
Aalto University

School of Science

Master’s Programme in Computer, Communication and Information Sciences

Vitalii Ivanov

Implementation of DevOps pipeline for
Serverless Applications

Master’s Thesis
Espoo, May 27, 2018

Supervisor: Professor Kari Smolander, Aalto University
Advisor: Jussi Kyröhonka M.Sc. (Tech.)

Aalto University
School of Science
Master’s Programme in Computer, Communication and In-
formation Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Vitalii Ivanov

Title:
Implementation of DevOps pipeline for Serverless Applications

Date: May 27, 2018 Pages: 78

Major: Software and Service Engineering Code: SCI3043

Supervisor: Professor Kari Smolander

Advisor: Jussi Kyröhonka M.Sc. (Tech.)

Serverless computing is a cloud computing execution model where server-side
logic runs in the stateless compute containers that are event-triggered and usu-
ally fully managed by vendor hosts such as AWS Lambda. This approach is also
called Function as a Service (FaaS). Applications that rely on this approach are
called Serverless applications. Serverless usage promises infrastructure cost re-
duction and automatic scalability. One more important benefit of serverless is
making the operations part of DevOps process simpler. It reduces the time on
the management and maintenance of the servers and sometimes makes them even
completely unnecessary. Despite this fact, applications using serverless comput-
ing model require a new look at DevOps automation practices since it is a new
approach to software architecture design and software development workflow.

The goal of this thesis is to implement DevOps pipeline for a Serverless application
within a single case organization and evaluate the results of implementation. This
is done through design science research, where result artifact is a release pipeline
designed and implemented according to the requirements for a new project in the
case organization.

The result of the study is automated DevOps pipeline with implemented Con-
tinuous Integration (CI), Continuous Delivery (CD) and Monitoring practices
required for the case project. The research shows that architecture of Serverless
applications affects many DevOps automation practices such as test execution,
deployment and monitoring of the application. It also affects the decisions about
source code repositories structure, mocking libraries and Infrastructure as Code
(IaC) tools.

Keywords: DevOps, Continuous Integration, Continuous Delivery,
Serverless, Design Science Research

Language: English

2

Acknowledgements

I would like to express my deep gratitude to Professor Kari Smolander for his
constructive suggestions and professional guidance during the planning and
development of this research work. I would also like to thank Jussi Kyröhonka
for his enthusiastic encouragement and valuable recommendations on this
project. I am particularly grateful for the knowledge and experience given
by academic staff of Aalto University. Finally, I wish to thank my family for
their support throughout my study.

Espoo, May 27, 2018

Vitalii Ivanov

3

Abbreviations and Acronyms

AWS Amazon Web Services
BaaS Backend as a Service
CI Continuous Integration
CD Continuous Delivery
DB Database
DSRM Design Science Research Methodology
FaaS Function as a Service
IaaS Infrastructure as a Service
IaC Infrastructure as Code
IT Information Technology
PaaS Platform as a Service
QA Quality Assurance
SDK Software Development Kit
VCS Version Control System
VM Virtual Machine

4

Contents

Abbreviations and Acronyms 4

1 Introduction 7
1.1 Problem statement . 8
1.2 Structure of the Thesis . 8

2 Background 9
2.1 Introduction to DevOps . 9
2.2 DevOps practices . 12

2.2.1 Source Control . 13
2.2.2 Build Process . 13
2.2.3 Testing and QA . 15
2.2.4 Deployment . 17
2.2.5 Monitoring . 17

2.3 Serverless Applications . 18
2.4 DevOps for Serverless Applications 21
2.5 Integration flow model . 22

3 Research Methods 24
3.1 Research motivation . 24
3.2 Research method . 25
3.3 Data collection . 26

4 Current State Analysis 28
4.1 Project architecture . 28
4.2 Serverless elements of application architecture 31
4.3 Expectations for Serverless Applications 32
4.4 Elicitation of requirements for DevOps pipeline 34

4.4.1 Source Control . 34
4.4.2 Build Process . 36
4.4.3 Testing and QA . 37

5

4.4.4 Deployment . 39
4.4.5 Monitoring . 40

4.5 Results . 41

5 Implementation 44
5.1 Architecture . 44
5.2 Infrastructure as Code solution 45
5.3 Source Control . 46
5.4 CI and CD pipeline . 48
5.5 Monitoring of the solution . 52
5.6 Implementation problems . 53

6 Evaluation 56
6.1 Implemented DevOps practices 56
6.2 Cost calculation . 60
6.3 Pipeline evaluation . 62

7 Discussion 66
7.1 Answers to research questions 66
7.2 Design Science Research . 69
7.3 Future research . 70

8 Conclusions 72

6

Chapter 1

Introduction

Over the last decade, DevOps has become important part of cultures of
many successful companies. Large influence on DevOps was done by wide
adoption of microservices, containers and cloud computing [4]. The next
step in evolution of cloud based and microservice architecture is serverless
computing - code execution model where cloud provider totally takes the
responsibilities of operating system and hardware management. The purpose
of serverless computing is to simplify operations part of DevOps, provide
very scalable execution architecture and predictable pricing model, where
platform users are charged depending on amount of consumed resources.

Despite the large number of materials investigating serverless use cases
[51][2], scalability [43], cloud providers, platforms [42] and success stories
of serverless computing [35], less studies have focused on DevOps practices
supporting Serverless applications. Even if serverless computing is by design
aimed at simplification of operation processes, it still requires the changes
of DevOps practices. How exactly DevOps practices should be implemented
depends on specific use case of serverless computing and concrete project.
But since serverless concept is the same regardless of provider and platform,
the experience from one project might be useful for many other software
companies.

The aim of this thesis is to implement DevOps pipeline for Serverless
application in order to ensure high quality of the software development in
a single case company. The output will be DevOps automation pipeline
which includes the practices of Continuous Integration, Continuous Delivery
and Monitoring implemented according to the requirements of the company
such as technology stack and software architecture. In order to develop this
solution, this thesis will use design science research methodology. To ensure
the usefulness of DevOps practices, a series of workshops and interviews
with developers, QA engineers and DevOps specialists will be done. The

7

CHAPTER 1. INTRODUCTION 8

implemented results will be demonstrated, evaluated and discussed with the
development team of the project.

The scope of the thesis will be limited to one project. The features of the
project will not be revealed. The architecture will be shown sufficiently to
design and implement required DevOps practices without any extra details.
Nowadays, the concept of DevOps includes Culture, Automation, Lean, Mea-
surement and Sharing [14] [23]. This thesis is focused on technical aspects of
DevOps and covers the following groups of practices: Continuous Integration,
Continuous Delivery and Monitoring.

1.1 Problem statement

The thesis will answer the following research questions:

RQ1 What are the requirements for the DevOps pipeline of the case
project?

RQ2 How does Serverless architecture affect DevOps practices such as
CI, CD and Monitoring of the application?

RQ3 How well does implemented DevOps pipeline fulfil company require-
ments?

1.2 Structure of the Thesis

This paper is structured as follows. Chapter 2 reviews existing literature
about DevOps and Serverless applications, as well as describes how to com-
bine them together. Chapter 3 defines the research method and research
questions that the thesis is supposed to answer. Chapter 4 describes the cur-
rent state of the project, architecture and expectations for DevOps pipeline
from development team. Chapter 5 provides the details about DevOps
pipeline implementation. Chapter 6 presents evaluation of implemented
pipeline and cost calculation. Chapter 7 answers the research questions and
proposes new ideas for the future research. Chapter 8 summarizes the find-
ings and draw conclusions from the research.

Chapter 2

Background

This chapter presents the results of literature review about impact of Server-
less architectures on DevOps automation pipeline. It also introduces the key
terms and concepts that will be used in the thesis. Section 2.1 explains the
term of DevOps and summarizes the DevOps adoption benefits and prob-
lems. Section 2.2 examines which groups of DevOps practices are influenced
by architecture of the application and provides their description. Section 2.3
introduces the term Serverless and describes what is Serverless application
and architecture. Finally, section 2.4 reviews the implementation of DevOps
practices for applications with Serverless architectures and demonstrates the
research gap in this field. In addition, section 2.5 explains the notation that
will be used to describe the CI and CD pipeline in chapter 5.

Information provided in this chapter is required to find the answers on
research questions defined in chapter 3. Understanding of available DevOps
practices and awareness of their adoption will help with elicitation of re-
quirements in RQ1. Research about influence of Serverless architectures on
design and implementation of DevOps pipeline will give the background for
the RQ2.

2.1 Introduction to DevOps

DevOps is a relatively new term that appeared a decade ago [30]. Initially
it was a word to explain the need of collaboration between development and
operation teams. Till now DevOps does not have a single definition and
many companies understand it differently [17]. For instance, possible defini-
tions are ”a way of collaboration in which processes are automated as much
as possible”, ”aspect of organizational culture in which development and op-
erations personnel work together closely” or ”the principles and practices

9

CHAPTER 2. BACKGROUND 10

which are needed to create a scalable service infrastructure” [20].
Definition from Gartner IT Glossary says that DevOps represents a change

in IT culture, focusing on rapid IT service delivery through the adoption of
agile, lean practices in the context of a system-oriented approach. DevOps
emphasizes people (and culture), and seeks to improve collaboration between
operations and development teams. DevOps implementations utilize tech-
nology - especially automation tools that can leverage an increasingly pro-
grammable and dynamic infrastructure from a life cycle perspective [1].

Definition from Gartner reflects five most important aspects of DevOps:
Culture, Automation, Lean, Measurement and Sharing. These five words em-
phasize the most modern understanding of DevOps and can be abbreviated
as CALMS. Short description of each of these aspects is presented below.

Culture

DevOps requires open culture with good communication and collaboration
channels in the core of it. Collaboration is required not only between devel-
opment and operations teams but also between all stakeholders within the
company and even outside of it such as company clients. Good collaboration
is the key of successful implementation of all other practices and sometimes
it even requires changes in organization’s structure [33]. Attributes of good
culture are empathy, good working environment and support between em-
ployees [34].

Automation

Automation of routine tasks in software development makes their execution
faster and reduces the risk of mistake [33]. The most repeated tasks in soft-
ware lifecycle are building, testing and deployment. CI, CD practices sup-
ported by declarative description of the infrastructure called ”Infrastructure
as Code” (IaC) are aimed at elimination of manual actions.

Lean

Lean software development describes a set of principles aimed at waste min-
imization and maximization of the customer value. DevOps should help to
find and address the causes of development wastes and it will allow to re-
duce product time to market which might be critical for the business needs.
Possible practice here is Continuous Monitoring with the focus on immediate
alarm in case of the problems [21]. It can help to find problematic places in
the software and fix them quickly to create a value for the customer.

CHAPTER 2. BACKGROUND 11

Measurement

Performance and usage data gathered from production environment allows
to understand the product better. This data should drive decisions, im-
provements and changes to the system [34]. This principle is called ”putting
efficiency and process into perspective” [33]. Measurement and visualization
are important not only for application running but also for QA status and
code quality data.

Sharing

This aspect of DevOps emphasizes knowledge sharing part of collaboration
within organization. For instance, developers and operations should try to
make product documentation accessible and understandable by both sides.
Sharing process should be facilitated by knowledge management [19].

Adoption of DevOps

Adoption of DevOps expects cultural change in IT organization. Only then
it will make a positive impact on the overall productivity. Understanding
of adoption benefits as well as problems will help to select and propose the
useful practices for every new company and project case avoiding possible
issues.

The expected benefits of DevOps are similar in all selected research pa-
pers. They are related to faster feature release, improved quality assurance
and enhanced collaboration within the team [40]. Interesting fact is that
even the papers focused only on CI practice of DevOps list exactly the same
benefits [44][39][48].

DevOps practices’ adoption problems can be divided into two groups:
technological and social [32]. Example of technological barriers is dissimilar-
ity of development and production environments [40].

Example of social problems is ambiguity in the definition of DevOps which
is called as one of the main failure reasons in DevOps adoption [40]. El-
berzhager and Arif with the group of authors also emphasize the importance
of common understanding of DevOps within the company [18]. Based on
their studies they recommend starting with the small changes in a manage-
able context of a small project and define requirements for tools and processes
to be utilized in the DevOps environment.

CHAPTER 2. BACKGROUND 12

Continuous Integration, Delivery and Monitoring

Lean concept of flow introduced many continuous activities such as Con-
tinuous Planning, Continuous Security, Continuous Trust and Continuous
Innovations [23]. These activities affect business and planning, development,
operations and innovations processes within the company. Continuous Inte-
gration, Delivery and Monitoring are the most popular activities from the
family of ”continuous” and they became the cornerstones of successful De-
vOps implementation.

Continuous Integration can be defined as a software development practice
where developers merge their code changes into the shared code base as often
as possible and these changes are validated by running a code quality analysis
tools, building the project and running automated tests. It allows to avoid
integration problems when building and testing of the project is delayed for
the last minute [24].

Continuous Delivery is the next step after CI that makes sure that a
project is ready to be released at any time by request. It can be released to
development, staging or production environments. One more similar term is
Continuous Deployment which means that deployment of successful builds
to chosen environment happens automatically after every commit to selected
branches [29].

Continuous Monitoring is the set of practices to monitor applications’
run-time behaviour for early detection of problems, such as performance
degradation or infrastructure or business logic errors [23].

Together CI and CD practices can be called release engineering pipeline
[17]. This pipeline can also be called with a more wide term - DevOps
pipeline, especially if it includes additional practices such as Continuous
Monitoring.

2.2 DevOps practices

From software architecture perspective DevOps has an impact on the devel-
opment cycle including build, test, deployment and post-deployment moni-
toring phases [6]. This section presents the practices for effective work with
all these phases of software development cycle. In addition, source control
practices are combined into separate group because they play crucial role in
code sharing and team collaboration and are also widely presented in De-
vOps literature. Analysis of the practices was done based on four popular
books about DevOps [6][31][50][29] and one CD maturity checklist [37].

CHAPTER 2. BACKGROUND 13

2.2.1 Source Control

VCS is used to store code history and share the code. Version Control System
(VCS) allows developers to save the code changes and rollback to the previous
versions in case of mistakes. It is also a collaboration tool to share the code
within the team being a single storage of the code base where all changes are
merged.

