Santeri Levanto

DATA DRIVEN MODELLING FOR VISCOSE QUALITY CHARACTERISATION: A MACHINE LEARNING APPROACH

Master’s Programme in Chemical, Biochemical and Materials Engineering
Major in Chemical and Process Engineering

Master’s thesis for the degree of Master of Science in Technology submitted for inspection, Espoo, 15. February, 2019

Supervisor Ville Alopaeus
Instructor Jarmo Kahala
Demand for textile fibers is increasing, and cellulosic man-made fibers can be utilized as an alternative substance for oil-based end products in textile industry. To compete with oil-based products, a more accessible quality characterization could be helpful.

The aim of this study is to examine the possibilities of a machine learning method called Random Forest in the viscose fiber production and to find out, if the machine learning method Random Forest is applicable for the viscose quality modelling. This is due to traditional regression methods such linear regression not having been successfully applied for the quality characterisation.

The study consists of literature review and an applied part. The literature review considers dissolving pulp and viscose production as well as machine learning and more precisely an algorithm called Random Forest. The applied part consists of data analysis, data handling and other methods required in order to achieve the most accurate Random Forest model.

The study shows, that the Random Forest algorithm has a potential to model the quality behaviour, especially in comparison to traditional linear regression. The Random Forest model can predict with 95% confidence if the viscose quality classifies as good or bad, but the numerical prediction for the quality parameter has a large error margin for the 95% confidence. It is suggested, that the error margin could be lower, if the utilized data was whole and the number of data points was larger.

Keywords machine learning, random forest, viscose, dissolving pulp
Tekijä Santeri Levanto

Työn nimi Datapohjainen mallinnus viskoosin laadun karakterisoinmiseksi: lähestyminen koneoppimisen keinoin

Koulutusohjelma Kemian-, Biokemian-, ja Materiaalitekniikan koulutusohjelma

Pääaine Chemical and Process Engineering

Työn valvoja Ville Alopaeus

Työn ohjaaja Jarmo Kahala

Päivämäärä 15.02.2019 Sivumäärä 58 Language Englanti

Tekstiilikuitujen tarve on kasvussa, ja selluloosapohjaisia kuituja voitaisi käyttää korvaavana raaka-aineena tekstiiliteollisuuden öljypohjaisille tuotteille. Kilpaillakseen öljypohjaisten tuotteiden kanssa, paremmin saatavilla oleva mallintaminen tekstiilikuitujen laadulle voisi olla hyödyllistä.

Tämän tutkimuksen tarkoituksena on tutkia koneoppimismenetelmän ”Random Forest” mahdollisuuksia viskoosikuitujen valmistuksessa ja selvittää, voiko Random Forest menetelmää käyttää viskoosin laadun mallintamiseen. Viskoosin laatua ei ole pystytetty mallintamaan perinteisillä lineaarisen mallintamisen keinoilla, ja tästä syystä lähestyminen koneoppimisen kautta on valittu.

Tutkimuksen tulos osoittaa, että Random Forest-algoritmilla on potentiaalia viskoosin laadun mallintamiseen. Random Forest malli pystyy ennustamaan 95% varmuudella, onko viskoosin laatu hyvä tai huono, mutta numeerisella ennusteella on suhteellisen suuri virhemarginaali. Virhemarginaalia voisi saada pienennettyä, mikäli käytettävä data olisi eheämpää ja datapisteitä olisi enemmän.

Keywords koneoppiminen, random forest, viskoosi, liukosellu
5.3 Final Predictions ...44
5.4 Comparison to other models ...45
6 Conclusions ..47
7 Further progress ..48
8 References ...49
9 Appendix ..52
9.1 Measured properties throughout entire manufacturing process 52
Literature part

1 Introduction

Modern society is on a quest towards a carbon neutral world. Cellulosic man-made fibers, which are produced from pulp and are usually referred as viscose fibers, is one such material that can be utilized as an alternative substance for oil-based end products mainly in textile industry. Demand for textile fibers is increasing at rate of 4% a year (Hassi, 2018), and man-made cellulosic fibers has potential for expansion. Oil-based textiles cover 67% of the textile markets (Hassi, 2018) but it has environmental issues with oil and emission restrictions. Nevertheless, the markets of oil-based textiles are growing (Angel, 2018). Cotton-based textiles cover 26% of the textile markets (Hassi, 2018). Despite the fact that large areas of the feasible ground for cotton farming is already covered and there are environmental issues with water usage, the markets of cotton-based textiles are growing as well (Angel, 2018). Man-made cellulosic fibers cover only 6% (Hassi, 2018) and there are not the same environmental issues present as with oil- and cotton-based textiles. Figure 1 Illustrates production rates and market share of cellulosic man-made fibers.

Increasing demand in cellulosic man-made fiber requires more understanding in the substance itself as well as in the manufacturing process. Due to its complex nature, viscose fiber production has not been able to be modelled to sufficient precision. Viscose fiber manufacturing process is rather old and is quite well known (Browning, 1967), but the problem lies within product quality characterisation. An accurate standard test is presented by Treiber (Browning, 1967; Treiber, 1962), but it requires a large amount of work. The test replicates the viscose process and gives filtration value as a result. The filtration value indicates the quality of the product in terms of how well it can be further processed. Due to a complex nature of the Treiber’s test, it would be advantageous to be able to simulate or model the test process rather than spending time and resources in numerous tests. To compete with oil-based products, a more accessible quality characterisation could be helpful.
Artificial intelligence (AI) has been a popular topic recently due to increasing power in computers (Zhang, 2012), which leads AI-applications to be more accessible for anyone desiring to study or utilize it. Given what has already been achieved with AI (Antikainen, 2018; Lei, 2018) gives a reason to believe, that with suitable data available, such technology could be able to be applied for viscose fiber process as well.

1.1 Scope

The aim of this study is to examine the possibilities of AI, more specifically a machine learning method called Random Forest, in the viscose fiber production. The scope of this study is limited to investigation of how the consistence of the raw material, dissolving pulp, combined with process variables affects the quality of the viscose fiber. Goal of this study is to find out, if the machine learning method Random Forest is applicable for the viscose quality modelling.

Figure 1 Increase in demand of cellulosic man-made fibers (Hassi, 2018)
2 Background

This study is done for GloCell Oy, which is a consulting and software company that does data modelling and raw material optimization for pulp and paper industry. The objective for GloCell is to broaden their scope from traditional pulp modelling into dissolving pulp industry. Pulp and paper industries have differences from dissolving pulp and viscose fiber industries, which leads into a desire for a more in-depth review of the latter industries.

2.1 Viscose fiber production

Viscose fiber production utilizes dissolving pulp as raw material. A simple flowsheet of the production is presented in Figure 2. For the entire process, wood acts as a raw material, dissolving pulp as an intermediate and viscose fiber as product. Within viscose fiber manufacturing process, there lies one more intermediate product worth mentioning, that being viscose dope.

Viscose fiber production consists of multiple steps and chemical reactions (Browning, 1967; Jensen, 1977). Strunk (2011) suggests, that after xanthation and addition of lye, which are the final chemical reactions before filtering and spinning, the formed substance is called viscose dope. Consistency of the viscose dope determines the processability of the dope into viscose fibers. The filterability of the viscose dope is a straight indicator for the quality of the viscose fiber, hence making the viscose dope an important intermediate product. (Browning, 1967; Jensen, 1977; Strunk, 2011) Filtration will be considered more in depth in Chapter 2.3.

