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Backward Wave Region and Negative Material
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Abstract—A structure formed by combined lattices of infinitely
long wires and split-ring resonators is studied. A dispersion equa-
tion is derived and then used to calculate the effective permittivity
and permeability in the frequency band where the lattice can be
homogenized. The backward wave region in which both the effec-
tive permittivity and permeability are negative is analyzed. Some
open and controversial questions are discussed. It is shown that
previous experimental results confirming the existence of back-
ward waves in such a structure can be in deed explained in terms of
negative material parameters. However, these parameters are not
quasi-static and thus the known analytical formulas for the effec-
tive material parameters of this structure, which have been widely
used and discussed in the literature, were not correct, and it was
the reason of some objections to the authors of that experiment.

Index Terms—Analytical formula, backward wave, homogeniza-
tion, left-handed media, negative permeability, negative permit-
tivity, negative refraction, split ring resonators, Veselago media.

I. INTRODUCTION

M ETAMATERIALS with negative permittivity and
negative permeability, which were first suggested in

[1], have attracted much attention recently. A metamaterial
that has simultaneously negative permittivityand negative
permeability within a certain frequency band at microwave
frequencies has been introduced recently [2]. This structure
consists of two lattices: a lattice of infinitely long parallel wires,
and a lattice of relatively small (compared to the wavelength

in the host medium) particles which are calledsplit-ring
resonators(SRRs). In [3] and [4] two analytical models of
SRR (similar to each other) have been developed for the
resonant permeability at microwave frequencies. Lattices of
wires at low frequencies (when the lattice periodis smaller
than ) were considered as homogenuous dielectric media
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long time ago in [5] and were studied again recently in the
low-frequency region [6], [7]. At these low frequencies the
negative permittivity is due to the lattice of wires according to
the models of [5]–[7] (for waves propagating normally to the
wires with the electric field polarized along these wires). These
results were combined in [2], [10]–[12] to form a simple model
predicting simultaneously negativeand within the resonant
band of a SRR. In [10] this prediction has been qualitatively
confirmed by numerical simulations using the MAFIA code.
Dispersion curves obtained numerically contain the passband
within the SRR resonant band (due to the presence of the SRR
lattice). This passband can also be predicted by the analytical
model. However, the numerical dispersion data obtained in
[10] have not been used to extract the material parameters. The
experimental observation of the negative refraction of a wave
in such a structure is reported in [8]. The phenomenon of the
negative refraction was predicted in [1] for media with
and , and according to this theory they correspond to
the backward wave region (where the Poynting vector of the
eigenwave is opposite to the wave vector).

Does the experimental observation of [8] mean that the struc-
ture suggested in [2] can be described throughand which are
both negative within the SRR resonant band? Based on [8] one
can only assert that the negative refraction region necessarily
exists within this frequency band that can be explained in terms
of backward-waves. Backward waves in a lattice correspond to
negative dispersion, i.e., the group velocity (the derivative of
the eigenfrequency with respect to the wavenumber) is in the
opposite direction of the phase velocity. Negative dispersion for
a lattice is quite common in high frequency bands ( ,
where is the wavenumber in the host medium). How-
ever, at low frequencies ( ) negative dispersion is an ab-
normal phenomenon. In [2], [8], and [10] the lattice at low fre-
quencies was treated as a continuous medium and the concept
of the negative dispersion is equivalent to the concept of nega-
tive material parameters. However, is it possible to describe the
structure formed by lattices of wires and SRRs (studied in [2]
and [8]) in terms of and within the resonant band of SRRs?
This question remains open since the analytical model [2] with
which these material parameters were introduced is incomplete
and can be wrong.

