
Mapping Modbus to OPC Unified
Architecture

Jesper Tunkkari

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 2.3.2018

Thesis supervisor:

Prof. Valeriy Vyatkin

Thesis advisors:

M.Sc. Jouni Aro

D.Sc. Ilkka Seilonen

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Jesper Tunkkari

Title: Mapping Modbus to OPC Unified Architecture

Date: 2.3.2018 Language: English Number of pages: 8+68

Department of Electrical Engineering and Automation

Professorship: Control, Robotics and Autonomous Systems

Supervisor: Prof. Valeriy Vyatkin

Advisors: M.Sc. Jouni Aro, D.Sc. Ilkka Seilonen

The importance of data collection and exchange in industrial automation has grown
over the years, bringing new requirements to data collection and storage. Modbus
is a widely used protocol in the automation industry, but it is insecure and open to
attacks. To meet modern day requirements, it needs to be secured. The purpose
of this thesis is to create an application that can transfer Modbus data over OPC
Unified Architecture, which provides secure communication by default.
To get a good base for the requirements and design, currently available similar
applications are evaluated. The main part of the thesis studies how Modbus
data should be structured in an OPC UA server application by using Information
Modelling. First, a diagram of the structure is created. Then, by using a modelling
tool, that diagram is turned into an OPC UA Information Model, defining the
base data structure of the application. In the practical part of this thesis, the
application is created based on the OPC UA Simulation Server, which is modified to
enable configuration of Modbus data transfer. Its GUI is implemented to minimize
necessary user interactions and to prevent possible configuration mistakes.
The results show that creating a good Information Model is possible, but is quite
time consuming. The finished application shows that OPC UA is very suitable for
transferring Modbus data, especially as it can provide metadata in addition to the
raw data. It also shows that an OPC UA application can be easy to use if the
GUI is designed well enough. As OPC UA showed to be suitable for transferring
Modbus data, improvements will most likely be made to the OPC UA Modbus
Server in the future.

Keywords: OPC UA, Modbus, Java, information modelling

aalto-yliopisto
sähkötekniikan korkeakoulu

diplomityön
tiivistelmä

Tekijä: Jesper Tunkkari

Työn nimi: Modbusin muuntamista OPC Unified Architectureksi

Päivämäärä: 2.3.2018 Kieli: Englanti Sivumäärä: 8+68

Sähkötekniikkan ja Automaation Laitos

Professuuri: Säätötekniikka, Robotiikka ja Autonomiset Järjestelmät

Työn valvoja: Prof. Valeriy Vyatkin

Työn ohjaajat: DI Jouni Aro, TkT Ilkka Seilonen

Tiedonkeruun ja -vaihdon tärkeys teollisuusautomaatiossa on kasvanut vuosien
varrella, tuoden uusia vaatimuksia tiedonkeruulle ja tallentamiselle. Modbus on
erittäin laajasti käytetty protokolla teollisuudessa, mutta se on suojaamaton ja
avoin hyökkäyksille. Nykyaikaisten vaatimusten täyttämiseksi sitä pitää suojata
tietoturvahyökkäyksiltä. Tämän diplomityön tarkoituksena on luoda sovellus, joka
pystyy siirtämään Modbus-dataa OPC Unified Architecturen yli. OPC UA:ssa on
sisäänrakennettu tietoturva.
Tällä hetkellä olemassa olevia, samankaltaisia sovelluksia arvioidaan ja käyte-
tään pohjana suunnittelussa. Työssä keskitytään tutkimaan, miten Modbus-
tietorakenteita tulisi mallintaa OPC UA -serverisovelluksessa tietomallintamisen
avulla. Ensin tietorakenne määritellään kaavion avulla. Sen jälkeen mallinnussovel-
lusta käyttämällä kaaviosta luodaan OPC UA -tietomalli. Tämä tietomalli mää-
rittää sovelluksen perustietorakenteen. Diplomityön käytännöllisen osan sovellus
pohjautuu muokattuun OPC UA Simulation Serveriin, johon on lisätty Modbus-
konfiguraatiomahdollisuus. Käyttäjän konfiguraatiovirheet on pyritty estämään
minimoimalla toimenpiteiden määrää.
Tuloksista selviää, että hyvän tietomallin luominen on mahdollista, vaikka onkin
aikaa vievää. Kehitetty sovellus näyttää, että OPC UA soveltuu erittäin hyvin
Modbus-datan siirtämiseen, varsinkin koska se pystyy tarjoamaan raakadatan
lisäksi myös metadataa. Lisäksi selviää, että hyvällä käyttöliittymäsuunnittelulla
OPC UA -sovelluksesta voi tulla helppokäyttöinen. Koska OPC UA näyttää
soveltuvan hyvin Modbus-datan siirtämiseen, OPC UA Modbus Serveriä tullaan
todennäköisesti kehittämään myös tulevaisuudessa.

Avainsanat: OPC UA, Modbus, Java, tietomallintaminen

aalto-universitetet
högskolan för elektroteknik

sammandrag av
diplomarbetet

Författare: Jesper Tunkkari

Titel: Konvertering av Modbus till OPC Unified Architecture

Datum: 2.3.2018 Språk: Engelska Sidantal: 8+68

Institutionen för Elektroteknik och Automation

Professur: Reglerteknik, Robotik och Autonomiska System

Övervakare: Prof. Valeriy Vyatkin

Handledare: DI Jouni Aro, TkD Ilkka Seilonen

Vikten av datainsamling och -utbyte i industriell automation har växt genom
åren, vilket har fört fram nya krav på datainsamling och -lagring. Modbus är ett
mycket använt protokoll i automationsindustrin, men det är oskyddat och öppen
för attacker. För at möta moderna krav, måste det skyddas från säkerhetsattacker.
Syftet med det här diplomarbetet är att skapa en applikation som kan överföra
Modbus-data över OPC Unified Architecture, som erbjuder säker överföring av
data som standard.
För tillfället tillgängliga, motsvarande applikationer evalueras och används som bas
för designen. Största delen av arbetet utreder hur data borde struktureras i OPC
UA serverapplikationer med hjälp av Informationsmodellering. Först definieras
datastrukturen i form av ett diagram. Med hjälp av ett modelleringsprogram
omvandlas sedan diagrammet till en OPC UA Informationsmodell, som definierar
applikationens basdatastruktur. I den praktiska delen baseras applikationen på en
modifierad version av OPC UA Simulation Server, som utökats med Modbuskonfi-
gurationsmöjlighet. För att förebygga användares konfigurationsmisstag utvecklas
användargränssnittet så att nödvändiga konfigurationssteg minimeras.
Resultaten visar att det är möjligt att framställa av en bra Informationsmodell,
även om det är mycket tidskrävande. Den utvecklade applikationen visar att OPC
UA är mycket lämpligt för överföring av Modbus-data. Speciellt eftersom den utöver
rådata också kan förse metadata. Resultaten visar även att OPC UA applikationer
kan vara enkla att använda ifall användargränssnittet designas väl. Eftersom OPC
UA lämpar sig för överföring av Modbus-data så väl, kommer OPC UA Modbus
Servern högst troligen vidareutvecklas också i framtiden.

Nyckelord: OPC UA, Modbus, Java, informationsmodellering

v

Preface
The opportunity to write my thesis for Prosys OPC is greatly appreciated and I
would especially like to thank my instructor Jouni Aro. His guidance and patience
with this long lasting project has been invaluable. There were times when a finished
thesis seemed too hard to accomplish, but seeing other impossible projects getting
finished, like Helsinki’s West Metro, gave me the strength to keep going.

I would also like thank my supervisor Valeriy Vyatkin and second instructor Ilkka
Seilonen for their inputs on the matter at hand.

Otaniemi, 2.3.2018

Jesper Tunkkari

vi

Contents
Abstract ii

Abstract (in Finnish) iii

Abstract (in Swedish) iv

Preface v

Contents vi

Abbreviations viii

1 Introduction 1
1.1 Objectives and scope . 2
1.2 Research methods . 3
1.3 Structure of work . 3

2 Background 4
2.1 Modbus . 4

2.1.1 History . 4
2.1.2 General . 4
2.1.3 Data structure . 5
2.1.4 Serial . 8
2.1.5 Ethernet . 8
2.1.6 Other implementations . 9

2.2 OPC Unified Architecture . 9
2.2.1 History . 9
2.2.2 UA Address Space . 11
2.2.3 Information Modelling . 12
2.2.4 Information Model Extensions 17
2.2.5 Security . 18
2.2.6 Services . 19

3 Requirements 21
3.1 Use cases . 22

3.1.1 Reading production data to MES 22
3.1.2 Providing PLC with process runtime parameters 23

3.2 Evaluating OPC UA enabled Modbus applications 23
3.2.1 KEPServerEX . 24
3.2.2 Cogent DataHub Modbus OPC Server 28
3.2.3 Softing dataFEED OPC Suite 31
3.2.4 CommServer OPC UA Server for Modbus IP 34
3.2.5 Summary . 36

vii

4 Design 37
4.1 Design decisions . 37
4.2 Modbus Information Model Design 38

4.2.1 ModbusDeviceTypes . 41
4.2.2 ModbusIoBlockTypes . 43
4.2.3 ModbusRegisterConfigurationType 43
4.2.4 HasModbusRegisterConfiguration 43

5 Implementation 46
5.1 Creating the Information Model . 46
5.2 Modbus device configuration . 49
5.3 Creating the OPC UA Modbus Server 50
5.4 Application deployment . 50
5.5 User interface . 51

6 Conclusion 56
6.1 Future work . 57

References 58

A Modbus Information Model 62

B Modbus NodeSet 64

viii

Abbreviations
ADU Application Data Unit
AE Alarms and Events
API Application Programming Interface
ASCII American Standard Code for Information Interchange
COM Component Object Model (Microsoft)
DA Data Access
DCOM Distributed COM
CRC Cyclic Redundancy Check
ERP Enterprise Resource Planning
GUI Graphical User Interface
HDA Historical Data Access
HA Historical Access
IANA Internet Assigned Numbers Authority
IO Input, Output
IP Internet Protocol
LAN Local Area Network
MBAP Modbus Application Protocol
MES Manufacturing Execution System
MOM Manufacturing Operations Management
MSB Most Significant Bit
ODBC Open Database Connectivity
OPC Open Platform Communication or OLE for Process Control
OPC UA OPC Unified Architecture
PDP Process Data Protocol
PDU Protocol Data Unit
RTU Remote Terminal Unit
SCADA Supervisory Control and Data Acquisition
SCP Secure Copy
SDK Software Development Kit
TCP Transmission Control Protocol
TLS Transport Layer Security
UML Unified Modelling Language
VPN Virtual Private Network
WAN Wide Area Network
XML Extensible Markup Language

1 Introduction
Data collection and exchange have always been a part of industrial automation, but
in recent years they have grown to be key aspects of a successful business. There
are several reasons for companies to collect data from their manufacturing processes.
Such reasons include, for example, obligations due to regulations in specific industries
such as the food industry. In the automotive industry, collected data can be used for
anything ranging from material management to manufacturing process development.
Whatever the reason, data needs to be transferred, to a different extent, across all
the layers of the automation pyramid (seen in figure 1).

SCADA and HMI

ERP

MES

PLCs

Sensors and actuators Level 0: Sensors/actuators

Level 1: Controllers

Level 3: Operations

Level 2: Supervision

Level 4: Plant

Figure 1: Levels of the automation pyramid.

As automation technology advances, more and more devices are connected to the
corporate and industrial networks every day. Thus there is a growing importance
of managed networks and secure transfer of data. The automation protocols over
Fieldbus or Industrial Ethernet, such as Modbus, PROFIBUS, PROFINET or
EtherCAT were designed for speed and reliability between actuators, controllers and
SCADA, and for delivering the data with strict deadlines. They were not designed
to be integrated into regular LAN networks but for separated automation networks.
As the networks are isolated, there has been no need to apply security or encryption,
allowing minimized overhead in data transfers. The most demanding applications
using Industrial Ethernet might use special network switches that implement PDP
(process data protocol) on the transport and network layer instead of TCP/IP and
may even have special real-time Ethernet controllers on the physical and link layers
for as fast transfer times between the devices as possible [1]. Integrating such a
network into an office network, would increase the traffic radically and slow down
the whole system.

The security aspects have historically not been of major concern to the industrial
automation industry. Only after the report of Stuxnet in 2010 security technologies
and management became a significant factor in the industry [2]. As security breaches

2

can cause significant profit loss, material damage or, in worst case, even deaths, it is
clear that this matter needs to be taken seriously.

Today the task of providing data to the corporation management systems like
MES and ERP is not as simple any more as confidentiality, integrity and availability
need to be considered. The first and most important security measure is to keep the
automation and office networks separated. To accomplish this gateways are used.
Gateways have traditionally been used for protocol conversion, but today they are
also used to provide a layer of security [3]. An enterprise may be distributed all over
the world and their factories can be located in different cities than their operational
divisions. This means that when data needs to be exchanged between them it has to
be transferred securely. There are several ways to accomplish secure transfer of data,
for example by using virtual private networks (VPN), transport layer security (TLS)
or Secure Copy (SCP), although none of them are really intended for transferring
live automation data.

The industrial protocol Modbus is a very widely used protocol because it is simple,
royalty-free and vendor independent. But, even though it is widely used, it has a big
disadvantage in that it lacks any kind of security attributes [4]. To transfer process
data from an industrial control system using Modbus, to the upper levels in the
automation pyramid, a more suitable method is thus necessary. In such a case, a very
good solution is to use OPC UA, which is developed to provide a secure and agile
way of communication. OPC UA supports creation of Information Models which not
only provides raw process data, but can also provide semantics of the application.

By mapping Modbus to OPC UA, the simple and widely used protocol can be
made easily available over a secure channel for all the upper levels in the automation
pyramid. In addition to the data provided by the Modbus devices, the application
can provide metadata about the process as well. As there is such a large amount
of Modbus devices available on the market and they are used in an endless amount
of different ways, it is necessary for the user to be able to configure the mapping of
Modbus data to OPC UA. This way the users can select the necessary data and
customize it according to their need.

1.1 Objectives and scope
The purpose of this thesis is to develop an application for mapping an open com-
munication protocol to OPC UA. The idea is to enable users to easily provide a
secure means for transferring data to different types of applications ranging from
SCADA to ERP systems. To limit the extent of this thesis a scope is set. The most
important part of the scope is to specify the open communication protocol to be
mapped, the most common automation protocol Modbus will be used. Specifically
only the TCP/IP based implementations of Modbus are included. In the aspects
of OPC UA, only the part that is providing data is included. Specifically only the
creation of an OPC UA server with Data Access variables. The implementation of
an OPC UA client application for handling or reading Modbus data is not covered at
all. Neither all existing data type implementations will be provided. The supported
data types will be decided later on.

3

As this application will use OPC UA, large weight will be put on designing the
application in a way that fits the OPC UA architecture. The thesis will study these
three main points:

1. How should data be structured and modelled in an OPC UA server application
or more specifically how an Information Model is designed with the right level
of abstraction.

2. Can the usage and configuration of such an application be developed in a way
that it is easy to set up.

3. Furthermore, the benefits of OPC UA over simply wrapping Modbus with a
secure protocol, such as HTTPS, will be evaluated.

1.2 Research methods
For the most part of this thesis, information is acquired by literature review and
the specifications of both Modbus and OPC UA. For the design part of the thesis
and for decision making, fellow co-workers at Prosys OPC Ltd. are consulted. The
design process follows an agile development method where the design is reviewed and
improved iteratively. In projects of this size, agile is a good choice as each design
iteration can be reviewed quickly and the design is then easier to improve.

Product reviews of currently available similar applications are conducted as an
important part of the thesis. The reviews are used to create a good starting point
of the design goals of the application. They give valuable information on usability,
which functionalities are necessary and if there are some functionalities that could
be implemented that these are lacking.

The mapping between Modbus and OPC UA is designed by creating an Infor-
mation Model. As the creation of Information Models is very common in OPC UA,
a graphical notation specific to OPC UA has been created to visualize the design.
This notation is used to help designing the Information Model and an application
called UaModeler is then used to create the Information Model.

1.3 Structure of work
This thesis is divided into six main chapters. The first chapter introduces the reader
to the subject and gives a short answer to what has been created and why it has been
developed. The second chapter gives the reader some necessary background knowledge
of both Modbus and OPC UA. The third chapter talks about the requirements, in
which cases it could be used and what kind of similar applications already exists.
Chapter four contains the design process. It describes design decisions that aim for
making the application preferable over similar applications on the market and it also
describes the design of the Information Model. In chapter five the implementation
phases from model generation to the finished application is presented. The Last
chapter wraps up the work by discussing the outcome of the project.