Branches are used for isolating work. Branching is a powerful feature
of VCS. Branching strategy is a set of rules that describes when branches
should be created, how they should be named and what is the purpose of
the shared branches. This strategy should be chosen properly to maintain
code base in a consistent way and isolate developers work to avoid blocking
of development process because of unstable or unfinished code in the main
branch.

Pre-tested merge commits. Commits into the shared branches should be
tested before merging to avoid unstable state of the code base. This practice
is connected to the Testing and QA practices that are described in section
2.2.3.

All commits are tied to tasks. Commits should be linked to the tasks to
simplify project navigation and issues investigation. Developers can check
the tasks descriptions linked to the commits and the opposite - all commits
linked to the task are listed in issue tracker. Implementation of this practice
is usually achieved through integration of VCS with an issue tracker and
usage of conventional commit messages.

Version control DB schema changes. Database (DB) schema changes also
should be under version control. It helps to automatically apply the new
changes in the data model and recover the schema in case of the problems.

Release notes auto-generated. A lot of projects require release notes re-
ports. Usually release notes are based on the commits to the VCS. Release
notes auto-generation can help to save a lot of time on manual copying of
commit messages and making the reports out of them.

Table 2.1 shows summary of source control practices in existing literature.

2.2.2 Build Process

Build process is run automatically on commit. Build process is a process of
making an artifact from the source code. It should be automatically triggered
to immediately notify developers about the issues. Faster feedback about
build status helps to keep the project in a stable state. There are many build

CHAPTER 2. BACKGROUND 14

DevOps: A
Software Ar-
chitect’s Per-
spective [6]

The
DevOps
Handbook
[31]

Practical
DevOps
[50]

Continuous
Delivery
[29]

CD:
Maturity
checklist
[37]

VCS is used to store
code history and share
the code

X X X X X

Branches are used for
isolating work

X X X X X

Pre-tested merge com-
mits

X X X

All commits are tied to
the tasks

X X

Version control DB
schema changes

X X

Release notes auto-
generated

X

Table 2.1: Source Control practices

process automation solutions available, such as Jenkins1 and CircleCI2.
Build artifacts are managed by purpose-built tools, no manual scripts.

Many common development routines are already simplified by automation
tools. Artifacts managements is one of them. In case of cloud-based architec-
tures there are many IaC solutions such as CloudFormation3 and Terraform4

that help to describe infrastructure in a declarative way and also maintain
the artifacts such as AWS Lambda zip archives.

All artifacts have build versions with major version and commit or CI
build number. To keep the history of artifacts and be able to rollback the
project to the previous version it is helpful to have a versioning convention.
Major, minor version and unique value such as commit or CI build number
is a common example of such convention.

Dependencies are managed in a repository. All developers should use the
same versions of project dependencies and, what is more important, the same
dependencies should be used in production. To keep dependencies consistent
among different environments it is recommended to store their versions in a
repository.

1https://jenkins.io/
2https://circleci.com/
3https://aws.amazon.com/cloudformation/
4https://www.terraform.io/

CHAPTER 2. BACKGROUND 15

Build environment based on VMs. Virtual machines (VMs) allow to iso-
late build environment and make it portable. These qualities help to achieve
more stable and scalable building process comparing to build environments
with manual configuration on physical machines.

Table 2.2 outlines presence of build process practices in existing literature.

DevOps: A
Software Ar-
chitect’s Per-
spective [6]

The
DevOps
Handbook
[31]

Practical
DevOps
[50]

Continuous
Delivery
[29]

CD:
Maturity
checklist
[37]

Build process is run
automatically on com-
mit

X X X X X

Build artifacts are
managed by purpose-
built tools, no manual
scripts

X X X X X

All artifacts have build
versions with major
version and commit or
CI build number

X X X X

Dependencies are
managed in a reposi-
tory

X X X X

Build environment
based on VMs

X X X X

Table 2.2: Build process practices

2.2.3 Testing and QA

Automatic unit testing with every build. As with automatic build triggering,
unit tests should be automatically triggered to give immediate feedback about
the status of the project to fix it if it is required.

Code coverage and static code analysis is measured. Code coverage is a
common approach to measure amount of unit tests and check which parts of
the code base are not considered in the testing cases. Static code analysis
helps to find the problems in the code based on community experience and
coding style guides.

Peer-reviews. Peer-reviews allow to find the problems in the code that
could not be found by static code analysis tools. In addition, peer-reviews

CHAPTER 2. BACKGROUND 16

increase the code awareness in the team and encourage knowledge sharing
and collaboration.

Mockups & proxies used. Mockups and proxies allow to imitate behaviour
of external components or systems that could be expensive, lead to much
longer execution of the unit tests or even not required to test the targeted
block of code.

Automated end-to-end testing. End-to-end tests purpose is to imitate the
usage of the system by the end user with all dependencies and integrations.
Execution of these tests should be automated to decrease a number of routine
tasks making by QA engineers.

Integrated management and maintenance of the test data. Test data
should be stored in VCS. It will help, for instance, to connect data with
a certain version of database schema. Talking about the results of test ex-
ecution, they should be easily accessible by project stakeholders and stored
for statistics, such as code coverage dynamics, for chosen period of time.

Automated performance & security tests in target environment. Perfor-
mance tests allow to understand how the system behaves under conditions
of intensive usage. It helps to reveal hidden problems and bottlenecks of the
system. Security tests are aimed at finding of software vulnerabilities that
can be used by intruders to harm targeted company or its users.

Table 2.3 shows summary of testing and QA practices in existing litera-
ture.

DevOps: A
Software Ar-
chitect’s Per-
spective [6]

The
DevOps
Handbook
[31]

Practical
DevOps
[50]

Continuous
Delivery
[29]

CD:
Maturity
checklist
[37]

Automatic unit testing
with every build

X X X X X

Code coverage and static
code analysis

X X X X X

Peer-reviews X X X X
Mockups & proxies used X X X X X
Automated end-to-end
testing

X X X X X

Integrated management
of the test data

X X X X

Automated performance
& security tests

X X X X X

Table 2.3: Testing and QA practices

CHAPTER 2. BACKGROUND 17

2.2.4 Deployment

Fully scripted deployments. Manual task execution increases the risk of mis-
take. Multistep deployments should be fully scripted, especially for the pro-
duction environments.

Auto deploy to the test environment after tests pass. This practice al-
lows to reduce time on manual routine tasks and immediately notify team
members about the issues in deployment process or test execution.

Standard deployments across all environments. Standard deployments
help to find the problems that can happen in production on an earlier stage
such as testing or staging deployment. Identical environments for develop-
ment and production increase reliability of the tests and deployment scripts.

Database deployments. This practice expects the usage of database mi-
gration tools that automatically apply schema changes. Database migration
script should be a part of deployment script. It will help to make deployment
process completely automatic.

Table 2.4 summarizes presence of deployment practices in existing litera-
ture.

DevOps: A
Software Ar-
chitect’s Per-
spective [6]

The
DevOps
Handbook
[31]

Practical
DevOps
[50]

Continuous
Delivery
[29]

CD:
Maturity
checklist
[37]

Fully scripted deploy-
ments

X X X X X

Auto deploy to the
test environment after
tests pass

X X X X

Standard deployments
for all environments

X X X

Database deployments X X X X

Table 2.4: Deployment practices

2.2.5 Monitoring

Log aggregation. Log aggregation helps to deal with the large volumes of
software execution log messages and provides centralized access to them.

Finding specific events in the past. Finding information in the logs his-
tory is a common operation and it should be simplified through the use of

CHAPTER 2. BACKGROUND 18

convenient log browsing tools. These tools can have graphic UI and index
the logs for faster search operations.

Large scale graphing of the trends. Visualization of the trends with the
monitoring dashboard helps to identify the problems in the application before
they became critical. Useful trends can be memory consumption, CPU usage
and system response latency.

Active alerting according to the user-defined heuristics. Timely notifi-
cation about the issues in an application is an important factor of faster
troubleshooting. Alerting can be done by email or SMS messages. Possible
alerting heuristics are too high CPU or memory consumption, errors in the
logs or long system response latency.

Tracing. Tracing allows to follow the request through all components of
the application and measure how long each part of handling process takes.
It is especially useful feature in applications with microservice architecture
where one request can go through many services which might lead to com-
plicated issue investigation process without enabled tracing.

Table 2.5 shows summary of monitoring practices in existing literature.

DevOps: A
Software Ar-
chitect’s Per-
spective [6]

The
DevOps
Handbook
[31]

Practical
DevOps
[50]

Continuous
Delivery
[29]

CD:
Maturity
checklist
[37]

Log aggregation X X X X
Finding specific events
in the past

X X

Large scale graphing of
the trends (such as re-
quests per minute)

X X X X

Active alerting accord-
ing to the user-defined
heuristics

X X X

Tracing X

Table 2.5: Monitoring practices

2.3 Serverless Applications

The term ”serverless” in the cloud context appeared in 2014 when Amazon
launched its AWS Lambda5 service [10]. AWS Lambda allows to deploy in-

5https://aws.amazon.com/lambda/

CHAPTER 2. BACKGROUND 19

dividual functions to the cloud and pay only for their execution avoiding
unnecessary expenses on the idle resources. This model is called Server-
less Compute or FaaS and is defined as a cloud computing execution model
where logic runs in the stateless containers that are event-triggered and fully
managed by third party platforms [41]. The term ”serverless” also defines
Backend as a Service (BaaS) model that describes applications that rely on
extensive usage of services such as databases or authentication managers
provided by external vendors [10]. Serverless does not mean that there is
no server-side logic or servers in general. It emphasizes that developers can
leave most of operational tasks related to the server maintenance such as
operating system updates, fault-tolerance, scalability and monitoring to the
cloud provider [5].

Currently FaaS is considered as one of the most modern step in evolution
of public clouds [49]. The first one was Infrastructure as a Service (IaaS)
that provides virtualized computing resources where user should configure
operating systems by himself or herself. The next one was Platform as a
Service (PaaS) which is built on top of IaaS and provides the services such as
web-application hosting where provider is responsible for operating system
maintenance. The wide spread of container technologies, such as Docker6 and
Kubernetes7, made popular one more cloud computing model - Container as
a Service that combines flexibility of IaaS and reduced maintenance cost of
PaaS solutions [10]. The main difference of FaaS with earlier cloud computing
models is that user pays only for actual code execution and has out of the
box application scalability.

Usage of BaaS and FaaS together allow to build powerful applications
with minimum expenses on infrastructure or server maintenance [43]. Appli-
cations that use BaaS, FaaS or both of them are called Serverless Applications
or applications with Serverless Architecture [41].

Serverless applications have following benefits:

• Low cost. Serverless provides a pay-per-use model without a need to
pay for idle resources. In addition, organization saves the resources on
hardware maintenance. It applies not only to the expenses on hardware
but also to the reduced labor cost. Some use cases show that migration
of an application to the Serverless architecture can reduce the cost by
between 66% and 95% [2].

• Enhanced scalability. Having huge amount of calculation resources, the
cloud provider can easily do horizontal scaling of the containers running

6https://www.docker.com/
7https://kubernetes.io/

CHAPTER 2. BACKGROUND 20

the deployed functions. It allows to execute thousands of operations
concurrently without additional configuration [10].

• Decreased time to market. Time and resources that were previously
spent on server maintenance now can be aimed at feature development
and delivery. The use of external BaaS services promotes prototyping
and lean approach which might be especially helpful for startups [10].

Serverless applications have their weaknesses and limitations as well:

• Latency. FaaS solutions are based on containers. Even if container is
considered as the lightweight alternative to VM it is still takes from
tens to hundreds of milliseconds to run it. It explains the problem of
cold start that might make this Serverless computing as inappropriate
for some use cases which require real-time processing [2][10].

• Security. Developers have access only to the security settings provided
by the cloud platform. The fact that the code runs in a shared environ-
ment with many other applications cannot make it absolutely secure
[10][2].

• Limited life-span. AWS Lambda execution has a limit of 5 minutes
which makes it unacceptable for some long-running processes like keep-
ing open HTTP connection and receiving a stream of data for a long
period of time. Some use cases, such as big data analysis, can eliminate
this problem through workflow chains [2].

• Vendor lock-in. Code running in Serverless environment is usually
highly dependent on other services such as database, logging or API
mapper provided by the same platform which can lead to the vendor
lock-in [2].

The common use cases of Serverless applications are websites, chatbots,
triggered processing, scheduled events and big data processing. CPU-intensive
long running tasks and real-time processing such as multiplayer-intensive
games should be avoided [53][52]. The typical Serverless application relies
on third party cloud platform and uses the following services: API mapper,
database, binary storage, logging solution, notification service, infrastructure
provisioning tool and Serverless computing service by itself [47][12][53].

Success of AWS Lambda service led to the raise of new FaaS platforms
such as Google Cloud Functions 8, Microsoft Azure Functions 9 and IBM

8https://cloud.google.com/functions/
9https://azure.microsoft.com/en-us/services/functions/

CHAPTER 2. BACKGROUND 21

OpenWhisk 10 [25]. The difference between these platforms is mostly in
integration with other services of these cloud providers. It is also possible
to deploy FaaS solution on-premises using open source platforms such as
OpenWhick11, Kubeless12 or OpenFaaS13. Deployment of your own Serverless
platform adds server maintenance overhead but gives better security control.

It is predicted that Serverless applications will become more and more
popular due to high demand in edge computing to serve billions of mobile
devices and impracticality of keeping idle servers in resource constrained
environments [49].

2.4 DevOps for Serverless Applications

Literature review showed the lack of academic resources about DevOps for
Serverless applications. At the same time, there are many blogposts about
this topic mentioned below in this section. It confirms the observation made
by Dingsøyr and Lassenius that continuous deployment and DevOps topics
are industry rather than research driven [15].

The common pattern observed in existing literature is that cloud-based
architectures encourage the use of DevOps through decomposition of the
system into smaller and more manageable components which leads to smaller
teams and simplifies decision making about each single component comparing
to large monolith systems [4][13]. Serverless computing, being a next step in
evolution of cloud computing as shown in the previous section, is sometimes
described even as the No-Ops solution [11], but in practice, it still requires
CI/CD pipeline and maintenance operations [7].