![Figure 2 Simple flowsheet for viscose fiber production](image)
There are multiple factors within the entire manufacturing line that affect the quality of the viscose fiber as well as runnability of the process. (Strunk, 2012) The factors can be categorized into four segments: wood species utilized as raw material, manufacturing methods used during production of dissolving pulp, measured properties of dissolving pulp and finally process variables in viscose dope production phase. Dissolving pulp properties are further discussed in Chapter 2.2 and a whole list of all the properties included in the above-mentioned segments is presented in Appendix 1. Figure 3 illustrates the sections at which each factor takes place.

Viscose fiber production, also referred as cellulose xanthate process (Browning, 1967), consists of multiple steps, and these steps are presented in a process flowsheet in Figure 4. Each step within the process has variables that affect the runnability and quality of product. The process is well studied and most of the variables have set values that assure runnability (Browning, 1967).
Figure 4 Flowsheet of one viscose production process according to literature (Browning, 1967; Manivasakam, 2016)
2.2 Dissolving pulp

Dissolving pulp can be considered as more demanding pulp compared to traditional pulp used for papermaking, when it comes to quality requirements. According to Jensen (1977), the anomalous requirements compared to traditional pulp are higher chemical and physical purity, more uniform quality and better reactivity. Therefore, the dissolving pulp is produced in different fashion to traditional pulp, and the main differences exist in pulping and bleaching. Like traditional pulp, dissolving pulp acts as an intermediate product and needs to be further processed. There are multiple products that have been produced out of dissolving pulp. Some examples of these include cellulose xanthate, which is further processed into viscose fiber, and cellulose nitrate, which is used in explosives. (Jensen, 1977)

Molecular level events hold a vital role when it comes to refining pulp. The better those events can be measured and presented, the better the behaviour during the refining process can be estimated. In a perfect scenario all the molecular level events such as molecule distribution and molecular structures are measured. In reality, the measurements are made to be simple and they often just reflect those properties. Because the scenario is not perfect, the possible errors in estimations needs to be considered. (Sjöderhjelm, 1999)

For this study the total number of properties measured to be used for the model is initially limited to 32. All those properties are listed in Appendix 1. The measurements represent the behaviour of the pulp. Even though it could seem that accuracy of the estimated behaviour rises when the number of measured properties rises, it is not always true. With increasing number of measurements within samples, the inaccuracy due random correlations increase as well. This means, that these not contributing properties might seem to have an impact on the behaviour when in reality the correlation can be a random incident. It is important to recognize this when constructing a data driven model. Therefore, it can be an upside to have fewer initial measurements rather that a lot. (Frenay, 2014)
2.3 Quality characterisation

There are two common properties that reflect the quality of a dissolving pulp and thereafter viscose dope and viscose fiber. The properties are reactivity and filterability (Söderhjelm, 1999). According to Strunk (2012), reactivity can be defined in multiple manners, and in the case of dissolving pulp it can be called as accessibility as well. Regardless of multiple definitions, a broad idea of the reactivity can be defined as a tendency of the cellulose to create cellulose derivates, and it is presented as a percentage of residual cellulose or cellulose yield (Strunk, 2012). Filterability tests are done for viscose dope (Browning, 1967; Strunk, 2012), and the test determines, how much viscose dope in grams is filtered during two different time spans. The value is calculated and often corrected with viscosity, making the resulting value unitless.

The commonly used measurement for reactivity is suggested by Fock (Strunk, 2012; Fock, 1959) whereas the common measurement for filterability is suggested by Treiber (Browning, 1967; Treiber, 1962). The procedure for both tests differs and both have their ups and downs. Fock’s test is considered fast compared to Treiber’s test, but it lacks in precision. This is due to Fock’s test having only single step in which the reactivity of the dissolving pulp is measured, whereas Treiber’s test is based on replicating whole manufacturing process from dissolving pulp to viscose fiber, hence having multiple steps. Fock’s test is designed for laboratory scale whereas Treiber’s test tries to replicate a larger scale production and therefore operates in a bigger scale. This leads for a time-consuming measurement procedure for Treiber’s test. Given the complexity of the Treiber’s test combined with its superior precision, the data received from Treiber’s test is considered more valuable than those received from Fock’s test (Jensen, 1977). This study is based on results received only from Treiber’s test and therefore Fock’s test is not further discussed.

Treiber’s test results in a filtration value k_w. The filtration value is calculated according to Equations 1 and 2. In Equation 1, t_1 and t_2 are filtration times and M_1 and M_2 are amounts of viscose dope in grams filtered during the respective times. As an example of the filtration times, Strunk et al. (2011) used filtration times 0-20 min for t_1 and 0-60 min for t_2. The initial filtration value is usually corrected according to Equation 2, where η stands for the ball fall time in seconds for a standard viscose dope viscosity analysis, resulting in a corrected filtration value K_w. (Strunk, 2011)
\[kw = \frac{2 \left(\frac{t_2}{M_2} - \frac{t_1}{M_1} \right) \times 10^5}{t_2 - t_1} \]

(1)

\[Kw = \frac{kw}{\eta^{0.4}} \]

(2)

Besides the fact that Kw is dependent on the filtration time and viscosity, different filters affects the outcome as well (Strunk, 2011). In addition, different manufacturers use slightly different values for the constants in the calculation equations, and therefore received Kw values cannot be compared by default between different manufacturers or laboratories. Even though exact Kw values are not comparable, the relative values can be compared to certain extend with one common rule: the smaller the Kw value, the better the quality of the product for further processing. A flowsheet for Treiber’s test is presented in Figure 5. The flowsheet has similarities to the one presented in Figure 4, but only measured properties that are included in the available data are presented. (Browning, 1967; Treiber, 1962)

Treiber’s test can be considered the most accurate testing method due to its large-scale nature, but it is worth mentioning that it is by no means a default procedure that is available at every factory or even for every producer. Data for this study consists of just below 400 laboratory test samples, each sample consisting of multiple measurements.
Figure 5 Flowsheet of the Treiber test with comparison to viscose fiber production (Browning, 1967; Treiber, 1962)
2.4 Modelling the viscose fiber quality

Viscose production has not been successful when it comes to modelling the process. So far, the manufacturers have been running the process according to what has been done before and what has been working out so far. The dissolving pulp grades that have been used are based on their observed processability. The so-called rule of thumb philosophy has been widely used in forest industry due to nonlinear behaviour of processes as well as large demand of the product. Quality of the product has not been a crucial factor. Being able to get product, no matter what quality, out of the factory has been the main goal. (Jensen, 1977; Sjöderhjelm, 1999) Nowadays the technology for nonlinear modelling exists and is available for almost everyone. Estimations for even the most chaotic processes can be presented with knowledge and, more importantly, with available data of the process. (Mamitsuka, 2018)
3 Machine learning

Modelling with machine learning algorithms can be considered as data driven modelling. The idea is to find a model that fits into the available data. The data is required to have one to \(n \)-number of input features, and for a predictive model, one or more output features. The model itself either calculates or estimates a response of inputs for a single output or for multiple outputs. For traditional models, the model can be described as a function \(f(x_1, x_2, \ldots, x_n) \) where number of variables depends on number of inputs, but for machine learning models there is not a single function or a set of functions that describes the model. A machine learning model can be defined as a program that requires a set of learning data from which it creates conclusions and dependences between input and output features (Zhang, 2012).