4

2 Background
To offer an insight on how Modbus and OPC UA differ from each other and how
they could be mapped together, some background information is necessary. As their
specifications are very long and detailed, only a short and informative version of
them is presented. The background aims for giving the reader enough information
about the subject to be able to understand the design and implementation processes.

2.1 Modbus
2.1.1 History

The Modbus protocol is an old industrial standard protocol that is developed by
Modicon and was introduced in 1979 [5]. Modicon that today is a part of the
widely known Schneider Electric, is also one of the founders of the member-based,
non-profit organization Modbus Organization, that took over the development and
maintenance of the Modbus protocol [6]. The advantage of using Modbus is that it’s
not industry specific and it uses a messaging structure common to all devices. It can
be implemented over both serial and Ethernet communication and its simple and
adaptable implementation has made it very widely used in the automation industry.

2.1.2 General

The Modbus protocol uses a master/slave technique (also called client/server) where
the slave is a passive device that provides data upon request while the master is the
active part that initiates the data transactions. As seen in figure 2, the master sends
a request to a slave, to which the slave then creates either a normal response or an
exception response.

Figure 2: Master - Slave data interactions.

Modbus was initially designed to transfer data over the serial interfaces EIA-232,
EIA-422 or EIA-485 but later on an Ethernet based implementation called Modbus

5

TCP/IP has been developed as well [7]. That is why the Modbus protocol usually is
divided in two parts, serial and Ethernet based.

2.1.3 Data structure

The Modbus protocol implements a simple protocol data unit (PDU) independent of
the underlying communication layers. The Modbus protocol defines three different
types of PDUs:

• Modbus request
• Modbus response
• Modbus exception response

In each of these cases the PDU is divided into two fields, function code and data.
The function code field in the PDU is one byte long with valid values between 1 and
255, meaning 0 is not a valid function code [8]. A function code is set in the request
and if no exception occurs, the same function code is returned in the response. As
visualized in table 1, if an exception occurs, it is distinguished by the MSB of the
function code field in the request being set to one in the exception response.

Table 1: Function code of a Modbus transaction example.

Function code (hex)
Request 0000 0110 (0x06)

Response 0000 0110 (0x06)
Exception response 1000 0110 (0x86)

As shown in figure 3, the PDU is wrapped in an application data unit (ADU) that
introduces certain additional fields depending on the underlying protocol [8]. These
additional fields can be generalised to Additional address and Error check. Depending
on if serial or Ethernet communication is used different fields are implemented in the
ADU, these differences are discussed in the sections 2.1.4 and 2.1.5 explaining the
different communication layers.

Figure 3: Application data unit.

Modbus defines four types of data with varying features (table 2). The inputs,
both discrete inputs and register inputs represent physical inputs on the Modbus
device. The coil outputs and holding registers can be either internal (virtual) or
physical outputs. Let’s take an electrical drive as an example. The physical coil
outputs are used e.g. for starting, stopping or locking the drive while discrete inputs

6

provide the run status. The holding registers are used to set analog values, e.g. the
speed setpoint of the drive while input registers provide data like real-time speed
value.

Table 2: Modbus data types.

Type Access Size
Discrete input read-only 1-bit
Coil output read-write 1-bit
Input registers read-only 16-bit
Holding registers read-write 16-bit

Each data type is allocated to a block of memory addresses. Illustrated in figure 4,
the blocks use a 16-bit address that restricts each type of data to 65536 data items.
So e.g. a 16-bit holding register can have an address between 0–65535. Now to make
things a bit confusing, there are a few ways of addressing the Modbus data items.
Two of them can be seen in table 3.

Address (16-bit) Data

Input Registers

0x0000 (0)

0xFFFF (65535)

0b0

0b0

Input Discretes (1-bit)

Coils (1-bit)

0x0000 (0)

0xFFFF (65535)

0b0

0b0

0x0000 (0)

0xFFFF (65535)

0x0000

0x0000

Holding Registers

0x0000 (0)

0xFFFF (65535)

0x0000

0x0000

Figure 4: Example of Modbus data blocks.

The old addressing has its advantage in that the address is meant to give infor-
mation on both the data type and the address by letting the leading number specify
the data type and the remaining four numbers specify the address. One disadvantage
is that the first item in the data block, e.g. holding register 0 is addressed to as
40001 which might get confusing or misleading [7]. Another disadvantage is that
this way of addressing restricts the data items to 9999 even though 65536 addresses
should be available for each data type. To fix the addressing issue, it can be extended
from 40001 to 400001 by adding a zero in between. But as it this still seems a

7

bit confusing that a zero could be added just like that, there is a way to make it
a bit more unambiguous. The Fixed addressing in table 3 is an unofficial way of
bypassing the confusion between normal and extended addressing. It adds an x after
the specified data type to separate the data type and the register address. Currently
the best way of addressing is to specify the data type and the address separately.

Table 3: Modbus register addressing.

Type Old addressing Fixed addressing
Discrete input 00001–09999 0x0001–0x65536
Coil output 10001–19999 1x0001–1x65536
Input registers 30001–39999 3x0001–3x65536
Holding registers 40001–49999 4x0001–4x65536

To specify what type of request is sent the protocol implements a set of function
codes. Table 4 shows the most commonly used and implemented function codes. The
function codes between 1 and 127 are either public function codes that are publicly
documented, unique and maintained by the Modbus Organisation or then they are
user defined [8]. The value ranges 65–72 and 100–110 are reserved for the user defined
function codes and the rest are public function codes. The values from 128 up are
reserved for the exception responses.

Table 4: Common Modbus function codes (FC).

Function FC
Physical discrete
inputs

Read Discrete inputs 02

Internal bits or
physical coils

Read Coils
Write Single Coil
Write Multiple Coils

01
05
15

Physical input
registers

Read Input Register 04

Internal Registers
or physical output
registers

Read Holding Registers
Write Single Register
Write Multiple Registers

03
06
16

The data field (figure 3) in each type of PDU, depending on the function code,
contains either data or information necessary for the slave to be able to provide the
correct data to the master. The PDU data field of a Modbus Request contains a
register starting address and the quantity of bytes to be read. The data field in the
corresponding Modbus response contains the amount of bytes and the data itself.

8

2.1.4 Serial

The Serial line Modbus specifications can be divided into RTU and ASCII modes.
Modbus RTU is the most lightweight as it transfers binary data as opposed to
Modbus ASCII that uses ASCII characters. Because it is binary it might sometimes
be referred to as Modbus-B as well. The ASCII protocol usually has to transfer data
that is double the length of what the RTU data would be [7]. All Modbus serial
devices must implement at least the RTU mode [9]. The serial Modbus protocols
use an additional address field and error check in the ADU.

The ADU in figure 3 illustrates an ADU that is used in the serial protocol so it
implements an additional address field and an error check field in addition to the
PDU. The additional address field is a 1-byte address for slave devices so that each
of them can be uniquely identified over a serial interface such as EIA-485. This can
be seen in figure 5, only here the additional field is called unit id. Valid addresses of
slave devices are 1–247 and the rest are reserved.

Modbus Master

Modbus Slave

UnitId: 1

Modbus Slave

UnitId: 2

Modbus Slave

UnitId: 3

RS-485

Figure 5: Modbus devices in EIA-485 serial line.

The Modbus serial modes implement two standard error detection features. The
first one is an error check of either a 2-byte CRC used in RTU mode or a 2-char LRC
used in ASCII mode. Parity checking is used as the other standard error detection
feature. The parity checking adds a parity bit to each character transmission. There
are three different types of parity checking, even, odd and none, where the only
compulsory option to be implemented is even. [9]

2.1.5 Ethernet

The Modbus protocol defines two standard Ethernet protocol versions:

• Modbus TCP/IP, also called Modbus TCP
• Modbus over TCP/IP, also called Modbus RTU over TCP or Modbus RTU/IP

First of all the Modbus TCP ADU package differs from the serial ADU in the
sense that the error check is removed as there already is a 32-bit CRC implemented
on the Ethernet layer. The second difference is that the additional address field
is replaced by a so called MBAP header, which is 7 bytes long and is significantly
longer than the 1 byte long address in the Modbus serial PDU [10]. The difference
between Modbus TCP and Modbus over TCP is that Modbus over TCP wraps the
serial ADU in a TCP package and not the standard Ethernet ADU.

9

Figure 6: Modbus TCP ADU.

The MBAP header consists of the four fields listed in table 5 [10]. The transaction
identifier is used to keep track of which request belongs to which response. The
protocol identifier is used for intra-system multiplexing and the Modbus protocol is
identified by 0. The length gives the quantity of bytes that follow, this includes both
unit identifier and data fields. The unit identifier is used in Modbus over TCP for
identifying serial Modbus slaves behind an Ethernet ↔ Serial Modbus gateway.

Table 5: MBAP Header fields.

Fields Length Description Client Server
Transaction
Identifier

2 Bytes Identification of a
Modbus request/response
transaction

Initializes Req Recopied Req → Res

Protocol Id 2 Bytes 0 = Modbus protocol Initializes Req Recopied Req → Res
Length 2 Bytes Number of following bytes Initializes Req Initializes Res
Unit Id 1 Byte Identification of remote

slave connected through se-
rial

Initializes Req Recopied Req → Res

An important note is that all Modbus TCP traffic is sent to port 502 which is
registered at IANA as a System port [10][11]. In practice this means that Modbus
slaves should always be listening on port 502.

2.1.6 Other implementations

Modbus also implements other protocol versions that are out of the scope of this
thesis. Some of the protocols worth mentioning though are Modbus+ and Enron
Modbus [12][13].

2.2 OPC Unified Architecture
2.2.1 History

The IEC standard 62541 OPC Unified Architecture was first released in 2008 and is
a platform independent service-oriented architecture aimed to replace its predecessor
OPC Classic [14]. OPC UA integrates all the functionalities of OPC Classic into a
single, extensible framework. The reasons for the development of OPC UA is that
OPC Classic has its restrictions. The main restriction is that OPC classic is bound
to Windows based computers as it uses Microsoft’s COM/DCOM technology. It also
implements several different standards of which the most common ones are OPC
DA (Data Access), OPC HDA (Historical Data Access) and OPC AE (Alarms and

10

Events). OPC Classic was initially designed for communication on the automation
level where as OPC UA is designed to enable usage throughout all the layers of the
automation pyramid (figure 1).

Since OPC UA was released it has had a steady growth and recently it has finally
found its place in the industry as the de facto standard for industrial communication
by replacing its predecessor [15]. This was verified in June 2017 when OPC UA was
declared to be the means of communication for the German Industrie 4.0 as the
Reference Architecture Model for Industry 4.0 (RAMI 4.0) only recommends OPC
UA for implementing the communication layer [16]. Furthermore many of the big
corporations have shown interest in OPC UA and are actively participating in the
development. One of the more active participants is Microsoft, that has made OPC
UA available for the .NET Standard and in their cloud platform Azure [17].

The current OPC UA Specification 1.03 was released by the OPC Foundation
in 2015. The specification is divided into 13 parts (listed in table 6) describing the
functionalities. The most important parts of the specification are part 3 and 4 [18].
These parts define the Address Space model and the services. They describe how
the data and information hierarchies should be modelled and exposed and how the
server and client should interact with each other.

Table 6: OPC UA Specification parts.

Part Description

Core Specification Parts
1 Overview
2 Security Model
3 Address Space Model
4 Services
5 Information Model
6 Mappings
7 Profiles

Access Type Specification Parts
8 Data Access
9 Alarms and Conditions
10 Programs
11 Historical Access
13 Aggregates

12 Discovery

Companion Specifications
Devices
Analyser Devices
IEC 61131-3
ISA-95 Common Object Model
...

11

2.2.2 UA Address Space

The main task of the OPC UA Address Space is to expose a collection of Objects and
their data in a standard way on an OPC UA server to the OPC UA clients [19][20].
The Objects can contain Variables and Methods. The OPC UA Address Space is
constructed in an object-oriented way and the Objects are represented as a set of
Nodes, which are defined by Attributes and References. Figure 7 illustrates the Node
model, here the Attributes describe the Node itself and the References describe its
relation to other Nodes.

Node X

Attributes

NodeId

NodeClass

References

[HasComponent] Node Y

[HasProperty] Node Z

Node Y

Node Z

Figure 7: OPC UA Node Model.

All Nodes in the OPC UA Address Space belong to a NodeClass and the Node
implements all the attributes of the NodeClass it belongs to. The main NodeClasses
in OPC UA are Objects, Methods and Variables. The OPC UA specification defines
a Base NodeClass from which all other NodeClasses are derived, table 7 shows the
attributes of the Base NodeClass [21]. The Base NodeClass does not specify any
references.

Table 7: BaseNodeClass Attributes.

Name Data Type Usage
NodeId NodeId Mandatory
NodeClass NodeClass Mandatory
BrowseName QualifiedName Mandatory
DisplayName LocalizedText Mandatory
Description LocalizedText Optional
WriteMask UInt32 Optional
UserWriteMask UInt32 Optional

In addition to the three main NodeClasses the OPC UA Specification defines five
more, these are ObjectType, VariableType, ReferenceType, DataType and View. To
be able to visualize these, the OPC UA Specification (Part 3, Annex D) defines a
standard graphical notation for the NodeClasses and references [21]. The NodeClasses,
represented by their graphical notations are listed in figure 8 below and a detailed
description of them can be found in the OPC UA specification. The Type NodeClasses
are also described later on when Information Modelling is introduced in section 2.2.3.

12

Object

Variable

MethodObjectType

VariableType

ReferenceType

Asymmetric

DataTypeView

Hierarchical

HasComponent

HasProperty

HasTypeDefinition

HasSubType

Symmetric HasEventSource

Figure 8: OPC UA Graphical notation of NodeClasses.

The most important attribute of a Node is the NodeId. The NodeId attribute is a
unique identifier that is used to distinguish the Nodes on the server from each other
[18]. The NodeId consists of three parts: namespace index, enumerated identifier
type and identifier. There are four different identifier types which define a specific
identifier structure, these are shown in table 8. Although the identifier is supposed
to be unique, the same identifier can be used in the context of another namespace
[22]. For example the Node with NodeId ns=1;s=WasteWaterFlow in table 8 would
not be the same as ns=4;s=WasteWaterFlow.

Table 8: NodeId Identifier Types.

Name Description NodeId, XML Notation example
Numeric, i Numeric value ns=1;i=5001
String, s Text string ns=1;s=WasteWaterFlow
GUID, g Globally unique identifier ns=2;g=098113a3-3b1a-123d-adf2-724d365cc214
Opaque, b Namespace specific ByteString ns=4;b=K/RbAEsRVoePQePfx18ofA==

The OPC UA Address Space Model can be viewed as a meta model that consists
of the NodeClasses and their fixed set of attributes. In addition to the NodeClasses,
some standard Nodes are defined in the meta model as well [18] [23]. This meta model
is usually also referred to as the base Information Model. The Nodes defined in the
meta model are ReferenceTypes and TypeDefinitions. OPC UA servers implement
this Address Space Model as a base which can be extended. OPC UA Information
Models define certain domain-specific types, constraints and well-defined instances.
Once an Information Model has been created, the same model can be used in several
different OPC UA servers. The Data part, illustrated in figure 9, is server specific
and consists of the concrete instances that will provide the process values that have
been instantiated.

2.2.3 Information Modelling

Information Modelling is a fundamental part of OPC UA. While OPC Classic only
provides "raw" data, OPC UA gives the possibility to expose the semantics of the
provided data while not enforcing it [18]. The Information Models are created to
provide extensive information about the domain for which it is intended and even
the most complex multi-level object structures can still be modelled and extended

13

Organizes

References

BaseObjectType

Object

NodeId

NodeClass

...

Variable

NodeId

Value

...

ObjectType

NodeId

IsAbstract

...

ReferenceType

NodeId

IsAbstract

...

Hierarchical

References

HasChild

HasSubtype

HasSubdeviceDeviceType

PV

AllDevices

Device1

PV

Device2

PV

Device3

PV

Organizes

Organizes HasSubDevice

Address Space
Model

(Meta Model)
Defines NodeClasses, base

types and constraints.

Information Model
Defines types, constraints

and well defined instances.

Data
Concrete instances.

Figure 9: OPC UA Server Address Space.

[14]. What this means is that OPC UA does not only provide type information
on the data type level, like Integer or Double for a Variable, but it also provides
type information on the object level. It can for example specify that an object is a
device that provides temperature and humidity measurements by using a reference
to an ObjectType. In OPC UA the NodeClasses ObjectType and VariableType are
commonly called TypeDefinitions which as the name suggests, define the type of a
Node (Object or Variable).