In [8], the negative refraction was observed only for waves
whose electric field is parallel to the wires and the wave vector
is perpendicular to the wires. Thus, the permittivityconsidered
in [6] and [2] are the component of the permittivity tensor
(we assume the wires are along theaxis) and the permeability
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considered there are the transversal component of the perme-
ability tensor (there are two orthogonal SRRs
in each unit cell of the structure studied in [8]). If one considers
only the propagation in the transversal plane (i.e., the– plane
in our case), one can neglect the spatial dispersion in the wire
lattice and consider it as a medium with negative permittivity
[5]. In the case of perfectly conducting wires one has [5]

(1)

where is the analog of the plasma frequency. In [4], [6],
and [12], the following frequency dependencies of the effec-
tive medium parameters were suggested for their structure when
both the SRRs and the wires are made of real metal

(2)

(3)

where is the analog of the resonant frequency of a magnetic
plasma, is the electronic resonant frequency and is the
magnetic resonant frequency (i.e., the resonant frequency of the
magnetic polarizaibility for an individual SRR). These formulas
correspond to the conventional quasi-static model for the per-
mittivity and permeability, i.e., the electromagnetic interaction
between the SSRs and wires is neglected. In the present paper,
we take into account this interaction. We consider the lossless
case [corresponding to , in (2) and (3)].

In the present paper, we also discuss the following three ques-
tions:

• How crucial is the electromagnetic interaction between the
SRRs and the wires when calculating the material param-
eters of the whole structure?

• How to find the frequency region within the resonant band
of SRR scatterers in which the homogenization of the
whole structure is allowed?

• Which is the correspondence between two bands: back-
ward-wave region and the band in which the permittivity
and permeability are both negative?

The first question has been considered briefly in [13]. It was
indicated that the structure considered in [8] was fortunately
built so that each SRR is located exactly at the center of two ad-
jacent wires and thus there is no quasi-static interaction between
the wire lattice and the SRR lattice (i.e., the magnetic fields pro-
duced by the two adjacent equivalent line currents cancel out at
the center where the SRR is located). If one considersand as
quasistatic parameters (as was done in [13]), the absence of the
quasi-static interaction should lead to the following result: the
effective permittivity of the structure is identical to the effective
permittivity of the lattice of wires and the effective permeability
of the structure is identical to the effective permeability of the
lattice of SRRs. However, we will show in the present paper that
this is not correct since the electromagnetic interaction between
the wires and the SRRs in such a structure is not quasistatic (or
local) and will dramatically influence the effective permittivity.

For the second question, one must be very careful in the ho-
mogenization of the complex structure studied in [2], [8] and
[10]. In fact, the results of [8] can not be interpreted quanti-
tatively in terms of the permittivity and permeability used in
[2], [4], [6], [8], and [10]. This has been revealed in [14]. In
the present paper, we develop an analytical model for a struc-
ture similar to the one studied in [8] (i.e., formed by combined
lattices of infinitely long wires and split-ring resonators). The
model allows the structure to be homogenized and its valid fre-
quency domain to be identified. A self-consistent dispersion
equation is derived and then used to calculate correctly the effec-
tive permittivity and permeability in the frequency band where
the lattice can be homogenized. For the third question, the low-
frequency backward wave region is analyzed and it is found that
both effective permittivity and permeability are negative in it.

Our results have shown that the homogenization is allowed
only over part of the resonant band of the SRR scatterers and
the homogenization is forbidden in a subband inside the SRR
resonant band (even though the frequencies of this subband are
low and the spatial dispersion exists there).

II. SRR WITH IDENTICAL RINGS

The SRR particle considered in [3] and [4] is a pair of two
coplanar broken rings. Since the two loops are not identical the
analytical model for this particle is rather cumbersome (SRR
models more complete than those suggested in [3] and [4] have
been developed in [15] and [16]). It is not correct that the SRR
particle can be described simply as a resonant magnetic scat-
terer [16]. The structure considered in [8] (if homogenized) has
to be described through three material parameters:, and
(the magnetoelectric coupling parameter). It was shown in [16]
that a SRR is actually a bianisotropic particle and the role of
bianisotropy is destructive for negative refraction.