3.1 History and usage

The idea of machine learning dates to 1970s to 80s (Mamitsuka, 2018), but the idea has gained more attention as a subject for studies from the early 2000s. (Biau, 2012; Zhang, 2012) Machine learning models have seen increasing numbers in usage, and they have been utilized for example in biotechnology with DNA modelling (Antikainen, 2018) and modelling spontaneous combustion of coal (Lei, 2018). Other recent studies related to both chemistry and machine learning include reaction performance prediction (Ahneman, 2018) as well as machine learning models considering molecular behaviour (Wu, 2018). No reports of applications for forest industry were found. Either a very little or no study at all has been done, or all the research on the topic considering forest industry is confidential and not available for public.
3.2 Machine learning utilization

Machine learning is a powerful concept, and some of the basic algorithms are available for anyone. Machine learning algorithms are included in calculation and modelling softwares with paid subscriptions, such as MATLAB (MathWorks, 2016), but there are also some open source algorithm libraries for different programming languages, such as Sklearn for Python (Pedragosa, 2010). Utilization of machine learning is covered in next sections.

3.2.1 Approach

A lot of things are to be considered and there are many requirements to justify the usage of machine learning and choosing a correct algorithm. The decision process can be broken down into two key questions. The first question is, should a supervised or unsupervised learning be utilized. When unsupervised approach is chosen, no further major deciding questions remain, but for supervised learning the problem can be broken down even further. It needs to be decided, whether the model should be a classification model or regression model. Figure 6. illustrates the simplified decision path for the machine learning approach. (Mamitsuka, 2018; MathWorks, 2016)

![Figure 6 Simplified decision path for machine learning approach (MathWorks, 2016)]
There are clear guidelines for deciding between supervised and unsupervised learning. For a model that is expected to be a predictive model that results with a response, a supervise approach should be used, whereas for model that is used to gather more information of the data and to find dependencies inside the data, an unsupervised approach should be utilized. The main difference for these two approaches is, that supervised learning requires a response feature whereas unsupervised learning does not. Furthermore, the guidelines for the decision between regression and classification model are clear as well. If the expected outcome should be a continuous number, a regression model should be chosen, whereas if the outcome is expected to be discrete, a classification model should be chosen. (Mamitsuka, 2018; MathWorks, 2016)

Machine learning always depends on data. Besides deciding the outcome of the model, understanding the utilized data type affects the decision of the algorithm. Data types include numeric data as well as texts and images. The data types are considered more in depth in the Chapter 3.2.2. (Mamitsuka, 2018)

For certain data types and expected outcomes there are usually several machine learning algorithms available, and they are often like each other with minor optimization differences. It might not be possible to decide the correct algorithm solely based on written theory, and according to MathWorks (2016), the model selection often comes down to trial and error.

Deciding the right algorithm to be utilized is a large part of the model building process. The following steps depend on the algorithms used, but there are simplified guidelines for finishing the model. The steps include pre-processing the data, deriving features, training the model and finally iterating and optimizing the model. A simple workflow for machine learning model process is presented in Figure 7. (MathWorks, 2016)

![Figure 7 Workflow of a machine learning process according to MathWorks (2016)](image-url)
The data is rarely ready to be utilized with machine learning algorithms, and therefore the data needs to be pre-processed. Pre-processing includes filling missing data gaps with different data generation methods as well as removing the data sets with clear measurement errors. (Pedragosa, 2010) Features and their selection is explained in the following section, as well as training the model.

3.2.2 Data types and algorithms

For machine learning algorithms, there are some terminology that needs to be explained. The data consists of multiple instances, and the instances consists of multiple features. For supervised learning it is also required, that each instance has a response feature. Considering dissolving pulp as an example of a vector data type. Each individual dissolving pulp sample acts as an instance, and all the measured properties and variables associated with that dissolving pulp are considered as features. The result is a matrix, and therefore the data type is called vector. Table 1 illustrates the matrix. (Mamitsuka, 2018)

<table>
<thead>
<tr>
<th></th>
<th>Feature 1</th>
<th>Feature 2</th>
<th>Feature 3</th>
<th>Feature 4</th>
<th>...</th>
<th>Feature n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance 1</td>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
<td>...</td>
<td>n1</td>
</tr>
<tr>
<td>Instance 2</td>
<td>a2</td>
<td>b2</td>
<td>c2</td>
<td>d2</td>
<td>...</td>
<td>n2</td>
</tr>
<tr>
<td>Instance 3</td>
<td>a3</td>
<td>b3</td>
<td>c3</td>
<td>d3</td>
<td>...</td>
<td>n3</td>
</tr>
<tr>
<td>Instance 4</td>
<td>a4</td>
<td>b4</td>
<td>c4</td>
<td>d4</td>
<td>...</td>
<td>n4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Instance m</td>
<td>am</td>
<td>bm</td>
<td>cm</td>
<td>dm</td>
<td>...</td>
<td>nm</td>
</tr>
</tbody>
</table>

Table 1 Matrix formed of instances and features. a-n/1-m represents numerical values
Besides vector data type, Mamitsuka (2018) suggests that there are five other data types utilized by machine learning algorithms: sets, sequences and strings, trees, graphs and nodes in graph. For each data type there is a list of machine learning algorithms that can be associated with them. Table 2 illustrates algorithms and methods that should be used with each data type.

![Table 2 Machine learning algorithms arranged according to data type they utilize (Mamitsuka, 2018)](chart)

The complexity of the data type increases, when moved from left to right on the Table 2. When moved to the right, each data type can be considered as a special case of the previous data types. This explains the high number of algorithms associated with vector data type. When it comes to choosing and eliminating algorithms to be used, it would be advantageous if the case could be considered as a more complex data type. (Mamitsuka, 2018) Figure 8 illustrates the differences of the data types.
Figure 8 Data types associated with machine learning (Mimatsuka, 2018)
Vectors are the simplest data type of the six. For vectors, each instance has the same number of features, but the features do not need to be in any specific order. For data that is not whole, the instances with missing feature values require some data generation.

Sets are a special case of vectors. Number of features for each instance is not required to be the same, and the features do not need to be in specific order. In the example presented in figure 8, the two set instances are actually the same and considered identical, even though the features are in different order.

Sequences and strings are a special case of sets. For these, the number of features is not restricted, but the order is significant. These first three data types, vectors, sets and sequences, do not consider, what the relationships between the features within each instance are. For the rest of the data types, the relationship is significant.

