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Abstract— Usually the capacity of multiple-input
multiple-output (MIMO) wireless communica-
tion channels is evaluated under the assumption
of fixed signal to noise (SNR) scenario. In this
paper the impact of temporal SNR variation on
capacity of MIMO wireless channels in urban
microcells is considered. Results based on data
measured in line of sight (LOS) and non line of
sight (NLOS) propagation scenarios at 5.3 GHz
carrier frequency are presented. It is noticed that
while the temporal SNR variation has significant
impact on the capacity of MIMO wireless chan-
nel in NLOS propagation scenario, the influence
is less under LOS condition.

Index Terms— MIMO systems, Channel capacity, Temporal
SNR variation.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless
communication systems promise significant advan-
tages over traditional single antenna systems [1][2].
However, parameters such as propagation environ-
ment [3], antenna array configuration [4] and an-
tenna element properties [5] affect the promised
advantages significantly. These parameters influence
both the MIMO channel correlation properties and
the target average receive signal to noise ratio
(SNR). In MIMO systems performance investiga-
tion the usual concern is to study how changes in
spatial correlation properties affect MIMO systems
performance under the assumption of fixed SNR,
e.g. [6]. In reality, this approach may slightly lead to
misleading conclusions. For instance, the common
understanding that the presence of a strong multi-
path component results in significant loss in MIMO
channel capacity, relative to the case when this
strong component is absent, is only true when we
deal with normalized channel matrix. When SNR

variation is taken into account different conclusion
could be reached.

The impact of SNR variation on MIMO sys-
tems performance is not largely addressed in lit-
erature. However, channel capacity variation of in-
door MIMO wireless channel was presented in [7]
where it is noticed that the SNR variation has a
greater impact on the channel capacity more than
the channel correlation properties. In this work we
study the impact of temporal SNR variation on
MIMO channel capacity based on data measured
in urban microcellular environment at 5.3 GHz
carrier frequency. The investigation is carried out
by analyzing the channel capacity calculated under
fixed and temporally varying SNR. Results from
line of sight (LOS) and non line of sight (NLOS)
propagation scenarios are presented.

The rest of this paper is organized as follows:
system model and employed signaling scheme is
described in Section II. Section III presents MIMO
channel capacity calculations. Measurement cam-
paign description is given in Section IV. Numerical
results based on the measurement data are presented
in Section V. Our conclusion is drawn is Section VI.

II. SYSTEM MODEL AND SIGNALING SCHEME

Consider a narrowband MIMO wireless commu-
nication system with Nt transmit antennas and Nr

receive antennas schematically shown in Figure 1.
For high data rate applications the system employs
spatial multiplexing scheme where different signals
are transmitted from each transmit antenna. Since
no channel knowledge in the transmitter side is
assumed, equal power allocation strategy is em-
ployed in order to maximize the achievable channel
capacity. Under this signaling scheme and power
allocation strategy the input-output relation between
the transmitted and received signals can be written
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as:

y = Gx + n (1)

where y ∈ CNr,1 is the received signal vector,
x ∈ CNt,1 is the transmitted signal vector with

covariance matrix Rx = E{xxH} = σ2
x

Nt
INt , where

(.)H denotes Hermitian transposition, σ2
x is the total

transmitted signal power, IN denotes identity matrix
of size N × N , G ∈ CNr,Nt is the narrowband
measured channel matrix, n ∈ CNr,1 is zero mean
complex Gaussian receiver noise vector with co-
variance matrix E{nnH} = σ2

nINr and σ2
n is the

receiver noise power at each receive antenna.

It is usually more convenient to deal with the
normalized version of the measured channel matrix.
For this purpose we adopt the commonly used
normalization technique that keeps the Frobenius
norm of the normalized measured channel matrix to
a fixed value [8]. This can be achieved by dividing
the measured channel matrix by the normalization
factor α as follows:

H =
1

α
G (2)

where α is given by:

α =

√
1

NtNr

‖ G ‖2
F (3)

and ‖ . ‖F denotes matrix Frobenius norm. With
this normalization the spatial average power in the
normalized channel matrix is set to one as follows:

1

NrNt

‖ H ‖2
F = 1 (4)

The system model in (1) can be rewritten in terms
of the normalized channel matrix as:

y =

√
ρ

Nt

Hx + n (5)

where ρ is the temporal SNR that is defined as:

ρ =
σ2

x

σ2
n

α2 (6)

III. CHANNEL CAPACITY

Channel capacity is a common performance mea-
sure of MIMO systems performance. It maps a
channel realization to a non-negative scalar whose
relative magnitude indicates channel quality. For the
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Fig. 1. MIMO System model.

MIMO system model described in (5) the channel
capacity can be written as:

c = log2 det(INr +
ρ

Nt

HHH) b/s/Hz (7)

When ρ is assumed fixed, channel capacity varia-
tions are due to changes in the channel correlation
properties. Practically, fixed SNR implies that a per-
fect power control that compensates for the temporal
SNR variation instantaneously is employed. In other
words, it is assumed that the transmitter can track
the SNR variation instantaneously and is capable
of compensating for the required power. In reality,
the transmitter has limited power and knowledge
about the receiver SNR. Even when the power is not
limited, practical issues such as power amplifier non
linearity can limit the maximum transmitted power.
Furthermore, instantaneous transmitted power up-
date requires a feedback channel from the receiver
to report the instantaneous SNR. The impact of
temporal SNR variation on MIMO channel capac-
ity is considered in this study based on measured
data. In the following sections we briefly describe
the measurement campaign and then analyze some
numerical results.