Serverless gives the following advantages to DevOps process:

• Operability from the start. Serverless approach combines development
and operations. Even the simplest workflow with Serverless functions
expects deployment to the cloud platform. And this deployment re-
quires operational decisions such as amount of memory for calculations
[26]. Serverless promotes a culture where software is developed to be
ready for production right from the start [3].

• Broad skillset but less specialists are required. Serverless erases the dif-
ference between development and operations specialists. Their skills

10https://www.ibm.com/cloud/functions
11https://openwhisk.apache.org/
12https://github.com/kubeless/kubeless
13https://github.com/openfaas/faas

CHAPTER 2. BACKGROUND 22

can be merged into single role of a cloud engineer. It makes the spe-
cialists more universal and ready to solve all Serverless platform related
problems [26]. In general, Serverless application maintenance requires
less specialists comparing to on-premises deployments because it does
not need hardware infrastructure or even virtual environments support
[9].

Discovered DevOps challenges for Serverless applications are:

• Local debugging is complicated. Serverless approach expects application
execution in a cloud and usually together with other cloud services. It
makes difficult to reproduce execution environment in local debugging
and requires extensive usage of mocking libraries [5].

• Limited access and monitoring. Developers no longer have access to the
servers to monitor behaviour of the applications on operating system
level. They only can read the messages that were written by the appli-
cations and use cloud platform logging and tracing services. Traditional
tools for monitoring and server access are not applicable anymore [5].

Serverless applications make CI and CD practices ”a new normal”[26].
Resulting infrastructure can be easily modified because serverless expects
storage of configurations and business logic together in the same repository.
This close connection between business logic and infrastructure together with
atomic nature of serverless functions makes deployments and rollbacks espe-
cially simple with a help of IaC tools.

Literature review helped to identify only few aspects of Serverless appli-
cations that directly affect DevOps process and could be called as Pros and
Cons of Serverless. But at the same time, almost all materials mentioned that
this new cloud computing model requires properly designed CI/CD pipeline
[9] development of which is the main goal of this work.

2.5 Integration flow model

This section presents a notation for description of software integration flows.
It will be used in chapter 5 to visualize implemented CI and CD pipeline. This
notation was proposed by St̊ahl and Bosch to address the variation points in
continuous integration flows [46]. Later the authors of the model improved
it based on the feedback from the integration engineers and successfully used
it to describe and compare different CI implementations in another work
[45]. The reason for using an established descriptive model in this study is

CHAPTER 2. BACKGROUND 23

to make representation of developed DevOps pipeline comparable to existing
and future research simplifying experience exchange.

The model includes five elements to describe software integration flows.
Figure 2.1 shows these elements and their possible relations. Input nodes
(triangles) represent sources that provide input data to the model. Trigger
nodes (circles) describe external triggering factors. Activity nodes (rectan-
gles) perform actions on data input. Input edges (dashed arrows) show the
flow of data between the elements. Trigger edges (solid arrows) define the
conditions for triggering the activity nodes.

Figure 2.1: The elements of the Integration flow model

This chapter showed a context of the work and reviewed existing liter-
ature about DevOps, Serverless and their interconnection. This knowledge
is required to achieve the objectives of the work and answer the research
questions defined in the next chapter.

Chapter 3

Research Methods

This chapter describes research motivation and defines research questions. It
also presents the design science research method that will be used to achieve
the goals of the study. Furthermore, the data collection process is described.

3.1 Research motivation

While many studies on the DevOps theory and adoption have been made
[33][20], there are still not enough research on DevOps specific for archi-
tectural patterns, in our case for Serverless applications. Every new project
with Serverless architecture has a risk to face the issues with maintenance and
code quality because there are not enough materials and best practices about
Serverless development. Despite the fact that Serverless promises many ben-
efits comparing to monolith and microservices in terms of operations, it is
still unclear how much effort does it take to maintain DevOps pipeline for
Serverless application. Available materials are usually focused on simple
cases with only few Serverless functions and cannot be considered as the re-
search works [7][27]. At the same time the usage of tens and hundreds of
Serverless functions can lead to maintenance overhead. The reason can be
atomic nature of Serverless functions that leads to many challenges. Some of
the challenges are: should each function has a separate VCS repository, ver-
sion and CI config file, should they share the common unit test data or not?
The answers on these questions depend on every specific team and project,
but the findings from a single case can be useful for the decisions about new
projects.

The case organization studied in this thesis made a decision to use Server-
less architecture for one of the projects. Preliminary analysis that was made
within the company showed that the usage of Serverless model might be ben-

24

CHAPTER 3. RESEARCH METHODS 25

eficial for the project. Architecture of the project is also ready. The main
question is how to organize DevOps pipeline to satisfy the expectations of
the company. Since it is a new project there is no data to compare the new
pipeline with the previous one, so it is required to understand not only how
to build the pipeline but also how to evaluate it.

This motivation and challenges allow us to define three research questions:

RQ1 What are the requirements for the DevOps pipeline of the case
project?
The aim is to understand the company’s needs and expectations
about the DevOps pipeline and how product development workflow
should be designed considering available team resources, knowledge
and possible limitations such as a cost of cloud services usage. It
allows to propose and implement specific DevOps automation prac-
tices to support company processes.

RQ2 How does Serverless architecture affect DevOps practices such as
CI, CD and Monitoring of the application?
The purpose of this question is to identify the expectations of stake-
holders regarding the usage of Serverless architecture, define the in-
fluence of Serverless approach on DevOps automation practices and
understand how to emphasize the opportunities and reduce the risks
introduced by Serverless approach in the new DevOps pipeline.

RQ3 How well does implemented DevOps pipeline fulfil company require-
ments?
Does the implemented pipeline match the expectations from De-
vOps process identified with RQ1? Does it allow to emphasize
benefits provided by Serverless architecture and reduce the risks
of its usage identified with RQ2? What is the cost of execution of
implemented pipeline on the chosen cloud platform?

3.2 Research method

The method used in this thesis is design science research. The key idea of
design science is to produce and evaluate IT artifact intended to solve iden-
tified organizational problems [28]. This method was chosen because the
expected outcome of the work should be an artifact - designed and imple-
mented DevOps pipeline. To achieve this goal multiple problems should be
addressed: problem identification and motivation, definition of the objectives
for a solution, design and development, demonstration, evaluation and com-
munication. All these activities and research examples are described in the

CHAPTER 3. RESEARCH METHODS 26

guideline by Peffers and Tuunanen [38].
The design science research methodology (DSRM) process model is shown

in Figure 3.1.

Figure 3.1: DSRM Process Model

The result of the thesis is the DevOps pipeline made by DSRM guidelines
with four iterations of improvements. Every iteration was a two-week Scrum
sprint. In the beginning of the first sprint and at the end of the last sprint
special workshops were organized to gather the data required to answer the
research questions of this work. The details of these workshops are described
in Section 3.3

3.3 Data collection

Problem and motivation identification was done by the author of the the-
sis based on the personal experience in the case company and preliminary
literature review. It was later discussed and approved by the stakeholders

CHAPTER 3. RESEARCH METHODS 27

within the company. In order to gather requirements, define the objectives
and evaluate the solution, a series of workshops was organized. First work-
shop to define the objectives was the longest one and its duration was four
hours. The workshop was attended by DevOps engineer, team lead, two de-
velopers and QA engineer. The participants were suggested to discuss CI,
CD and Monitoring practices, evaluate their importance, efforts on imple-
mentation and answer the question how does Serverless architecture affect
these practices. Based on the results of the first workshop first version of the
pipeline was designed and discussed with the development team. After the
discussion it was modified and introduced into the project workflow. After
this, the process was repeated in an iterative way: evaluation and objectives
definition discussion, then design and development, then demonstration and
usage. These steps were repeated four times with an interval of two weeks.
The final review session was organized as a workshop that was attended by
senior DevOps engineer, team lead, two developers and QA engineer. The
goal of the final workshop was to get the feedback about implemented De-
vOps pipeline. The content of the workshop was organized in a following
way: the author presented the architecture of the project, emphasised the
Serverless parts of it and described all steps of DevOps pipeline execution.
The participants were free to ask the questions and give the suggestions dur-
ing the presentation. At the end of presentation, the participants answered
the questions what the best parts and risky parts of the pipeline are and also
shared their opinion in a free form.

In addition to the workshops within the company the author interviewed
two developers and one QA engineer outside of the case company to get their
opinion about influence of Serverless architecture on DevOps automation
practices.

Designed DevOps pipeline was the first pipeline for the current project,
which means there were no quantitative or qualitative data available about
previous DevOps process. Data gathered from the workshops was mostly
qualitative. Every new review session provided more qualitative data about
current version of DevOps pipeline. For the final pipeline the author made an
estimation of the cost based on the pricing model of chosen cloud platform.

Data collected in the first workshop helped to answer the RQ1 and RQ2.
Interviews with the developers outside of the company and background re-
search contributed into answering RQ2. The final workshop was the main
source of data to answer the RQ3.

This chapter described research motivation, research questions and in-
troduced DSRM together with data collection process. Next chapter will
present the case project and requirements for the DevOps pipeline.

Chapter 4

Current State Analysis

This chapter introduces the case project and provides the results of DevOps
pipeline requirements elicitation. Case project introduction provides its ar-
chitecture description and explanations of Serverless design patterns used in
it. The most important part of the chapter is description of the results of
DevOps practices workshop. These results help to understand company’s
requirements for the DevOps pipeline.

4.1 Project architecture

The thesis does not descibe the domain field of the project. The focus is
made on Serverless aspects of it. In addition, the architecture of the project
is simplified to visualize it in a more concise way emphasizing the Serverless
parts of it. The project was designed with the usage of Amazon Web Ser-
vices including AWS Lambda. Rationale of cloud platform provider choice
and architectural decisions is out of scope of this work. These decisions are
accepted as an input of this research. Architecture of the project is shown
using context and container diagrams from C4 model [8].

Context diagram of the project is shown in Figure 4.1.
Project described in current work is a web service for binary files process-

ing. For authentication it uses third party authentication service.
Container diagram shows architecture of the system in more details. All

containers except web client should be hosted by Amazon cloud platform and
use particular AWS services. Icons inside of the blocks are official icons of
Amazon Web Services which correspond to the container names. The case

28

CHAPTER 4. CURRENT STATE ANALYSIS 29

Figure 4.1: Case project context diagram

project uses following Amazon services: API Gateway1, AWS Lambda2, S33,
DynamoDB4 and SNS5. Web client is a web application running in a browser.
Component diagram is not presented, because it would repeat container di-
agram due to atomic design of Lambda functions where each Lambda is
responsible for one particular feature. Code diagram is not presented, be-
cause such level of details is not required to make decisions about DevOps
pipeline.

Container diagram is shown in Figure 4.2

1https://aws.amazon.com/api-gateway/
2https://aws.amazon.com/lambda/
3https://aws.amazon.com/s3/
4https://aws.amazon.com/dynamodb/
5https://aws.amazon.com/sns/

CHAPTER 4. CURRENT STATE ANALYSIS 30

Figure 4.2: Case project container diagram

CHAPTER 4. CURRENT STATE ANALYSIS 31

4.2 Serverless elements of application archi-

tecture

Container diagram shows that all backend logic of the application is stored in
AWS Lambda functions. Solutions used for data storage, such as DynamoDB
and S3 buckets, also can be considered as Serverless because they do not
require any server configuration. It means that case project can be considered
as a project with clean Serverless architecture using FaaS and BaaS services.
Serverless use cases and design patterns used in the project are described
below.

Use case: Use AWS Lambda with AWS ser-
vices as event sources
Description: Event source publishes an event
that triggers Lambda function. This use case
ensures loose coupling between the software
components and is popular in event-driven ar-
chitectures. In the case project S3 bucket trig-
gers Lambda function when file uploading is
finished. After that Lambda function can run
some business logic to process uploaded file.

Figure 4.3 Event source
use case

Use case: On-demand Lambda function invo-
cation over HTTPS (Amazon API Gateway)
Description: Lambda function is invoked over
HTTPS. In this case API Gateway is config-
ured to map particular HTTP request on spe-
cific Lambda function. This configuration con-
tains HTTP method, URL path and authenti-
cation type. API Gateway together with AWS
Lambda is the most typical way of design and
implementation of REST API endpoints with
AWS cloud infrastructure in Serverless applica-
tions.

Figure 4.4 Lambda invo-
cation over API Gateway

CHAPTER 4. CURRENT STATE ANALYSIS 32

Use case: Fan-out pattern
Description: Fan-out pattern is used to dis-
tribute a message to all listeners subscribed
on its publisher. In the case project SNS
triggers two Lambda functions when file pro-
cessing is finished. This pattern is also con-
sidered as a way to create event-driven archi-
tectures and perform multiple operations in
parallel.

Figure 4.5 Fan-out pattern

Use case: Custom Authorizer
Description: Custom Authorizer is a design
pattern where API Gateway endpoints call
Lambda function to authorize the requests.
In the case project Lambda function checks
that JWT token passed in HTTP header is
valid.

Figure 4.6 Custom Authorizer

4.3 Expectations for Serverless Applications

The author of the work interviewed two developers and one manager about
their expectations for Serverless architecture of the project. It was done not
to evaluate the architecture but to better understand what a motivation to
use Serverless is and how it can be considered in design and implementation
of DevOps pipeline. The results of interviews are provided below. They
showed that expectations and concerns mostly correspond the benefits and
potential drawbacks of Serverless architectures explored in section 2.4.

Benefits

• Scalability of the project without additional configuration. The cloud
platform takes care of execution of the code and scales it automatically.

CHAPTER 4. CURRENT STATE ANALYSIS 33

• Faster development because there is no need to spend time on server
configuration and updates. Cloud provider takes care of it.

• Pay-per-use policy of FaaS allows to save money on idle services.

Risks

• Possible vendor lock-in. But this is a justified risk because of all pos-
itive aspects of Serverless. To eliminate it the developers are going to
use more interfaces and abstractions in their code which is in general
considered as a good practice of coding.

• Serverless and cloud architectures usually expect Infrastructure as Code
approach which might require DevOps skills from the developers. Not
all developers might be ready to take additional responsibilities. From
the other side, nowadays it is a normal practice that the developers
expend their skills to DevOps, especially if it matches the culture of
the company.

• Debugging can be more complicated because the only real environment
of application execution is cloud platform environment. But the good
code coverage by unit tests and extensive usage of mocking libraries
can help to eliminate this problem.