The bianisotropy is not the only disadvantage of this SRR par-
ticle. Another disadvantage is its resonant electric polarizability
(i.e., the polarization produced by the electric field), which was
also ignored in [3] and [4]. Electric polarizability resonance
occurs at frequencies very close to the resonant frequency of
the magnetic polarizability [15]. If the SRRs are made oflossy
metal, the resonant electric polarizability will lead to a dramatic
increase in the resistive loss. The resonant electric polarizability
also makes the analytical modeling of the whole structure very
complicated.

A modified SRR which does not possess bianisotropy was
proposed in [16]. This SRR also consists of two loops but they
are identical and parallel to each other (located on both sides of
a dielectric plate in practice). Fig. 1 shows two kinds of SRR.
The left one is the SRR considered in [3] and [4]. The right is
the SRR introduced in [16] and the one considered in the present
paper. It has been mentioned in [16] that the magnetic resonant
frequency of their SRR is lower than that of the SRR considered
in [3] and [4] (for the same size). This is because the mutual ca-
pacitance between the two parallel broken rings is now
the capacitance of a conventional parallel-plate capacitor and is
significantly higher than the mutual capacitance of two coplanar
split rings considered in [4]. This fact is illustrated in Fig. 1(b):
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(a) (b)

Fig. 1. (a) coplanar SRR and (b) parallel SRR. The concept of the mutual
capacitance is illustrated by indicating the charges in the polarized rings.

if the upper half of ring 1 is charged positively the negative in-
duced charges appear in the upper half of ring 2. The same situ-
ation happens for the SRR shown in Fig. 1(a), but not so effec-
tively since the strips are coplanar and weakly interacted.

There is one more advantage that was not mentioned in [16]
for the SRR of two parallel broken rings. The resonances of
the electric and magnetic polarizabilities of this particle do not
overlap in frequency. Actually, particle suggested in [16] is a
special case of the bi-helix particle introduced (with the aim to
create novel low-reflective shields) and studied in [17]. Unlike
the SRR considered in [16] this bi-helix particle contains four
stems orthogonal to the loop planes. Note that the theory of [17]
remains valid even if the length of these stems becomes zero.

Both rings 1 and 2 [see Fig. 1(b)] have the same radiusand
area . The impedance for each broken ring can be
calculated by

where is the admittance for the corresponding closed ring
and is the admittance for the split (associated with the
capacitance between the two broken ends). The magnetization
arises due to the magnetic field orthogonal to the ring plane (i.e.,
the plane in Fig. 1). Resonant electric polarization is caused
by the component of the external local electric field . The

component of has no influence over the resonant polar-
ization and can be neglected [18]. Thus, voltages (electromotive
forces) and will be induced in each loop by the external
local electric and magnetic fields, respectively, [17], [18]

(4)

and

(5)

where is the derivative (with respect to the argument ) of
the Bessel function, and is one of the so-called King’s
coefficients known in the theory of loop antennas (see, e.g.,
[18]). Then the induced currents (due to the changing of

the charges at the tips of the split arms) at the split gaps of rings
1 and 2 satisfy the following equations [17]

(6)

(7)

where is the mutual impedance of the two broken rings.
It is clear from (6) and (7) that there are two eigenmodes of

currents in the SRR. The first mode (excited by the local mag-
netic field) corresponds to when the electric dipole
moment of the SRR is zero and the magnetic dipole moment

is twice the magnetic moment of a single ring (see
Fig. 1). The second mode (excited by the local electric field)
corresponds to when the magnetic moment is zero
and the electric dipole moment of the SRR is twice
the electric dipole moment of a single ring. The electric reso-
nant frequency (at which the electric polarizability resonates) is
always higher than the magnetic resonant frequency [17]. If the
distance between the two parallel broken rings is very small,
The relative difference of these two resonant frequencies may
exceed 50% [17], and we assume that the electric polarizability
of the SSR is negligible within the frequency band of the mag-
netic resonance. Note thatis also the thickness of the dielectric
layer between the two parallel broken rings in Fig. 1, the rings
are assumed to be perfectly conducting with infinitesimal thick-
ness.

