N+, we define a graph as follows.

First, we have a 2-dimensional n×h grid graph, where n = 3g(h). We denote
by (x,�) the node on the xth column and the �th row; here x ∈ [n] and � ∈ [h].
The grid wraps around along the horizontal axis but not along the vertical axis.
In other words, there are edges ((n,�), (1,�)) for each � ∈ [h]. Each node (x,�)
associates one of the labels U, D, L or R to each of its incident edges e depending
of whether the other endpoint of e is on row �+1, row �−1, on column x−1 or
on column x+1, respectively.

Then, the base grid described above is augmented with link edges that encode
the execution of the machine M. Given a node (x,�), a link edge of length s from
(x,�) is an edge

(
(x,�), (x+ s mod n,�)

)
. That is, link edges are horizontal and

49

Distributed Time Complexity Classes

create shortcuts in the grid structure. For each � ∈ [h], each register r of M and
each j ∈ [0, p], there is a link edge of length r(�, j) from all nodes on level �. Each
node (x,�) associates the label (r, j) to the link edge of length r(�, j) from it. Note
that the length r(�, j) can be equal for multiple different registers r – in that
case there are multiple labels (r, j) for a single edge.

Finally, each node (x,�) is labelled with an input value i(x,�) ∈ {0,1}.

Local checkability. The crucial property that we need for our graph family is
that graphs in it are locally checkable. This is to say that there is a constant-time
algorithm in the LOCAL model such that given a graph from the family, all nodes
accept, and given any other graph, at least one node rejects. It turns out that
to make link machine encoding graphs locally checkable, we need to relax the
definition slightly.

First, let us specify a collection of constraints that each node v can check in
four rounds of communication. We write v(L1,L2, . . . ,Lk) to denote the node
that can be reached from the current node by following edges labelled with
L1,L2, . . . ,Lk. The constraints are as follows.

(1) Labels L and R, and at least one of U and D, are present on incident edges.
No label occurs twice and no edge has two different direction labels.

(2) Each edge labelled with a direction label has the opposite label at the
other end. If v has an edge labelled with D, then v(D,R,U)= v(R). For each
L ∈ {U,D}, if v does not have an edge labelled with L, then neither v(L) nor
v(R) has an edge labelled with L.

(3) Link edges encode correctly initialised register values. That is, edges with
label (r,0) either encode value 1 (if v does not have an edge labelled with
D) or encode a value copied from the row below (otherwise).

(4) Link edges encode correctly the execution of program P. When going
through the instructions of P one by one, the corresponding link edges
point to nodes in keeping with the instructions.

(5) If v does not have an edge labelled with U, the link edges corresponding to
the maximum register of M form 3-cycles.

Link machine encoding graphs satisfy the above constraints. The converse
is not necessarily true: if register values exceed the width of the grid, the
correspondence between edge lenghts and register values does not hold in the
top part of the grid. We say that a graph is an extended link machine encoding
graph if it satisfies the above constraints and has at least one node without an
edge labelled with D.

LCL problems. We are now ready to define our LCL problem ΠM based on an
LCL problem Π on directed cycle graphs and a link machine M. In our work, Π
is either 3-colouring, in which case Π has time complexity Θ(log∗ n) or a variant

50

Distributed Time Complexity Classes

of 2-colouring that is always solvable, in which case the time complexity of Π is
Θ(n). The growth of M is assumed to be non-decreasing, in ω(1) and in 2O(n).

The output labels of problem ΠM are the following:

• output labels of the problem Π,
• an error label E,
• an error pointer EP(L, c1, c2), where L ∈ {R,U} and c1, c2 ∈ {0,1},
• an empty output ε.

Valid solutions for ΠM are defined as follows.

(1) Label E is a valid output at node v if and only if the input labelling does
not satisfy the constraints of extended link machine encoding graphs at v
or at a neighbour of v. In this case, E is the only valid label.

(2) An output label of Π is valid at node v only if v does not have an incident
edge with label D and the local constraints of problem Π are satisfied.

(3) Label ε is a valid output at node v only if v has an incident edge with
label D.