• Lack of experience with Serverless might lead to some hidden problems.
For instance, how to organize the VCS repositories and structure the
code.

Even if interviewees were mostly speaking about the risks of Serverless
applications, they were still very positive about it. The reason was that the
benefits of the usage are worth of taking the risks. And for every risk the
developers provided some ideas of how to eliminate it.

Some of the listed benefits and risks affect DevOps decisions. For in-
stance, IaC might require organizing of the code in a certain way - i.e.,
store the infrastructure code together with business logic code. Serverless
functions debugging limitations increase the necessity of unit tests and their
automatic execution after every commit. Fear of vendor lock-in is raised be-
cause of extensive usage of external services provided by cloud platform. All
integrations should be tested with the help of mocking libraries at the unit
tests stage and also at the stage of end-to-end tests in the production-like
environment.

CHAPTER 4. CURRENT STATE ANALYSIS 34

4.4 Elicitation of requirements for DevOps

pipeline

As was described in section 3, to elicit requirements for DevOps pipeline the
author organized workshop within the case company where it was proposed
to discuss CI, CD and Monitoring practices for the project and gather the
opinions of participants how does Serverless architecture affect these prac-
tices.

All practices were grouped into five categories: Source Control, Build
Process, Deployment, Testing & QA and Monitoring. For each practice the
participants discussed Implementation ideas, answered the question how does
Serverless architecture affect practice implementation and estimated how im-
portant the practice is.

In addition to the workshop, the author interviewed two developers and
one QA engineer outside of the case company and asked their opinion how
does Serverless architecture affect DevOps practices. In the beginning of the
workshop and interviews author made sure that by Serverless participants
understand extensive usage of FaaS services and cloud databases provided
by third-party cloud platforms. Following sections present the results of the
workshop and provide summary table with practices sorted by importance
for the case project.

The only one technical requirement for DevOps pipeline was the usage
of GitLab Community Edition platform because it was already in use in the
company and preliminary analysis showed that it can be used for Serverless
applications as well. Implementation of the case project is done with Node.js
framework which affects the choice of unit test and mocking libraries.

4.4.1 Source Control

VCS is used to store code history and share the code

Serverless influence: Serverless architecture affects the decision of
how many code repositories to create. In case of monolithic architec-
ture, the source code is tightly coupled and is usually stored in a single
repository. Serverless architecture expects presence of multiple deploy-
able units or functions that can be completely isolated from each other.
Source code of these deployable units, for instance, of AWS Lambda
functions, can be stored in multiple repositories with one repository
per function approach or in one single repository for all functions. One
more approach is to create several repositories, each of which will store

CHAPTER 4. CURRENT STATE ANALYSIS 35

multiple functions based on their purpose or domain field.

Implementation ideas: VCS should be Git since it has very efficient
branching model and team already has an experience with Git and
GitLab. A number of created repositories should be defined based on
the good practices of Serverless applications code maintenance.

Branches are used for isolating work

Serverless influence: Branching model does not depend on the ar-
chitecture of the application. It can be the same for applications with
monolithic, microservice or serverless architecture. The team can de-
cide to use only master branch or extensively use feature branches
depending on the team work practices.

Implementation ideas: Every feature and bugfix should be done in
a separate branch. In addition, personal forks can be used to hide
personal branches. Merges should be performed often to avoid merge
conflicts.

Pre-tested merge commits

Serverless influence: As in the case of branching model, practice with
pre-tested merge commits is not affected by Serverless architecture.

Implementation ideas: GitHub open source development through
merge requests can be used as a reference. Every merge request can
be merged only after the unit tests were successfully executed. GitLab
supports this feature.

All commits are tied to the tasks

Serverless influence: Fulfillment of this practice is ensured only by
Git commit message conventions and integration with issue tracker.

Implementation ideas: Issue management system and VCS should
be connected to bind tickets and commits. Jira and GitLab can have
such integration. Team should decide about Git messages conventions
to connect the commits to the tickets.

CHAPTER 4. CURRENT STATE ANALYSIS 36

Version control DB schema changes

Serverless influence: Serverless approach does not affect this prac-
tice. Schema changes should be stored as IaC and be launched before
deployment of the new version automatically.

Implementation ideas: DynamoDB does not require version control
of schema changes since it is a flexible NoSQL DB.

Release notes auto-generated

Serverless influence: Release notes content depends on how Server-
less functions are grouped. In case if they are stored in separate repos-
itories, then release notes can be unique for each function. If they
are grouped, then release notes describe a set of functions or even all
functions.

Implementation ideas: Each release version should be tagged with
a Git tag. Tag creation can run a script to gather commit history and
put it into release notes.

4.4.2 Build Process

Build process is run automatically on commit

Serverless influence: Build process triggering does not depend on
the software architecture. It depends only on the build automation
system.

Implementation ideas: GitLab Runners can be triggered right after
the commit to run the build process.

Build artifacts are managed by purpose-built tools, no manual
scripts

Serverless influence: In case of Lambda functions artifact is a zip
archive. Purpose-build tools such as Terraform and CloudFormation
should support management of the artifacts. Serverless affects what
kind of purpose-built tools to use and how to store and deploy the
artifacts.

Implementation ideas: Build artifacts can be managed by IaC tool
such as CloudFormation or Terraform and stored in AWS S3 buckets.

CHAPTER 4. CURRENT STATE ANALYSIS 37

All artifacts have build versions with major version and commit
or CI build number

Serverless influence: Instead of API versioning Lambda functions
usually have their own version number and alias. It affects the version-
ing policies and the way how Lambda functions are called.

Implementation ideas: Every service and Lambda function zip archive
should have a major and minor version. In addition, they should have
a CI build number suffix.

Dependencies are managed in a repository

Serverless influence: Dependency management of Serverless func-
tions has no differences with non-serverless project. The tools depend
on the using language.

Implementation ideas: All project dependencies and their versions
should be defined and stored in VCS.

Build environment based on VMs

Serverless influence: Serverless functions can be built inside of the
VMs or Docker containers as all other project types. Serverless does
not affect this practice.

Implementation ideas: GitLab Docker Runners can be used to pro-
vide build containers that can be easily updated and reused.

4.4.3 Testing and QA

Automatic unit testing with every build

Serverless influence: Triggering of unit tests does not depend on
project type or architecture. It depends on the CI system.

Implementation ideas: Test stage of GitLab CI should be run after
each commit.

Code coverage and static code analysis is measured

Serverless influence: Code coverage and static code analysis tools are
not affected by Serverless architecture, but atomic nature of Serverless

CHAPTER 4. CURRENT STATE ANALYSIS 38

raises a question: should code coverage and static code analysis be mea-
sured for every Lambda function separately or for the set of Lambda
functions of the same domain group.

Implementation ideas: Code coverage and static code analysis tools
should be chosen depending on the project programming language.

Peer-reviews

Serverless influence: Serverless architecture does not affect peer-
review practices, but number of review requests may be increased be-
cause of fragmented codebase in case if every function is stored in sep-
arate repository.

Implementation ideas: Peer-reviews can be implemented using Git-
Lab merge request feature.

Mockups & proxies used

Serverless influence: Mockup and proxy libraries are used more
extensively. The code should be designed to support mockups, e.g.,
through the use of interfaces.

Implementation ideas: Mockup and proxies libraries should be cho-
sen depending on the project programming language and used cloud
services.

Automated end-to-end testing

Serverless influence: Since many of the functions are event-driven
and are called asynchronously, writing end-to-end tests might be more
cumbersome comparing to non-serverless computing. On the other
hand, triggering end-to-end tests does not depend on the architecture
and depends only on CI automation system. In addition, end-to-end
tests execution price should be calculated to avoid extra cost. High
price of execution and as well as long running time might be the reason
to run the tests nightly.

Implementation ideas: End-to-end tests should be triggered auto-
matically or manually from the CI system. The decision should be
based on test execution price and duration.

CHAPTER 4. CURRENT STATE ANALYSIS 39

Integrated management and maintenance of the test data

Serverless influence: Serverless architecture affects the decision of
how to organize the test data. Atomic Lambda functions create a risk
of duplication of the test data. For instance, if multiple Lambda func-
tions work with the same database, then database initial test data has
to be duplicated in all functions. Decision to store Lambda functions
of the same group in one VCS repository can help to share test data
among several Lambda functions. At the same time, test results man-
agement and maintenance are not affected by Serverless architecture
and depends on the chosen CI solution and testing framework.

Implementation ideas: Test data should be stored within the project
repositories. Lambda functions code should be organized in a way to
avoid test data duplication. Test reports can be stored in GitLab CI
as the artifacts.

Automated performance & security tests in target environment

Serverless influence: The nature of Serverless computing make the
production-like deployment possible only on infrastructure of the cloud
provider.

Implementation ideas: Performance and security testing should be
done in production-like environment using separate AWS account.

4.4.4 Deployment

Fully scripted deployments

Serverless influence: Serverless architecture influences a choice of
cloud provider and deployment tool. Deployment tool should be scripted
in a certain way.

Implementation ideas: Deployment of Lambda functions can be
done with CloudFormation, Terraform or Serverless Framework tool.
Any of these tools can be run by GitLab CI.

Auto deploy to the test environment after tests pass

Serverless influence: Script triggering depends on CI pipeline tool
and does not depend on the architecture of application. At the same
time, if the team decides to keep all Lambda functions in separate

CHAPTER 4. CURRENT STATE ANALYSIS 40

repositories with their own deployment scripts, it can make the deploy-
ment of the project more cumbersome.

Implementation ideas: Deployment stage of GitLab CI pipeline
should be triggered only after the test stage was passed.

Standard deployments for all environments

Serverless influence: Serverless environment depends on cloud provider.
How exactly functions will be deployed depends on the Serverless archi-
tecture. On-premises Serverless solutions such as Kubeless and Open-
FaaS can help to avoid testing environment and vendor lock-in problems
but they would also require resources on server maintenance nullifying
time-saving benefits of third party provider usage.

Implementation ideas: Infrastructure provisioning should be done
with a help of IaC tools: CloudFormation or Terraform. The project
should be deployed directly to the cloud but to different stages or even
accounts.

Database deployments

Serverless influence: Serverless databases make database admin tasks
unnecessary. Only schema changes or query changes are required. In
case of NoSQL databases even schema changes are not required.

Implementation ideas: DynamoDB database will be deployed to the
cloud as all other services. It also does not require database schema
migrations, because it is NoSQL DB.

4.4.5 Monitoring

Serverless influence: Serverless logging capabilities are tightly coupled
with the logging tools provided by the host platform. They even can be
limited by them.

Log aggregation

Implementation ideas: AWS Lambda is automatically integrated
with Amazon CloudWatch. All logs per one function/version are ag-
gregated into CloudWatch group.

CHAPTER 4. CURRENT STATE ANALYSIS 41

Finding specific events in the past

Implementation ideas: Use CloudWatch search feature that allows
to search Log Groups, Log Streams and specific events within the Log
Streams.

Large scale graphing of the trends (such as requests per minute)

Implementation ideas: Use CloudWatch Metrics that allow to cus-
tomize dashboard with different metrics such as latency, calls counter,
amount of errors, etc. For better visualization the tools such as Grafana
can be used. It can be integrated with CloudWatch and provide better
user experience comparing to the native Metrics tool.

Active alerting according to the user-defined heuristics

Implementation ideas: Use CloudWatch Alarms tool that allows to
create alarms based on Metrics values. The alarm performs one or
multiple actions based on the value of the chosen metric. The action
can be a Lambda function call or a notification sent to Amazon SNS
topic leading to email sending.

Tracing

Implementation ideas: Use Amazon X-Ray tool that allows to trace
event sources that invoked Lambda functions or trace downstream calls
that function made.

4.5 Results

The results of the workshops and interviews are summarized in the Table
4.1. The column ”Importance” answers the question ”How important is
implementation of the practice for the case project”. The result value is
the average of the grades given by the participants of the workshop where 0
means ”does not affect at all” and 10 means ”strongly affects”. The column
”Affected by Serverless” answers the question ”Is implementation of this
DevOps practice affected by Serverless architecture”. In case if at least one
person said ”yes”, it was marked as ”Yes”.

The results of the workshop and interviews showed that usage of Server-
less architecture affects more than half of suggested DevOps automation
practices:

CHAPTER 4. CURRENT STATE ANALYSIS 42

Practice Category Importance Affected by
Serverless

VCS is used to store code history and
share the code

Source Control 10 Yes

Log aggregation Monitoring 10 Yes

Build process is run automatically on com-
mit

Build Process 9 No

Build artifacts are managed by purpose-
built tools, no manual scripts

Build Process 9 Yes

Dependencies are managed in a repository Build Process 9 No

Automatic unit testing with every build Testing & QA 9 No

Automated end-to-end testing Testing & QA 9 Yes

Fully scripted deployments Deployment 9 Yes

Standard deployments across all environ-
ments

Deployment 9 Yes

Finding specific events in the past Monitoring 9 Yes

Active alerting according to the user-
defined heuristics

Monitoring 9 Yes

Branches are used for isolating work Source Control 8 No

Peer-reviews Testing & QA 8 No

Mockups & proxies used Testing & QA 8 Yes

Large scale graphing of the trends (such
as requests per minute)

Monitoring 8 Yes

Tracing Monitoring 8 Yes

Pre-tested merge commits Source Control 7 No

All artifacts have build versions with ma-
jor version and commit or CI build num-
ber

Build Process 7 Yes

Build environment based on VMs Build Process 7 No

Code coverage and static code analysis is
measured

Testing & QA 7 Yes

Integrated management and maintenance
of the test data

Testing & QA 7 Yes

Automated performance & security tests
in target environment

Testing & QA 7 Yes

Auto deploy to the test environment after
tests pass

Deployment 7 Yes

All commits are tied to tasks Source Control 6 No

Database deployments Deployment 6 Yes

Release notes auto-generated Source Control 3 Yes

Version control DB schema changes Source Control 0 No

Table 4.1: Importance of DevOps practices for the case company

CHAPTER 4. CURRENT STATE ANALYSIS 43

• 2 out of 6 source control practices

• 2 out of 5 build process practices

• 5 out of 7 testing and QA practices

• 4 out of 4 deployment practices

• 5 out of 5 monitoring practices

18 out of 27 practices in total are affected by Serverless Ar-
chitecture

Such a significant impact of Serverless architecture on DevOps practices
proves the relevance of current research work.