14

References

Hierarchical

References

HasChild

HasSubtypeAggregates

NonHierarchical

References

Organizes

HasComponent

HasTypeDefinition

HasSubtype Reference

ReferenceType

Figure 10: OPC UA Base ReferenceType hierarchy.

As stated earlier, Nodes include attributes and references. To expose the semantics
of the references of a Node, OPC UA uses the NodeClass ReferenceType [18]. A
Reference describes the relation between two nodes and the ReferenceType gives
more specifics about that relation. ReferenceTypes are instantiated as Nodes and are
visible in the OPC UA Address Space where as a Reference is not [21]. The OPC
UA specification describes a set of predefined ReferenceTypes that are organized in a
hierarchy. The Base ReferenceType hierarchy is illustrated in figure 10. When using
the graphical notation of the OPC UA specification the References are described
with arrows of different types, these are illustrated in figure 11. If the OPC UA
server needs to define its own ReferenceTypes, the base ReferenceType hierarchy
will be extended by adding the necessary references as subtypes.

Object

Variable

MethodObjectType

VariableType

ReferenceType

Asymmetric

DataTypeView

Hierarchical

HasComponent

HasProperty

HasTypeDefinition

HasSubType

Symmetric HasEventSource

Figure 11: OPC UA Graphical notation of ReferenceTypes.

The ObjectType provides definitions for Objects [21]. It can be seen as an
abstraction or generalization of an Object. A very good example of this can be seen
in figure 9 where all the Device instances have the TypeDefinition DeviceType. The
TypeDefinition makes the Device instances inherit the structure of the DeviceType,
in this specific case all the created device instances will automatically be given the
PV variable.

15

The ObjectType can be divided into simple and complex ObjectTypes [18]. A
simple ObjectType is mainly used for organizing the address space and only defines
semantics for the Object that references it. A good example of a simple ObjectType
is the FolderType. Its purpose is only to organize the Address Space.

An Object references its type by using the a HasTypeDefinition reference. Each
Object can only define exactly one HasTypeDefinition reference. Let’s take the root
structure in figure 12 as an example. the Root node has the HasTypeDefinition
reference to FolderType and the Root object use a ReferenceType called Organizes
to reference nodes that should be organized by it. By looking at the figure it can also
be deduced that base Information Model is extended with the OPC UA for Devices
Information Model. That part of the specification defines a Device Model in which
the DeviceType ObjectType can be found [24].

Objects

HasTypeDefinition

Organizes
Organizes

Organizes

HasTypeDefinition

Types

Device1

Organizes

Organizes

FolderType

Views

Device2

DeviceType

Server

ServerType

Organizes

Organizes

HasTypeDefinition

HasTypeDefinition

Root

HasTypeDefinition

HasTypeDefinition

Organizes

HasTypeDefinition

HasTypeDefinition

HasTypeDefinition

HasComponent ServerStatus

HasComponentHasComponent

Organizes

Organizes

Figure 12: OPC UA Server Root Address Space structure.

The ObjectTypes support inheritance, meaning an ObjectType can be extended
to have a more complex or specific structure than its parent. Let’s say an ObjectType
called SensorType is extended to a TemperatureSensorType. An example of this can
be seen in figure 13, here the temperature sensor type inherits the PV Variable. It
does not add any attributes or references but extending it will specify that it is a
temperature sensor instead of just any sensor. If it would add an attribute, that could
be something that provides either a unit or a range property for giving additional
information about the object instance.

16

Objects

Organizes

HasSubType

Sensor1

Sensor2

Sensor3

HasTypeDefinition

PV

PV

PV

PV

HasComponent

SensorType

TemperatureSensorType

FlowSensorType

Figure 13: Example of OPC UA type inheritance.

The complex ObjectTypes define a structure of Nodes that is available beneath
them on each instance of the ObjectType [18]. Figure 14 illustrates an ElectricalDriv-
eType. The type defines a State Variable, a Parameter Object and Start & Stop
Methods. The Parameter Object further defines two variables: Current limit and DC
Braking. When a Drive Object referencing the ElectricalDriveType is created, the
whole structure defined by the ObjectType is automatically created by the server,
including all Nodes and References.

Like the ObjectType, the VariableType is divided into simple and complex
types as well. Just as the complex ObjectType, the complex VariableType defines
a structure of Nodes beneath it and the simple VariableType only defines some
semantics or restrictions of a Variable.

InstanceDeclarations and ModellingRules are an important part of Information
Modelling. The InstanceDeclarations are Objects and Variables that are defined in a
complex Object- or VariableType. In figure 14 the Nodes beneath the ElectricalDriv-
eType are Object, Methods and Variables and this means they should be Instances
and not Types, even though they belong to a TypeDefinition (ObjectType). But as
these only are instantiated when a node with the TypeDefinition is created, these
are called InstanceDeclarations which basically means that it is declared that these
Instances are to be created when an Instance of the ElectricalDriveType is created.
A more precise definition of InstanceDeclarations is that they are referenced from
the ObjectType by a hierarchical reference in forward direction either directly or
indirectly by another InstanceDeclaration [18].

17

ElectricalDriveType Drive

Parameters

HasTypeDefinition

State

Current limit

HasComponent

Start

Stop

DC Braking

Parameters

State

Current limit

Start

Stop

DC Braking

Method Object

Variable ObjectType

Figure 14: Example TypeDefinition of an electrical drive.

An InstanceDeclaration must always define a ModellingRule. A ModellingRule
specifies what happens to the InstanceDeclaration with respect to instances of the Ob-
jectType [18]. The ModellingRule defines a mandatory property called NamingRule
that describes the modelling rule. The NamingRule allows three values: Mandatory,
Optional and Constraint. The Mandatory rule forces an InstanceDeclaration to be
created while an Optional InstanceDeclaration can be left out and the Constraint
restricts creation of InstanceDeclarations in a specified way.

2.2.4 Information Model Extensions

The OPC UA Specification further defines some standard Information Model ex-
tensions. These can be seen in table 6 under the Access Type Specification Parts
section. These models define a standard way to represent capabilities and diagnostics
of an OPC UA server Address Space and how specific information for these parts
are modelled [18].

On top of the standard Information Model extensions there are Companion
Specifications (table 6) that define domain specific Information Models. They are
developed by other organizations and evaluated by the OPC Foundation. Figure 15
shows the OPC UA architecture and how the OPC UA base, the extension Information
Models, companion specific and custom Information Models relate to each other.
Out of these specifications the OPC UA for Devices is relevant in the extent of this
thesis. The Devices specification defines a base Device Model that should provide a
general view of any kind of devices [24].

18

Figure 15: OPC UA Information Model Architecture [18].

2.2.5 Security

The OPC UA Specification defines two transport protocols: HTTPS and UA TCP.
OPC UA TCP is a TCP based protocol that creates a full duplex communication
channel between an OPC UA client and OPC UA server [25]. Figure 16 shows
the OPC UA security architecture. The UA TCP ties functions on the transport
layer closely together with the communication layer for optimal performance and
as opposed to HTTPS it allows response messages to be sent in any order. Only
the UA TCP will be covered in this section as it is usually the preferred transport
protocol. It is the fastest and most efficient way to transport data over OPC UA,
while binary encoded HTTPS is slightly slower [18].

Application Layer

User Authentication

Application Layer

User Authentication

Communication layer

Application Authentication

Communication layer

Application Authentication

Session

Secure Channel

Transport Layer Transport Layer
Socket Connection

Figure 16: OPC UA security architecture [18].

The information exchange between an OPC UA server and client is done on top of a
Session, which is created on the application layer in the OPC UA Security architecture
[20]. This layer also handles the user authentication and user authorization security

19

tasks. All these functionalities are bundled to a high level API called UA SDK, which
is built on top of a low level API called UA Stack.

The session is created on top of a Secure Channel which is created on the commu-
nication layer by a service in the UA Stack. The UA Stack handles confidentiality,
integrity and application authentication. The UA TCP connection is created on
a socket connection that is implemented on the transport layer and while it han-
dles sending and receiving messages, the UA Stack handles re-establishment of lost
connections without interrupting the Secure Channel. [20]

The OPC UA Specifications define three security modes [25]:

• None
• Sign
• Sign & Encrypt

The server application provides some of the security protocols or all of them
and the client application then chooses which to use. What security protocol to
use is usually decided by the system administrator and varies depending on the
environment. As circumstances may change it can always be changed at a later point
as well.

The server defines Security Policies which provide the algorithm used for signing
and encrypting. Since some of the algorithms that today are considered safe might
become unsafe in the future, several algorithms are usually provided. The currently
defined security policies are: [26]

• None
• Basic128Rsa15
• Basic256
• Basic256Sha256

2.2.6 Services

OPC UA uses Services to offer OPC UA clients a way of accessing data of an OPC
UA servers Information Model [18]. The OPC UA services are an abstract definition
where the communication interfaces are defined so that it can be implemented
regardless of transport protocol, language or environment. They can be considered
as the core of OPC UA as without them data could not be exchanged. It can be seen
that the service specification is the base layer of the OPC UA communication layer
stack in figure 17. The second layer provides the mapping to transport protocols.
On the following layers programming language specific stacks are then implemented.
Furthermore on top of the stack an SDK is implemented to provide full use of the
OPC UA protocol [16].

The OPC UA services are logically organized into so-called service sets where
related services are grouped together into a set [27]. The service sets are only used
for the standard itself and are not used in the implementations. Table 9 shortly

20

Figure 17: OPC UA communication layering [18].

describes these service sets. If an even broader view of the services is taken they can
be divided into two groups: communication establishment and information exchange
[18].

Table 9: OPC UA Service Sets [27].

Service Sets Description
Discovery Services that can be used to discover endpoints and their

security configurations implemented by a server.
Secure Channel Services used to create a secure communication channel

that ensures the confidentiality and integrity of all messages
transmitted over the channel.

Session Services for establishing a session on an application layer
connection.

View Browse services enable clients to navigate through the Ad-
dress Space (or its subsets like views) of a server.

Attribute Read/Write data and metadata, HistoryRead and Histo-
ryUpdate services.

Method Enabling invocation of function calls to methods on the
server.

Monitored Item Services for managing monitored items and how they should
be handled

Subscription Services for managing subscriptions to monitored items and
how the publishing of them should behave.

Query The services can be used to find information in complex
Address Spaces like e.g. bulk data access.

Node Management Services to add nodes or their references in the Address
Space.

21

3 Requirements
Modbus devices usually provide control systems with process data from a remote
terminal unit (RTU) on the field level (level 0). Another use for Modbus might be
between PLCs of two different manufacturers that needs to exchange information.
Usually some of the process data in the PLCs or Modbus devices are valuable in
process development or quality control and if it is, that data needs to be stored
somehow. To store this data, it is usually transferred to the higher levels of the
automation pyramid (figure 1) to MES, MOM or ERP, depending on the type of
data to be stored.

As stated in chapter 1, the plant floor level automation and the enterprise level IT
infrastructure should be separated from each other as a good practice and to avoid
problems with bandwidth. To keep the security level as high as possible, it is a good
idea to use a firewall between the networks and only explicitly allow traffic through
them. There are several factors on why separation of industrial and enterprise IT
networks is preferable. The enterprise network might perform network scans that
reserve bandwidth in critical situations [28]. That is one of the main reasons to
separate the industrial or automation network from the rest of the enterprise network.
Another reason to separate the networks is the fact that a production environment
with machines like electrical drives or welding machines create a lot of noise compared
to an office environment. This creates higher noise handling requirements on the
industrial networking hardware with industrial standards often requiring 10 times
the noise handling capabilities of regular enterprise networks [29].

OPC

OPC

Modbus TCP

Firewall

MES

SCADA

Switch

Modbus

Switch

PLC

Enterprise
network

Industrial
network

Figure 18: Modbus data to MES.

Modbus TCP devices are built on standard TCP/IP and can thus provide data
over the public internet (WAN). But as the Modbus protocol is open and insecure, it
needs to be encrypted or isolated to not be vulnerable to attacks or misuse. Usually
the data from a Modbus device is read by a PLC that provides the data to a SCADA
PC. The SCADA PC then provides the data, for example, over OPC DA to the

22

MES as illustrated in figure 18. As the old OPC uses DCOM, transferring data
between two networks requires allowing traffic over a wide range of TCP ports. By
default these ports are 135 and 1024 through 65535 [30]. Allowing traffic through
the firewall on all these ports will create an obvious extra security risk and should
therefore always be avoided if possible.

A very good solution is to provide this data over OPC UA instead as it only
requires allowing communication through the firewall over a single TCP port. OPC
UA not only communicates over one TCP port but in addition it can sign and encrypt
the data as well, making it a very secure and agile way of transferring data.

3.1 Use cases
There are two main use cases in which the OPC UA Modbus Server application
could be used. The first use case is reading process data from Modbus devices on the
field level and the second is a PLC reading data that the OPC UA Modbus Server
provides. The use cases themselves may have several variations but for simplification
only one variation per use case is presented.

3.1.1 Reading production data to MES

The most likely use case scenario is that a user wants to transfer process data from
Modbus devices to a Manufacturing Execution System (MES). The Modbus TCP
device is connected directly to an Industrial Ethernet network as in figure 19 or
sometimes through a Modbus RTU to TCP Gateway. The MES is located in a
separate network and the two networks are connected through an industrial firewall.
The OPC UA Modbus Server application is installed on a server in the industrial
network so that it can access the Modbus devices. In figure 19 the OPC UA Modbus
Server is installed on the SCADA server. The OPC UA Client in the MES connects
to the OPC UA server through a firewall.

OPC UA

Firewall

MES /
OPC UA Client

SCADA /
OPC UA Modbus Server

Switch

Modbus slave
device

Switch

PLC /
Modbus master

Enterprise
network

Industrial
network

Modbus TCP
OPC UA

Modbus TCP

Modbus TCP

Figure 19: Modbus data to MES.

23

OPC UA makes it possible for the user to use several features that Modbus does
not provide. For example, making the OPC UA client subscribe to the values in
the OPC UA Modbus Server the traffic through the firewall can be minimized. By
using a subscription the data is only transferred on value changes which usually is a
lot more infrequent than cyclical polling. In cyclical polling the data values will be
transferred on a regular interval regardless of if it has changed or not. This means
that if a value does not change for a day, the same data will still be transferred over
and over again. The OPC UA Modbus Server can also be used as a gateway so
that it reads data from several Modbus devices and provides the data from all of
them over OPC UA on a single connection, meaning it removes the need for creating
several connections through the firewall.

3.1.2 Providing PLC with process runtime parameters

The other use case is that a user wants to provide configuration parameters to a
PLC from MES. The PLC illustrated in figure 20 already acts as a Modbus master
as it continuously reads process data from Modbus slave devices. Thus the OPC UA
Modbus Server application should provide data as a Modbus slave device from which
the PLC then can read the necessary runtime parameters. The OPC UA Client
in the MES connects and writes data to the OPC UA Modbus Server. The OPC
UA Modbus Server then provides the data over Modbus TCP, or any other of the
implemented Modbus protocols, to Modbus master devices like the PLC.

OPC UA

Firewall

MES /
OPC UA Client

SCADA /
OPC UA Modbus Server

Switch

Modbus slave
device

Switch

PLC /
Modbus master

Enterprise
network

Industrial
network

Modbus TCP
OPC UA

Modbus TCP

Modbus TCP

Figure 20: Modbus data from MES to PLC.

3.2 Evaluating OPC UA enabled Modbus applications
Some existing OPC UA Modbus Servers are tested to establish a good starting point
for the application design. They are also important for later on being able to compare
and evaluate the outcome of the developed application. OPC UA enabled Modbus
applications or devices are very rare on the market but do exist. To get a good

24

baseline and several different viewpoints, four OPC UA enabled Modbus applications
are tested.

As the evaluation quickly would get too comprehensive only two use case tests,
that are considered the most important ones, are performed on the applications. The
tasks being: configuring the OPC UA server and adding a Modbus device with one
holding register item.

3.2.1 KEPServerEX

The KEPServerEX is a connectivity platform that provides a single source of au-
tomation data [31]. The KEPServerEX is a module based application with a wide
range of different modules where users can choose to purchase only the module(s)
necessary for them. It supports some of the most current interfaces like MQTT,
Splunk and OPC UA as well as older ones like Modbus, Siemens Industrial Ethernet
or OPC DA.

Adding a Modbus device

Adding a device to KEPServerEX is done by first defining a communication channel.
The channel setup wizard seen in figure 21 guides the user through configuring the
communication channel. It specifies which communication interface (NIC, COM,
etc...) should be used and its parameters. By selecting Modbus TCP/IP Ethernet as
the channel type, all parameters are assigned default values that work in most cases.