(4) Label EP(L, c1, c2) is a valid output at node v if the following holds:

• If v has an incident edge with label D, then L =U.
• The neighbour v(L) of v outputs either E or EP(L′, c′1, c′2).
• If L =R and v(R) outputs EP(R, c′1, c′2), then c1 �= c′1.
• If L =U and v(U) outputs EP(U, c′1, c′2), then c2 = c′2.
• If L =U and v(U) outputs E, then c2 = i(v(U)).

Since the above conditions are locally checkable, ΠM is an LCL problem. The
intuition behind ΠM is as follows. An algorithm has basically two options: solve
the original problem Π on the bottom cycle or point out an error in the graph
structure.

The former is made faster by the link edges in a way specified by the link
machine M, while the latter is made slower by our definition of ΠM . To point
out an error, an algorithm has to produce a chain of pointers that first goes
horizontally right and then vertically up, the horizontal part has to be 2-coloured,
and the vertical part has to reproduce the input i(v) given to the node at the end
of the chain that sees an error locally.

5.3 New complexities for the LOCAL model

Let us now take a look at the time complexities of the new LCL problems ΠM we
constructed in Section 5.2. Let T : N→N be the time complexity of problem Π

and let g : N→N be the growth of link machine M. Define f : N→N by setting
f (k) = kg(k). Given n ∈ N+, let n̂ be the smallest natural number for which
n ≤ n̂ f −1

(
T(n̂)

)
holds. The intuition behind this is that the hardest instances

51

Distributed Time Complexity Classes

of size n of graph problems ΠM are grids that have width roughly n̂ and height
roughly f −1

(
T(n̂)

)
.

Now, the following theorems relate the complexity of ΠM to the complexity of
Π and to the growth of M.

Theorem 26. The time complexity of problem ΠM is in O
(

f −1
(
T(n̂)

))
.

Proof idea. The crucial thing here is that the link edges of a link machine
encoding graph provide shortcuts. If we start from a node v on the bottom cycle,
go k steps up, then k steps right along link edges, and finally k steps down,
we reach a node that is at distance f (k)= kg(k) from v along the bottom cycle.
Note that we only took O(k) steps. By using a similar procedure, we can reach
any node u that is at distance k from v along the bottom cycle by taking only
O
(

f −1(k)
)

steps.
On the other hand, if the input graph is not a valid link machine encoding

graph, this can also be detected in O
(

f −1
(
T(n̂)

))
rounds. Hence we can always

solve ΠM fast enough by either solving problem Π on the bottom cycle or by
pointing our an error in the graph.

Theorem 27. The time complexity of problem ΠM is in Ω
(

f −1
(
T(n̂)

))
.

Proof idea. The worst-case instances of ΠM are graphs that we call truncated
link machine encoding graphs. They are obtained from valid link machine
encoding graphs by removing a suitable number of rows from the top of the grid.
Then, each algorithm has to either solve problem Π on the bottom cycle or to
point out an error.

We can show the former to require Ω
(

f −1
(
T(n̂)

))
rounds by a simulation

argument: a faster algorithm for ΠM could be simulated to obtain a faster
algorithm for Π on cycle graphs. The latter also requires Ω

(
f −1

(
T(n̂)

))
rounds

due to this being the distance from the bottom cycle to the top where the error is
located. Finally, an algorithm could try to produce a cycle of error pointers, all
of which are pointing right, but this is made hard by the requirement that the
chain of pointers is 2-coloured.

We are now ready to state the end result of this technique.

Theorem 28. Let r, s, p and q be non-negative natural numbers such that
r/s < 1/2 and q/p ≤ 1. Then there exist LCL problems with time complexities

(1) Θ
(
nr/s),

(2) Θ
(
(log∗ n)q/p),

(3) Θ(logp/q n),
(4) Θ(logp/q log∗ n),
(5) 2Θ(logq/p n),
(6) 2Θ(logq/p log∗ n).