Therefore, unlike the SSR considered in [3] and [4], the SSR
suggested in [16] is appropriate for creating artificial magnetic
resonance (no resonant electric properties within the frequency
band of interest). This is the reason why we choose the SSR
shown in the right part of Fig. 1 to study in the present paper.

An analytical model for an individual SRR particle is simpler
than the one considered in [17] due to the absence of the stems.
The model used in this section is quasistatic since it refers to an
isolated particle of small size (with respect to the wavelength).
Assume that the SRR shown in Fig. 1 is excited by magnetic
field . Also assume that the dielectric plate separating the
two parallel rings has the same permittivity as the background
medium (then we can avoid the influence of the dielectric plate
which can be very strong if there is a mismatch in the permit-
tivity). If the nonuniformity of the azimuthal current distribution
in both rings and SRRs can be neglected, the magnetic polariz-
ability can be written as

(8)

where . From (6) and (4) it follows that

(9)

Calculating the total impedance of the loop by taking into
account the mutual coupling of the loops (as it was done in [15]
and [16] for SRR of coplanar rings), we obtain
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Here, is the radiation resistance of the whole particle,is
the ring inductance

where is the width of the strip from which the ring is made
of, and is the mutual inductance of the two parallel coaxial
rings:

where . The total capacitance attributed to the
split can be calculated (taking into account the capacitive mutual
coupling; cf. [15] and [16]) as half of the mutual capacitance
formed by the two parallel rings

In this formula, the capacitance of the split is neglected since it
is small as compared to .

From (8) and (9) we obtain

(10)

where

(11)

In a similar way one can show that the electric polarizability
resonates at the frequency (see also [17])

and .
We will also use the following result of (10)

(12)

The radiation resistance can be found from the following
condition [21]–[23]

(13)

In the dispersion equation for a lattice, cancels out and does
not influence the result.

III. T HE STRUCTURE

The structure we study in the present paper is similar to
the one studied experimentally in [8], however, instead of
the coplanar SRRs we use the parallel SRRs (as described in
SectionII).

When the wave propagates along theaxis the electric field
excites the –directed current in the wire numbered
( ) (for the reference wire we have ). The
magnetic field excites those SRRs which are parallel to the

- plane. Their magnetic moments are parallel to theaxis.

Then the lattice can be considered as a set of two-dimensional
(2-D) grids parallel to the - plane and orthogonal to the
propagation direction. Each grid contains magnetic and electric
polarizations. The magnetic moments as well as the currents
are tangential to the grid plane, and each grid can be considered
as a sheet of surface magnetic moment and a
surface electric current or surface electric polarization

( , are unit vectors of Cartesian axes). Similar
situation holds for the wave propagation along theaxis.
Then one has and , and the electric and
magnetic polarizations for each 2-D grid (parallel to the-
plane) is again tangential to the grid and orthogonal to the
propagation direction. The wire lattice and the SRR lattice have
the same periods along theand axes and are denoted as
and , respectively. The period of the SRR lattice along the
axis is denoted as. Fig. 1 shows the two orthogonal sets of
SRRs separated with each other by along the axis. This
separation plays no role in our model since we do not consider
the electromagnetic interaction between these two orthogonal
sets of magnetic dipoles. When the wave propagates along the

axis or axis, one of the two sets of SRRs is not excited and
the interaction is completely absent.

In the case such a structure behaves (within the
frequency band where the homogenization is possible) like a
uniaxial magneto-dielectric medium with relative axial permit-
tivity (mainly due to the presence of the wires) and relative
transversal permeability (mainly due to the
SRR particles). This indicates that in order to find the effective
material parameters of the whole structure we can consider
only the case of the normal propagation (along theor axis).

Note that the transversal permittivity and the axial perme-
ability of the structure are equal to those of the background
medium. For simplicity we assume this background medium is
vacuum.

We will see that the SRRs strongly interact with the wires
at each frequency. Their interaction is not quasi-static and in-
fluences the propagation constant starting from zero frequency.
In this way it influences the material parameters of the whole
structure.