Figure 21: Channel wizard of the KEPServerEX configuration.

When the communication channel is defined, devices can be added to it. In
figure 22 the add device wizard is presented. In this wizard the default values of all
the parameters can be used. The only necessary modification is to set the IP address
of the Modbus device.

The adding of a data item is done by right-clicking on the newly created Modbus
device and selecting New tag. Then the tag is named and optionally given a description

25

Figure 22: Device wizard of the KEPServerEX configuration.

as well. The important part in the tag configuration is the data properties, more
specifically the address and the data type. As figure 23 shows, the KEPServerEX
tag data properties use the old way of addressing, e.g. the first holding register being
400001. Which data type to use completely depends on what value type the Modbus
device provides. In this case the type is a 32-bit unsigned integer which is referred
to as DWord in KEPServerEX.

Figure 23: Adding a static tag to the KEPServerEX device configuration.

Adding a Modbus device to KEPServerEX requires 27 clicks and typing the IP
address. Adding a tag only requires five clicks and writing the name and address of
the tag, while copying a tag only requires four clicks.

26

Configuring the OPC UA Server

The configuration view of the OPC UA Server in KEPServerEX is started by selecting
OPC UA Configuration from the KEPServerEX Administration systray menu. The
OPC UA server is enabled and configured by default and should work out of the
box. Figure 24 shows the default OPC UA server endpoints where it can be seen
that endpoints are only created to localhost.

Figure 24: KEPServerEX OPC UA endpoints.

To be able to reach the OPC UA server from the network, the NIC and IP of
the machine needs to be added as a server endpoint. When adding an endpoint
definition (figure 25), selection of a network adapter will automatically assign the IP
address, or more correctly, the endpoint URL.

Figure 25: KEPServerEX OPC UA endpoint configuration.

27

After creating the configuration it can be tested by connecting an OPC UA Client
to the KEPServerEX OPC UA Server. The Modbus value can be seen in figure 26
where the node holdingregister0 has a value of four and the data type UInt32.

Figure 26: Viewing KEPServerEX value through an OPC UA Client.

Overall impressions

The KEPServerEX has a slightly steeper learning curve in the beginning than
the other evaluated applications. The server includes a lot of features that might
overcomplicate things if reading Modbus values is the only desired function. As the
application is modular, the user can choose to only purchase the necessary modules,
but it does not make the configurations any less complicated.

The wizard for creating new channels and devices require a lot of work but is
fairly easy to use as the default values can be used in most cases. The separated
connector configuration mainly feels unnecessary and overcomplicated. Although
it might give the user more configuration possibilities, the average user will have
no practical use for it. The tag configuration for a Modbus register is very straight
forward and easy. One downside it has is that it uses the old way of naming register
addresses. Another downside is that byte, word and dword swapping is only possible
on device level, meaning no single specific tag can have a byte-swapped value.

The OPC UA Server configuration is very easy to set up as most of it is done
automatically. Worth mentioning here though is that it is very confusing that the
OPC UA server settings can be found in two separate places: the project properties
in the KEPServerEX 6 Configuration application and in the OPC UA Configuration
application. The OPC UA server is run as a Windows service separately from the
configuration application, which means it can easily be left running in the background
after the configuration is done. Overall it can be said that if the user can find the
time to get familiar with the configuration environment this application could be a
suitable solution for connecting to devices from some of the big automation device
providers like Siemens, ABB, Allen-Bradley or Omron as they are widely supported.

28

3.2.2 Cogent DataHub Modbus OPC Server

The Cogent DataHub can collect data from several different sources and protocols into
a single data set [32]. It provides communications over OPC DA, OPC UA, Modbus,
ODBC and many more. The DataHub is a feature or module based application where
the user can choose to license the necessary features only. The DataHub Modbus
OPC Server is a feature pack that enables real-time communication between Modbus
TCP slaves and any OPC enabled application [33].

Adding a Modbus device

To add a Modbus device to the Cogent DataHub, the Modbus option of the properties
window is selected and then the Add Slave button is clicked. This opens the Modbus
slave configuration window seen in figure 27. Here the only mandatory setting to
create a connection is to assign the IP address of the device to connect to, the rest
of the settings can be left as default.

Figure 27: Cogent add Modbus slave device view.

The DataHub Modbus devices call the Modbus data items data points. A data
point is added by clicking on the Add Point button, also seen in figure 27. In the
data point configuration window the Modbus data type is selected. The data value
type is configured in a slightly different way than in the other evaluated applications,

29

as can be seen in figure 28. Instead of directly stating the data type like Byte, Word
or UInt, it is done with three different settings: Number Type, Encoding and Sign,
which tells if the data point is an integer, float or string, if it is a 16-, 32- or 64-bit
value and if it is signed or unsigned.

Figure 28: Cogent Configure data point view.

Adding a Modbus device only requires four clicks and typing the IP address.
Adding a tag requires nine clicks and setting the name and address. Copying a tag
only requires three clicks.

Configuring the OPC UA Server

Configuring of the DataHub OPC UA server is done in the OPC UA option tab as
in figure 29. Here the user can define and configure both OPC UA clients to connect
to and the server that will provide the data of the application over OPC UA. It
offers the most usual server configuration parameters on the same tab. Here the user
can easily choose the protocol, security and user token policies or they can manage
certificates, like accepting or rejecting a client certificate. The server status also
provides a list view of active sessions where the user can view who, from where and
usually even what application is connected to the OPC UA server.

After the OPC UA server is configured, it is reloaded by clicking the Reload
Configuration button and is then available for clients. Then to verify that the OPC

30

Figure 29: Cogent Configure OPC UA Server.

UA server is available an OPC UA client is used to connect to the server. By browsing
to the Modbus device register and adding it to the data view, the value can then be
seen. As figure 30 shows, the first holding register has a value of four and a data
type of UInt32.

Figure 30: Viewing Cogent DataHub value through an OPC UA Client.

31

Overall impressions

It is very easy to start using the Cogent DataHub. The settings are organized in a
very clear way and are easy to find even without consulting the user manual. The
server can be set up and running very quickly even if a user never has used the
application before. It has a lot of features available on top of Modbus and OPC UA
that some users might count as a big plus.

The Modbus driver configuration makes adding devices very quick and easy.
Adding a data point is quite quick as well, but as stated earlier, setting the data
type of a data point could be done with one parameter instead of three. A big plus
for this application is that it does not use the old way of addressing the Modbus
data types and it enables the use of data point specific byte swapping and adding
multiple data points at once.

The Cogent DataHub is not installed as a Windows service by default, but can be
installed quite easily through an application called Service Manager that is provided
in the installation package. In general it can be said that if rapid deployment is
necessary this could be a very suitable choice. The downside to this is that there is
a lack of connections to other protocols like Siemens Industrial Ethernet.

3.2.3 Softing dataFEED OPC Suite

The Softing dataFEED OPC Suite is a pure all-in-one solution for use on Windows
based computers [34]. It provides access to controllers from several of the big
automation providers like Rockwell, Siemens and B&R [35]. In addition to these it
also provides connection over MQTT and data bridging.

Adding a Modbus device

Devices to connect to are located under the Data Source tab of the configuration
window as seen in figure 31. To add a Modbus slave device, select the Modbus data
source and click on add new data source. This opens a wizard that guides the user
through adding a device.

The wizard provides default values for most of the parameters and the only
required parameter is setting the correct IP address of the device. At the end of the
wizard the user is given the option to configure the address space, but this step can
be skipped if a connection is all that is wanted by that time. To add a tag to the
address space, a user can click on the Address space definition icon which re-opens
the last step of the device configuration wizard, seen in figure 32. Here a selected
tag is being added on the PLC item properties view.

The user can choose to add either a tag or a node to the address space. Nodes are
used to organize the address space. For example, holding register tags can be created
under one node and input registers under another node. Tags represent Modbus data
items. A tag needs to be given a name and an addressing syntax that defines the
type of data and the Modbus address. The dataFEED OPC Suite uses an addressing
system that is a bit different. For example, the first holding register will have the
address HR0. An example of another can be seen in the syntax field in figure 32

32

Figure 31: Softing dataFEED configuration of Modbus Data Sources.

as well. To make sense of the addressing syntax the user needs to consult the user
manual, where all the supported addressing syntaxes are listed.

Adding a Modbus device to KEPServerEX requires six clicks and typing the IP
address. Adding a tag requires seven clicks and typing the name and address. The
dataFEED OPC Suite doesn’t allow copying of tags.

Figure 32: Softing add Modbus tag view.

33

Configuring the OPC UA Server

The servers or services of the dataFEED OPC Suite that clients can connect to are
available under the Data Destination tab. The dataFEED OPC UA Server settings
are located on the OPC UA Client view seen in figure 33.

Figure 33: Configure OPC UA Server of Softing dataFEED OPC Suite.

Setting up the OPC UA Server configuration is easy as it will not require any
customization at all to work. It is a good idea though to set the security configuration
to not allow anonymous or unencrypted connections as the dataFEED OPC UA
server allows external connections to it by default. The certificate manager can be
reached from this same view as well. The certificate manager allows the user to
accept or reject client certificates.

Figure 34: Viewing Softing dataFEED OPC Suite value through an OPC UA Client.

34

After the server has been configured it is tested by connecting an OPC UA client
to it. The Modbus device will have the same structure in the OPC UA Address
Space as defined in the previous section where the Modbus device was created. The
value in figure 34 shows that the Modbus device is available in the OPC UA Address
Space and that it has a value of four and the data type UInt32.

Overall impressions

The Softing dataFEED OPC Suite is easy to install and configure. Setting up local
clients that connect to external servers are fairly easy as well. Configuring the
local OPC UA server is easy, once the configuration view is found. It is quite hard
to find the local OPC UA servers configuration view as it is located under Data
Destination and OPC UA Client, even though it is a server. The buttons in the
Modbus Configuration Address Space Definition wizard uses icons and it is hard to
interpret what each of them mean, but fortunately a tooltip explanation is shown
while hovering the mouse pointer over the button.

The dataFEED OPC Suite Modbus connector only allows byte swapping on device
level and not on individual data items just like the KEPServerEX. The application
can easily be configured to be started as either an application or a service from the
systray. In general Softing has succeeded in creating a simple and usable application
despite its small flaws. As a plus it has a wide variety of different connectors in
addition to Modbus as well.

3.2.4 CommServer OPC UA Server for Modbus IP

The CommServer UA is a package of communication applications for managing data
transfer over OPC UA [36]. It does not offer as many different protocols as the other
evaluated applications. The CommServer supports wrapping of OPC DA servers
and thus also providing OPC data over OPC UA.

Adding a Modbus device

The Modbus devices are defined in the CAS CommServer UA Network Configu-
ration application. Devices are added to the configuration in a similar way as in
KEPServerEX by first creating a communication channel. The channel then defines
a protocol, which in this case is Modbus TCP. It implements a segment that states
the IP address of the device to connect to. The segment then further defines the port
that connects to the station or device. The full hierarchy can be seen in figure 35.
The station then implements groups and blocks for grouping and making blocks of
the different Modbus data types. The figure also shows that the station defines a
group called holding register, inside which a block called Block0 is defined. The
block defines a single 32-bit register starting at address 0.

35

Figure 35: CommServer UA Network Configuration.

Configuring the OPC UA Server

The CommServer UA server address space is created with the CommServer OPC
UA Address Space Model designer. To start configuring the server, first a project is
created into a solution similarly to for example a C# -project. Then the Modbus
address space domain is created by adding some Objects, ObjectTypes or Variables.
These nodes are created in the OPC UA Address Space and then the Modbus
configuration is mapped to the nodes with data bindings, seen in figure 36. To
make the CommServer UA use the created address space the configuration file
CAS.CommServerUA.exe.config needs to be modified to point to the uasconfig file
built with the Address Space Model Designer.

Figure 36: CommServer OPC UA Address Space Model Designer.

After configuring the UA server, it is tested by connecting an OPC UA client
and browsing to the node to read. As figure 37 shows, the configured Modbus device
can be found in the address space and the configured holding register can be found
under the device. It also shows the value is of the data type UInt32 but there is no
value for the holding register. The status code of the value is BAD and that means
the value can not be read at all.

36

Figure 37: Viewing CommServer UA Server value through an OPC UA Client.

Overall impressions

The application is very hard to use as it consists of a Network Configurator, OPC UA
Address Space Model designer, CommServer UA Server and lots of configuration files.
Even though both the Modbus configuration and the OPC UA configurations were
successfully created, the value could not be read. Debugging this issue is very hard
and time consuming as there are so many configuration files that have references
to each other and the user manual does not provide any useful information on that
matter.

This application uses a more OPC UA-like approach by making the user create
an Address space model of the Modbus device domain. It is good that some of the
development is heading in the direction of enabling address space modelling. But
in this case it is not a good approach as it seriously complicates the application
configuration for users not that experienced with OPC UA. Using this application
package efficiently would require the user to be trained by a professional.

3.2.5 Summary

The evaluated applications are quite easy to work with although some may require a
bit more time to get familiar with than others as some of the settings might not be
where they are expected to be. The only exception being the CommServer which
requires more in-depth knowledge due to its complexity. To find requirements for the
OPC UA Modbus Server to be developed, missing functionalities or usability issues
are concentrated on. The adding of Modbus devices and tags might have room for
improvement as it feels like there are some unnecessary steps that could be skipped.
The configuration of the OPC UA servers are mostly automated which doesn’t leave
much room for improvement.

Some flaws that all the evaluated applications have in common are that none
of them can be run in Linux or Unix based environments. All of the applications
allow the creation of Modbus masters that connect to the Modbus slave devices but
none of them allow creation of Modbus slave devices for Modbus master devices to
connect to. Last but not least none of the applications create Modbus devices in a
OPC UA like manner by defining a domain specific information model.

37

4 Design

4.1 Design decisions
The main goal for the OPC UA Modbus Server is to provide a solution for the
two use cases in section 3.1. The OPC UA Modbus server should be designed by
concentrating on usability from an inexperienced users point of view and on OPC
UA fashioned design on the technical side. The inexperienced user is defined as an IT
or automation professional without deeper knowledge of either OPC UA or Modbus.
This user should be able to get the application up and running without any greater
adversities.

The OPC UA Modbus Server requirements are defined with the evaluated ap-
plications in section 3.2 as a baseline. They revealed several requirements of both
existing and missing functionalities that should be implemented. The goal is to
match or outperform them in the cases of usability and compatibility. With usability
focusing on ease of use and compatibility on supporting as many Modbus device
functionalities as possible.

The OPC UA Modbus Server will be based on the existing Prosys OPC UA
Simulation Server. The Simulation server already implements an OPC UA server and
thus it is only necessary to implement additional functions that will map Modbus to
it. As the Simulation Server is built based on Prosys OPC UA Java SDK, it will
naturally need to be used in this application as well.

The OPC UA Modbus server will provide the most common data types used
with Modbus. These data types can be seen in table 10. The amount of supported
data types is kept to only a few but can be expanded to cover more data types if
necessary.

Table 10: Data types of the OPC UA Modbus Server.

Modbus data type OPC UA data type
INT Int16
UINT UInt16
DINT Int32
UDINT UInt32
REAL Float

Byte and word swapping is an important feature to be included in the application
as Modbus device manufacturers may use different approaches, especially in the word
ordering. Byte and word swaps should be available at least on device level as in
most cases the swaps are similar throughout all the registers. The option to enable
swapping on item level is not a major increase in workload and will give users the
benefit of freely modifying incompatible values and thus it will be implemented in
the application.

As section 3.2.5 states, none of the evaluated applications are available on non-
Windows platforms. As Linux is slowly finding its way to the automated control

38

industry due to its security, stability and reliability and as OPC UA is cross-platform
compatible, users should no longer be tied to Windows and its DCOM [37]. Linux
distributions enable installation and deployment on virtual headless servers like web
servers or on embedded devices in addition to the traditional GUI based. It is clear
that the OPC UA Modbus Server needs to support Linux based operating systems
as well to give the user more flexibility. As the support can not be guaranteed on
every single Linux distribution, it is specified to support at least the most common
ones. Them being Debian based and RPM based distributions of Linux. Testing will
be done on Ubuntu for the Debian based distributions and on CentOS for the RPM
based distributions as these are the most popular distributions respectively.

As one of the use cases in section 3.1 describes, the OPC UA Modbus Server
should also provide data as a Modbus slave and not only access data as a Modbus
master. This feature is not implemented by any of the applications evaluated in
section 3.2 and will give the user more options for connecting different types of
Modbus applications over OPC UA.

The OPC UA server endpoints should provide the available security modes and
security policies, user authentication methods and certificate handling. These features
are already available in the OPC UA Simulation Server and can be used as is without
any further development.