The participants of the workshop proposed to implement the practices
that have a grade of Importance not less than 5. This criterion left only
two practices out of scope of the developing DevOps pipeline. It proves that
company requires reliable DevOps pipeline which would include almost all
discussed practices and would guarantee high quality of the code through
build process, QA and deployment automation, source control and monitor-
ing.

The input condition for the DevOps pipeline was the usage of GitLab
Community Edition. The AWS-based architecture of the case project also
applied some limitations on the future DevOps pipeline such as usage of
certain IaC tools and AWS cloud platform by itself. Node.js as the project
implementation technology affects the choice of unit testing frameworks and
mocking libraries. Jira was chosen as a project issue tracker that affects only
one practice: ”All commits are tied to tasks”. No limitations for the cost
of the pipeline execution were announced. The research plan expects two
months of work on design and implementation of DevOps pipeline.

Chapter 5

Implementation

This chapter describes the implementation of the DevOps pipeline for the
case project. It also justifies a choice of IaC tool. Pipeline implementation is
based on requirements presented in chapter 4. Implementation was done in
four iterations. Every iteration was a two-week Scrum sprint. This chapter
describes only the final solution. The main changes that were proposed
during the sprint review sessions are provided at the end of the chapter.
Evaluation of the implemented pipeline is described in chapter 6.

5.1 Architecture

One of the requirements for the DevOps pipeline was usage of GitLab1 so-
lution. Requirements elicitation workshop and preliminary analysis of the
tool showed that it can be successfully used to implement selected DevOps
practices.

DevOps pipeline components are shown in figure 5.1. When the engineers
push the code to the GitLab Server it triggers GitLab Runner2. GitLab
Runner executes CI and CD pipelines which consist of jobs. Job is a GitLab
term that describes an activity in CI/CD pipeline. The jobs are run using
Docker3 containers with required build environment including following tools:
npm4, Node.js5 and Serverless Framework6. The images of Docker containers
are stored in GitLab Container Registry7 which is also a part of GitLab suite.

1https://about.gitlab.com/
2https://docs.gitlab.com/runner/
3https://www.docker.com/
4https://www.npmjs.com/
5https://nodejs.org
6https://serverless.com/
7https://docs.gitlab.com/ee/user/project/container registry.html

44

CHAPTER 5. IMPLEMENTATION 45

Figure 5.1 shows that GitLab suite including Runner instances is de-
ployed and works on company’s premises. But the case project, having
cloud-oriented architecture, is deployed on the AWS cloud infrastructure.
Different environments expect different AWS accounts to avoid mix of the
AWS instances such as AWS Lambdas.

Figure 5.1: DevOps pipeline components

5.2 Infrastructure as Code solution

The most popular IaC tools for Serverless applications supporting AWS plat-
form are Serverless Framework8, Apex9, SAM10 and Terraform11. Their com-
parison is shown in the table 5.1.

Based on comparison the choice was done in favor of Serverless Frame-
work. This tool has solid support by community and highest amount of ma-
terials and tutorials available. It also supports plugin extensions to add addi-
tional features to the built-in functionality and description of non-serverless

8https://serverless.com/
9http://apex.run/

10https://github.com/awslabs/serverless-application-model
11https://www.terraform.io/

CHAPTER 5. IMPLEMENTATION 46

Serverless
Framework

Apex SAM Terraform

GitHub stars 22,819 6,873 2,565 11,687
Contributors 394 97 33 1,207
Non-
serverless
resources
support

Through
CloudForma-
tion

Through
Terraform

Through
CloudForma-
tion (SAM is
extension of
CloudForma-
tion)

Terraform is
universal tool
for all kinds of
resources

Plugin exten-
sions

Yes No No Only for
cloud
providers

Other cloud
providers
support

Yes, through
plugins

No No Yes, through
plugins

Table 5.1: Infrastructure as Code tools comparison

resources using native AWS tool which is called AWS CloudFormation12.

5.3 Source Control

The case project was split into three subprojects and each of them is stored
in separate VCS repository. The separation was done based on the purpose of
the code blocks following the best practices provided by Munns [36]. One of
the practices says ”unless independent Lambda functions share event sources,
split them into their own code repositories”. The separation into different
repositories is shown in the figure 5.2.

”Api-service” groups Lambda functions that receive API calls from API
Gateway to process the same domain model. ”Files-processing-service” groups
functions to handle event that is triggered after uploading a file to the S3
bucket with raw binary files. And ”static-website” stores the files provid-
ing user interface to the application through the web application. Each of
these projects has its own Serverless Framework definition file which is called
”serverless.yml”. It was done for independent maintenance and deployment
of the subprojects.

GitLab requires the use of Git13 as a version control system. Git branch-

12https://aws.amazon.com/cloudformation/
13https://git-scm.com/

CHAPTER 5. IMPLEMENTATION 47

Figure 5.2: Container diagram separated by services

CHAPTER 5. IMPLEMENTATION 48

ing model described by Driessen [16] was chosen as a development workflow.
Figure 5.3 shows the illustration of the branching strategy from this article.

This model has several branches with clear purpose. Develop branch
contains the latest development changes merged from the feature branches.
Once all features are implemented it can be branched off into release. Release
has the version of the project that is ready for internal company testing.
Only bugfixes can be applied to release branch and once it is tested it can be
merged into master branch. Master branch contains only production ready
code. Master is a protected branch and only team members with GitLab
Master role should have access to merge the changes into it. All fixes to
release and master branches should be merged back into develop branch.

All commits to develop, release and master branches should be done
through merge requests. Merge request feature is supported by GitLab.
Code review should be done after submitting merge request and before merg-
ing. GitLab provides user interface for code reviewing of the merge requests.
Code reviewing process should respect company ethic and be based on the
best practices of developers’ community [22].

5.4 CI and CD pipeline

Figure 5.4 shows CI and CD pipeline of the case project using St̊ahl & Bosch
notation.

Git workflow model suggests that developer checks out the code and cre-
ates a feature branch. The input to the pipeline is a commit to the feature
branch. After local development and testing the changes from the branch
are committed into the repository. It triggers the build process in GitLab
which runs the code analysis and unit tests. Code analysis can be done with
ESLint14 tool. Unit tests can be written with the help of libraries such as
Mocha15, Chai16 and aws-sdk-mock17. The choice of the libraries depends
on the developers’ preferences and can be changed. Unit tests are run only
if code analysis step did not return any errors. After feature branch build
has been succeeded a developer can create a merge request to the develop
branch. Merge request should go through the code reviewing process. If
review process reveals the issues in the code, then they should be fixed and
committed to the feature branch again. Build and merge request processes
should be repeated. If the code is approved for merging, then the merge re-

14https://eslint.org/
15https://mochajs.org/
16http://www.chaijs.com/
17https://github.com/dwyl/aws-sdk-mock

CHAPTER 5. IMPLEMENTATION 49

Figure 5.3: Git Branching Model

CHAPTER 5. IMPLEMENTATION 50

Figure 5.4: CI and CD pipeline

quest is accepted. Merge request triggers the build in develop branch. After
successful build the code is deployed to the cloud platform using develop-
ment account. End-to-end tests of development pipeline are run nightly to
minimize the cost of pipeline execution.

The changes in develop branch can be committed to the release branch.
It again runs the build but this time it triggers the end-to-end tests auto-
matically. The reason is that commits into release branch are done less often
than to the develop branch. The assumption is that develop branch will re-
ceive five merge requests per day and release branch only one merge request
per two weeks.

Committing into master branch is also done through the merge request

CHAPTER 5. IMPLEMENTATION 51

and is followed by the build process. Deploy of the release and production
versions is done after deployment decision which is based on release plan
made by product management. Deployed release version is available only
within the company for the internal testing purposes.

Release and production deployments are triggered from a script located
in additional, protected repository. In this case ”protected” means that only
the users with ”Admin” rights have access to that repository. Deployment
script triggers the pipelines of the ”api-service”, ”files-processing-service” or
”static-website” projects. The reason to create additional repository with the
script to trigger pipelines of these projects is to store release and production
AWS access keys in secure place and pass them through GitLab API18. All
deployments are done with a help of Serverless Framework using ’sls deploy’
command. After deployment is done, smoke tests are executed to check that
application was successfully deployed and its most important functions work.
Serverless Framework configuration file also describes the monitoring infras-
tructure and activities that should be applied to the running application.
Data received from deployed service is an input to the monitoring tools that
also run in the cloud.

This pipeline is repeated for each repository of the case project: ”api-
service”, ”files-processing-service” and ”static-website”. It can be scaled in
case if there will be more repositories with new services. Approach with
atomic deployments of the services assumes that every service can follow its
own release roadmap and be deployed independently.

Atomic deployment of the services requires multiple steps to deploy the
whole system for end-to-end tests. Figure 5.4 shows End-to-end tests activity
as a single block. Figure 5.5 shows detailed end-to-end tests preparation and
execution pipeline using St̊ahl & Bosch notation.

End-to-end tests pipeline can be started by schedule or automatically de-
pending on the branch where the changes were committed. Then it deploys
all three services of the project, runs the tests and undeploys the services.
Deployment of the system from scratch is required to clean the data of pre-
vious tests execution such as database data and caches. Undeployment of
the services right after the test execution is required to avoid spending the
money on the idle services, such as databases.

End-to-end tests for Serverless applications require deployment of the
services in the cloud to achieve production-like environment. This approach
requires cloud infrastructure description which can be achieved by usage of
specific IaC tools such as Serverless Framework and AWS CloudFormation.

End-to-end tests are stored in a separate repository. This repository

18https://docs.gitlab.com/ee/ci/triggers/README.html

CHAPTER 5. IMPLEMENTATION 52

Figure 5.5: End-to-end tests execution

contains a script that triggers pipelines of other projects through GitLab API.
Failure of deployment or undeployment of one of the projects might require
manual relaunch of the undeploy commands to clean the infrastructure. This
recovery step is not automated, because it can be considered as exceptional
and requires additional investigations of why it failed.

5.5 Monitoring of the solution

Figure 5.6 shows the monitoring infrastructure of the application. It is im-
plemented using the tools provided by AWS: CloudWatch19 and X-Ray20.
AWS Lambda functions write the logs to the CloudWatch Logs, where they
are aggregated by function names.

CloudWatch provides Metrics feature. Metrics that were chosen for pipeline
implementation are AWS Lambda functions duration, invocations, errors and
throttles, S3 buckets number of objects and size, DynamoDB provisioned
write and read capacity units. They can be easily changed in the future

19https://aws.amazon.com/cloudwatch/
20https://aws.amazon.com/xray/

CHAPTER 5. IMPLEMENTATION 53

Figure 5.6: Monitoring diagram

depending on the criteria that the team finds important.
CloudWatch Alarms feature was configured to publish the messages to

the SNS service. SNS service in its turn sends the alarm emails to a list
of recipients. CloudWatch view graphs and statistics are used to visualise
and monitor Amazon Web Services in one location. X-Ray is used to show
detailed statistics about execution of the requests. It was turned on us-
ing ’Enable active tracing’ option for all Lambda functions. This feature is
turned on only in testing environment to find the performance bottlenecks
at the early stage of development. X-Ray feature can be expensive for wide
production usage and should be turned on only for the requests that have a
risk of low performance.

5.6 Implementation problems

Challenges of implemented pipeline are described in chapter 6. This section
provides information about the problems that were faced during its develop-
ment.

Secure way of storing AWS keys

First problem was related to the storage of credentials for release and pro-
duction AWS accounts. GitLab CI can use the environment variables pro-

CHAPTER 5. IMPLEMENTATION 54

vided in the pipeline settings of the repository. AWS user access keys can be
passed to the GitLab Runner Docker container to deploy application to the
cloud platform. But if they are stored in the same GitLab project where the
source code and CI file are located, then they will be available for all users
who have access to that repository. If company policy requires limitation of
access to the production keys, then this data should be stored in another Git-
Lab project with access allowed only to the selected users. To store release
and production AWS keys privately, additional GitLab repository was cre-
ated. This project triggers pipeline of the targeted repository and passes the
keys through the GitLab API. Maintenance of additional project increases
the complicity of the pipeline.

End-to-end test deployment

Second problem is complicated deployment of the end-to-end tests. For the
testing of the whole system it is required to deploy all three subprojects of
the system.

Every subproject has IaC description in its repository. End-to-end testing
requires execution of these IaC files with Serverless Framework. A script to
trigger this execution is stored in additional repository and it also requires re-
sources of the team for the maintenance. Decision to store all source codes in
single repository would be significant simplification for the DevOps pipeline
because it would make single Serverless Framework configuration file enough.
The pipeline was intentionally implemented in microservice manner to sup-
port complicated case with atomic deployments of different services and it
can be easily simplified through moving all source code into one repository.

Admin GitLab users

Third problem is related to the separation of the roles in GitLab. Who can
have access to the protected branches and protected repositories with the
release and production keys? These decisions should be made on the man-
agement level and they depend on the culture within the company. Support
of different roles of the users requires additional resources on the pipeline
maintenance. Security of the project can also differ from project to project.
Implemented pipeline did not have any requirements about storage of the
secret keys. That is why it was decided to implement the pipeline with pro-
tected branches and private keys to show how to implement the complicated
case. In case if it is required to give all developers access to the secret keys,
the pipeline will be easily updated to support it.

The implementation of the pipeline was done within the planned time

CHAPTER 5. IMPLEMENTATION 55

frame of two months. The main change that was done based on the feed-
back from sprint review sessions was to change one repository per Lambda
function approach to repository per one service approach. After that, the
project was divided into three services according to the business logic pur-
poses: ”api-service”, ”files-processing-service” and ”static-website”. Another
change was related to storage of the AWS access keys. It was asked to pro-
pose an approach of how to keep them securely, giving access only to the
users with special permissions.

The diagrams in the figures 5.4 and 5.5 do not explicitly show which parts
of pipeline are affected by Serverless approach, but the impact of Serverless
architecture was especially significant on repositories structure, unit tests
and IaC tools selection, deployment and monitoring solutions. Source code
was organized into Git repositories to combine multiple Lambda functions
according to their purpose. Unit tests uses special libraries, such as aws-sdk-
mock to mock AWS SDK calls. Serverless Framework is used to maintain
Lambda functions and other cloud resources and deploy the applications to
the cloud for end-to-end testing and execution in multiple stages. Monitor-
ing pipeline is totally based on external tools that are provided by Amazon
platform and are integrated with the Lambda functions.