Proof idea. Let us consider claim (1). Let M be a link machine with program
POWp ◦ROOT′

q. Now the growth g of M is in Θ(�p/q). The speed-up is controlled

52

Distributed Time Complexity Classes

by function f , where f (�)= �g(�). Now f is in Θ
(
�(p+q)/q). On the other hand,

f −1(x) is in Θ
(
xq/(p+q)

)
.

Consider link machine encoding graphs of size n with a bottom cycle of length n̂
such that n is in Θ

(
n̂ · f −1(T(n̂))

)
. Here T : N→N is the time complexity of a

problem Π. Let Π now be the problem of safe 2-colouring, which has time
complexity Θ(n).

Now, we obtain that n is in Θ(n̂(p+2q)/(p+q)) and n̂ is in Θ
(
n(p+q)/(p+2q)

)
. It fol-

lows from Theorems 26 and 27 that problem ΠM has time complexity Θ
(
n̂q/(p+q)

)
,

or equivalently, Θ
(
nq/(p+2q)

)
. Claim (1) follows now by setting q = r and p =

s−2r.
The other claims are proved in an analogous manner.

53

6. Conclusions

In this dissertation, we studied the connections between distributed computing
and mathematical logic, the relationship between time and space complexity
as well as the existence of various time complexities in the distributed setting.
In Section 6.1, we consider the implications of our work and mention closely
related works by other authors. Then, in Section 6.2, we discuss ideas on how
the research presented in this dissertation can be continued.

6.1 Significance of the results

The work on logical characterisations has already opened up a new research area,
with further research being done on the topic. Also the results on complexity
classes are tightly intertwined with current research on distributed complexity
theory. In the following, we give a more detailed account on the impact of the
different aspects of this dissertation.

6.1.1 Distributed computing and logic

Variants of modal logic were used already in the 1980s in analysing concurrent
and distributed systems [12] – modal logic provides a natural way to say, for
example, that is is impossible for a system to reach a certain internal state that
the system designer wants to avoid. However, our approach is very different:
we equate the relational models of modal logic and communication graphs of
distributed computing, so that points of the model correspond to nodes of the
distributed system instead of possible states of the system. This leads to the
natural correspondence between modal formulas and distributed algorithms,
having resemblance to descriptive complexity in classical centralised complexity
theory.

While our work was the first to take the above-mentioned approach, it was by
no means the last. In Publication I, we characterised the constant-time variants
of a hierarchy of models of distributed computing. This limitation was lifted by
Kuusisto [25], who introduced a recursive bisimulation-invariant logic called

55

Conclusions

modal substitution calculus. This recursive logic made it possible to characterise
a certain class of distributed algorithms without the constant-time limitation.
Kuusisto [24] provided another example of the application of logic to distributed
computing by proving that all universally halting distributed algorithms have
necessarily a constant time complexity.

The line of research initiated in Publication I was also continued by Reiter [32,
33]. In the first article [33], he extends the weak models by allowing alternation
and more complicated acceptance conditions. The resulting class of algorithms
turns out to be equal to monadic second-order logic on graphs. The second
article [32] considers several asynchronous models of distributed computing.
He shows these models to be equivalent to a fragment of the modal μ-calculus,
and furthermore, makes use of this connection to show that the possibility of
losing messages does not affect the computational power of the model. Recently,
a model of computation that accommodates unique node identifiers was also
characterised by an extension of first-order logic [6].

With the above examples in mind, we claim that mathematical logic has turned
out to be a viable and promising approach to study distributed computing.

6.1.2 Constant-space distributed computing

Constant-space models of distributed computing have been studied previously
in various forms. One classical example is provided by cellular automata [18, 34,
35]. More recently, networks of finite-state machines have been studied by Emek
and Wattenhofer [16] as well as by Kuusisto and Reiter [26, 32, 33]. However, the
setting of our work – synchronous communication and deterministic algorithms
that halt in a finite but not necessarily constant time – appears to be novel.

Even more importantly, the relationship between space and time is a relatively
unexplored topic in distributed computing research. We can ask, for example,
what kind of time complexities are possible for problems contained in a given
space-limited complexity class – or vice versa. The work presented in Public-
ation III aims to change this and start a new area of research in distributed
complexity theory.