IV. DISPERSIONEQUATION

Let the wave propagate along theaxis with propagation
factor (to be determined). Consider the whole structure as a set
of parallel 2-D grids which are parallel to the– plane and
denote the surface magnetic moments and the surface
currents at those grids numbered . Then we choose an
arbitrary SRR in the grid with as the reference particle
and an arbitrarily chosen wire (in the same grid) as the reference
wire.

When we evaluate the magnetic momentof the reference
SRR (which is related to the surface magnetic momentby

), we take into account its electromagnetic interac-
tion with all the other SRRs following the work of [23] where
a simple model of 3-D dipole lattice was suggested. As to the
influence of the wires to the reference SRR, we can replace
each grid of wires with a sheet of current because of
the absence of the a quasi-static interaction between SRRs and
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wires. This gives the well-known plane-wave approximation of
the electromagnetic interaction in lattices (see [23] and the ref-
erences cited there).

When we evaluate the currentof the reference wire (which
is related to the surface electric current by ), we take
into account its interaction with all the other wires following
the work of [19] where a simple model of doubly-periodic wire
lattice was suggested. The influence of the SRR lattice on the
reference wire is taken into account under the plane-wave ap-
proximation and the reciprocity principle is satisfied.

Each sheet of electric or magnetic polarization produces a
plane wave [20]. Since and satisfy

(14)

(15)

we can write the following relations for the–component of the
electric field (produced by all the sheets of magnetic moment

and acting on the reference wire) and the–component of
the magnetic field (produced by all the sheets of currentand
acting on the reference SRR)

(16)

(17)

Both series can be analytically carried out and we easily obtain

(18)

(19)

The local electric field acting on the reference wire is the sum
of and the contribution of the wires

(20)

where (the interaction factor of the wire lattice) was deter-
mined in [19]

(21)
Here is the wave impedance of the host material and

is the Euler constant.
The local magnetic field acting on the reference SRR is the

sum of and the contribution of the SRR particles

(22)

where (the interaction factor of the lattice of magnetic
dipoles) is given by [23]

(23)

A similar relation has been given in [23] for a lattice of electric
dipoles (the only difference as compared to (23) is the factor

). Here denotes the real part of the dimensionless interaction

factor of a 2-D grid of dipoles with periods, . In [23], the
closed-form expression foris given for the case

where the number is approximately equal to
. Relation (23) is very accurate for the case , and

in the case its error is still quite small [23].
The responses of the reference SRR and the reference wire to

the local fields can be written as

(24)

(25)

where is given by [19]

(26)

where is the effective radius of the wire ( if made
from a strip with width ).

To obtain the dispersion equation we substitute (20), (22),
(21), (23), (18), and (19) into (24) and (25). Since
and we obtain the following system of equations

(27)

(28)

where

and

The parameter describes the interaction between the currents
in the wires and the magnetic moments of the SRRs.is not a
quasi-static parameter even at low frequencies since it does not
approach zero at zero frequency. Its presence in the dispersion
equation strongly influences the result for the propagation con-
stant at all frequencies.

Relations (13) and (26) lead to the cancellation of the imag-
inary part at the left-hand side of (27) and the real part at the
left-hand side of (28). Thus, system of (27) and (28) gives the
following real-valued dispersion equation:

It can be rewritten as the following quadratic equation with re-
spect to :

(29)
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(a) (b)

Fig. 2. (a) Front view of the lattice of SRRs (shown as disks; their magnetic dipoles are indicated with arrows) and straight wires. (b) Top view: wave propagation
is in they-z plane.

Fig. 3. Dispersion plot of the structure ford = 2a = 2b = 16 mm

(thick lines). Thin lines coincide with the dispersion plot of host medium and
correspond to the wave polarizationE = E y ,H = H x .