The OPC UA Modbus Server should implement its own domain specific Infor-
mation Model that defines type definitions. The Modbus Information Model should
then be used when instantiating the user specified Modbus devices.

As the application can be run on headless servers, it should be possible to configure
it without a GUI as well. This should be done by constructing an XML-file that
defines the Modbus devices and their necessary settings, the GUI should modify
and save the same file so that a user can create a configuration with the application
run in normal GUI-mode and then transfer that configuration to the headless server
where the application will be deployed.

4.2 Modbus Information Model Design
For the design of the Modbus Information Model the OPC UA specific graphical
notation in the OPC UA specification is used instead of the standard UML class
diagrams. The notation and how it should be used is described in sections 2.2.2,
2.2.3 and in the OPC UA specification [21]. This part will explain how the Modbus
Information Model has been designed.

The complete Information Model of the OPC UA Modbus Server is a combination
of the Information Models: Base Information Model, Data Access extension Informa-
tion Model, Devices Information Model and the custom Modbus Information Model.
A complete diagram of the Information Model can be examined in the appendices
in figure A1. Only relevant data from the Information Models are presented in the
diagrams below, thus trying to reduce the complexity of the full Information Model.

Figure 38 shows the Nodes in the Base Information Model that are used in
the OPC UA Modbus Server. These Nodes are either extended to domain specific
subtypes or used as such and they define the base for what the Modbus Information

39

Model is built on.

BaseDataType

FolderTypeBoolean

BaseObjectType

NumberEnumeration

UInteger Integer

BaseVariableType

Aggregates

HasChild

HierarchicalReferences

References

Base Information Model

BaseDataVariableType

UInt16 Int32

Figure 38: Base Information Model nodes

Modbus devices generally only provide real-time data and not any historical data
or events, thus the OPC Data Access extension is used for defining variable types of the
Modbus variables. The two VariableTypes DiscreteItemType and AnalogItemType
are both subtypes of DataItemType. All of these VariableTypes are defined in
the OPC UA Data Access specification seen in figure 39 [38]. A DataItem can be
described as currently valid, live automation data. Its two subtypes further specify
what type of data it contains. The AnalogItem provides a value of variable physical
quantities like temperature or humidity values while the DiscreteItem provides state
based values like e.g. opened, closed or moving.

AnalogItemType DataItemType BaseDataVariableType

DiscreteItemType

Data Access extension Information Model Base Information Model

Figure 39: DA Information Model nodes

As the Modbus server is intended for use in industrial environments where PLC:s
and RTU:s are used and because the Modbus data usually is provided by devices, it
is a good idea to use an Information Model that provides a general type for devices.
The OPC Foundation has already created the OPC UA for Devices Information
Model for purposes like these. It fits perfectly for this type of application as it is
designed to provide a unified view of devices and is chosen as a base for the Modbus
devices in the Modbus Information Model [24]. OPC UA for Devices describes

40

three models which build upon each other, but in this case only one of them is
used: the base device model. The base device model includes an ObjectType called
DeviceType. Figure 40 shows that this DeviceType is a subtype of the abstract
TopologyElementType, which is derived from the BaseObjectType. The topology
element is intended to provide its subtypes (in this case the DeviceType) optional
objects like for example the ParameterSet Object. In the case that any parameter
exists for a TopologyElement, the ParameterSet object is mandatory even if the
TopologyElementType definition states that it should be optional [24].

DeviceRevision

[Mandatory]

DeviceManual

[Mandatory]

HardwareRevision

[Mandatory]

Manufacturer

[Mandatory]

Model

[Mandatory]

DeviceType

RevisionCounter

[Mandatory]

SerialNumber

[Mandatory]

SoftwareRevision

[Mandatory]

BlockType

<CPIdentifier>

[OptionalPlaceholder]

NetworkAddress

ConnectionPointType

DeviceClass

[Optional]

DeviceHealth

[Optional]

DeviceTypeImage

[Optional]

Documentation

[Optional]

FunctionalGroupType

ImageSet

[Optional]

ProtocolSupport

[Optional]

FolderType

TopologyElementType

BaseObjectType

GroupIdentifier

[OptionalPlaceholder]

Identification

[Optional]

Lock

[Optional]

MethodSet

[Optional]

ParameterSet

[Optional]

LockingServicesType

Base Information
Model

Devices Information Model

Figure 40: Devices Information Model nodes

The DeviceType is intended to provide information about the device itself, like
DeviceHealth, SerialNumber and SoftwareRevision to name a few properties. The
DeviceType is as the TopologyElement also abstract, which means that there can’t
be any instances of DeviceType but only a subtype of it [24].

41

4.2.1 ModbusDeviceTypes

The DeviceType is extended to a new type called ModbusDeviceType, which is
the base of the Modbus Information Model. As stated in section 2.1, there are
two types of Modbus devices: slaves and masters. To be able to tell the difference
between these Modbus device types, both of them are given their own type definitions:
ModbusMasterType and ModbusSlaveType. These are created as subtypes of the
ModbusDeviceType. Figure 41 illustrates a very simplified version of the Modbus
Information Model to give a general overview of how the types in relate to each other.
Here the ModbusIoBlockType and ModbusRegisterConfigurationType ObjectTypes
that are discussed later on can be seen as well.

DeviceType

TopologyElementType

BaseObjectType
Base Information

Model

Devices
Information Model

ModbusRegisterConfigurationType

ModbusMasterType

ModbusDeviceType ModbusIoBlockType

ModbusSlaveType

BlockType

Modbus
Information Model

Figure 41: Modbus Information Model nodes

The Modbus Information Model illustrated in figure 42 includes the full archi-
tecture and shows how all the parts are linked. It shows the parent nodes and
their corresponding Information Models from where the Modbus type nodes are
derived. As stated earlier, the ModbusDeviceTypes are subtypes of the abstract
DeviceType that is implemented in the Devices Information Model, which is also
visible in figure 42. The figure also shows that neither the Modbus master or slave
type implement any components or parameters of their own. This is because the
ModbusSlaveType and ModbusMasterType is only meant to supply the information
on which type of Modbus communication to use. Thus the ModbusDeviceType is the
type implementing all the components that are then inherited by the two subtypes.

The ModbusDeviceType implements all available register types as separate blocks.
These are all subtypes of the ModbusIoBlockType and are discussed in the next
section. In addition to these blocks it also needs to implement the protocol type

42

and the unit id. The protocol types are defined in the ModbusProtocol enumeration
DataType. This Modbus Information Model only defines the four most common
Modbus protocol types: Modbus RTU, Modbus ASCII, Modbus TCP/IP and Modbus
RTU/IP. The unit id is primarily used to identify Modbus devices on a serial line
behind a gateway.

ModbusRegisterConfigurationType

ModbusMasterType

Address

[Mandatory]

(DataType: UInt16)

DataType

[Mandatory]

(DataType: ModbusDataType)

DeviceType

SwapBytes

[Optional]

(DataType: Boolean)

SwapWords

[Optional]

(DataType: Boolean)

ModbusDeviceType

DigitalInputs

[Mandatory]

Protocol

[Mandatory]

(DataType: ModbusProtocol)

UnitId

[Mandatory]

(DataType: Int32)

DigitalOutputs

[Mandatory]

InputRegisters

[Mandatory]

HoldingRegisters

[Mandatory]

BlockType

ModbusIoBlockType

ModbusDigitalInputBlockType

ModbusDigitalOutputBlockType

ModbusInputRegisterBlockType

ModbusHoldingRegisterBlockType

HasModbusRegisterConfiguration Aggregates

BaseDataVariableType

BaseObjectType

ModbusIoType

ModbusProtocol

ModbusDataType

ModbusSlaveType

Enumeration

Devices
Information

Model

Base Information Model

Modbus
Information Model

Figure 42: Modbus Information Model.

43

4.2.2 ModbusIoBlockTypes

The ModbusDeviceTypes always implement each of the available register types in
the Modbus Data model listed in table 2, but they might not necessarily define any
registers [8]. Each of the register types can be viewed as a separate block of registers
and thus four corresponding block types are defined. To group these together, a
ModbusIoBlockType is defined and these blocks are created as subtypes of that.
These block types can be seen visualized in figure 42.

An example of a ModbusIoBlockType is the HoldingRegisters component of the
ModbusDeviceType. It has a HasTypeDefinition reference to the ModbusHoldin-
gRegisterBlockType. This means that it can be concluded that the block contains
holding registers by checking the type definition. In a case that the name of the
block would for example be CounterValues, it could still be concluded that the
registers in this block are holding registers as its type definition would still be
ModbusHoldingRegisterBlockType.

4.2.3 ModbusRegisterConfigurationType

The ModbusRegisterConfigurationType is a subtype of the BaseObjectType and
is intended to provide the required properties of a Modbus data register. As seen
in figure 42 it defines two mandatory properties: Address and DataType, and two
optional parameters: SwapBytes and SwapWords. The address parameter is a non-
negative 16-bit integer that specifies the start address of the Modbus register. The
Modbus specification states that there are 65536 data addresses in each type of
Modbus registers and thus 16-bits covers all of them.

The data type defines the ModbusDataType which like the ModbusProtocol, is an
extension of Enumeration. The data type options defined in the ModbusDataType
depends on the application it is used in. Modbus uses the elementary data types
defined in the IEC standard for programmable logical computers [39]. They differ
from regular PC data types by using 16-bit values as standard length as opposed
to the 32-bit length PCs use. For example an integer is normally 32-bits in the
PC world but in the PLC world an integer is only 16-bits. The mapping between
ModbusDataTypes and OPC UA data types can be seen in table 11. It also shows
which types are implemented in the OPC UA Modbus Server.

The two optional swap parameters enable configuration of byte and word ordering
of each data item. As different Modbus device manufacturers might implement their
data in either way, these parameters give the flexibility to map the data correctly to
OPC UA either way.

4.2.4 HasModbusRegisterConfiguration

The data items, also called Nodes, in a register like the holding registers will be
implemented as OPC UA Variables. They will always extend either of the available
DataItemTypes. This means they will be assigned a HasTypeDefinition reference to
either AnalogItemType or DiscreteItemType. As the OPC UA specification states
that a Node can only have one type definition. Because of this a new ReferenceType

44

Table 11: Mapping of IEC 61131-3 data types to OPC UA data types [40].

IEC 61131-3 OPC UA Implemented Description
BOOL Boolean yes 1 bit boolean value
BYTE Byte no 8 bit "bit string" value
WORD UInt16 no 16 bit "bit string" value
DWORD UInt32 no 32 bit "bit string" value
LWORD UInt64 no 64 bit "bit string" value
INT Int16 yes 16 bit signed integer value
UINT UInt16 no 16 bit unsigned integer value
DINT Int32 yes 32 bit signed integer value
UDINT UInt32 no 32 bit unsigned integer value
LINT Int64 no 64 bit signed integer value
ULINT UInt64 no 64 bit unsigned integer value
REAL Float yes IEEE-754 single precision (32 bit) value
LREAL Double no IEEE-754 double precision (64 bit) value
TIME Duration no Duration
DATE DateTime no Date (only)
TIME_OF_DAY DateTime no Time of day (only)
DATE_AND_TIME DateTime no Date and time of day
STRING String no Character string (variable length)

called HasModbusRegisterConfiguration has to be created so that a Node can be
indicated to have a reference to a ModbusRegisterConfiguration. This reference will
link a variable Node to its specific configuration object Node.

45

Objects

ModbusDevice1

ModbusDevice2

ModbusDevice3 ModbusRegisterConfigurationType

ModbusMasterType

ModbusSlaveType

ModbusDeviceType

DigitalInputs

Protocol

UnitId

DigitalOutputs

InputRegisters

HoldingRegisters

DigitalInput0

Configuration

Address

DataType

DiscreteItemType

EURange

InputRegister0

EURange

Configuration

Address

DataType

SwapBytes

DeviceRevision

DeviceManual

HardwareRevision

Manufacturer

Model

RevisionCounter

SerialNumber

SoftwareRevision

ParameterSet

InputRegister1

EURange

Configuration

Address

DataType

SwapBytes

SwapWords

AnalogItemType

HasModbusRegisterConfiguration

HasModbusRegisterConfiguration

HasModbusRegisterConfiguration

Modbus Information Model

Data Access extension
Information Model

Example Address Space

Figure 43: Example of a Modbus Address Space with three Modbus devices.

46

5 Implementation

5.1 Creating the Information Model
The Modbus Information Model is created with Unified Automation UaModeler, a
special tool that "turns design into code". It is used to design the Address Space
model of an application and for generating source code for that model [41]. It is
built so that it generates well structured and error free code. This software only
generates code for C++, ANSI C and .NET based OPC UA Client and Server SDK:s.
To generate code for the OPC UA Java SDK that is used in the OPC UA Modbus
Server, the Codegen script included in the SDK needs to be used.

Instead of the UaModeler generating source code it can export an UaNodeSet of
the Information Model. An OPC UA NodeSet is a generic way to describe a standard
Address Space [43]. The UaNodeSet is defined in XML-format following the OPC
UA Information Model XML Schema syntax and thus allowing applications to read
and process the Information Model [25]. The UaNodeSet defines a set of Nodes, their
attributes and references. An OPC UA server that implements an UaNodeSet will
have the Nodes, attributes and references in its standard Address Space.

To implement the Information Model, a new project needs to be created with
UaModeler. The user generated Information Models always extend the base UaN-
odeSet and can additionally also extend other UaNodeSets. As stated in section 4.2
the OPC UA for Devices Information Model is used in the design of the Modbus
Information Model, so the OPC UA DI NodeSet is included in the project in addition
to the base NodeSet.

Figure 44: Modbus root Address Space.

47

The Modbus part of the Address Space is given its own namespace URI to
separate the domain specific nodes from the other NodeSets, the URI will be
http://prosysopc.com/UA/Modbus/. This namespace will define the Modbus domain
specific nodes, their attributes and references. After the UaModeler project settings
are configured for the Modbus Information Model, modelling can start.

The Information Model is created systematically by first adding the main compo-
nents and then developing them by adding their details. First off the ObjectType
ModbusDeviceType is created. It is created as a subtype to the DeviceType as seen
in figure 44. In the figure it can also be seen that UaModeler provides a graphical
view of the Address Space, consisting of the selected NodeSets in the settings. The
new Information Model can be built on top of them by adding Nodes into the Address
pace. Once they are added to the Address Space, they can be distinguished by a
bold title. See, for example, ModbusDeviceType in figure 44.

Figure 45: ModbusDeviceType Node configuration.

Following this the ModbusIoBlockType is added as a subtype of the BlockType and
the ModbusRegisterConfigurationType is added as a subtype to the BaseObjectType.
Together these three ObjectTypes form the base of the Modbus Information Model
as can be seen in figure 41. After these are added their configurations are specified.
ModbusDeviceType defines the base for Modbus devices, so as figure 42 states, it
will implement all the object and variable Nodes as child components. In addition to
these, the two Modbus device types ModbusMasterType and ModbusSlaveType are
defined as its subtypes. The implementation is illustrated in figure 45. To be able to
add the four IO block objects to the ModbusDeviceType, they need to be created.
These IO block types will contain Modbus register value Nodes of the respective
Modbus data type. The IO block type is only used to provide information about
which Modbus register type the Nodes in that block are. This can be seen in figure 46,
where the block types do not have any components or properties.

Figure 46: ModbusIoBlockType and its subtypes.

48

Figure 47 shows the definition of the ModbusRegisterConfigurationType. It is
used to provide Modbus register configuration properties of a Modbus register value
Node. As the figure also shows, the swap variables are optional as, depending on the
data type, a swap might not be possible. Now as the Modbus register value Nodes
will be defined to have a data access TypeDefinition of either DiscreteItemType or
AnalogItemType like figure 43 shows, and the Nodes can’t have two TypeDefinition
references, the new HasModbusRegisterConfiguration is created.

Figure 47: ModbusRegisterConfigurationType definition.

The HasModbusRegisterConfiguration ReferenceType is a subtype of Aggregates
and the inheritance path can be seen in figure 48. The figure shows that the
ReferenceType is similar to e.g. HasComponent as they are siblings. As the name
hints, the ReferenceType tells that a Node that implements this reference has a
ModbusRegisterConfiguration.

Figure 48: HasModbusRegisterConfiguration ReferenceType definition.

The DataTypes provided by the Modbus Information Model are all subtypes
of the enumeration DataType. As illustrated in figure 49 there are three Modbus
specific DataTypes: ModbusDataType, ModbusIoType and ModbusProtocol. The
ModbusDataType defines an enumeration list of the data types listed in table 10.
The ModbusIoType defines a list of the register types and is an alternative to the IO
block types for providing the register type. The ModbusProtocol lists the available
Modbus protocol types that can be used. Since the OPC UA Modbus Server only

49

implements Modbus protocols using Ethernet, only the two options using TCP out
of the four that are defined will be available in the application.