The relationships for trees, graphs and nodes in graphs can be considered as routes. What differs the trees and graphs is, that for trees there are only one route from one feature to other, whereas for graphs there can be cyclic structures and therefore multiple routes. For nodes in a graph, there was no illustration available by Mimatsuka. What is said about them is, that for them one instance is a node in the graph. An example is given, where the world wide web is considered as a huge graph, and homepages are the nodes. The important thing to understand about different data types is their existence and relationship to modelling possibilities. (Mamitsuka, 2018)

When the data is known and inspected, and a machine learning algorithm is chosen, the final major step for the model building is training the model. Each algorithm works in its own way, but basically the algorithm takes the input data, usually referred as training data, and re-arranges and forms conclusions and dependencies from it. The training part is the heaviest part in the machine learning model’s building process, and for large models it can take a lot of time. Some algorithms are lighter than others with a price of accuracy, which is a reasonable thing to discuss during the algorithm selection. Trained model can either give structural information of the data (for the case of unsupervised learning), or it can be given data and the model predicts the response (for the case of supervised learning). Finally, the model can be fine-tuned with algorithm specific variables, but the effect is marginal compared to difference between algorithms. (Mamitsuka, 2018; MathWorks, 2016)
3.3 Random Forest algorithm

3.3.1 Basic idea

Random Forest algorithm is one of the ensemble methods for machine learning, and it is basically a data driven model. The Random Forest algorithm has two variations for two types of problems. The first one answers classification problems and the second one answers regression problems. The main idea remains the same for both variations. The Random Forest algorithm utilizes learning trees and combines them, hence the name Random Forest. The whole modelling procedure consists of two phases, a training phase and a predicting phase. (Zhang, 2012)

The learning phase requires data that consists of features and responses. The learning trees are composed of so-called nodes, that basically acts as deciding points for the features. There are two types of nodes, splitting nodes and terminal nodes. At each node it is checked, if the node can be split according to certain rules. If splitting is not possible the resulting node is called terminal node. It can be imagined, that the learning tree is a path and the nodes are crossroads within the path, terminal node being the end of the path. The splitting nodes act in a binary partitioning fashion. For classification problems the rule for each node is whether the feature in question belongs to a certain group, whereas for the regression problems the node checks, whether the value of the feature is bigger or smaller than a set value. When the last considered feature is split and the terminal node is reached, the algorithm takes look at all the formed paths and sets all the responses of each path for their corresponding terminal node. The terminal node is basically an average of all the responses that fall into the terminal node in question. For regression problems each feature could have multiple splitting nodes depending on the disparity of the feature. An example of a learning tree is presented in Figure 9. (Biau, 2010; Zhang, 2012)
It is suggested, that not all the available features should be utilized at the same time. (Frenay, 2014) This gives a possibility for multiple learning trees due to multiple possible combinations of features. These random combinations of features and combinations of these gives valuable information of the importance of each feature. It is also faster to form multiple smaller trees rather than one large tree. It is found, that the number of trees utilized in the forest can be significantly smaller than the number of available trees. If the data is consistent and feasible for the usage of the Random Forest algorithm, the algorithm will always create a reasonable model for the response. This achieved model is always a little different, not significantly though, and hence the prefix “random”. (Zhang, 2012)
Once the model has finished building, the predicting phase for the unknown data sets can begin. The phase is straightforward. The data set is compared against all the learning trees within the forest. Not using all the features during building the forest acts in our favour due to being able to create multiple comparison trees of the single data set. The algorithm creates the same combinations of features as were used during the building phase and checks the fitting responses for the data set in question. If multiple comparison trees lead to the same response, the response is most likely accurate, whereas if all the comparison trees lead to different results there is most likely problems with either the tested data or the model itself. (Zhang, 2012)

3.3.2 Requirements and setup

Using Random Forest algorithm requires setting up. Amount of setup required depends on the quality of data used for the model. If the data is consistent, for example all the samples are from the same laboratory and each data point includes all the same measurements, only a little setup is needed, whereas inconsistent data requires more attention. Setup manoeuvres include consideration of missing data, normalization of data and feature selection.

A clear requirement for Random Forest, or any data driven model, is to have a sufficient amount of data available. Calculations for the required sample size exists for linear regressions (Cohen, 1988), and Shahinfar et al. (2018) suggests, that these calculations can be utilized to get the idea of the sample size. For example, a calculated value to reach 95% power with 1% error yields in need of over 2000 samples (Shahinfar, 2018; Cohen, 1988). This means, that a sufficient number of samples needs to be in thousands rather than in hundreds, which is the case for a number of the published machine learning studies (Sette, 2004; Ahneman, 2018; Antikainen, 2018; Lei, 2018; Shahinfar, 2018; Wu, 2018). Exceptions exists, and for example a study by Lei et al. (2018) got reasonable results with a Random Forest model with only 220 samples.

In theory data is not required to be whole for Random Forest (Zhang, 2012). This is due to the Random Forest algorithm being able to calculate so called proximities for the learning data. The proximities are calculated during the construction phase and they basically consider, how similar samples are compared to each other. To be able to construct the model, the missing values needs to be filled initially by setting their values to be median values of the properties in consideration.
Samples with initially guessed data are compared to similar samples with complete data, and based on those similar samples, a new value is calculated for the missing data. A well coded Random Forest algorithm would iterate the building process multiple times to find the most stable imputations for missing data, but if open source programming library, such as Sklearn is used, a nominal data generation is required. (Pedregosa, 2010) This means that the algorithm cannot process the data if blank spaces remains, and the algorithm is not coded to do the iteration process. The redeeming factor is that error due to data generation diminishes due to building multiple random learning trees from the data. (Zhang, 2012)

Besides data being nominally complete, the data needs to be normalized. This means that all the features should be put into the same scale for example between -1 to 1. By normalizing the data, the algorithm recognizes relative differences within the features. (Pedregosa, 2010)

Feature selection is suggested to be completed to achieve the final model. (Frenay, 2014) The algorithm can calculate the feature importance, which is based on the random feature combinations that the algorithm creates itself. (Pedregosa, 2010) It evaluates, which features has the most to do with the response by checking, which features do have a little to no effect when left out of the learning tree. The feature selection is not a necessity for the function of the model, but it saves a lot of computing power and time when the number of learning data is increased. (Frenay, 2014; Pedregosa, 2010)

Studies considering Random Forest approach such as Abellán et al. (2017) studying Random Forest approach using imprecise probabilities, Antikainen (2018) studying protein-DNA binding specificities modelling with Random Forest and Lei et al. (2018) studying Random Forest approach for predicting coal spontaneous combustion have not considered the setup procedures to the detail. All the above-mentioned studies state, that they have utilized precise data, suggesting that no data generation was required. For these studies, the approach seems straight forward. Data has been ready-to-use, and only parameters that were considered were the size of the forest and number of maximum features. These parameters as well as other tuneable parameters according to Pedragosa (2010) are presented in Table 3.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of trees in forest</td>
<td>Total number of trees build during training. Default number is ten.</td>
</tr>
<tr>
<td>Maximum depth</td>
<td>Defines how deep the trees are. Default depth continues the building until samples cannot be split anymore.</td>
</tr>
<tr>
<td>Minimum samples split</td>
<td>The minimum number of feature samples remaining required for the node to split. Default number is two.</td>
</tr>
<tr>
<td>Minimum samples leaf</td>
<td>The minimum number of feature samples that would appear in the next node. Default is one.</td>
</tr>
<tr>
<td>Maximum features</td>
<td>The number of features used for each individual tree built. Default is the number of features available.</td>
</tr>
</tbody>
</table>

Besides no mentions of data generation, data scaling and normalization are not considered in the studies either. Zhang (2012) and Pedragosa (2010) suggests that normalization and scaling are important factors, so the procedures could be self-evident, and therefore they are not mentioned.