There are two roots for the dispersion (29) at each fre-
quency. One of them is exactly equal to(the wavenumber in
the host medium). This root corresponds to the wave with polar-
ization and . This wave excites neither
wires nor SRRs and does not interact with the structure. Another
root corresponds to the wave with polarization and

. This is the interacting wave which is of interest. In
our dispersion curves we keep both solutions of (29).

V. DISPERSIONCURVES

As numerical examples we choose the following parameters
for the structure shown in Fig. 2: the size of SRR particle (outer
diameter of the rings) is 3.8 mm, the width of the strip
(forming the rings) is 1 mm, the radius of wire cross section
is 0.2 mm, the distance between the rings (which is chosen
so that the resonance of is at 6 GHz) is 0.84 mm.
Lattice periods 8 mm and 16 mm are chosen in our

Fig. 4. Normalized propagation factor of the backward wave versus frequency
for d = a = b = 8 mm.

first example. In the second example, we choose
8 mm. In the third example, we choose 4 mm.

Fig. 3 gives the dispersion curve in a form commonly used in
the literature of photonic crystals (see, e.g., [25]). It represents
the dependence of the eigenfrequencies on the normalized prop-
agation factor over the first Brillouin zone ( )
for the case when 16 mm. Straight lines corre-
spond to noninteracting waves. Curved lines correspond to in-
teracting waves. The only difference of this curve as compared
to the well-known plot for the wire medium (see, e.g., [19] and
[24]) is the miniband at about 6 GHz, in which the group ve-
locity is opposite with respect to (our choice of as that
belonging to the first Brillouin zone fixes the positive direction
of the phase velocity along theaxis).

In this narrow frequency band, wave propagation is prohib-
ited in the lattice of wires. Therefore, the miniband is due to the
presence of SRRs and the resonant magnetization of the SRR
lattice.

The resonant passband becomes wider if the periodde-
creases. From Fig. 4 one can see the dependence of the prop-
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Fig. 5. Real (thin solid line) and imaginary (dashed line) parts of normalized
propagation factor versus frequency ford = a = b = 8 mm. Thick line
corresponds to the propagation of wave with polarizationE = E y , H =

H x in host material.

agation factor on the frequency in the vicinity of the SRR reso-
nance for the case 8 mm.

The backward-wave region corresponds to the frequencies
5.980–6.045 GHz, whereas the resonant frequency of
given by (11) is 6.000 GHz. becomes negative at
6.000 GHz. Thus, within the backward-wave band
is mainly negative. The group velocity of the backward wave is
relatively small (it approximately equals , where is
the speed of light).

In order to understand whether it is possible to homogenize
the structure at the frequencies when the backward-wave region
exists, we studied for both propagating and decaying modes.

Fig. 5 shows the frequency dependence of both the real and
imaginary parts of the normalized propagation factor for
the case 8 mm. It is clear that outside the SRR res-
onant band the eigenmodes of the structure are the same as those
of the wire medium [19]. The thick straight line corresponds to
the noninteracting wave.

From Fig. 5 one can see that the eigenmodes within the fre-
quency band 5.92–5.98 GHz are complex. The lower limit of the
backward wave region (5.980–6.045 GHz) is the upper limit of
the complex-mode band. Complex modes cannot exist in contin-
uous media. These modes are known for electromagnetic crys-
tals with different geometries (see, e.g., [19], [22]). These are
decaying modes though the real part of the propagation factor is

. The existence of this real part ofreflects the fact
that the directions of the currents in the wires are alternating
along the propagation axis (two adjacent currents have oppo-
site directions and this can be interpreted as the phase shift
between them due to the real part of the complex propagation
factor).

Therefore, the homogenization is possible within one (the
upper) half of the SRR resonant band but impossible within an-
other (the lower) half of the SRR resonant band (though for
these frequencies the structure periods are much smaller than
the wavelength in the background medium).