On a more concrete level, our result rules out a candidate method for proving
upper bounds on time complexity: showing that a problem is solvable in constant
space does not necessarily imply that it is solvable in sublinear time. On the
other hand, the result does imply that it makes sense to try to come up with a
very space-economical algorithm even if the problem in hand has a high time
complexity.

In addition to being of theoretical interest, the property of having a constant
space complexity has practical consequences. Consider, for instance, wireless
sensor networks. An algorithm with constant memory consumption, that is, one
that is independent of the size of the network, makes it possible to deploy an
arbitrary number of nodes. Another possible application area is provided by
nature. It is reasonable to assume that the size of an organism – for example,

56

Conclusions

a single cell, or an animal that is a part of a swarm or flock – does not depend
on the size of the larger ensemble. Therefore, if we can show that a task is not
doable in constant space in the distributed setting, we will possibly gain new
knowledge on related natural phenomena.

6.1.3 Distributed time complexity classes

The study of complexity classes in the LOCAL model was initiated in the 1990s
by Naor and Stockmeyer [30], who introduced the concept of LCL problems.
Their work, together with more recent results [9], implied that in the case of
cycle and path graphs, the only possible time complexities for LCL problems
are O(1), Θ(log∗ n) and Θ(n). However, the case of general bounded-degree
graphs remained open until very recently: only the three classes O(1), Θ(log∗ n)
and Θ(n) were known to contain LCL problems, while the existence of other
complexities could not be ruled out.

The work of Brandt et al. [7] changed the situation substantially by proving the
existence of natural LCL problems with intermediate complexity: Δ-colouring,
as well as the so-called sinkless orientation problem, turned out to have a time
complexity between ω(log∗ n) and o(n). A line of research by others followed:
for instance, Chang et al. [9] proved that there is a gap between ω(log∗ n) and
o(logn), and Chang and Pettie [10] showed the existence of problems with com-
plexities Θ(n1/k) for all k. The results of Publication IV are direct continuation
to this progress of developing complexity theory for LCL problems. In particular,
Chang and Pettie [10] conjectured that there are no problems with complexity
between ω(n1/(k+1)) and o(n1/k). This was refuted by Publication IV: there exist
LCL problems with complexities Θ(nα) for any rational number α< 1/2.

Knowledge on the existence of different complexity classes can also have
practical implications. Gap results often directly give us speed-up theorems: if
there is a known gap between time complexity classes O(f) and Ω(f ′), and we
have an algorithm with time complexity in o(f ′), we can speed up the algorithm
to run in time O(f). On the other hand, hierarchy results such as the one given
in Publication IV give useful guidance on where to look for and where to not look
for such gaps in time complexity.

6.2 Future research

The work presented in this dissertation provides ample opportunities for future
research. In this section, we outline some ideas.

6.2.1 Logical characterisations

The logical characterisations for the weak models that we presented in Pub-
lication I, along with the subsequent work mentioned in Section 6.1.1, raise

57

Conclusions

the question of also finding such characterisations for other models of distrib-
uted computation. The standard LOCAL model, for example, is lacking such a
characterisation. While it may prove difficult to find a natural logical system
that captures the LOCAL model exactly, there exist other models of computation
that may be more susceptible to this kind of approach. To give one example,
Naor and Stockmeyer [30], and later Göös et al. [19], have studied a so-called
order-invariant model, where instead of unique identifiers, nodes are linearly
ordered. In addition to characterising solvability in a given model of computa-
tion, describing classes of problems solvable in certain amount of time or space
by means of logic would be a very interesting result.

Further research on this topic has a potential to give new general tools for
proving results on distributed computing. In addition to bisimulation, there
are tools such as Ehrenfeucht-Fraïssé games [15] that can be used to show that
certain property cannot be expressed in a given logic. As was demonstrated in
Publication I, it is possible to rephrase such results as impossibility results in
distributed computing. Together with more fine-grained logical characterisa-
tions, these provide a promising approach for coming up with new lower-bound
results. In addition to advancing the research on distributed computing, it is
reasonable to expect that further studies on this connection enable the transfer
of tools and results from distributed computing to the field of logic.