3.3.3 Scoring the model

A so called out-of-bag (OOB) -score can be calculated for the Random Forest model by leaving some of the data points that would be used for fitting outside the fitting procedure. These data points are used instead as testing points for the model. The OOB-score tells, how well the unknown points can be predicted with the model. (Pedregosa, 2010)
Removing some amount of data in order to verify the functioning of the model raises question of how it is decided which data is to be removed. For models with low number of data points, removing multiple data points at time could make a big difference. To avoid any questionable removal system, such as the researcher choosing the removed samples in order to manipulate the results, a simple script is utilized for pure OOB prediction. The script takes the input data table and removes the first sample from it. Then a model is built with the data that lacks the removed sample. Then a prediction is made for the one sample that was removed. Finally, the removed sample is added back to the data, to the last place in the data table. The procedure is repeated until each of the sample has been handled. This way each sample within the data can be considered as true OOB-sample due to not being included in the training data, and at the same time the number of training data is kept at the highest possible. (Pedregosa, 2010)
4 Materials and methods

Data used is received from SciTech-Service, which is a consulting company that has expertise in dissolving pulp industry. The data consists of Treiber-test results of dissolving pulps as well as measured properties of dissolving pulp utilized and some process properties. List of all the measurements included is listed in Appendix 1. The Treiber-test data is received from Säteri-mill and the data consists of measurement-data of dissolving pulp from different mills from a timespan of over ten years. For the sake of clearance, data received from one test routine is called a data point in this study. Initially, the total number of data points is 500. Due to different test routines in mills, the data is not whole. A manual check was done for the data points and only data points with each process variable available were kept. Also, data from two mills was initially excluded due to the pulps being from time during the start-up of the mills. During mill start-up, the process can be unstable, and this could have an unknown impact on the dissolving pulps, therefore possibly affecting the model. This leads to usage of just a little under 400 data points, more exactly 370 data points. Figure 10 illustrates the relative amounts of pulps from different mills.

![Figure 10 Relative amounts of pulps from different manufacturers](image)
There are two serious problems with available data that need to be considered. The first problem is validation of the data. Measurement errors could exist, as well as data that has been prepared from failed tests. Most common validation method is to do parallel tests of the same sample to point out the errors, but for the data utilized for this study this has not been done. It is with high importance to isolate the uncertain data points from the data that is used for teaching the model.

The second problem is missing data within data points. Not every data point has all measurements included. This is due to differences between dissolving pulp mills. Pulps from the same mill have the same measurements, but comparison between different mills creates these holes.

Considering the two problems, there are two ways to study the applicability of machine learning for the quality characterisation. The first way is to try and utilize all the data for the model and find a “universal” model, a model that could predict the response for any pulp grade. This requires data generation for missing measurements within data points, and an assumption, that all the necessary measurements are done. This means that for example all the machinery between different mills is expected to not have an effect for the outcome. There seems to be multiple factors that could go wrong. This leads to consideration of the second approach, which aims to minimize all these factors. The approach is constructing mill specific models. For these models the only obvious downside is the number of data points in the learning data being small. Besides that, no data generation is required, and number of unknown factors, such as differences between machinery, can be reasonably assumed to be low. For the mill specific models, a model was built for pulp grades one to five from the Figure 10 due to reasonable amount of data points available, as well as for one of the two excluded pulp grade that was mentioned in the beginning of the Chapter 4. Inspection of the excluded pulp grade is due curiosity and due to the fact, that it has as large number of data points available. Even though the start-up phase can be expected to be unstable and the quality being poor, the environment has been the same for all the samples.

As mentioned in Chapter 3.2.1, model creation consists of multiple steps. Figure 11 illustrates the steps included for the model creation in this project. The steps are basically the same as suggested in Chapter 3.2.1, with addition of breaking some steps into sub steps. The steps are considered in following subsections 4.2-4.6. for both, the universal model and mill specific models.
4.1 Algorithm selection and justification

An initial feature analysis was done prior to this study by GloCell and SciTech Service. The analysis was a Principal Component Analysis (PCA), and it suggested that correlations exists within the data, but this information could not be utilized any further. That initiated this study to go deeper into the feature dependences. The significant outcome of the PCA is, that the data does not seem to be absolutely random. There are traces of correlations, in which the machine learning algorithms lean on.

As mentioned in chapter 3.1, no studies considering machine learning associated with forest industry were found. Therefore, applying the machine learning philosophy needed to be started from blank. As suggested in the chapter 3.1, the suitable algorithm can be found with assistance of literature as well as with a trial and error method. MATLAB includes many machine learning tools to work with and they were utilized to get the idea of whether the application is reasonable and what sort of model could be applied. Initial trial and error attempts deduced that machine learning model Random Forest could be reasonably applied for the study.
As mentioned in Chapter 3.2.2, information of the data type utilized can be used as an assisting tool for choosing a suitable algorithm. For this case, the data type is clearly a vector, due to the data consisting of multiple instances, which are constructed of the same exact features. This limits the number of the algorithms a little. The Random Forest algorithm suggested by trial-and-error method belongs in to the ensemble learning methods, which is a suggested method for vectors in the Table 2.

The data utilized for this study has structure for machine learning algorithms, and the data has a supported data type for multiple possible machine learning algorithms. Trial-and-error approach suggests the Random Forest algorithm, which has been utilized in studies with close to similar data. With this information it can be concluded, that utilizing Random Forest algorithm is the most feasible approach to study the machine learning applicability for viscose quality characterisation.

The emphasis of this study lies more in the utilization of the Random Forest algorithm rather than studying the algorithm itself, and therefore an existing Random Forest code is utilized. The code libraries are from open source collection for Python called Sklearn (Pedregosa, 2010), and no modifications has been made for the algorithm code.

4.2 Handling missing values

As discussed in previous section, the data for the universal model is not whole, and this needs to be addressed. For mill specific models, no data generation is required.

To get the most out of the available data, the missing data needs to be generated. For this case there is no strictly superior method, because the data and measurements could be much dependent on the mill environment rather than the process. Nevertheless, there are three different approaches to make the data whole. (Pedregosa, 2010) Each method utilizes all the available data and generate the missing values in three diverse ways. The ways are most frequent value, mean value and median value. The most frequent value approach gives each missing value the most frequent value of each feature whereas the mean and median values calculates the mean and median values for each feature and uses it for the missing points. No significant difference was noticed between these three methods, so median approach is used.
4.3 Initial model

The initial model is constructed with the 370 data points that were decided in the Chapter 4. The results of the initial model give an idea of the precision that could be achieved with the available data, as well as gives hints of possible uncertain data points. Ideally the data includes parallel measurements, which reduces the possibility of measurement errors and hence possibility of invalid data drastically.

For this case the starting point is weak when the above-mentioned factors are considered. It is unknown, which data point are invalid, and almost every data point is missing one or more measurement. Additionally, no parallel measurements are included in the data.

The initial model was constructed with Python, and Sklearn libraries (Pedragosa, 2010) were utilized. The libraries included “Imputer”, “StandardScaler” and “RandomForestRegressor”. Imputer library was used to generate missing values and StandardScaler library was used to scale and normalize the initial data point values to values between -1 to 1 so that the machine learning algorithm can manage the data. RandomForestRegressor library is the Random Forest algorithm itself. Initially all other parameters for all the functions remained untouched, but for the RandomForestRegressor, the number of trees built was set to 500, due to default value of 10 is too low to get feasible results (Zhang, 2012).