Figure 49: Modbus domain specific data types.

When all the parameters are defined and the Modbus Information Model is ready
the UaNodeSet XML-file is exported. The NodeSet can be found in appendix B.

5.2 Modbus device configuration
A Modbus configuration is created and stored as an XML file. Modbus master
and slave device configurations are separated into their own configuration files.
Section 4.2.1 states that Modbus Master and Modbus Slave devices use the same
configuration so the structure of the configuration files will be the same for both
types. It is designed to be as simple as possible so that a configuration can even be
created or modified with a text editor if necessary. An example of a configuration
file can be seen in listing 1 below. Upon start of the application, it will parse the
configuration files and create the Modbus devices and their respective OPC UA
Nodes. Modifications to the configuration will be stored automatically and will take
effect the next time the Modbus Server is started.

Listing 1: Example xml configuration for Modbus slave device.
<?xml v e r s i o n ="1.0" encoding ="UTF−8" s t a n d a l o n e =" yes " ?>
<d e v i c e s>

<d e v i c e name=" NewDevice ">
<i p>1 0 . 1 0 . 1 0 . 1 0</ i p>
<port>502</ port>
<modbusType>TCP</modbusType>
<u n i t I d>0</ u n i t I d>
<enabled>t r u e</ enabled>
<d i>

<nodes>
<node o f f s e t=" 0 " datatype="BIT" swapBytes=" f a l s e " swapWords=" f a l s e ">input0</ node>

</ nodes>
</ d i>
<do>

<nodes />
</do>
<i r>

<nodes />
</ i r>
<hr>

<nodes>
<node o f f s e t=" 0 " datatype="UINT" swapBytes=" f a l s e " swapWords=" f a l s e ">h o l d i n g 0</ node>
<node o f f s e t=" 1 " datatype="DINT" swapBytes=" f a l s e " swapWords=" f a l s e ">h o l d i n g 1</ node>
<node o f f s e t=" 3 " datatype="UDINT" swapBytes=" f a l s e " swapWords=" f a l s e ">h o l d i n g 3</ node>
<node o f f s e t=" 5 " datatype="REAL" swapBytes=" f a l s e " swapWords=" f a l s e ">h o l d i n g 5</ node>

</ nodes>
</ hr>

</ d e v i c e>
</ d e v i c e s>

50

5.3 Creating the OPC UA Modbus Server
As stated in section 4.1 the OPC UA Modbus Server is based on the OPC UA
Simulation Server which is implemented using Java 8. Previous work gives an
extensive description of the OPC UA Simulation Server and its architecture, but
very shortly put it is based on the Prosys OPC UA Java SDK and some well known
Java libraries like Java FX 8 [42].

Implementation of Information Models in OPC UA and generation of code from
them are discussed in previous work as well [43][44]. The OPC UA Java SDK has
been developed to load and create the base address space from XML-files containing
UaNodeSets. The SDK makes it possible to create the default Modbus Address
Space by importing the Modbus UaNodeSet and then allowing the application to
add or modify additional Nodes that use these generated Nodes during runtime.
This means that the Nodes defined in section 5.1 will be imported to the Modbus
Server. This enables creation of, for example, Modbus devices with the TypeDefinition
ModbusMasterType. The Modbus Server will import the following required NodeSets
to the OPC UA server: OPC UA base, OPC UA DI and the newly created OPC UA
Modbus NodeSet.

Although the OPC UA server can import the NodeSets, developers will have
a hard time using Nodes from that NodeSet as they are only generated at server
startup and runtime. This issue is solved with Codegen in the Prosys OPC UA Java
SDK that is created based on the research done by Laukkanen [43]. Codegen is used
to generate interfaces and implementations of Java classes for type instantiation in
the development process.

The Modbus communication of the application is created with an existing library
called j2mod. The library provides a Java API for both creating and providing
connections to Modbus devices. It handles requests, responses and creates exceptions
on failure. The Modbus library polls Modbus slave devices cyclically and then writes
the register values to the UA Variable Node. To keep the application code structural
and modular the Modbus and OPC UA parts are still kept separated to keep the
code readable and maintainable.

5.4 Application deployment
To handle the applications runtime environment, the application implements a
Service Manager for handling service interactions on different platforms. As the
design decisions in section 4.1 states that the application should be able to run
headless as a service, the Service Manager keeps track of which operating system
is used and whether the application is run as a service or as an application. It also
handles starting and stopping of the service.

Because the application uses Java FX, it sets a limitation that a graphical user
interface (GUI) is required for it to run. On Windows based computers this is not
an issue as Windows always ship with a GUI and even when an application is run
as a Windows service, a GUI will still be used. The Windows service manager runs
applications on the system session, which is similar to a user session but its GUI

51

will never be visible to the user. Linux servers does not include a GUI at all so
here the Java FX restriction becomes a problem. To bypass this issue a virtual
display called X Virtual Frame Buffer needs to be used. It simulates a display in the
background and thus allowing Java FX to run. Both the Debian and RPM packages
of the application will therefore require installation of some dependencies alongside
the main package for the application to be able to run correctly. As the supported
Linux systems can use either SysV or Systemd as their init system, support for both
is necessary. The installation package detects which init system is used and installs
the corresponding service script.

5.5 User interface
The GUI of the Modbus Server will inherit the basic layout from the Simulation Server.
The Modbus functionalities are designed to match the layout of the Simulation Server.
The majority of the OPC UA settings will be hidden by default as they generally
should not require configuration. Advanced users will still be offered the possibility to
configure the OPC UA parameters if necessary by enabling an expert mode that will
reveal additional configuration tabs. The user interface is created with the intention
to minimize the possibility of making mistakes during configuration of the Modbus
Server. This is done by trying to minimize the amount of interactions necessary to
configure a Modbus device and is achieved by automatically configuring as much
as possible, preventing faulty configuration parameters and by always confirming
destructive actions.

Figure 50: OPC UA Modbus Server Modbus Devices tab.

52

The Modbus master device parameters are configured on the Modbus Device
configuration tab seen in figure 50. The created devices are listed in a tree view
on the left side of the tab to be available quickly. The connection configuration
of a device can be modified by selecting the device in the tree view. The buttons
below the tree view allows the user to add or remove devices. IP addresses of the
devices are validated and only IPv4 addresses are accepted. The port number can
be set to any valid port number even though 502 is the standard, in case some
device would implement a non-standard port. The communication type lists the
supported communication types and as section 4.1 states, the Modbus Server only
covers communication over TCP/IP. The unit id is only applicable when a device
uses Modbus over TCP as then it will be needed to identify Modbus devices behind
a gateway. If a parameter is invalid, a text message will inform the user about the
issue so that it can be corrected.

Figure 51: OPC UA Modbus Server Modbus register configuration view.

By expanding a device in the tree view, the four data tables are exposed. Selecting
one of them changes the view on the Modbus Device tab so that the selected data
table can be configured. Figure 51 shows the Holding registers table configuration
with four configured Modbus variables. Each of the variables have a slightly different
configuration. Variables can be added and removed from the table by clicking on
the respective button below the table. The address of a Modbus variable can be set
as long as it is within the Modbus addressing range and does not overlap another
register. The variables can also be named freely but will always default to the table
type and address, like holdingRegister0. The data type is chosen from a dropdown list
containing the types listed in table 10. This is also restricted so that changing from a

53

16-bit DataType to a 32-bit DataType is only allowed if the change won’t overlap an
existing variable. The swap checkboxes are only enabled if the corresponding usage
is possible. Let’s say that the value is a 16-bit integer, the swap words checkbox is
then disabled as word swapping is not possible with values that are only one word
long.

The Modbus slave tab uses the same layout and configurations as the Modbus
devices tab but as the usage of a Modbus slave is a bit different it is configured
separately on its own configuration tab. The Modbus Server only allows creation of
one Modbus slave as it should only be able to use the standard Modbus port 502
and that one slave will bind to that port exclusively [11].

Figure 52: OPC UA Modbus Server value in OPC UA Client.

The OPC UA Modbus Server can be tested using the same methods that the
evaluated applications in section 3.2 used. Adding a Modbus device to the Modbus
Server is quicker than any of the evaluated applications as it only requires one click
and setting the IP address. A register is easily and very quickly added as well, even
if some of the other applications are basically as quick.

Figure 53: OPC UA Modbus Server device TypeDefinition.

By connecting an OPC UA client to the Modbus Server, variable values can be
read. Figure 52 shows that the holdingRegister0 variable has a value of three and
the data type Int16 which match its configuration in figure 51. By adding another
two devices to the OPC UA Modbus Server and creating some Modbus variables in
them, the modelled example Address Space in figure 43 matches the Modbus Server
Address Space in figure 54. The Address Space is further examined by selecting a
ModbusDevice and checking its TypeDefinition. Figure 53 shows that the device
has the TypeDefinition ModbusMasterType that was created earlier in the Modbus
Information Model and imported to the OPC UA server as an UaNodeSet.

54

Figure 54: OPC UA Modbus Server example Address Space.

Continuing to one of the Modbus variable blocks like the holding register block,
the selected holding registers Node in figure 55 is seen to have the TypeDefinition
ModbusHoldingRegisterBlockType, that was defined in the Modbus UaNodeSet
as well. The same figure also shows that the Modbus Variables are defined as
components of the HoldingRegisters block.

Figure 55: OPC UA Modbus Server IO-block TypeDefinition.

In section 4.2 it is stated that the Modbus variables are either analog or discrete
items. The left side of figure 56 shows the attributes and references of a holding
register that provide an analog variable and it can be seen that it has the Type-
Definition AnalogItemType. As the variable can’t have two type definitions it is
given a HasModbusRegisterConfiguration reference to its configuration Node, in

55

addition to the HasTypeDefinition reference. To the right in figure 56 the configu-
ration Node of the Modbus variable is examined. The configuration has the type
definition ModbusRegisterConfigurationType and the properties Address, DataType
and SwapBytes.

Figure 56: OPC UA Modbus Server Variable TypeDefinition.

The Modbus variable configuration parameters are particularly useful when
using custom names for the variables like, for example, if holding register 10 would
be named Motor1.CurrentSpeed it would be quite hard to tell anything about its
Modbus configuration. So when the Motor1.CurrentSpeeds configuration then has
the Address set to 10, the DataType set to INT and SwapBytes set to false, its
Modbus configuration can quickly be determined by looking at the configuration
Node. The type definitions may be very useful in many cases, one example though is
that the user can easily keep track of which connected devices are Modbus devices.
By using a custom OPC UA client the user could, for example, list only the Nodes
that have the type definition ModbusMasterType to only see those devices in Modbus
Server, even if there are several other types of devices and applications connected as
well.

56

6 Conclusion
The development of the OPC UA Modbus Server showed that surprisingly many
hours was necessary to generate a usable Information Model, even if Modbus is a
fairly simple protocol. Finding the right level of abstraction, from a users point of
view, was determined to be the most time consuming task. The development of the
Modbus Server followed the currently popular agile development method and, for
example, the Information Model was created following an iterative process by setting
requirements, creating the model and reviewing the results and then restarting that
process over again until a satisfying Information Model was found.

Reviewing similar products showed to be a very valuable source of information
while creating requirements for the application as well. The review gave a lot of
insight into what kind of features needed to be implemented and how the usability
should be designed in relation to these applications. Especially the usability review
gave a really good starting point for the requirements. As none of the applications
had been used before, an inexperienced users point of view was established quite
easily. It set certain demands on how to make the application as usable as possible.

To answer the three objectives set in the beginning of the thesis. Firstly, How
should data be structured and abstracted in an OPC UA application. This is a very
hard task and there is no straight answer to how it should be done as every application
is different. An iterative process is highly recommended as the review of a finished
Information Model or application will reveal flaws. Necessary improvements are more
likely detected this way as well.

Secondly, Can an OPC UA application be designed to be easy to set up. That is
definitely possible. The key, in this case, is to make the application as unambiguous
as possible. Users should not need to configure the application too much, otherwise
they get confused about where to configure which settings. They should neither
be allowed to set faulty parameters. The usability design of the OPC UA Modbus
Server succeeded very well and, compared to other similar applications, it is simple
to set up and use.

Lastly, What benefits does OPC UA have over wrapping with HTTPS. This
project showed that OPC UA is very suitable for transferring Modbus data. The
benefits of using OPC UA is clearly that it has the ability to provide metadata as
well as giving several additional features that are implemented in the OPC UA SDK
while wrapping with HTTPS only provides data encryption. As seen in this thesis
the semantics provided by the OPC UA Modbus Server can give valuable extra
information about the application by creating useful metadata about the configured
devices. An OPC UA client can furthermore be implemented to use this metadata
in several ways according to customer needs.

In general this thesis might be a good source of information for someone starting
with Information Model design. It gives a general idea on the flow of the design
process by first creating a graphical model and then turning that model into an
actual Information Model that can be imported into an OPC UA server. It can be
especially valuable if another protocol, similar to Modbus is supposed to be mapped
to OPC UA.

57

6.1 Future work
As every aspect of this kind of an application can not be covered in the bounds of
one thesis, there are several features in the OPC UA Modbus Server that still could
be improved and added. Some of the additions would require large rework and some
only minor but as OPC UA showed to be very suitable for transferring Modbus data,
the application will most likely be improved in the future.

The mapping of the IEC 61131-3 values to OPC UA could have been defined
directly with the OPC UA for IEC 61131-3 elementary data types, which defines the
same data types chosen in table 11 and several more in addition to them. Support
for the rest of these data types will most likely be implemented in the near future.

Settings for the connection to a Modbus device is minimal and could, for example,
be extended to let the user choose the polling rate instead of it being fixed to one
second. This would enable reduction of network load by slowing down the polling
rate to, for instance, five seconds or allowing the user to read critical data more often,
for example, every 300 ms. It would also be useful if the application would give an
indication of whether a device is connected or disconnected from the Modbus Server.
Currently the only way to determine the connection status is by looking at the log
file. If such a feature would be added, it would also be good to add preview of the
Modbus device values. These improvements would be of major help in debugging as
the user could easily determine if there is a problem with Modbus or OPC UA.

When the user has created the configuration, the application needs to be restarted
in order to activate the new configuration. This feature generates unnecessary
downtime, as normally the user only wants to add a device or even just a single
variable to the configuration. Due to the application architecture of the OPC UA
Simulation Server that was used as a base for this application, the implementation
of that feature would require a very large redesign of the application architecture
and as such was decided to be implemented in a later version of the application.

Allowing users of the OPC UA Modbus Server to create copies of the devices
would be a valuable feature as in many cases the user wants to connect several similar
devices. The configuration would be a lot faster by copying one configured device
and only changing the name and IP address of the new copied device, instead of
creating a completely new device and adding all the same Modbus variables as those
added to the previously created device.

58

References
[1] Rostan, M. (2014). Industrial Ethernet Technologies. EtherCAT Technology

Group, Nuremberg, Germany. URL: https://www.ethercat.org/download/
documents/Industrial_Ethernet_Technologies.pdf (Read 24.08.2017)

[2] Miyachi, T., Yamada, T. (2014). Current issues and challenges on cyber
security for industrial automation and control systems. SICE Annual Conference,
Hokkaido University, Sapporo, Japan.

[3] Sauter, T., Lobashov, M. (2011). How to Access Factory Floor Information
Using Internet Technologies and Gateways. IEEE Transactions on Industrial
Informatics, Vol. 7, No. 4.

[4] Nardone, R., Rodríguez, R., Marrone, S. (2016). Formal Security Assessment
of Modbus Protocol. IEEE, The 11th International Conference for Internet
Technology and Secured Transactions.

[5] Modbus Organization. (2017). About The Protocol. URL: http://modbus.org/
faq.php (Read Jun 15, 2017).

[6] Modbus Organization. (2017). About The Modbus Organization. URL: http:
//modbus.org/faq.php (Read Jun 15, 2017).

[7] Clarke, G., Reynders, D., Wright, E. (2004). Practical Modern SCADA Proto-
cols: DNP3, 60870.5 and Related Systems. Burlington, MA: Elsevier.

[8] Modbus Organization. (2012). MODBUS Application Protocol Specification
V1.1b3.

[9] Modbus Organization. (2006). MODBUS over Serial Line Specification and
Implementation Guide V1.02.

[10] Modbus Organization. (2006). MODBUS Messaging on TCP/IP Implementa-
tion Guide V1.0b.