The results of implemented pipeline evaluation made in final workshop
are described in chapter 6.

Chapter 6

Evaluation

This chapters provides evaluation of implemented pipeline. The first part
of it describes how implemented pipeline covers selected DevOps practices.
It provides implementation details for every practice chosen in Chapter 4.
The second part of this chapter provides cost calculations for execution of
the DevOps pipeline. The calculation was made based on pricing model of
AWS services considering some assumptions of how intensively the pipeline
will be used. The third part describes the results of the final workshop
where the participants discussed the implemented pipeline. This evaluation
helped to get the feedback not only from the people who already worked
with it and commented on it during the review sessions but also from the
people who saw it first time. This part gives evaluation of the implemented
practices in general, without focusing on the parts of it affected by Serverless
architecture. The next chapter will summarize the findings related to the
Serverless aspects of the project.

6.1 Implemented DevOps practices

Source Control

VCS is used to store code history and share the code. Git was chosen as
a VCS. The GitLab Community Edition was used as a tool to store and
manage Git repositories as well as organize the whole DevOps automation
process. All Lambda functions are divided into groups of projects based on
input source and their purpose such as API, files processing and website files.

Branches are used for isolating work. Git branching model described by
Driessen [16] was chosen as a Git workflow model. This model suggests usage
of branches to isolate work as well as keep master branch for production ready

56

CHAPTER 6. EVALUATION 57

changes only. This model allows to separate feature branches and several
types of stable releases: develop, release candidate and production.

Pre-tested merge commits. All feature branches are created in the per-
sonal developers forks and merged to the main repository through the merge
requests. GitLab automatically runs CI pipeline for the merge requests in-
cluding the tests.

All commits are tied to tasks. GitLab was integrated to Jira to bind
the commits to the tasks. It is enough to mention task id in merge request
message to make a link between them. It allows to see the list of accepted
merge requests for the chosen task.

Build Process

Build process is run automatically on commit. GitLab checks every commit
on the presence of *.yml file in the repository. If the file exists, then GitLab
runs the CI pipeline including the project build.

Build artifacts are managed by purpose-built tools, no manual scripts.
Serverless Framework is used to build and maintain the build artifacts. It uses
CloudFormation templates and uploads the artifacts to the utility Amazon
S3 buckets.

All artifacts have build versions with major version and commit or CI
build number. Serverless Framework marks the artifacts with unique id and
timestamp. It also adds the version number to the Lambda functions to
make it possible to call old version of it.

Dependencies are managed in a repository. Information about depen-
dencies is stored in the repositories together with the source code. For the
JavaScript projects it is achieved by the npm and Yarn tools. Dependencies
are downloaded and put into the artifact at the build stage of the CI process.

Build environment based on VMs. Build process happens in Docker con-
tainers running within Docker Runners. The image with prepared environ-
ment including installed Serverless Framework and Node.js is stored in Git-
Lab Container Registry - private registry designed to store Docker images.

Testing & QA

Automatic unit testing with every build. As in the case with automatic build
process, unit tests are run automatically with every commit to the repository
when the file *.yml with a test stage is presented.

Code coverage and static code analysis is measured. The designed pipeline
runs static code analysis before the unit tests and code coverage analysis. It
allows to fail the pipeline in case if code violates some static code analysis

CHAPTER 6. EVALUATION 58

rules. If this step is passed, then CI tool goes to the next step of unit tests
with code coverage which usually takes more time to execute. Code coverage
statistics is visible in the pipeline logs.

Peer-reviews. Designed pipeline uses peer-reviews at the moment of
merge requests using GitLab code review features. Developer who created
the merge request assigns a person responsible for code review. After the
code review is done the code is either should be updated or merged into the
main repository.

Mockups & proxies used. To emulate the behaviour of AWS services in
the unit tests some libraries such as mock-aws-s31 and aws-sdk-mock2 were
used.

Automated end-to-end testing. End-to-end tests are run by manual launch
of the ”end-to-end-test” project pipeline in GitLab. Execution of this project
could be easily automated but it was not done purposely to avoid extra cost
in case of small changes in the repository.

Integrated management and maintenance of the test data. Test data is
stored together with the unit tests and not duplicated because of the decision
to store Lambda functions of the same domain field together. It allows to
avoid not only test data duplications but also duplication of some Lambda
functions utility code. Test results are stored in GitLab CI logs and can be
found by pipeline execution date or commit number.

Automated performance & security tests in target environment. Perfor-
mance and security tests were not implemented for the case project, because
they require certain QA skills. But the approach of their execution is the
same as for automated end-to-end tests. The pipeline requires that these
tests are stored in a separate Git repository and are targeted at a project
deployed in a testing AWS environment.

Deployment

Fully scripted deployments. Serverless Framework was chosen as a IaC tool.
It allows to describe the Serverless functions configuration in a concise way.
Additional resources such as DynamoDB and S3 databases are described
with the CloudFormation templates. CI and CD pipelines are scripted as a
combination of Serverless Framework, GitLab CI and Docker tools.

Auto deploy to the test environment after tests pass. This practice is
achieved with the help of GitLab CI where the stages can be configured in a
way that deployment stage will go only after successful execution of the unit
tests stage.

1https://github.com/MathieuLoutre/mock-aws-s3
2https://github.com/dwyl/aws-sdk-mock

CHAPTER 6. EVALUATION 59

Standard deployments across all environments. All deployments are done
on the Amazon cloud platform. The only difference between the deploy-
ments is access keys of the user accounts. Production credentials are avail-
able only for the administrators of the project. The pipeline includes four
environments: ”develop” with the latest changes for development purposes,
”release” with the changes ready to release for the purpose of internal test-
ing, ”test” for the integration and performance tests and ”production” with
the stable and properly tested version of the project.

Database deployments. Cloud platform already hosts the database man-
agement systems. The IaC scripts just create the DynamoDB tables with
certain parameters.

Monitoring

Log aggregation. AWS CloudWatch is used as a log aggregation tool. It is
built-in AWS tool that allows to group and search the logs. The logs are
aggregated into the groups by AWS service type and function name. Each
group has a set of log streams. One log stream per Lambda execution.
CloudWatch allows to choose logs retention policy which was chosen as one
month for the case project.

Finding specific events in the past. CloudWatch Filter and Search fea-
tures allow to find the specific events in the logs. Current pipeline does not
introduce any additional logging and log analysis tools except native AWS
tools.

Large scale graphing of the trends. Implemented pipeline uses Cloud-
Watch Metrics for graphing of the trends. The metrics added to the dash-
board are API Gateway calls count and latency, amount of 5xx and 4xx
errors, Lambda functions duration, errors and invocations. Other metrics
can be easily added in the future if required.

Active alerting according to the user-defined heuristics. CloudWatch Alarms
tool is used for active alerting. It sends email to specified address in case
of at least one Lambda execution error or API Gateway error. CloudWatch
Alarms tool allows to create alarms based on any available CloudWatch met-
rics.

Tracing. AWS X-Ray is used to trace the requests. X-Ray feature was
applied to all Lambda functions to build detailed statistics of execution. The
influence of X-Ray on the cost of execution in production should be estimated
very carefully. Based on this estimation the team should make decision does
it make sense to turn it on in production or not.

CHAPTER 6. EVALUATION 60

6.2 Cost calculation

Cost of execution of implemented DevOps pipeline totally depends on how
intensive are the end-to-end tests and how often the project is deployed to
the cloud platform. All other proposed practices do not lead to the explicit
expenses. All builds and unit tests are executed in GitLab runners on the
company’s premises. Expenses on the maintenance of the on-premises infras-
tructure are out of scope of this work. The tables 6.1 and 6.2 show the pricing
of used AWS services and calculated cost per 1, 50, 250 and 1000 test set
executions per service. In case if the price of AWS3 was different for different
regions, EU Ireland pricing model was chosen as a reference. 50 is expected
amount of end-to-end test executions per month in case when the tests are
triggered by schedule once per day for development build and several times
per month for release and production builds. The number is rounded to 50
to consider expenses on smoke tests and API calls of deployed development
version. 250 test executions present the case when the end-to-end tests will
be run after every merge into stable branch and the frequency of such merges
is seven times per day. This value corresponds to expected performance of a
small team. Calculations for 1000 end-to-end test runs are provided to show
how the pricing model scales for more intensive test execution.

Service Price Per 1 end-
to-end test
set execu-
tion

1
execu-
tion,
$

50
execu-
tions,
$

250
execu-
tions,
$

1000
execu-
tions,
$

CloudWatch
Logs

$0.57 per
GB

5 MB 0.00285 0.1425 0.7125 2.85

X-Ray $0.000005
per trace

5000 traces 0.025 1.25 6.25 25

Table 6.1: AWS Monitoring Services cost evaluation

In addition to CloudWatch Logs and X-Ray services, the implemented
monitoring solution uses CloudWatch Metrics and CloudWatch Alarms. The
price of these services does not depend on amount of test executions. It
depends only on amount of configured metrics and alarms. The cost of these
services is $0.30 per metric per month and $0.10 per alarm per month. With
100 metrics and 100 alarms it gives the price of $40 per month.

Estimated cost of the services does not include expenses on data storage,
because all data is deleted from the databases immediately after the test

3https://aws.amazon.com/pricing/services/

CHAPTER 6. EVALUATION 61

Service Price Per 1 end-
to-end test
set execu-
tion

1
execu-
tion,
$

50
execu-
tions,
$

250
execu-
tions,
$

1000
execu-
tions,
$

API Gate-
way

$3.50 per 1M
calls

5000 calls 0.0175 0.875 4.375 17.5

Lambda
requests

$0.20 per 1M
requests

50000
requests

0.01 0.5 2.5 10

Lambda
computing

$0.000000417
per 300ms
with 256MB
of memory

5000 calls 0.00208 0.104 0.52 2.08

DynamoDB
read

$0.000147
per RCU per
hour

250 RCU 0.03675 1.8375 9.1875 36.75

DynamoDB
write

$0.000735
per WCU
per hour

150 WCU 0.11025 5.5125 27.5625 110.25

S3 read $0.0004
per 1000
requests

1000 0.0004 0.02 0.1 0.4

S3 write $0.005
per 1000
requests

1000 0.005 0.25 1.25 5

Table 6.2: AWS services cost evaluation

execution. It makes the cost of data storage close to zero. In addition, AWS
provides free tier4 that can cover the expenses on the small projects or almost
set to zero the expenses on around 20 end-to-end test executions in developed
pipeline.

The estimated price of one end-to-end test set execution is $0.209835
which gives following numbers:

• $10.49175 per 50 tests executions

• $52.45875 per 250 tests executions

• $209.835 per 1000 tests executions.

4https://aws.amazon.com/free/

CHAPTER 6. EVALUATION 62

Together with expenses on metrics and alarms it gives the maximum
pipeline execution price of $249.835. On practice, expected amount of tests
execution is 50 times per months which gives the price of $50.49175 with
turned on alarms and metrics and $10.49175 without them. These numbers
cannot be considered as significant and should not prevent the system from
frequent end-to-end testing of the case project. Database expenses are the
main part of the overall cost. Maximum cost of FaaS services running all
business logic of the application is only $12.08 even for 1000 tests executions.
At the same time, it is difficult to estimate the price of the same pipeline
on non-serverless architecture because it would require significant changes of
the application and its execution infrastructure.

6.3 Pipeline evaluation

This section describes the results of the final review workshop. The ideas and
comments are grouped according to the DevOps practices. The arrangement
of this workshop is described in the section 3.3.

Source Control

”This is a very famous branching model”, ”This approach requires a lot of
discipline”

The first concern was that proposed branching model requires more dis-
cipline comparing to simplified models with one stable master branch and
many feature branches. Lack of discipline can lead to the problems with
merges and versioning of the releases. One example of a possible mistake is
a merge request made directly to the master branch from unstable feature
branch. Even if the master branch is protected and only users with the role
of ”Master” can push the changes there, they still can by mistake merge the
changes from unstable branch to the master branch. Complicated branching
model might require more resources and Git knowledge. But it cannot be
considered as a drawback, because Git usage already became a part of daily
work process and spreading of the knowledge about best practices of its us-
age is welcomed by the team. The proposal to protect master branch from
commits of developers without ”Master” role should be discussed addition-
ally. The team can switch to more flexible model where all developers have
access to all branches. It requires more responsibilities but reduces the risks
in case if ”Admin” team members are not available.

CHAPTER 6. EVALUATION 63

”Why was the project split into multiple repositories? It seems like it adds a
lot of complications”

The second concern was about the decision related to Serverless architec-
ture of the project - to divide the project into multiple services and store them
in separate repositories. The team raised a question - should the project be
stored in a single repository. For the case project it definitely might be ben-
eficial because maintenance of multiple repositories for such a small project
might be a significant overhead. But with the growth of the project it can
be divided into multiple services if separation of concerns will be required.
From that perspective, implemented DevOps pipeline covers more compli-
cated case with multiple services and can be easily adapted for single service
scenario.

In general, the proposed Source Control practices were considered as good
practices that should be tried within the team.

Build Process

”Who will write and support these CI configs?”, ”It is time to learn Docker”

The team emphasised that GitLab provides powerful tools for building
process such as Docker image registry and pipeline execution. Important
feedback was that now developers will be involved into DevOps process which
might require additional skills such as IaC tools, Docker and GitLab CI con-
figs. It was not considered as a bad approach, because it does not contradict
to the company’s culture where developers should have wide knowledge about
software engineering including DevOps practices.

Testing & QA

”Now the price of tests execution is very low, but if it becomes expensive, it
will reduce the motivation to run them often”

The workshop participants noted that the price of end-to-end tests exe-
cution is very low even for intensive testing. But at the same time the team
still should keep the pricing model in mind and check it from time to time to
avoid unexpected payments, especially in case of significant application and
tests changes.

In case if test execution becomes expensive, the motivation to run the
tests will decrease. Compromise might be to run intensive end-to-end tests
and performance tests only when release candidate is ready. In other cases,
run only unit tests and smoke tests. But with the current size of the project
and AWS pricing model the probability of high cost is very low.