Besides the libraries concerning the machine learning, a library collection called Pandas was used for data- and file management. Pandas libraries allows extraction of data from Excel file to be used in the Python program, and ultimately the Pandas libraries allows creation of an Excel file from the data in the Python program. (McKinney, 2011)

The precision is not expected to be high for the initial model, and this is seen in the results. Figures 12 and 13 illustrate the prediction precision for the OOB predictions and Figures 14 and 15 illustrates OOB predictions against measured values.

As mentioned in Chapter 2.3, a lower Kw value means higher quality. For this case, a Kw value below 10 is considered good, Kw values between 10 and 20 are reasonable and Kw values above 20 are bad. Therefore, throughout this study the behaviour at the region of Kw values below 20 is considered more closely.
For the mill specific models, the precision is a little more promising for Kw values below 20, but still far from good. As it can be seen in Figures 12 and 13, the precision of the universal model increases clearly when error rate increases, whereas for the mill specific models the precision is far smoother. It is evident, that a model with error rate of +/- 1 with decent precision is out of reach, but a model with lesser than +/- 10 error rate with good precision could be achieved.
In Figures 14 and 15, there is a slight, but noticeable trend able to be seen, but also many outliers. Especially the mill specific models exhibit a linear behaviour between predicted and measured values. There are many outliers in the region between predicted Kw values 10 and 20. This suggests, that learning data could include uncertain data points. The uncertain data is considered more in depth in Chapter 4.6.
4.4 Feature selection

For building a Random Forest model, available data has one restriction. The data needs to be considered as input-output dependency, where measured properties and other variables form a group of input features and one property acts as a response feature. In this case, all the measurements listed in Appendix 1 act as features and filtration value Kw acts as response.

There are a lot of measurements included in the data. Not all the different measurements can or should be used for the model. Not all the features influence the result, and some features might have a false effect, dragging the model into wrong direction. It is required to reduce the number of features to reach a more stable model. (Frenay, 2014) The feature selection can be done in assistance with certain algorithms. (Pedragosa, 2010)

Random Forest algorithm used for the model building holds within its building process the feature analysis output as well. (Pedragosa, 2010) The algorithm does the feature selection basing on the feature importance it calculates. The feature importance needs to be checked by hand to find out, whether only one feature overpowers the whole model, or if the feature importance has an even spread. Brief explanation for each feature is given in Appendix 1. Figures 16 and 17 illustrates the feature importance for the models under development. For the universal model It suggests, that one feature, S18, holds a significant role for the model, but is not overpowering the model too much. For the mill specific models, the process variables seem to hold the most significance. The difference comes from the nature of the data. Mill specific data has consistent and similar values for pulp properties, and the largest differences that affect the filterability comes from process variables. For the universal model, pulp properties seem to affect the outcome more than the process variables.

It is worthy to consider the least noteworthy features and why the Random Forest algorithm suggests them to have no impact. Most of the least impactful features for all the models consists of different wood species. Besides wood species, bleaching and cooking method appear to have close to no impact. The common factor for these features is, that the effect of these features could be seen in other measures. Using certain cooking or bleaching method or utilizing certain wood species could be reflected in other features, therefore making the existence of wood species and those two methods in model insignificant.
Feature Importance - Universal model

Figure 16 Relative feature importance of the universal model

Feature Importance - Mill specific models

Figure 17 Relative feature importance of the mill specific models
4.5 Data composition

There are 370 points of measured data available for the modelling of the universal model. The data is not from a single factory or producer, but from a broad scope of 22 different manufacturers. The data composition according to manufacturers is presented in Figure 18. It should be noted, that one manufacturer represents almost one third of the whole data.

Random Forest algorithm is more accurate, when more data is available. (Frenay, 2014) What is more important, is how the data is spread throughout the responses. As mentioned in Chapter 3.3.2, 370 data points is a rather small number of data points for a Random Forest algorithm, meaning that a more precise inspection on the data composition should be considered. The initial data composition according to Kw value is presented in Figure 19a. The composition is far from being equally spread or balanced. Most of the data points are at Kw range between zero and twenty. For the model this means, that behaviour at the lower end is more precisely learned whereas at the higher end the behaviour is not well learned. This can be seen in the prediction precision, that was considered in Chapter 4.3. Lower end is more precise than higher end.
The data composition needs to be addressed. The problem as it is in this case does not exist in most of the learning algorithm cases where the number of learning data is in thousands. Especially for this case, no specific study plan has been made to study exactly the data behaviour with Random Forest algorithms, but rather the data consist of samples received from production phases at the mills. Therefore, there is no universal solution for the problem. For this case the problem could be eased by creating a classification problem first, rather than a straightforward value prediction problem. The suggestion is as follows. The model is a twofold system that first gives both a categorized prediction and a more precise, numerical prediction. Categorized response spread where the split point value for Kw is 10 is presented in Figure 19b. Split point means the value that divides the responses into categories. With split point value 10, first response category consists of Kw values below 10 and the second response category consists of Kw values above or equal to 10.
4.6 Uncertain training data

The most important thing when dealing with such a small number of training data is to find the uncertain data. That includes data that has had measurement error or unknown situational error. Finding the uncertain data point can be really challenging and needs to be done with caution. There is no simple tool to find incorrect data, but for this case it can be done by hand due to low number of data points. A number of methods is suggested by Frenay (2014) and one of them can be utilized for this case.

The method used for finding and removing uncertain data is basically training the model and removing those training data point, that does not give desired feedback. This is done by comparing data points and trying to find ones with similar features but different response.

4.6.1 Finding uncertain data

The good thing for such small data set is, that the inspection can be done manually with a little assistance of scripted algorithms. The simple algorithm was coded for finding data points with similar features. The similarity is decided with a threshold level, and the removal process is started with small threshold level to find data points with almost exactly similar features. The data points with similar features were thereafter compared manually to find data points with noticeably different response values. In the case of only two or three data points with similar features, due to not being able to decide which of the data points were wrong and which right, all of them are removed. When more than three data points with similar features are present, the mismatching path can be deducted and removed.

The initial removal process aims to remove all the data that is not good enough. A great portion of data is removed in this case, leaving below half of the data (146 data points out of 370) for the model. This is way too small number for a trustworthy model and it is irrational to suggest that over half of the data cannot be used. The initial step is bound to remove good data as well, and therefore a second step, which is based on the model feedback, is performed.
For the second step, all the available data is predicted with the models, universal and mill specific, that are constructed of the 146 data points. This is done to find data points that are not included in the model and the model can predict with reasonable certainty. In other words, the model constructed of the most certain data is used to find out, which of the removed data points match the behaviour of the model. Thereafter, the points that had not been included in the model that can be predicted well are included in the training data. This results in a much higher number of training data and therefore a much more versatile model. This type of data validation could be used as well for further improvement of the model when more data becomes available.

The most obvious danger in doing a feedback-based data addition into the training dataset is, that the initial dataset could be consisted of bad data and therefore the feedback learning results in a model that seems to be behaving well with the data, but in the reality the model has been over fitted with incorrect data. In this case it has been made sure, that the data used is consistent and good by including only data points, that show similar behaviour with each other. The hypothesis is that if more than three data points with similar features results in similar response, the data points are good, and if a data point does not have similar data points in the available data, the data point is considered incorrect. Therefore, the feedback step explains the behaviour of the single pulps that have been removed.