[11] Internet Assigned Numbers Authority. (2017). Service Name and Transport
Protocol Port Number Registry. URL: https://www.iana.org/assignments/
service-names-port-numbers/service-names-port-numbers.txt (Read
Jun 20, 2017).

[12] Schneider-Electric. (2017). Modbus Plus. URL: https://
www.schneider-electric.us/en/product-range-presentation/
576-modbus-plus/ (Read Feb 19, 2018).

[13] Simply Modbus. (2017). Enron Modbus URL: http://ww.w.simplymodbus.
ca/Enron.htm (Read Feb 19, 2018).

[14] OPC Foundation (2017). Unified Architecture. URL: https://opcfoundation.
org/about/opc-technologies/opc-ua/ (Read Jul 6, 2017).

https://www.ethercat.org/download/documents/Industrial_Ethernet_Technologies.pdf
https://www.ethercat.org/download/documents/Industrial_Ethernet_Technologies.pdf
http://modbus.org/faq.php
http://modbus.org/faq.php
http://modbus.org/faq.php
http://modbus.org/faq.php
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.schneider-electric.us/en/product-range-presentation/576-modbus-plus/
https://www.schneider-electric.us/en/product-range-presentation/576-modbus-plus/
https://www.schneider-electric.us/en/product-range-presentation/576-modbus-plus/
http://ww.w.simplymodbus.ca/Enron.htm
http://ww.w.simplymodbus.ca/Enron.htm
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/

59

[15] Hoppe, S. (2017). There Is No Industrie 4.0 without OPC UA.
OPC Foundation. URL: http://opcconnect.opcfoundation.org/2017/06/
there-is-no-industrie-4-0-without-opc-ua/ (Read Jun 20, 2017).

[16] Prosys OPC (2017). About OPC UA. Espoo: Prosys OPC Ltd. URL: https:
//www.prosysopc.com/opc-ua/ (Read Jul 6, 2017).

[17] Aro, J. (2017). OPC Day Europe 2017 - OPC UA is the Industry 4.0 Com-
munication. Espoo: Prosys OPC. URL: https://www.prosysopc.com/blog/
opc-day-europe-2017/ (Read Jul 6, 2017).

[18] Mahnke, W., Leitner, S-H., Damm, M. (2009). OPC Unified Architecture.
Berlin, Heidelberg: Springer Berlin Heidelberg.

[19] OPC Foundation. (2015). OPC Unified Architecture Specification Part 1:
Overview and Concepts, Release 1.03.

[20] OPC Foundation. (2015). OPC Unified Architecture Specification Part 2:
Security Model, Release 1.03.

[21] OPC Foundation. (2015). OPC Unified Architecture Specification Part 3:
Address Space Model, Release 1.03.

[22] Unified Automation GmbH. (2017). OPC UA NodeId Concepts.
URL: http://documentation.unified-automation.com/uasdkhp/1.0.0/
html/_l2_ua_node_ids.html#UaNodeIdsConcept (Read Jul 12, 2017).

[23] OPC Foundation. (2015). OPC Unified Architecture Specification Part 5:
Information Model, Release 1.03.

[24] OPC Foundation. (2013). OPC Unified Architecture for Devices, Companion
Specification Release 1.01.

[25] OPC Foundation. (2015). OPC Unified Architecture Specification Part 6:
Mappings, Release 1.03.

[26] OPC Foundation. (2015). OPC Unified Architecture Specification Part 7:
Profiles, Release 1.03.

[27] OPC Foundation. (2015). OPC Unified Architecture Specification Part 4:
Services, Release 1.03.

[28] Belden Inc. (2013). Manufacturing IT: Separate the Industrial Network from
the IT Network. URL: http://www.belden.com/blog/industrialethernet/
Manufacturing-IT-Separate-the-Industrial-Network-from-the-IT-Network.
cfm (Read. 16.10.2017)

[29] Loundsbury, R. (2008). Industrial Ethernet on the Plant Floor: A Planning
and Installation Guide. Research Triangle Park: The Instrumentation, Systems,
and Automation Society.

http://opcconnect.opcfoundation.org/2017/06/there-is-no-industrie-4-0-without-opc-ua/
http://opcconnect.opcfoundation.org/2017/06/there-is-no-industrie-4-0-without-opc-ua/
https://www.prosysopc.com/opc-ua/
https://www.prosysopc.com/opc-ua/
https://www.prosysopc.com/blog/opc-day-europe-2017/
https://www.prosysopc.com/blog/opc-day-europe-2017/
http://documentation.unified-automation.com/uasdkhp/1.0.0/html/_l2_ua_node_ids.html#UaNodeIdsConcept
http://documentation.unified-automation.com/uasdkhp/1.0.0/html/_l2_ua_node_ids.html#UaNodeIdsConcept
http://www.belden.com/blog/industrialethernet/Manufacturing-IT-Separate-the-Industrial-Network-from-the-IT-Network.cfm
http://www.belden.com/blog/industrialethernet/Manufacturing-IT-Separate-the-Industrial-Network-from-the-IT-Network.cfm
http://www.belden.com/blog/industrialethernet/Manufacturing-IT-Separate-the-Industrial-Network-from-the-IT-Network.cfm

60

[30] Microsoft. (2005). Protocols and ports. URL: https://technet.microsoft.
com/en-us/library/cc161377.aspx (Read 30.10.2017).

[31] Kepware. (2017). KEPServerEX - Product Overview. URL: https://www.
kepware.com/en-us/products/kepserverex/ (Read Oct 17, 2017).

[32] Cogent. (2017). Cogent DataHub. URL: https://cogentdatahub.com/
products/cogent-datahub/ (Read Oct 19, 2017).

[33] Cogent. (2017). Modbus OPC Server. URL: https://cogentdatahub.com/
products/datahub-modbus-opc-server/ (Read Oct 19, 2017).

[34] Rock, A., Bouse, V. (2015). The future is already here - Easy linking of
production world and IT world through OPC UA. Softing Industrial Automation
GmbH, Haar, Germany.

[35] Softing. (2017). dataFEED OPC Suite. Softing Industrial Au-
tomation GmbH, Haar, Germany. URL: https://industrial.
softing.com/en/products/software/opc-suite-servers-middleware/
the-all-in-one-solution-for-opc-communication/datafeed-opc-suite.
html (Read 23.10.2017).

[36] CommServer (2016). CommServer UA. URL: http://www.commsvr.com/
Products/OPCUA/CommServerUA.aspx (Read 24.10.2017).

[37] Duty, K. (n.d.). 3 Reasons Linux Is Preferred for Control Systems. In-
ductive Automation, California, USA. URL: https://www.automation.
com/library/articles-white-papers/opc-articles-and-white-papers/
3-reasons-linux-is-preferred-for-control-systems (Read 01.11.2017).

[38] OPC Foundation. (2015). OPC Unified Architecture Specification Part 8: Data
Access, Release 1.03.

[39] John, K-H., Tiegelkamp, M. (2010). IEC 61131-3: Programming Industrial
Automation Systems, Second Edition. Berlin, Heidelberg: Springer Berlin Hei-
delberg.

[40] PLCopen and OPC Foundation. (2010). OPC UA Information Model for IEC
61131-3 - Release 1.00.

[41] Unified Automation GmbH. (n.d.). UaModeler "Turns Design into Code". URL:
https://www.unified-automation.com/products/development-tools/
uamodeler.html (Read 02.11.2017).

[42] Boström, B. (2014). JavaFX based OPC UA Simulation Server. Master’s thesis,
Aalto University.

[43] Laukkanen, E. (2013). Java source code generation from OPC UA information
models. Master’s thesis, Aalto University.

https://technet.microsoft.com/en-us/library/cc161377.aspx
https://technet.microsoft.com/en-us/library/cc161377.aspx
https://www.kepware.com/en-us/products/kepserverex/
https://www.kepware.com/en-us/products/kepserverex/
https://cogentdatahub.com/products/cogent-datahub/
https://cogentdatahub.com/products/cogent-datahub/
https://cogentdatahub.com/products/datahub-modbus-opc-server/
https://cogentdatahub.com/products/datahub-modbus-opc-server/
https://industrial.softing.com/en/products/software/opc-suite-servers-middleware/the-all-in-one-solution-for-opc-communication/datafeed-opc-suite.html
https://industrial.softing.com/en/products/software/opc-suite-servers-middleware/the-all-in-one-solution-for-opc-communication/datafeed-opc-suite.html
https://industrial.softing.com/en/products/software/opc-suite-servers-middleware/the-all-in-one-solution-for-opc-communication/datafeed-opc-suite.html
https://industrial.softing.com/en/products/software/opc-suite-servers-middleware/the-all-in-one-solution-for-opc-communication/datafeed-opc-suite.html
http://www.commsvr.com/Products/OPCUA/CommServerUA.aspx
http://www.commsvr.com/Products/OPCUA/CommServerUA.aspx
https://www.automation.com/library/articles-white-papers/opc-articles-and-white-papers/3-reasons-linux-is-preferred-for-control-systems
https://www.automation.com/library/articles-white-papers/opc-articles-and-white-papers/3-reasons-linux-is-preferred-for-control-systems
https://www.automation.com/library/articles-white-papers/opc-articles-and-white-papers/3-reasons-linux-is-preferred-for-control-systems
https://www.unified-automation.com/products/development-tools/uamodeler.html
https://www.unified-automation.com/products/development-tools/uamodeler.html

61

[44] Palonen, O. (2010). Object-oriented implementation of OPC UA Information
Models in Java. Master’s thesis, Aalto University.

62

A Modbus Information Model
The complete Modbus Information Model extends the Devices Information Model
that itself extends the Base Information Model and its built in Data Access extension
Information Model.

63

O
b
je
ct
s

M
o
d
b
u
sD
e
vi
ce
1

M
o
d
b
u
sD
e
vi
ce
2

M
o
d
b
u
sD
e
vi
ce
3

B
a
se
D
a
ta
T
yp
e

M
o
d
b
u
sR
eg
is
te
rC
o
n
fi
g
u
ra
ti
o
n
T
y
p
e

M
o
d
b
u
sM
a
st
er
T
y
p
e

A
d
d

re
ss

[M
a

n
d
a

to
ry

]

(D
a
ta

T
y
p
e

:
U

In
t1

6
)

D
a
ta

T
y
p
e

[M
a

n
d
a

to
ry

]

(D
a
ta

T
y
p
e

:
M

o
d
b

u
s
D

a
ta

T
y
p

e
)

D
e
v
ic

e
R

e
vi

s
io

n

[M
a

n
d
a

to
ry

]

D
e
v
ic

e
M

a
n

u
a

l

[M
a

n
d
a

to
ry

]

H
a
rd

w
a
re

R
e

v
is

io
n

[M
a

n
d
a

to
ry

]

M
a

n
u
fa

c
tu

re
r

[M
a

n
d
a

to
ry

]

M
o

d
e
l

[M
a

n
d
a

to
ry

]

D
e
vi
ce
T
y
p
e

R
e
v
is

io
n
C

o
u

n
te

r

[M
a

n
d
a

to
ry

]

S
e
ri

a
lN

u
m

b
e
r

[M
a

n
d
a

to
ry

]

S
o
ft

w
a

re
R

e
vi

s
io

n

[M
a

n
d
a

to
ry

]

U
In
t1
6

S
w

a
p
B

y
te

s

[O
p

tio
n
a

l]

(D
a
ta

T
y
p
e

:
B

o
o
le

a
n

)

S
w

a
p
W

o
rd

s

[O
p

tio
n
a

l]

(D
a
ta

T
y
p
e

:
B

o
o
le

a
n

)

M
o
d
b
u
sD
ev
ic
eT
y
p
e

D
ig
it
a
lI
n
p
u
ts

[M
a

n
d
a

to
ry

]

U
n
it
Id

[M
a

n
d
a

to
ry

]

(D
a
ta

T
y
p
e

:
In

t3
2
)

D
ig
it
a
lO
u
tp
u
ts

[M
a

n
d
a

to
ry

]

In
p
u
tR
e
g
is
te
rs

[M
a

n
d
a

to
ry

]

H
o
ld
in
g
R
e
g
is
te
rs

[M
a

n
d
a

to
ry

]

M
o
d
b
u
sI
o
B
lo
ck
T
y
p
e

M
o
d
b
u
sD
ig
it
a
lI
n
p
u
tB
lo
ck
T
y
p
e

M
o
d
b
u
sD
ig
it
a
lO
u
tp
u
tB
lo
ck
T
y
p
e

M
o
d
b
u
sI
n
p
u
tR
e
g
is
te
rB
lo
ck
T
yp
e

M
o
d
b
u
sH
o
ld
in
g
R
eg
is
te
rB
lo
ck
T
yp
e

H
a
sM

o
db
u
sR
eg
is
te
rC
o
n
fi
g
u
ra
ti
o
n

A
g
gr
eg
a
te
s

A
n
a

lo
g

It
e
m

T
yp

e

H
a
sC
h
ild

H
ie
ra
rc
h
ic
a
lR
ef
e
re
nc
es

D
a
ta

It
e
m

T
y
p
e

B
a
s
e
D

a
ta

V
a

ri
a

b
le

T
yp

e

R
e
fe
re
n
ce
s

<
C
P
Id
e
n
ti
fi
e
r>

[O
p
ti
o
n
a
lP
la
c
e
h
o
ld
e
r]

N
e
tw
o
rk
A
d
d
re
ss

C
o
n
n
ec
ti
o
n
P
o
in
tT
y
p
e

D
e
v
ic

e
C

la
ss

[O
p

tio
n
a

l]

D
e
v
ic

e
H

e
a
lt
h

[O
p

tio
n
a

l]

D
e
v
ic
e
T
y
p
e
Im
a
g
e

[O
p

tio
n
a

l]

D
o
cu
m
e
n
ta
ti
o
n

[O
p

tio
n
a

l]

F
u
n
ct
io
n
a
lG
ro
u
p
T
y
p
e

Im
a
g
e
S
e
t

[O
p

tio
n
a

l]

P
ro
to
co
lS
u
p
p
o
rt

[O
p

tio
n
a

l]

F
o
ld
e
rT
yp
e

D
ig
it
a
lI
n
p
u
ts

P
ro

to
c
o
l

U
n
it
Id

D
ig
it
a
lO
u
tp
u
ts

In
p
u
tR
e
g
is
te
rs

H
o
ld
in
g
R
e
g
is
te
rs

D
ig

it
a
lI
n
p

u
t0

C
o
n
fi
g
u
ra
ti
o
n

A
d
d

re
ss

D
a
ta

T
y
p
e

E
U

R
a

n
g
e

In
p

u
tR

e
g
is

te
r0

E
U

R
a

n
g
e

C
o
n
fi
g
u
ra
ti
o
n

A
d
d

re
ss

D
a
ta

T
y
p
e

S
w

a
p
B

y
te

s

D
e
v
ic

e
R

e
vi

s
io

n

D
e
v
ic

e
M

a
n

u
a

l

H
a
rd

w
a
re

R
e

v
is

io
n

M
a

n
u
fa

c
tu

re
r

M
o

d
e
l

R
e
v
is

io
n
C

o
u

n
te

r

S
e
ri

a
lN

u
m

b
e
r

S
o
ft

w
a

re
R

e
vi

s
io

n

P
a
ra
m
e
te
rS
e
t

In
p

u
tR

e
g
is

te
r1

E
U

R
a

n
g
e

C
o
n
fi
g
u
ra
ti
o
n

A
d
d

re
ss

D
a
ta

T
y
p
e

S
w

a
p
B

y
te

s

S
w

a
p
W

o
rd

s

B
o
o
le
a
n

In
t3
2

T
o
p
o
lo
g
y
El
em

en
tT
y
p
e

B
a
se
O
b
je
ct
T
yp
e

G
ro
u
p
Id
e
n
ti
fi
e
r

[O
p

tio
n
a

lP
la

c
e
h
o

ld
e

r]

Id
e
n
ti
fi
ca
ti
o
n

[O
p

tio
n
a

l]

Lo
ck

[O
p

tio
n
a

l]

M
e
th
o
d
S
e
t

[O
p

tio
n
a

l]

P
a
ra
m
e
te
rS
e
t

[O
p

tio
n
a

l]

Lo
ck
in
g
Se
rv
ic
e
sT
yp
e

D
is

c
re

te
It
e

m
T

y
p
e

H
as
M
o
db
us
Re
gi
st
er
C
on
fi
gu
ra
ti
o
n

H
as
M
o
db
us
Re
gi
st
er
C
on
fi
gu
ra
ti
o
n

H
as
M
o
db
us
Re
gi
st
er
C
on
fi
gu
ra
ti
o
n

N
um

b
er

E
nu
m
er
a
ti
o
n

U
In
te
ge
r

M
o
d
b
u
sI
o
T
yp
e

M
o
d
b
u
sP
ro
to
co
l

M
o
d
b
u
sD
a
ta
T
yp
e

In
te
g
er

M
o
d
b
u
sS
la
ve
T
y
p
e

B
a
s
e
V

a
ri
a

b
le

T
y
p

e

P
ro

to
c
o
l

[M
a

n
d
a

to
ry

]

(D
a
ta

T
y
p
e

:
M

o
d
b

u
s
P

ro
to

c
o

l)

B
lo
ck
T
yp
e

B
a

se
 In

fo
rm

at
io

n
 M

o
de

l

D
at

a
A

cc
es

s
e

xt
e

n
si

o
n

In

fo
rm

at
io

n
 M

o
d

el

D
ev

ic
es

 In
fo

rm
at

io
n

M
od

el
M

o
db

us
 In

fo
rm

at
io

n
M

od
el

Ex
am

p
le

 A
d

dr
es

s
Sp

ac
e

Figure A1: OPC UA Modbus Information Model

64

B Modbus NodeSet
The complete Modbus UaNodeSet created from the Modbus Information Model with
Unified Automation UaModeler.