6.2.2 Computational algorithm design

Formal verification of distributed systems by model checking [11, 22, 23] is a
well-established topic, as is the synthesis of distributed protocols based on a
specification given by a logical formula [13, 17, 29]. However, the models of
computation considered in that research area usually differ from our framework
of distributed computing, and more importantly, the connection to logic is dif-
ferent. In the traditional approach, in order to synthesise an algorithm, one
needs to construct a model that satisfies a given formula. In the approach of
Publication I, synthesising an algorithm corresponds to constructing a formula
that satisfies certain properties.

Designing distributed algorithms for models of computation similar to ours
by means of computational methods has recently gained momentum [8, 14,
21]. However, the search space of all candidate algorithms is usually huge,
which makes the approach feasible only in quite limited cases. A potentially
helpful observation here is that fast and correct algorithms are often relatively
simple. If the search could be directed towards simple – but otherwise arbitrary –
algorithms, the synthesis task might become feasible on a much larger scale. The
connection to logic, where each distributed algorithm corresponds to a formula
and vice versa, provides a way to formalise this simplicity. This likely requires
us to study complexity measures of formulas other than the usual modal depth
or quantifier rank. The size of a formula [20] would be a natural candidate.

58

Conclusions

6.2.3 New problem classes

While there exists an ever increasing amount of results on the complexity of LCL
problems in the LOCAL model, there is little knowledge on problems beyond the
class of LCL problems. In particular, the case of general graphs – as opposed
to bounded-degree graphs – is interesting. It is not clear at all, what is the
best way to generalise the definition of LCL problems to general graphs. First,
it would be desirable to be able to describe each graph problem in the class
in a finite space, which rules out defining a problem by simply listing all the
valid neighbourhoods for each possible maximum degree. Second, the definition
should lead to an interesting structure of complexity classes – there should be
several non-empty classes, with preferably gaps between them.

One approach to generalising the class of LCL problems is as follows. The
generalised class would consist of graph problems Π such that each candidate
solution S of Π can be verified in a model of computation weaker than the
standard LOCAL model. This is where our Publications I and IV come together:
we can take the SB (set–broadcast) model (or equivalently, the basic modal
logic) from Publication I, modify it slightly to lift the bounded-degree limitation
and define the class of SB-checkable problems. With finite state and message
sets, this immediately gives us a way to define graph problems in a finite way
in general graphs. Also, the class of SB-checkable problems contains several
classical graph problems such as the maximal independent set and the weak
colouring problems. However, it is not clear whether we can develop interesting
complexity theory in this setting.

The important thing here is the general approach: instead of trying to general-
ise the definition of LCL problems directly, characterise a class of problems by
means of logic – and then lift the bounded-degree assumption.

6.2.4 New complexity measures

Finally, we can extend the work presented in Publications III and IV by consid-
ering complexity measures other than the number of communication rounds or
the amount of space required. One such complexity measure would be volume:
Instead of gathering information from a neighbourhood of a certain radius, nodes
would be able to adaptively query nodes whose neighbour they have already seen.
Then, volume would be defined as the maximum number of queries conducted
by any node.

59

References

[1] Jean-Paul Allouche and Jeffrey Shallit. The ubiquitous Prouhet-Thue-Morse
sequence. In Proc. International Conference on Sequences and Their Applications
(SETA 1998), pages 1–16. Springer, 1999. DOI: 10.1007/978-1-4471-0551-0_1.

[2] Dana Angluin. Local and global properties in networks of processors. In Proc.
12th Annual ACM Symposium on Theory of Computing (STOC 1980), pages 82–
93. ACM, 1980. DOI: 10.1145/800141.804655.

[3] Matti Åstrand and Jukka Suomela. Fast distributed approximation algorithms
for vertex cover and set cover in anonymous networks. In Proc. 22nd Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2010),
pages 294–302. ACM, 2010. DOI: 10.1145/1810479.1810533.