IV. MEASUREMENT CAMPAIGN

The measurement campaign was carried out at
downtown of Helsinki at 5.3 GHz carrier frequency.
The measurement campaign represents urban micro-
cellular environment where a transmitter equipped
with 16 elements dual-polarized planner antenna
was located in the main street below the rooftops
level at height of 10 m. A pseudo noise code
with 60 MHz chip frequency was transmitted with
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power limited to 37 dBm [9]. A receiver equipped
with 15 directive and dual-polarized semispherical
antenna at height of 1.6 m was moved in different
streets to create different routes. The receiver ve-
locity was approximately 0.2 m/s and the channel
transfer matrix was sampled at 14 Hz rate, meaning
that between measurement of consecutive complex
channel matrices the receiver was moved a distance
of 0.014 m.

V. NUMERICAL RESULTS

A. Propagation scenarios description

The results presented in the following subsections
are based on subset of data taken from two measured
traveling routes, NLOS and LOS. In the NLOS
route the receiver terminal was moved in a street
perpendicular to the main street with no line of
sight component while in the LOS route the receiver
terminal was moved in the main street where direct
LOS component between the transmitter and re-
ceiver terminal exist. The propagation environment
is shopping area with common glass structure in
the first floor. In each route an appropriate subset
of channel matrices with 4 transmit and 4 receive
antennas along measurement route of 750λ is con-
sidered, where λ is the wavelength.

B. Temporal SNR variation

The temporal SNR ρ was calculated in both
traveling routes as in (6) where the term σ2

x/σ
2
n was

chosen in order to set the average temporal SNR to
20 dB. It was found that in order to achieve this
SNR the ratio σ2

x/σ
2
n has to be set to 92 dB and 73

dB in NLOS and LOS traveling routes, respectively.
One can observe that in order to achieve 20 dB
temporal SNR the required transmitted power to
noise ratio in NLOS route is 19 dB higher than
that in the LOS route. This simply due to the
nature of the NLOS propagation scenario where the
received paths suffer from multiple reflections and
diffractions compared to the direct path in the LOS
propagation scenario. Histograms of the calculated
SNR in both traveling routes are shown in Figures
2 and 3 for the NLOS and LOS traveling routes,
respectively. It can be clearly seen that the 20 dB
SNR is achievable very often in the LOS traveling
route compared to the case in the NLOS route.
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Fig. 2. Histogram of temporal SNR variations in NLOS traveling route with
σ2

x/σ2
n=92 dB.
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Fig. 3. Histogram of temporal SNR variations in LOS traveling route
σ2

x/σ2
n=73 dB.

C. Impact on channel capacity

The channel capacities of both traveling routes
were calculated in two cases, 1) with SNR fixed
to 20 dB and 2) with using the SNR calculated
in the previous section. The results are shown in
Figures 4 and 5 in terms of the complementary
cumulative distribution function (CCDF) for the
NLOS and LOS traveling routes, respectively. The
impact of temporal SNR variation in the capacity of
the NLOS traveling route is evident. At 10% outage
capacity the reduction in the channel capacity is
about 35.71% relative to the fixed SNR case. In the
LOS traveling route the reduction in the channel
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Fig. 4. CCDF of the measured channel capacity in NLOS route calculated
with SNR fixed to 20 dB and temporally varying SNR.

capacity relative to the fixed SNR case is about
7.14% at the same outage probability. Under fixed
SNR the NLOS traveling route can offer higher
capacity than the LOS route. However, when the
temporal SNR variation is taken into consideration
the LOS route offers channel capacity higher than
the NLOS route although, the transmitted signal
power to noise ratio used in the NLOS traveling
route is 19 dB higher than that used in the LOS
route.

One interesting observation is the slope of the
CCDF of the channel capacity under the two SNR
cases. Fixing the SNR changes the slope of the
channel capacity significantly in the NLOS traveling
route, while it is not in the LOS route. The slope
of the channel capacity reveals useful information
about the nature of the propagation scenario when
temporal SNR variation is considered. Steeper slope
reflects the existence of strong component that can
maintain high and stable SNR. Smaller slope reflects
large and fast fading of the available multipath
components.

VI. CONCLUSIONS

We can conclude that under NLOS propagation
conditions the impact of temporal SNR variation
on MIMO channel capacity in urban microcells is
significant. Perfect power control that can track and
compensate receiver SNR variation is needed in
order to enjoy the promised advantages of MIMO
systems in NLOS propagation scenarios. Despite
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Fig. 5. CCDF of the measured channel capacity in LOS route calculated
with SNR fixed to 20 dB and temporally varying SNR.

the undesirable correlation properties of the LOS
propagation scenarios, they maintain relatively high
and stable SNR.
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