Listing 2: Modbus UaNodeSet
<UANodeSet xmlns : x s i=" http : / /www. w3 . org /2001/XMLSchema−i n s t a n c e "

xmlns : uax=" http : / / opcfoundat ion . org /UA/2008/02/ Types . xsd "
xmlns=" http : / / opcfoundat ion . org /UA/2011/03/ UANodeSet . xsd "
xmlns : s1=" http : / / prosysopc . com/UA/Modbus/Types . xsd "
xmlns : s2=" http : / / opcfoundat ion . org /UA/DI/Types . xsd "
xmlns : xsd=" http : / /www. w3 . org /2001/XMLSchema">

<NamespaceUris>
<Uri>http : / / prosysopc . com/UA/Modbus/</ Uri>
<Uri>http : / / opcfoundat ion . org /UA/DI/</ Uri>

</ NamespaceUris>
<A l i a s e s>

<A l i a s A l i a s=" Boolean ">i =1</ A l i a s>
<A l i a s A l i a s=" UInt16 ">i =5</ A l i a s>
<A l i a s A l i a s=" I n t 32 ">i =6</ A l i a s>
<A l i a s A l i a s=" L o c a l i z e d T e x t ">i =21</ A l i a s>
<A l i a s A l i a s=" HasModell ingRule ">i =37</ A l i a s>
<A l i a s A l i a s=" HasTypeDef init ion ">i =40</ A l i a s>
<A l i a s A l i a s=" HasSubtype ">i =45</ A l i a s>
<A l i a s A l i a s=" HasProperty ">i =46</ A l i a s>
<A l i a s A l i a s=" HasComponent ">i =47</ A l i a s>
<A l i a s A l i a s=" ModbusDataType ">ns =1; i =3001</ A l i a s>
<A l i a s A l i a s=" ModbusProtocol ">ns =1; i =3003</ A l i a s>

</ A l i a s e s>
<E x t e n s i o n s>

<Extension>
<ModelInfo Tool=" UaModeler " Hash=" 5 c+oiEaVPismSBOUce+I+A==" Vers ion=" 1 . 4 . 3 " />

</ Extension>
</ E x t e n s i o n s>
<UADataType NodeId=" ns =1; i =3001 " BrowseName=" 1 : ModbusDataType ">

<DisplayName>ModbusDataType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasProperty ">ns =1; i =6003</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">i =29</ R e f e r e n c e>

</ R e f e r e n c e s>
<D e f i n i t i o n Name=" 1 : ModbusDataType ">

<F i e l d Name="BIT" Value=" 0 " />
<F i e l d Name="INT" Value=" 1 " />
<F i e l d Name="UINT" Value=" 2 " />
<F i e l d Name="DINT" Value=" 3 " />
<F i e l d Name="UDINT" Value=" 4 " />
<F i e l d Name="REAL" Value=" 5 " />

</ D e f i n i t i o n>
</UADataType>
<UAVariable DataType=" L o c a l i z e d T e x t " ParentNodeId=" ns =1; i =3001 " ValueRank=" 1 "

NodeId=" ns =1; i =6003 " ArrayDimensions=" 4 " BrowseName=" EnumStrings ">
<DisplayName>EnumStrings</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasProperty " IsForward=" f a l s e ">ns =1; i =3001</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">i =68</ R e f e r e n c e>

</ R e f e r e n c e s>
<Value>

<uax : L i s t O f L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>BIT</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>INT</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>UINT</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>DINT</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>UDINT</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>REAL</uax : Text>
</uax : L o c a l i z e d T e x t>

</uax : L i s t O f L o c a l i z e d T e x t>
</ Value>

</ UAVariable>
<UADataType NodeId=" ns =1; i =3002 " BrowseName=" 1 : ModbusIoType ">

<DisplayName>ModbusIoType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasProperty ">ns =1; i =6007</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">i =29</ R e f e r e n c e>

</ R e f e r e n c e s>
<D e f i n i t i o n Name=" 1 : ModbusIoType ">

<F i e l d Name=" DI " Value=" 0 " />

65

<F i e l d Name="DO" Value=" 1 " />
<F i e l d Name=" IR " Value=" 2 " />
<F i e l d Name="HR" Value=" 3 " />

</ D e f i n i t i o n>
</UADataType>
<UAVariable DataType=" L o c a l i z e d T e x t " ParentNodeId=" ns =1; i =3002 " ValueRank=" 1 "

NodeId=" ns =1; i =6007 " ArrayDimensions=" 4 " BrowseName=" EnumStrings ">
<DisplayName>EnumStrings</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasProperty " IsForward=" f a l s e ">ns =1; i =3002</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">i =68</ R e f e r e n c e>

</ R e f e r e n c e s>
<Value>

<uax : L i s t O f L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>DI</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>DO</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>IR</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>HR</uax : Text>
</uax : L o c a l i z e d T e x t>

</uax : L i s t O f L o c a l i z e d T e x t>
</ Value>

</ UAVariable>
<UADataType NodeId=" ns =1; i =3003 " BrowseName=" 1 : ModbusProtocol ">

<DisplayName>ModbusProtocol</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasProperty ">ns =1; i =6006</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">i =29</ R e f e r e n c e>

</ R e f e r e n c e s>
<D e f i n i t i o n Name=" 1 : ModbusProtocol ">

<F i e l d Name="TCP" Value=" 0 " />
<F i e l d Name="RTUTCP" Value=" 1 " />
<F i e l d Name="RTU" Value=" 2 " />
<F i e l d Name=" ASCII " Value=" 3 " />

</ D e f i n i t i o n>
</UADataType>
<UAVariable DataType=" L o c a l i z e d T e x t " ParentNodeId=" ns =1; i =3003 " ValueRank=" 1 "

NodeId=" ns =1; i =6006 " ArrayDimensions=" 4 " BrowseName=" EnumStrings ">
<DisplayName>EnumStrings</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasProperty " IsForward=" f a l s e ">ns =1; i =3003</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">i =68</ R e f e r e n c e>

</ R e f e r e n c e s>
<Value>

<uax : L i s t O f L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>TCP</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>RTUTCP</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>RTU</uax : Text>
</uax : L o c a l i z e d T e x t>
<uax : L o c a l i z e d T e x t>

<uax : Text>ASCII</uax : Text>
</uax : L o c a l i z e d T e x t>

</uax : L i s t O f L o c a l i z e d T e x t>
</ Value>

</ UAVariable>
<UAReferenceType NodeId=" ns =1; i =4001 " BrowseName=" 1 : HasModbusRegisterConfiguration ">

<DisplayName>HasModbusRegisterConfiguration</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">i =44</ R e f e r e n c e>
</ R e f e r e n c e s>
<InverseName Locale=" 2 ">ModbusRegisterConfigurationOf</ InverseName>

</ UAReferenceType>
<UAObjectType NodeId=" ns =1; i =1002 " BrowseName=" 1 : ModbusRegisterConfigurationType ">

<DisplayName>ModbusRegisterConfigurationType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasProperty ">ns =1; i =6001</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasProperty ">ns =1; i =6002</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">i =58</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasProperty ">ns =1; i =6004</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasProperty ">ns =1; i =6005</ R e f e r e n c e>

</ R e f e r e n c e s>
</UAObjectType>
<UAVariable DataType=" UInt16 " ParentNodeId=" ns =1; i =1002 "

NodeId=" ns =1; i =6001 " BrowseName=" 1 : Address ">
<DisplayName>Address</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasProperty " IsForward=" f a l s e ">ns =1; i =1002</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">i =68</ R e f e r e n c e>

66

</ R e f e r e n c e s>
</ UAVariable>
<UAVariable DataType=" ModbusDataType " ParentNodeId=" ns =1; i =1002 "

NodeId=" ns =1; i =6002 " BrowseName=" 1 : DataType ">
<DisplayName>DataType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasProperty " IsForward=" f a l s e ">ns =1; i =1002</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">i =68</ R e f e r e n c e>

</ R e f e r e n c e s>
<Value>

<uax : I n t3 2>0</uax : I nt 3 2>
</ Value>

</ UAVariable>
<UAVariable DataType=" Boolean " ParentNodeId=" ns =1; i =1002 "

NodeId=" ns =1; i =6004 " BrowseName=" 1 : SwapByte ">
<DisplayName>SwapByte</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =80</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">i =68</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasProperty " IsForward=" f a l s e ">ns =1; i =1002</ R e f e r e n c e>

</ R e f e r e n c e s>
<Value>

<uax : Boolean>f a l s e</uax : Boolean>
</ Value>

</ UAVariable>
<UAVariable DataType=" Boolean " ParentNodeId=" ns =1; i =1002 "

NodeId=" ns =1; i =6005 " BrowseName=" 1 : SwapWord">
<DisplayName>SwapWord</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =80</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">i =68</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasProperty " IsForward=" f a l s e ">ns =1; i =1002</ R e f e r e n c e>

</ R e f e r e n c e s>
<Value>

<uax : Boolean>f a l s e</uax : Boolean>
</ Value>

</ UAVariable>
<UAObjectType NodeId=" ns =1; i =1003 " BrowseName=" 1 : ModbusIoBlockType ">

<DisplayName>ModbusIoBlockType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">ns =2; i =1003</ R e f e r e n c e>
</ R e f e r e n c e s>

</UAObjectType>
<UAObjectType NodeId=" ns =1; i =1006 " BrowseName=" 1 : ModbusDigitalInputBlockType ">

<DisplayName>ModbusDigitalInputBlockType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">ns =1; i =1003</ R e f e r e n c e>
</ R e f e r e n c e s>

</UAObjectType>
<UAObjectType NodeId=" ns =1; i =1007 " BrowseName=" 1 : ModbusDigitalOutputBlockType ">

<DisplayName>ModbusDigitalOutputBlockType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">ns =1; i =1003</ R e f e r e n c e>
</ R e f e r e n c e s>

</UAObjectType>
<UAObjectType NodeId=" ns =1; i =1009 " BrowseName=" 1 : ModbusHoldingRegisterBlockType ">

<DisplayName>ModbusHoldingRegisterBlockType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">ns =1; i =1003</ R e f e r e n c e>
</ R e f e r e n c e s>

</UAObjectType>
<UAObjectType NodeId=" ns =1; i =1008 " BrowseName=" 1 : ModbusInputRegisterBlockType ">

<DisplayName>ModbusInputRegisterBlockType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">ns =1; i =1003</ R e f e r e n c e>
</ R e f e r e n c e s>

</UAObjectType>
<UAObjectType NodeId=" ns =1; i =1001 " BrowseName=" 1 : ModbusDeviceType ">

<DisplayName>ModbusDeviceType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasComponent ">ns =1; i =5001</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasComponent ">ns =1; i =5002</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasComponent ">ns =1; i =5004</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasComponent ">ns =1; i =5003</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">ns =2; i =1002</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasComponent ">ns =1; i =6009</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasComponent ">ns =1; i =6008</ R e f e r e n c e>

</ R e f e r e n c e s>
</UAObjectType>
<UAObject ParentNodeId=" ns =1; i =1001 " NodeId=" ns =1; i =5001 " BrowseName=" 1 : D i g i t a l I n p u t s ">

<DisplayName>D i g i t a l I n p u t s</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasComponent " IsForward=" f a l s e ">ns =1; i =1001</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">ns =1; i =1006</ R e f e r e n c e>

</ R e f e r e n c e s>
</UAObject>
<UAObject ParentNodeId=" ns =1; i =1001 " NodeId=" ns =1; i =5002 " BrowseName=" 1 : D i g i t a l O u t p u t s ">

<DisplayName>D i g i t a l O u t p u t s</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasComponent " IsForward=" f a l s e ">ns =1; i =1001</ R e f e r e n c e>

67

<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">ns =1; i =1007</ R e f e r e n c e>

</ R e f e r e n c e s>
</UAObject>
<UAObject ParentNodeId=" ns =1; i =1001 " NodeId=" ns =1; i =5004 " BrowseName=" 1 : H o l d i n g R e g i s t e r s ">

<DisplayName>H o l d i n g R e g i s t e r s</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasComponent " IsForward=" f a l s e ">ns =1; i =1001</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">ns =1; i =1009</ R e f e r e n c e>

</ R e f e r e n c e s>
</UAObject>
<UAObject ParentNodeId=" ns =1; i =1001 " NodeId=" ns =1; i =5003 " BrowseName=" 1 : I n p u t R e g i s t e r s ">

<DisplayName>I n p u t R e g i s t e r s</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasComponent " IsForward=" f a l s e ">ns =1; i =1001</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">ns =1; i =1008</ R e f e r e n c e>

</ R e f e r e n c e s>
</UAObject>
<UAVariable DataType=" ModbusProtocol " ParentNodeId=" ns =1; i =1001 " NodeId=" ns =1; i =6009 "

BrowseName=" 1 : P r o t o c o l " UserAccessLevel=" 3 " A c c e s s L e v e l=" 3 ">
<DisplayName>P r o t o c o l</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">i =63</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasComponent " IsForward=" f a l s e ">ns =1; i =1001</ R e f e r e n c e>

</ R e f e r e n c e s>
</ UAVariable>
<UAVariable DataType=" I n t3 2 " ParentNodeId=" ns =1; i =1001 " NodeId=" ns =1; i =6008 "

BrowseName=" 1 : UnitId " UserAccessLeve l=" 3 " A c c e s s L e v e l=" 3 ">
<DisplayName>UnitId</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasTypeDef init ion ">i =63</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasModell ingRule ">i =78</ R e f e r e n c e>
<R e f e r e n c e ReferenceType=" HasComponent " IsForward=" f a l s e ">ns =1; i =1001</ R e f e r e n c e>

</ R e f e r e n c e s>
</ UAVariable>
<UAObjectType NodeId=" ns =1; i =1005 " BrowseName=" 1 : ModbusMasterType ">

<DisplayName>ModbusMasterType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">ns =1; i =1001</ R e f e r e n c e>
</ R e f e r e n c e s>

</UAObjectType>
<UAObjectType NodeId=" ns =1; i =1004 " BrowseName=" 1 : ModbusSlaveType ">

<DisplayName>ModbusSlaveType</ DisplayName>
<R e f e r e n c e s>

<R e f e r e n c e ReferenceType=" HasSubtype " IsForward=" f a l s e ">ns =1; i =1001</ R e f e r e n c e>
</ R e f e r e n c e s>

</UAObjectType>
</UANodeSet>

	Abstract
	Abstract (in Finnish)
	Abstract (in Swedish)
	Preface
	Contents
	Abbreviations
	Introduction
	Objectives and scope
	Research methods
	Structure of work

	Background
	Modbus
	History
	General
	Data structure
	Serial
	Ethernet
	Other implementations

	OPC Unified Architecture
	History
	UA Address Space
	Information Modelling
	Information Model Extensions
	Security
	Services

	Requirements
	Use cases
	Reading production data to MES
	Providing PLC with process runtime parameters

	Evaluating OPC UA enabled Modbus applications
	KEPServerEX
	Cogent DataHub Modbus OPC Server
	Softing dataFEED OPC Suite
	CommServer OPC UA Server for Modbus IP
	Summary

	Design
	Design decisions
	Modbus Information Model Design
	ModbusDeviceTypes
	ModbusIoBlockTypes
	ModbusRegisterConfigurationType
	HasModbusRegisterConfiguration

	Implementation
	Creating the Information Model
	Modbus device configuration
	Creating the OPC UA Modbus Server
	Application deployment
	User interface

	Conclusion
	Future work

	References
	Modbus Information Model
	Modbus NodeSet