[4] Patrick Blackburn, Maarten de Rijke and Yde Venema. Modal Logic. Cambridge
Tracts in Theoretical Computer Science 53. Cambridge University Press, 2001.
DOI: 10.1017/CBO9781107050884.

[5] Patrick Blackburn, Johan van Benthem and Frank Wolter, editors. Handbook of
Modal Logic. Studies in Logic and Practical Reasoning 3. Elsevier, 2007.

[6] Benedikt Bollig, Patricia Bouyer and Fabian Reiter. Identifiers in registers –
describing network algorithms with logic. In Proc. 22nd International Conference
on Foundations of Software Science and Computation Structures (FoSSaCS 2019).
2019. To appear.

[7] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lem-
piäinen, Joel Rybicki, Jukka Suomela and Jara Uitto. A lower bound for the
distributed Lovász local lemma. In Proc. 48th Annual ACM Symposium on Theory
of Computing (STOC 2016), pages 479–488. ACM, 2016. DOI: 10.1145/2897518.2
897570.

[8] Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen,
Patric R. J. Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela and
Przemysław Uznański. LCL problems on grids. In Proc. 35th ACM Symposium
on Principles of Distributed Computing (PODC 2017), pages 101–110. ACM,
2017. DOI: 10.1145/3087801.3087833.

[9] Yi-Jun Chang, Tsvi Kopelowitz and Seth Pettie. An exponential separation
between randomized and deterministic complexity in the LOCAL model. In Proc.
57th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2016),
pages 615–624. IEEE, 2016. DOI: 10.1109/FOCS.2016.72.

61

References

[10] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model.
In Proc. 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2017), pages 156–167. IEEE, 2017. DOI: 10.1109/FOCS.2017.23.

[11] Bernadette Charron-Bost, Stepahn Merz, Andrey Rybalchenko and Josef Widder.
Formal verification of distributed algorithms (Dagstuhl seminar 13141). Dagstuhl
Reports 3.4 (2013), pages 1–16. DOI: 10.4230/DagRep.3.4.1.

[12] E. M. Clarke, E. A. Emerson and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems 8.2 (1986), pages 244–263. DOI: 10.1145/5
397.5399.

[13] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In Proc. 3rd Workshop on
Logics of Programs (LOP 1981), pages 52–71. Springer, 1982. DOI: 10.1007/BFb0
025774.

[14] Danny Dolev, Keijo Heljanko, Matti Järvisalo, Janne H. Korhonen, Christoph
Lenzen, Joel Rybicki, Jukka Suomela and Siert Wieringa. Synchronous counting
and computational algorithm design. Journal of Computer and System Sciences
82.2 (2016), pages 310–332. DOI: 10.1016/j.jcss.2015.09.002.

[15] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. 2nd edition.
Springer Monographs in Mathematics. Springer, 1995. DOI: 10.1007/3-540-2878
8-4.

[16] Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In Proc.
32nd Annual ACM Symposium on Principles of Distributed Computing (PODC
2013), pages 137–146. ACM, 2013. DOI: 10.1145/2484239.2484244.

[17] Bernd Finkbeiner and Sven Schewe. Uniform distributed synthesis. In Proc. 20th
Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pages 321–
330. IEEE, 2005. DOI: 10.1109/LICS.2005.53.

[18] Martin Gardner. The fantastic combinations of John Conway’s new solitaire
game “life”. Scientific American 223.4 (1970), pages 120–123.

[19] Mika Göös, Juho Hirvonen and Jukka Suomela. Lower bounds for local approx-
imation. Journal of the ACM 60.5 (2013), 39:1–23. DOI: 10.1145/2528405.

[20] Lauri Hella and Jouko Väänänen. The size of a formula as a measure of complex-
ity. In Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical
Logic and Philosophy of Mathematics. Ontos Mathematical Logic 5. De Gruyter,
2015, pages 193–214. DOI: 10.1515/9781614516873.193.