CHAPTER 6. EVALUATION 64

”The role of unit tests is now even more important”

The participants noted the importance of unit tests for Lambda functions
testing. It is especially important to mock interaction with other AWS ser-
vices such as DynamoDB and S3. One more suggestion was to provide an
option to open the code coverage and unit test reports without opening the
logs of the application. They could be stored as the artifacts of the GitLab
pipeline execution.

”Too many code reviews required...”

The team also noted that extensive branching model may increase the
amount of peer-reviews which might distract the developers from their cur-
rent tasks.

Generally, implemented pipeline covers all main testing types but end-to-
end and performance testing of the cloud application will require additional
research from QA point of view.

Deployment

”Is it really the best way to store secret environment variables in GitLab?”

The main concern about deployment practices was related to the storage
of production keys. GitLab Community Edition does not have enough flexi-
bility to store secret environment variables in a convenient way. If they are
stored in the repository of the project, then all developers will have access to
them. If the company’s policy requires only administrator access to the keys,
then it is an unacceptable option. The proposed model with separate project
that would keep the production keys and trigger the pipeline of targeted
project was found as good enough considering available GitLab features.

The participants also asked a question about the guidelines and manage-
ment of AWS accounts. Do the developers need separate AWS accounts to
have their own deployment environments for personal testing or is it enough
to have one development account with many users as it was suggested by
the designed pipeline? It was discussed that for the first time it is enough
to share the same AWS account among all developers for development en-
vironment, but have separate accounts for testing, release candidates and
production deployments.

CHAPTER 6. EVALUATION 65

”Is Serverless Framework production ready? Who else does use it?”

The script with consequential deployment of different project services was
called the most complicated and risky part of the whole deployment process.
The error in the script might lead to some manual recovery. The guidelines
how to do recovery in case of unexpected errors in Serverless Framework or
CloudFormation should be described in more details.

Generally, deployment environments purposes are clear enough and cover
the main use cases of development environment, internal company’s environ-
ment for release candidate testing and production environment.

Monitoring

”Cloud providers want to hook their users... Starting using Lambda
functions we will have to start using many other Amazon services”

Native AWS CloudWatch tools were found as not very user friendly. This
opinion was supported by the fact that some companies use external tools for
log aggregation and analysis in addition to CloudWatch. The CloudWatch
concept of log streams was also noted as not obvious. AWS X-Ray tracing
feature seems to be very powerful, but it is not clear at what stage it should
be used: at the stage of development, testing or production? The usage of
native AWS logging tools seems to be an additional risk of vendor lock-in.
As a result of discussion, proposed monitoring methods were considered as a
good starting point of DevOps process for Serverless application.

Summing up the results of the workshop the participants were positive
about implemented DevOps pipeline. They noted that it has a focus on a
high quality of the code and result product, includes extensive testing and
different stages of deployment. The price of pipeline execution was noted
as low. At the same time, maintenance of the pipeline requires from the
developers DevOps skills and knowledge of the new tools such as Serverless
Framework and GitLab CI. The highest risks are related to introduction of
Serverless Framework for production deployments since it is a new tool and
team has not enough experience to rely on it for critical operations. But good
community support and production use cases from other companies allow to
make a choice in favor of Serverless Framework tool.

This chapter presented the evaluation of the work through the description
of implemented practices, estimated pipeline execution cost calculation and
feedback from the stakeholders. The next chapter will be focused on the eval-
uation of the work against design science research guidelines and discussion
of results through answering the research questions.

Chapter 7

Discussion

In the previous chapter the implemented DevOps pipeline was evaluated
according to identified company’s requirements. In this chapter the results
of the work are evaluated against the guidelines of design science research
methodology described in section 3.2. It also gives the answers to the research
questions with the comparison to existing research works.

7.1 Answers to research questions

RQ1 What are the requirements for the DevOps pipeline of the
case project?

The aim of this RQ was to gather the requirements for the DevOps pipeline
that could be implemented for the case project. The focus had to be on the
Automation practices of DevOps considering Serverless architecture of the
case project. The requirements elicitation was done in a form of discussion
of selected DevOps practices. The practices were ordered by priorities based
on the workshop within the team. It was done to choose the most important
of them for implementation. The results of practices selection for DevOps
pipeline are presented in the table 4.1. The key findings of requirements
elicitation are:

• Case project development has some requirements about the develop-
ment process and tools. Issue tracker should be Jira, CI tool suite
and repository management tool - GitLab. The size of the team is up
to seven developers and QA engineers. Development process is Scrum
with two-week sprints. Architecture of the case project is already de-
signed and it relies on Serverless approach. The case project uses Ama-
zon Web Services such as API Gateway, Lambda, DynamoDB, S3 and

66

CHAPTER 7. DISCUSSION 67

SNS. There is no initial cost limitation for the pipeline execution.

• The case project requires high quality of the code. The team found
important 25 out of 27 suggested DevOps automation practices for
the case project. These practices are related to source control, build
process, deployment, testing & QA, deployment and monitoring. The
most critical DevOps automation practices are usage of VCS and log
aggregation. The team found ”release notes auto-generation” as the
less important practice among suggested. ”Version control DB schema
changes” was noted as an important practice for relational databases
but in context of the case project and its schemaless database this
practice was marked as the least important. Rationale of practices
selection for proposal was done based on the literature review and is
presented in Section 2.2.

• The time limit for DevOps pipeline implementation was two months
or four sprints. The implemented DevOps pipeline was considered as
a proof-of-concept and the decision which parts of it to use in practice
has to be done after the final review workshop.

DevOps pipeline requirements correspond to findings in existing studies
about implementation and adoption of DevOps automation practices [39][48].
Serverless architecture of the project did not reveal any unusual expectations
from CI, CD and Monitoring practices even if it was clear that it affects their
implementation.

RQ2 How does Serverless architecture affect DevOps practices such
as CI, CD and Monitoring of the application?

The aim of the second RQ was to identify how do elements of Serverless
architecture affect chosen DevOps practices and understand what the expec-
tations of developers for the Serverless applications are. The answer to this
question was found through the workshop within the team working on the
case project and multiple interviews with the developers outside of the case
company.

The results of the workshop are presented in table 4.1 and they show
that Serverless architecture significantly affects DevOps pipeline practices.
18 out of 27 practices were marked as affected. There was no group of De-
vOps automation practices that would not be influenced by Serverless. The
most significant influence Serverless makes on the monitoring practices. It is
explained by close connection of Serverless services with the cloud platform
and the fact that monitoring services are also provided by cloud platforms.

CHAPTER 7. DISCUSSION 68

The least impact Serverless makes on the source control practices. But at the
same time, it influences the important decision of how to organize the code
into the VCS repositories. Serverless functions can be placed each one into
separate repository or several functions into one service according to their
purpose or domain field. This decision can influence all other decisions in
DevOps pipeline.

Interviews with the stakeholders helped to understand why the team chose
Serverless architecture and what the concerns about it are. The best parts of
Serverless architecture were identified as out of the box scalability, cheaper
cost because of no payments for idle services and faster development be-
cause of lack of server configurations. The concerns were related to lack of
experience and skills required for Serverless applications development which
might lead to the problems during the implementation, more complicated de-
bugging because production environment cannot be reproduced on the local
premises and, finally, the possible vendor lock-in. Vendor lock-in was called
a justified risk because vendor provides many tools that will be used in the
project to utilise all power of Serverless features even if they are not compat-
ible with other platforms. These benefits and risks of Serverless applications
are not directly related to the DevOps pipeline implementation except the
concern about lack of skills and knowledge about this new architecture type
that might be required for CI, CD and Monitoring practices as well. The
results of the interviews correspond to the results of existing research [5].

The implementation of the pipeline showed that Serverless architecture
strongly affects the choice of the tools, for instance, IaC solutions and mock-
ing libraries. It is also explained by close connection of Serverless applica-
tions with the cloud infrastructures that usually require deployment of the
application to the cloud platform and heavy usage of the cloud platform ser-
vices, in case of developing project - Amazon Web Services. The existence of
Serverless-oriented tools such as Serverless Framework shows that developers
and DevOps engineers realised high demand of specialized tools to maintain
Serverless applications.

Lack of research about interconnection of Serverless architecture and De-
vOps practices makes it difficult to compare the results of current work with
previous studies. But all achieved results match the observations made by
engineers in software development industry. DevOps pipeline for Serverless
applications makes local deployment environment unnecessary but requires
from developers the knowledge about operations [26]. At the same time the
need for extensive automated testing and CI/CD does not disappear and the
risk of vendor lock-in is getting higher [9].

CHAPTER 7. DISCUSSION 69

RQ3 How well does implemented DevOps pipeline fulfil company
requirements?

The implemented DevOps pipeline fulfils all requirements identified in RQ1.
It is based on the technologies and tools listed in the requirements such
as Amazon Web Services and GitLab. The pipeline includes all practices
selected in the workshop about DevOps automation of the case project and
ensures high quality of the code through unit tests, code quality check tools
and end-to-end testing [44]. The implementation of each practice is described
in Section 6.1. In addition, the implemented pipeline deploys the project into
multiple different environments: development, staging, end-to-end tests and
production. It allows to separate stable production version of the project
from release candidate and version which is under active development.

The research showed that stakeholders positive expectations for Serverless
applications are mostly related to scalable execution model without server
configuration. Some of the concerns about Serverless applications are directly
related to the DevOps such as usage of IaC and lack of experience with
Serverless approach. These problems are solved by the usage of Serverless
Framework - the tool that is in the core of implemented pipeline. Even if
it is a new tool for the team, it allows to reduce the risk of unexpected
problems and lack of knowledge about Serverless applications development.
The reason is that Serverless Framework use cases are based on the best
practices of Serverless applications development and deployment made by
software engineers’ community.

There were no initial requirements about the cost of pipeline execution,
but estimated price was called as very low. Expected expenses on the end-
to-end testing are just $50.49175 with turned on alarms and metrics and
$10.49175 without them. Even with 20 times more intensive testing the price
will be $249.835. The cost of only Lambda functions execution is only $12.08
for 1000 tests executions. It confirms affordable pricing model of Serverless
computing [2]. The price of production and release execution was not cal-
culated because it is not related to DevOps pipeline and mostly depends on
popularity of the project and how intensively it will be used.

7.2 Design Science Research

This section examines the results of research work according to the evalua-
tion guidelines provided by design science research described by Hevner and
Chatterjee [28].

The objective of design science research in information systems is to de-

CHAPTER 7. DISCUSSION 70

velop technology-based solutions to important and relevant business problems.
Implemented DevOps pipeline is a technology-based solution aimed at solv-
ing business problems identified as the required for the case project.

The designed artifact must be effectively represented, enabling implemen-
tation and application in an appropriate environment. The implemented
artifact is a DevOps pipeline including CI, CD and Monitoring practices. It
is represented in Chapter 5 and can be applied for the projects with similar
requirements.

The quality and efficacy of a design artifact must be rigorously demon-
strated via well-executed evaluation methods. Produced artifact was studied
for the compatibility with business case environment and for the fit into ar-
chitecture of the case project. The studies were done in the form of review
workshop and are presented in the Section 6.3

Effective design science research must provide clear contributions in the
areas of the design artifact, design construction knowledge, and/or design
evaluation knowledge. The results of the research contribute to the area of
design and implementation of the DevOps pipelines because they cover the
area that is not well represented in the literature - DevOps pipelines for
Serverless applications.

Threats to validity

The designed pipeline presented in this thesis is valid only in the context
of the considered use case. Implemented DevOps practices might not be
applicable to every Serverless application. The factors that might affect the
DevOps decisions include size of the project and its architecture, size of the
team and its experience, culture within the company and requirements about
the tools and processes used in the team. At the same time, interviews with
the software engineers outside of the case company helped to build unbiased
picture about influence of Serverless architecture to DevOps practices. It
allows to use observations about connections of Serverless and DevOps as
an input for designing CI, CD and Monitoring for other projects, but not to
take implemented pipeline as it is.

7.3 Future research

Literature review showed that Serverless computing is not covered enough
by existing research works. DevOps for Serverless applications is only one
possible research direction for this new technology trend. This thesis showed

CHAPTER 7. DISCUSSION 71

high demand in knowledge and practices related to Serverless applications.
Possible topics for the future research are:

• Testing of the Serverless Applications. Current research showed that
end-to-end, performance and security testing require rethinking for
Serverless applications because of proprietary execution infrastructure
and pricing model that applies some limitations on the frequency of
test execution.

• Security of the Serverless Applications. Third party Serverless exe-
cution infrastructure raises the question of how secure is the Lambda
functions environment and what risks does it apply to the applications.

• How does Serverless approach affect DevOps culture. This thesis has a
focus on Automation part of DevOps, but Serverless approach is mar-
keted as a game-changing approach that might affect other aspects of
DevOps such as Culture and Lean because it allows to rapidly develop
and release the software. Combination of Serverless and DevOps cul-
ture requires additional research.

This chapter evaluated the work according to the design science research
guidelines. It also gave the answers to the research questions. The next
chapter draws the conclusions of the study.

Chapter 8

Conclusions

The aim of this thesis was to implement DevOps pipeline for Serverless ap-
plication in order to automate building, quality assurance, deployment and
monitoring processes and ensure high quality of the case project development.
The goal was achieved using design science research methodology through
series of workshops and technical implementation of the required pipeline.
Implementation was done in four iterations of Scrum process started with
requirements elicitation workshop and finished with the final result evalua-
tion workshop. In addition, three interviews with the engineers outside of the
case company were conducted. The topic of the interviews was connection
between Serverless architecture and DevOps practices. This research process
together with literature review allowed to answer three research questions
related to requirements for the DevOps pipeline, influence of Serverless ar-
chitecture on CI, CD and Monitoring practices and success of implemented
pipeline.

The artifact of this work, DevOps pipeline for the case project, imple-
ments chosen by the development team practices of source control, building,
deployment, testing & QA and monitoring of the application. The result
pipeline allows to automatically run unit tests, do code quality check, run
end-to-end tests and deploy project to multiple environments in Amazon
cloud platform as it was required by architecture of application. GitLab
Community Edition was used as a core of CI/CD solution. The final eval-
uation workshop showed that all elicited requirements for the pipeline were
fulfilled.