4.6.2 Data composition after removing uncertain data

The removal process for the uncertain data is a crucial part of the Random Forest model building and it can cause some troubles if it is done in wrong fashion. It is important to analyse the data that has been removed as well as the data that remains. For the data that remains the analysis that can be done is by looking at the composition of data, its manufacturer spread as well as response spread. If the manufacturer spread has gone more uneven or if only a small scope of response is remaining, the removal process has not worked out and the data removed is not actually bad, rather the model is built for a small scope of data instead.

The removal phase consisted of two steps. Initial step resulted in 146 data points remaining. The data composition and response spread of the 146 data points are presented in Figures 20a and 20b. The manufacturer spread has remained good, and the response shows a slight change.
The second step in the removal process is the addition of data through a feedback step. The addition step resulted in total of 258 data points in the training data. The data composition and response spread of the 258 data points are presented in Figures 21a and 21b. The manufacturer spread and the response spread have remained good, which suggests a balanced model when it comes to data usage.
4.7 Parameter optimization

Random Forest algorithm can be fine-tuned with certain parameters. The reason for fine-tuning of the Random Forest model is not that much because of optimizing performance, but rather improving computing efficiency. All the parameters that can be tuned for the Sklearn’s Random Forest algorithm are presented in Table 4. Most of the parameters are used with their default values, but two of them were modified for this study. Those parameters are the number of trees in the forest and maximum features used for each tree. (Pedragosa, 2010)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of trees in forest</td>
<td>Total number of trees build during training. Default number is ten.</td>
</tr>
<tr>
<td>Maximum depth</td>
<td>Defines how deep the trees are. Default depth continues the building until samples cannot be split anymore.</td>
</tr>
<tr>
<td>Minimum samples split</td>
<td>The minimum number of feature samples remaining required for the node to split. Default number is two.</td>
</tr>
<tr>
<td>Minimum samples leaf</td>
<td>The minimum number of feature samples that would appear in the next node. Default is one.</td>
</tr>
<tr>
<td>Maximum features</td>
<td>The number of features used for each individual tree built. Default is the number of features available.</td>
</tr>
</tbody>
</table>
Prior studies of Random Forest were used as an assistance for the parameter tuning in this study. (Abellán, 2017; Biau, 2010; Frenay, 2014; Zhang, 2012) This is due to the change of parameters showing as more consistent goodness in results rather than improvements in individual goodness of tests. For number of trees in forest it is suggested, that after a certain point the increasement does not seem to affect the model behaviour anymore. The number of trees is bounded to the number of the data sets, and therefore the number of trees required is case-specific. As Figure 22 illustrates, the error rate diminishing fades off rather quickly. (Zhang, 2012) For this study, 500 trees were found to be good enough number to give consistently satisfactory results.

![Figure 22 Out-of-bag error diminishing with increasing number of trees built for the Random Forest (Zhang, 2012)](image)

Maximum number of features used has multiple possibilities, ranging from squared number of total features all the way to near the number of total features. This parameter is case-specific as well, and possible number of features was tried out between the given scale. (Pedragosa, 2010) The number ended up with is 0.7 in range where 0 is no features and 1 is all the features.
4.8 Information of the model

Data handling was fully coded with Python. Outside libraries used for the model include Pandas-library (McKinney, 2011) for transferring data from excel, and Sklearn-library (Pedragosa, 2010) for the Random Forest algorithms. For the demo program PyQt5-library was used to create a graphical user interface. Due to non-disclosure agreement, the source code is not presented.

The main application for the model is to predict a value for filtration value Kw with the given properties. Input for the model is in form of Excel file with a determined format. The first row must consist of the names of the properties in the correct order. Below the properties row comes all the individual tests that are to be predicted, each for their own row. Not all the properties need to be filled to be able to get a prediction. For the most accurate result, the more there are properties, the better. The demo program is very simple and is just to demonstrate and test the functioning of the model. It asks for Excel file with to be predicted data point and thereafter calculates the predictions. The result is an Excel file that include the predicted value of filtration values as well as list of all the similar data point for each data point in the initial excel file. The graphical interface of the demo program is presented in Figure 23.

![Graphical interface of the demo program](image)
5 Results

5.1 Model behaviour and model precision

Total number of models constructed in this study is twelve: both classification and regression models for universal model and five mill specific models for mills with reasonable amount of data available. For machine learning models, the model behaviour is to be done with out-of-bag (OOB) samples. The idea is presented in Chapter 3.3.3.

The OOB-predictions are considered the most reliable indicators of the functioning of a machine learning model. The OOB-predictions were made for each of models constructed in this study, and the results are illustrated in Figures 24-27. Figures 24a and 24b represent the prediction precisions and Figures 25-26 illustrates the comparison between measured Kw values and predicted Kw values.

For the classification models the responses were divided into two: above and below 15. For universal model, the OOB-precision of the classifying model is 0.86, meaning that 86% of the data points could have been predicted correctly to be below or above 15.

The initially excluded pulp was noticed to behave well, and therefore it was ultimately added into the universal model. It does not affect the model behaviour much, as Figure 27 illustrates, but it affects the classification model drastically. The OOB-precision of the classifying model predicting whether the response is below or above 15 got up to 0.95.

![Prediction precision - Universal Model](image1)

Figure 24a Prediction precision for predicted Kw values below 20 and all the predicted Kw values of the universal model

![Prediction Precision - Mill specific Models](image2)

Figure 24b Prediction precision for predicted Kw values below 20 and all the predicted Kw values of the mill specific models combined
Universal model without excluded pulp

figure

Mill specific models combined

figure

Universal model with initially excluded pulp

figure
5.2 Analysis of bad predictions

Figures 24a and 24b in Chapter 5.1 illustrated the prediction precision for the models, but does not consider, what is a bad prediction. A bad prediction would be something, that is far from the measured value. Considering the fact stated in Chapter 4.3, that Kw values below 10 mean that the quality is good and above 20 means the quality is bad, a bad prediction would be a prediction that states, that the result means good quality when measured value is the opposite, and vice versa. Therefore, the bad prediction can be defined with the classification responses. Since above 20 means bad quality and below 10 means good quality, a classifier with a split point at 15 is used to categorize bad predictions. The classifier results in 61 bad predictions out of initial 370 data points. Therefore, the total error rate of the predictions is calculated to be 16%. The badly predicted data points are also ones that were removed from the learning data in chapter 4.6. Manufacturer spread as well as response spread of badly predicted data points are presented in Figures 28a and 28b. Manufacturer spread looks quite even and is not overpowered by any single pulp grade.
There can be several reasons for the bad predictions, and the false model cannot be counted out with 100% certainty. The reasons other than bad model include all the errors during production state that cannot be explained with measured features, differences between each manufacturer and finally errors that have occurred during the tests. It could be that the data points that are suggested to be bad cannot be proven to be wrong due to the measurements being from a long time-span and from different manufacturers.

5.3 Final Predictions

As suggested in Chapter 4.6, the model is a twofold system. First, the classifier algorithm suggests if the response is below 15 and thereafter the regression algorithm gives it a numerical estimate. Alongside the algorithm models, a similar data points comparison is done for the data point in question. For the data point in consideration, the model informs the user of data points with similar features in the data base and their Kw values.