[21] Juho Hirvonen, Joel Rybicki, Stefan Schmid and Jukka Suomela. Large cuts with
local algorithms on triangle-free graphs. The Electronic Journal of Combinatorics
24.4 (2017), #P4.21. URL: https://www.combinatorics.org/ojs/index.php/eljc/
article/view/v24i4p21.

[22] Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith and Josef Widder. Para-
meterized model checking of fault-tolerant distributed algorithms by abstraction.
In Proc. 13th International Conference on Formal Methods in Computer-Aided
Design (FMCAD 2013), pages 201–209. IEEE, 2013. DOI: 10.1109/FMCAD.2013.66
79411.

62

References

[23] Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith and Josef Widder. To-
wards modeling and model checking fault-tolerant distributed algorithms. In
Proc. 20th International Symposium on Model Checking Software (SPIN 2013),
pages 209–226. Springer, 2013. DOI: 10.1007/978-3-642-39176-7_14.

[24] Antti Kuusisto. Infinite networks, halting and local algorithms. In Proc. 5th
International Symposium on Games, Automata, Logics and Formal Verification
(GandALF 2014), pages 147–160. Open Publishing Association, 2014. DOI:
10.4204/EPTCS.161.14.

[25] Antti Kuusisto. Modal logic and distributed message passing automata. In
Proc. 22nd Annual EACSL Conference on Computer Science Logic (CSL 2013),
pages 452–468. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013. DOI:
10.4230/LIPIcs.CSL.2013.452.

[26] Antti Kuusisto and Fabian Reiter. Emptiness problems for distributed automata.
In Proc. 8th International Symposium on Games, Automata, Logics and Formal
Verification (GandALF 2017), pages 210–222. Open Publishing Association, 2017.
DOI: 10.4204/EPTCS.256.15.

[27] Tuomo Lempiäinen. A Classification of Weak Models of Distributed Comput-
ing. Master’s thesis. Department of Mathematics and Statistics, University of
Helsinki, 2014. URL: http://urn.fi/URN:NBN:fi-fe2017112251644.

[28] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on
Computing 21.1 (1992), pages 193–201. DOI: 10.1137/0221015.

[29] Zohar Manna and Pierre Wolper. Synthesis of communicating processes from
temporal logic specifications. ACM Transactions on Programming Languages
and Systems 6.1 (1984), pages 68–93. DOI: 10.1145/357233.357237.

[30] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal
on Computing 24.6 (1995), pages 1259–1277. DOI: 10.1137/S0097539793254571.

[31] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Discrete
Mathematics and Applications. SIAM, 2000. DOI: 10.1137/1.9780898719772.

[32] Fabian Reiter. Asynchronous distributed automata: a characterization of the
modal mu-fragment. In Proc. 44th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2017), 100:1–100:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. DOI: 10.4230/LIPIcs.ICALP.2017.100.

[33] Fabian Reiter. Distributed graph automata. In Proc. 30th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2015), pages 192–201. IEEE,
2015. DOI: 10.1109/LICS.2015.27.

[34] John von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana, 1966.

[35] Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002.

[36] Masafumi Yamashita and Tsunehiko Kameda. Leader election problem on net-
works in which processor identity numbers are not distinct. IEEE Transactions
on Parallel and Distributed Systems 10.9 (1999), pages 878–887. DOI: 10.1109/71
.798313.

63

-o
tl

a
A

D
D

5

5
/

 9
10

2

 +a
hhei

a*GM
FTSH

9 NBSI 0-7748-06-259-879)detnirp(
 NBSI 7-8748-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

ecneicS fo loohcS
ecneicS retupmoC fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

iä
ip

me
L

o
mo

uT
 g

ni
tu

p
mo

C
de

tu
bi

rt
si

D
ni

yt
ix

el
p

mo
C

dn
a

ci
go

L
 y

ti
sr

ev
i

n
U

otl
a

A

 9102

 ecneicS retupmoC fo tnemtrapeD

ni ytixelpmoC dna cigoL
 gnitupmoC detubirtsiD

 neniäipmeL omouT

 LAROTCOD
 SNOITATRESSID

	Aalto_DD_2019_055_Lempiainen_verkkoversio