The research did not reveal any DevOps automation or monitoring prac-
tices that would be rejected because of Serverless elements of the case ap-
plication. At the same time, 18 out of 27 practices were noted as affected
by Serverless. The qualitative data showed that some of the practices are
strongly affected by this new cloud computing execution model, for instance,

72

CHAPTER 8. CONCLUSIONS 73

standard deployment to all environments, use of mockups in unit testing
and all monitoring practices. The existence of these challenges is proved by
high popularity of serverless-oriented tools that are aimed to simplify debug-
ging, deployment to multiple environments and declarative definition of the
infrastructure for the Serverless applications.

The results of the study do not contradict existing research about Server-
less computing, such as expected benefits and concerns about Serverless ap-
plications. As in many other sources the developers called out of the box
scalability, cheap pricing model and simpler environment configuration as
the benefits of Serverless computing. The concerns were related to vendor
lock-in and complicated debugging. Interviewees also agreed that Serverless
architecture requires from engineers’ knowledge of both development and
operations practices and might lead to popularity of a new role of Cloud
Engineer that would combine these skills.

The results about impact of Serverless computing on DevOps practices
contributes to the research in this field. Despite the large amount of non-
academic materials, this topic is not well presented in research papers. At the
same time, obtained results cannot be generalized because they were gathered
for single case project with specific requirements. But elements common for
all Serverless architectures allow to consider these results as useful for other
project cases.

Future research in this field might include deeper studies about impact of
Serverless architectures on testing & QA practices, such as performance and
security testing. Security of Serverless applications can be also an additional
research direction since vendor host environment applies some privacy control
limitations on execution of the system.

This work was focused on technical practices of DevOps such as CI, CD
and Monitoring. But as literature review showed, the term DevOps describes
the overall culture in the company. Relation between Serverless-oriented de-
velopment, that promises faster software release lifecycle with less resources,
and Culture within the company might be one more important topic of re-
search because in case of bad culture and lack of knowledge sharing activities
even the most effective DevOps automation pipeline will not help a company
to succeed.

Bibliography

[1] Gartner IT Glossary. DevOps. https://www.gartner.com/it-glossary/
devops. Accessed 6.5.2018.

[2] Adzic, G., and Chatley, R. Serverless computing: economic and
architectural impact. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (2017), ACM, pp. 884–889.

[3] Ajluni, C. Plotting a new devops path with serverless com-
puting, 2017. https://www.stratoscale.com/blog/devops/

plotting-new-devops-path-serverless-computing/. Accessed
17.4.2018.

[4] Balalaie, A., Heydarnoori, A., and Jamshidi, P. Microservices
architecture enables devops: Migration to a cloud-native architecture.
IEEE Software 33, 3 (2016), 42–52.

[5] Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R.,
Slominski, A., et al. Serverless computing: Current trends and
open problems. In Research Advances in Cloud Computing. Springer,
2017, pp. 1–20.

[6] Bass, L., Weber, I., and Zhu, L. DevOps: A Software Architect’s
Perspective. Addison-Wesley Professional, 2015.

[7] Becker, T. A production-grade ci/cd pipeline for serverless applica-
tions, 2018. https://medium.com/@tarekbecker/a-production-grade-ci-
cd-pipeline-for-serverless-applications-888668bcfe04. Accessed 6.5.2018.

[8] Brown, S. Software Architecture for Developers - Volume 2. Visualise,
document and explore your software architecture. Leanpub, 2018.

74

https://www.gartner.com/it-glossary/devops
https://www.gartner.com/it-glossary/devops
https://www.stratoscale.com/blog/devops/plotting-new-devops-path-serverless-computing/
https://www.stratoscale.com/blog/devops/plotting-new-devops-path-serverless-computing/

BIBLIOGRAPHY 75

[9] Buckholz, G. The pros and cons of a serverless de-
vops solution, 2018. https://www.agileconnection.com/article/

pros-and-cons-serverless-devops-solution. Accessed 17.4.2018.

[10] Chapin, J., and Roberts, M. What is Serverless. O’Reilly Media,
Inc., 2017.

[11] Claburn, T. From devops to no-ops: El reg chats serverless comput-
ing with nyt’s cto, 2017. https://www.theregister.co.uk/2017/11/30/

from_devops_to_noops_nyt_cto/. Accessed 17.4.2018.

[12] Crane, M., and Lin, J. An exploration of serverless architectures for
information retrieval. In Proceedings of the ACM SIGIR International
Conference on Theory of Information Retrieval (2017), ACM, pp. 241–
244.

[13] Cukier, D. Devops patterns to scale web applications using cloud
services. In Proceedings of the 2013 companion publication for confer-
ence on Systems, programming, & applications: software for humanity
(2013), ACM, pp. 143–152.

[14] Debois, P. Devops: A software revolution in the making. Journal of
Information Technology Management 24, 8 (2011), 3–39.

[15] Dingsøyr, T., and Lassenius, C. Emerging themes in agile software
development: Introduction to the special section on continuous value
delivery. Information and Software Technology 77 (2016), 56–60.

[16] Driessen, V. A successful git branching model, 2010. http://nvie.

com/posts/a-successful-git-branching-model/. Accessed 17.4.2018.

[17] Dyck, A., Penners, R., and Lichter, H. Towards definitions for
release engineering and devops. In Release Engineering (RELENG),
2015 IEEE/ACM 3rd International Workshop on (2015), IEEE, pp. 3–
3.

[18] Elberzhager, F., Arif, T., Naab, M., Süß, I., and Koban,
S. From agile development to devops: going towards faster releases at
high quality - experiences from an industrial context. In International
Conference on Software Quality (2017), Springer, pp. 33–44.

[19] Erich, F., Amrit, C., and Daneva, M. Report: Devops literature
review. University of Twente, Tech. Rep (2014).

https://www.agileconnection.com/article/pros-and-cons-serverless-devops-solution
https://www.agileconnection.com/article/pros-and-cons-serverless-devops-solution
https://www.theregister.co.uk/2017/11/30/from_devops_to_noops_nyt_cto/
https://www.theregister.co.uk/2017/11/30/from_devops_to_noops_nyt_cto/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

BIBLIOGRAPHY 76

[20] Erich, F., Amrit, C., and Daneva, M. A qualitative study of
devops usage in practice. Journal of Software: Evolution and Process
29, 6 (2017).

[21] Farid, A. B., Helmy, Y. M., and Bahloul, M. M. Enhancing lean
software development by using devops practices. International Journal
OF Advanced Computer Science and Applications 8, 7 (2017), 267–277.

[22] Fink, R. Code review best practices, 2018. https://medium.

com/@palantir/code-review-best-practices-19e02780015f. Accessed
17.4.2018.

[23] Fitzgerald, B., and Stol, K.-J. Continuous software engineering
and beyond: trends and challenges. In Proceedings of the 1st Inter-
national Workshop on Rapid Continuous Software Engineering (2014),
ACM, pp. 1–9.

[24] Fowler, M. Continuous integration, 2006. https://martinfowler.

com/articles/continuousIntegration.html. Accessed 6.5.2018.

[25] Fox, G. C., Ishakian, V., Muthusamy, V., and Slominski, A.
Status of serverless computing and function-as-a-service (faas) in indus-
try and research. arXiv:1708.08028 (2017).

[26] Gancarz, R. Serverless takes devops to the next level, 2017. https:

//www.infoq.com/articles/serverless-takes-devops-next-level. Ac-
cessed 17.4.2018.

[27] Ganguly, R. Automating ci/cd workflow for serverless
apps with circleci, 2017. https://serverless.com/blog/

ci-cd-workflow-serverless-apps-with-circleci/. Accessed 6.5.2018.

[28] Hevner, A., and Chatterjee, S. Design science research in infor-
mation systems. In Design research in information systems. Springer,
2010, pp. 9–22.

[29] Humble, J., and Farley, D. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Pearson
Education, 2010.

[30] Kim, G. Top 11 things you need to know about de-
vops, 2013. https://www.thinkhdi.com/~/media/HDICorp/Files/

White-Papers/whtppr-1112-devops-kim.pdf. Accessed 17.4.2018.

https://medium.com/@palantir/code-review-best-practices-19e02780015f
https://medium.com/@palantir/code-review-best-practices-19e02780015f
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://www.infoq.com/articles/serverless-takes-devops-next-level
https://www.infoq.com/articles/serverless-takes-devops-next-level
https://serverless.com/blog/ci-cd-workflow-serverless-apps-with-circleci/
https://serverless.com/blog/ci-cd-workflow-serverless-apps-with-circleci/
https://www.thinkhdi.com/~/media/HDICorp/Files/White-Papers/whtppr-1112-devops-kim.pdf
https://www.thinkhdi.com/~/media/HDICorp/Files/White-Papers/whtppr-1112-devops-kim.pdf

BIBLIOGRAPHY 77

[31] Kim, G., Debois, P., Willis, J., and Humble, J. The DevOps
Handbook: How to Create World-Class Agility, Reliability, and Security
in Technology Organizations. IT Revolution, 2016.

[32] Laukkanen, E. Adoption problems of modern release engineering prac-
tices. PhD thesis, Department of Computer Science, Aalto University
School of Science, Espoo, Finland, 2017.

[33] Lwakatare, L. E., Kuvaja, P., and Oivo, M. Dimensions of
devops. In International Conference on Agile Software Development
(2015), Springer, pp. 212–217.

[34] Lwakatare, L. E., Kuvaja, P., and Oivo, M. An exploratory study
of devops extending the dimensions of devops with practices. ICSEA
2016 (2016), 104.

[35] Montiel, I. How we migrated our startup to serverless, 2017. https://
read.acloud.guru/our-serverless-journey-part-2-908d76d03716. Ac-
cessed 6.5.2018.

[36] Munns, C. Serverless architecture patterns and best practices, 2017.
https://www.youtube.com/watch?v=_mB1JVlhScs. Accessed 6.5.2018.

[37] Noller, A. Continuous delivery: Maturity checklist, 2014.
https://dzone.com/articles/continuous-delivery-maturity. Ac-
cessed 17.4.2018.

[38] Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. A design science research methodology for information sys-
tems research. Journal of management information systems 24, 3 (2007),
45–77.

[39] Rejström, K. Implementing continuous integration in a small com-
pany: A case study. Master’s thesis, Aalto University, School of Science,
Espoo, Finland, 2016.

[40] Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Ti-
ihonen, J., and Männistö, T. Devops adoption benefits and chal-
lenges in practice: a case study. In International Conference on Product-
Focused Software Process Improvement (2016), Springer, pp. 590–597.

[41] Roberts, M. Serverless architectures, 2016. https://martinfowler.

com/articles/serverless.html. Accessed 17.4.2018.

https://read.acloud.guru/our-serverless-journey-part-2-908d76d03716
https://read.acloud.guru/our-serverless-journey-part-2-908d76d03716
https://www.youtube.com/watch?v=_mB1JVlhScs
https://dzone.com/articles/continuous-delivery-maturity
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html

BIBLIOGRAPHY 78

[42] Rodgers, J. Serverless hosting comparison, 2017. https:

//headmelted.com/serverless-showdown-4a771ca561d2. Accessed
6.5.2018.

[43] Sbarski, P., and Kroonenburg, S. Serverless Architectures on
AWS: With examples using AWS Lambda. Manning Publications Com-
pany, 2017.

[44] St̊ahl, D., and Bosch, J. Experienced benefits of continuous in-
tegration in industry software product development: A case study. In
The 12th IASTED International Conference on Software Engineering,
Innsbruck, Austria, 2013 (2013), pp. 736–743.

[45] St̊ahl, D., and Bosch, J. Automated software integration flows
in industry: A multiple-case study. In Companion Proceedings of the
36th International Conference on Software Engineering (2014), ACM,
pp. 54–63.

[46] St̊ahl, D., and Bosch, J. Modeling continuous integration practice
differences in industry software development. Journal of Systems and
Software 87 (2014), 48–59.

[47] Tran, T. H. Developing web services with serverless architecture. Mas-
ter’s thesis, Lappeenranta University of Technology, School of Business
and Management, 2017.

[48] Udd, R. Adopting continuous delivery: A case study. Master’s thesis,
Aalto University, School of Science, Espoo, Finland, 2016.

[49] Varghese, B., and Buyya, R. Next generation cloud computing:
New trends and research directions. Future Generation Computer Sys-
tems 79 (2018), 849–861.

[50] Verona, J. Practical DevOps. Packt Publishing, 2016.

[51] Wells, D. Serverless technology use cases, 2017. https://www.

youtube.com/watch?v=9vBNlJx_h_o. Accessed 6.5.2018.

[52] Zambrano, B. Serverless Design Patterns and Best Practices. Packt
Publishing, 2018.

[53] Zanon, D. Building Serverless Web Applications. Packt Publishing,
2017.

https://headmelted.com/serverless-showdown-4a771ca561d2
https://headmelted.com/serverless-showdown-4a771ca561d2
https://www.youtube.com/watch?v=9vBNlJx_h_o
https://www.youtube.com/watch?v=9vBNlJx_h_o

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Structure of the Thesis

	2 Background
	2.1 Introduction to DevOps
	2.2 DevOps practices
	2.2.1 Source Control
	2.2.2 Build Process
	2.2.3 Testing and QA
	2.2.4 Deployment
	2.2.5 Monitoring

	2.3 Serverless Applications
	2.4 DevOps for Serverless Applications
	2.5 Integration flow model

	3 Research Methods
	3.1 Research motivation
	3.2 Research method
	3.3 Data collection

	4 Current State Analysis
	4.1 Project architecture
	4.2 Serverless elements of application architecture
	4.3 Expectations for Serverless Applications
	4.4 Elicitation of requirements for DevOps pipeline
	4.4.1 Source Control
	4.4.2 Build Process
	4.4.3 Testing and QA
	4.4.4 Deployment
	4.4.5 Monitoring

	4.5 Results

	5 Implementation
	5.1 Architecture
	5.2 Infrastructure as Code solution
	5.3 Source Control
	5.4 CI and CD pipeline
	5.5 Monitoring of the solution
	5.6 Implementation problems

	6 Evaluation
	6.1 Implemented DevOps practices
	6.2 Cost calculation
	6.3 Pipeline evaluation

	7 Discussion
	7.1 Answers to research questions
	7.2 Design Science Research
	7.3 Future research

	8 Conclusions