Even if all the data could not have been fit into the model, the data available is valuable and should be taken advantage of. This approach gives the user an idea of previous behaviour of the pulp, if it has seen broad scope in response or if all the previous tests go well in line. It is hard to teach a machine learning model that tests might fail at times or be inconsistent due to several reasons. It might be possible to teach the model these nuances, but it goes beyond of the scope of this study. For this case the user is given as much information as possible and therefore leaving the user the responsibility to make the conclusions itself.
5.4 Comparison to other models

Random Forest was initially chosen as the algorithm to be utilized for modelling the filterability. There are a lot of other modelling algorithms and methods, out of which two were chosen to be compared with Random Forest. The two other methods are traditional Linear Regression with least squares method and Neural Networks. Algorithms utilized for these models are from the same library by Sklearn (Pedragosa, 2010) to minimize the error that could come from utilizing different algorithms. The same data that was decided to be good data in this study was used for the models, and default values for all the parameters of the algorithms were used. Figures 29-31 illustrate the predicted Kw values against measured Kw values for each model. It is evident, that Random Forest functions better than the other two. For Neural Networks it needs to be mentioned, that no emphasis was put in looking into the functioning of the algorithm. The result is likely to be worse than in an optimized scenario. Therefore, Neural Networks cannot be stated with full confident to be as bad compared to Random Forest as the figures lead to believe.

![Random Forest](image_url)

Figure 29 Predicted Kw values against measured Kw values for Random Forest algorithm
It is worth noticing, that both Linear Regression and Neural Networks suggests negative values. As Equation 1 in Chapter 2.3 states, negative values are not possible for Kw value. Also, the predictions do not follow any linear behaviour and the crucial region between Kw values 0 and 20 is widely spread. It remains unknown what causes the differences between the models, and a more in-depth review in all the algorithms would be required in order to find these differences.
6 Conclusions

The aim of the study was to find out, if machine learning approach could be utilized for viscose quality characterisation. With existing Random Forest algorithm library by Sklearn (Pedragosa, 2010) it was found, that 84% of the seemingly good available data can be utilized or predicted well with a reasonably functioning model for filterability value Kw, and 16% of the seemingly good available data could not be included in the model nor predicted well with the model. The model consists of both classification and regression model. The classification model predicts whether the response is below or above 15, and the precision of the model is 95%. The regression model suggests that the quality behaviour can be modelled, but the precision is far from exact. The error rate for the regression model is +/- 10 for 95% of the samples.

The results of this study suggest, that Random Forest algorithm shows applicability for viscose quality characterisation, especially compared to traditional Linear Regression, but for now the model received from this study cannot be considered as fully functioning or final, rather a proof of concept. For a fully functioning model it would be beneficial to have specifically coded algorithm with iteration function for data generation to reduce the number of randomly generated values. Additionally, it would give users more tools to analyse the results and to make conclusions. The model also needs to be further tested to get proof of full functionality with truly unknown data. Also, the precision of the regression model needs improvement. This can be done with addition of data that has been proven good.
7 Further progress

The model achieved gives a reason to believe, that the Kw value for viscose can be predicted to certain accuracy from known features of dissolving pulp and the process variables of viscose production. This initial model is not perfect though and requires more work to make it more universal and precise. One of the challenges that remains when it comes to universal model is the differences between mills. For individual mills a more precise model can be achieved due to the environment being the same and therefore removing the differences in systematic errors.

For this study, an existing algorithm was utilized. It would be beneficial if some functions were added to the Random Forest algorithm. For most parts the existing algorithm works well, but optimization due to weighing possibilities for example, addition of iterative data generation as well as expanding possibilities for statistical analysis are highly recommended to be included.

The most obvious area for further progress is to include more data into the training data. This requires a lot of recourses, but with time it is possible. In contrast, the data used for this study is from different manufacturers from over ten years’ time. To validate the functioning of the model it is required to test the model in action. It is suggested to continue laboratory tests and keep adding well predicted data into the training data. Especially the validation of the data should be done with parallel tests.
8 References

Janitza, S., 2017. On the overestimation of Random Forest’s out-of-bag error 33. Department of Statistics, University of Munich

Strunk, P., 2012. Characterization of cellulose pulps and the influence of their properties on the process and production of viscose and cellulose ethers. Department of Chemistry, Umeå University

Appendix

9.1 Measured properties throughout entire manufacturing process

<table>
<thead>
<tr>
<th>Category</th>
<th>Property</th>
<th>Unit</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Species</td>
<td>Wood type</td>
<td>-</td>
<td>Scale from 0 to 1, 0 representing fully hardwood and 1 representing fully softwood</td>
</tr>
<tr>
<td></td>
<td>Birch</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beech</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aspen</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemlock</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larch</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pine</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southern pine</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spruce</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Manufacture Methods for Dissolving Pulp</td>
<td>Pulping method</td>
<td>-</td>
<td>Two methods are used depending on the factory: sulfite process (SI) and prehydrolysis kraft process (PHK)</td>
</tr>
<tr>
<td></td>
<td>Bleaching method</td>
<td>-</td>
<td>Three methods are used depending on the factory: chlorine bleaching (C), elemental chlorine free (ECF) and totally chlorine free (TCF)</td>
</tr>
<tr>
<td>Dissolving Pulp Properties</td>
<td>Brightness</td>
<td>%</td>
<td>Brightness of the dissolving pulp</td>
</tr>
<tr>
<td></td>
<td>Alfa</td>
<td>%</td>
<td>Alfa-cellulose content of the dissolving pulp</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>%</td>
<td>Alkali solubility with 10% and 18% NaOH solution</td>
</tr>
<tr>
<td></td>
<td>S18</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R10</td>
<td>%</td>
<td>Alkali resistance with 10% and 18% NaOH solution</td>
</tr>
<tr>
<td></td>
<td>R18</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extract Acetone</td>
<td>%</td>
<td>Amount of acetone present</td>
</tr>
<tr>
<td></td>
<td>Extract DCM</td>
<td>%</td>
<td>Amount of Dichloromethane present</td>
</tr>
<tr>
<td></td>
<td>Ash</td>
<td>%</td>
<td>Amount of ash present</td>
</tr>
<tr>
<td></td>
<td>CED Visco</td>
<td>(\text{dm}^3/\text{kg})</td>
<td>Viscosity of pulp</td>
</tr>
<tr>
<td></td>
<td>Basis Weight</td>
<td>(\text{g/m}^2)</td>
<td>Basis weight of pulp</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>(\text{g/cm})</td>
<td>Density of pulp</td>
</tr>
<tr>
<td>Process Variables</td>
<td>Units</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Lye</td>
<td>g/l</td>
<td>Consistency of lye used for steeping</td>
<td></td>
</tr>
<tr>
<td>Dissolution Temperature</td>
<td>°C</td>
<td>Initial temperature for dissolution</td>
<td></td>
</tr>
<tr>
<td>Change in Dissolution Temperature</td>
<td>°C</td>
<td>Change in temperature during dissolution</td>
<td></td>
</tr>
<tr>
<td>Pressing Time</td>
<td>s</td>
<td>Time used for pressing after steeping</td>
<td></td>
</tr>
<tr>
<td>Pre-aging Temperature</td>
<td>°C</td>
<td>Initial temperature for pre-aging</td>
<td></td>
</tr>
<tr>
<td>AC Alfa %</td>
<td>%</td>
<td>Amount of alpha cellulose in alkali cellulose</td>
<td></td>
</tr>
<tr>
<td>AC NaOH %</td>
<td>%</td>
<td>Amount of NaOH in alkali cellulose</td>
<td></td>
</tr>
</tbody>
</table>