Errata

Publication I

- In section III in page 2 the code matrix defining the contribution of the previous symbol to the desired symbol should be:

\[
C_{k,n}^b = \begin{bmatrix}
0_{SF \times L} \\
(SF + 1)\text{th row of } C_{k,n-1} \\
\vdots \\
(SF + L - 1)\text{th row of } C_{k,n-1}
\end{bmatrix}.
\]

- The following sentence should be: Correspondingly, the following symbol contribution is obtained with code matrix \(C_{k,n}^f\) which is comprised of \((L-1)\) first rows from the code matrix \(C_{n+1}^n\) followed by \(SF\) rows of zeros.

Publication II

- In section 2 in page 566 the code matrix defining the contribution of the previous symbol to the desired symbol should be:

\[
C_{n}^b = \begin{bmatrix}
0_{M \times SF \times P \times L \times M} \\
(M \times SF + 1)\text{th row of } C_{n-1} \\
\vdots \\
M \times (SF + L - 1)\text{th row of } C_{n-1}
\end{bmatrix}.
\]

- The following sentences should be: Correspondingly, the following symbol contribution is obtained with code matrix \(C_{n}^f\) which is comprised of \(M \times (L-1)\) first rows from the code matrix \(C_{n+1}^n\) followed by \(M \times SF\) rows of zeros. The size of code matrices \(C_n\), \(C_n^b\) and \(C_n^f\) are \(M \times (SF + L - 1) \times M \times L \times P\).
Publication III

- The sentence after equation (5) in page 165 should be:
 Correspondingly, the following symbol contribution is obtained with code matrix $C_{p,n}^f$ which is comprised of $M \times SF$ of zeros followed by $M \times (L - 1)$ first rows from the code matrix C_{n+1}.

Publication IV

- After equation (9) in page 1294 in the middle of a the paragraph a reference to equation (??) should be (9).

Publication VI

- In Table I equalization equation should be placed prior to the symbol loop (for $n = 1, \ldots, N$) as: $\tilde{z} = f_q \ast y_q$. And following explanation below the table 'where \ast is convolution'.
- In Table I a summation sign is missing in the interference cancellation stage $y_{q+1}(n) = y_q(n) - \sum_p C^{(p)} A_q^{(p)} \hat{h}_q s_q^{(p)}(n)$
- In Table II the summation sign is missing again in the interference cancellation stage. It should be: $y_q(n) = y(n) - \sum_{j \neq q} \sum_p C^{(p)} A_j^{(p)} \hat{h}_j s_j^{(p)}(n)$
- In Table II equalization equation should be prior to the symbol loop (for $n = 1, \ldots, N$) as: $\tilde{z} = f_q \ast y_q$. And following explanation below the table 'where \ast is convolution'.