VI. HOMOGENIZATION

Let us try to consider the structure (in the case ) as a
uniaxial magnetodielectric medium. Then the interacting wave
(propagating along theaxis with , ) also
satisfies the following constitutive equations:

Define the following ratio:

(30)

where and are the field components averaged over the
cubic cell . and are the bulk electric and
magnetic polarizations related with the surface currentand
surface magnetic polarization

From Maxwell’s equations we easily obtain

(31)

Substituting (21) and (26) into (28), we obtain

(32)

From (30) and (31) it follows that

(33)

In the above equation, is already known from the disper-
sion curve and .

Equating the propagation factorto the value ,
we obtain

(34)

Substituting this expression for into (33), we obtain

(35)

After is found, we then evaluate through [cf. (35) and
(34)]

(36)

We have taken into account the nonlocal interaction in the
structure in (35) and (36) though the effective permittivity and
permeability are introduced as the parameters relating,
with , at the same point. Therefore, unlike (2) and (3), our
material parameters are not quasi-static.
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Fig. 6. Axial permittivity (dashed line) and the transversal permeability (solid
line) for the casea = b = d = 8 mm.

Fig. 7. Axial permittivity (dashed line) and the transversal permeability (solid
line) for the casea = b = d = 8 mm within the SRR resonant band.

Frequency dependencies of both and are shown in
Fig. 6 for the case 8 mm. Outside the resonant
band of the SRR particles the frequency dependence of the per-
mittivity repeats the known result for wire media (treated as arti-
ficial dielectric media) [5]. The permeability is practically equal
to the unity outside the resonant band of SRRs. Within the com-
plex-mode band the homogenization is forbidden [21], [22] and
this frequency region is removed in this figure (both and
calculated through (35) and (34) are complex within this band).

Let us consider the resonant frequency behavior of the mate-
rial parameters in details. Fig. 7 shows the same curves as those
in Fig. 6, however, in another scale starting from the upper limit
of the complex-mode band. From Fig. 7 one sees that the per-
mittivity and permeability are both negative between 5.970 and
6.020 GHz. From Fig. 4 it follows that the backward wave prop-
agates between 5.980 and 6.045 GHz. Thus, the backward-wave
region almost coincides with the region where both the permit-

tivity and permeability are negative. Note that this coincidence
is only approximate in our model. Probably this small difference
between the band of backward waves and the band of negative

and results from approximations that are inherent to this
model.

Also we have indicated in Fig. 7 the point at which per-
mittivity and permeability are equal (at about 6.005 GHz). At
this frequency, the medium is impedance-matched with the free
space (this is useful for some applications) and the values of
and are not very high (the homogenization is then allowed).

As a main result, one can see from Fig. 7 that the permit-
tivity does not follow (within the resonant band) the law (even
qualitatively) suggested in [2], [8], and [10]. It is the frequency
dependence of the permittivity is nonmonotonous (from Fig. 7
one sees that decreases over 5.96–6.09 and increases after
6.090 GHz as the frequency increases).

In the theory of continuous media, one can prove that both
the permittivity and permeability must grow as the frequency
increases in the lossless case [26]. In our case, the permeability
grows everywhere as the frequency increases (until the first spa-
tial resonance of the lattice, i.e., when it loses the phys-
ical meaning). Thus, the frequency behavior of the permeability
is normal. However, the permittivity grows as the frequency in-
creases only at the frequencies when the magnetization of SRR
is small and the interaction of the SRRs and wires is negligible.
Within the band of the backward wave the permittivity decreases
as the frequency increases. Therefore, the homogenization pro-
cedure we have developed is not completely consistent with the
theory of [26]. The reason for this disagreement is that the mate-
rial parameters considered in [26] are quasi-static (i.e., the polar-
ization of the medium at a given point is determined by the field
at this point) while our model takes into account the nonlocal in-
teraction of the SRR lattice and the wire lattice. We found that
the visible difference between the quasi-static model and our
model is within the SRR resonant band. However, the influence
of the nonlocal interaction is revealed in the permittivity of the
wire lattice disturbed by the presence of the SRRs.

The lattice of infinite wires is spatially dispersive at all fre-
quencies since the wires are longer than any possible wave-
length. When the wave propagates strictly in the plane orthog-
onal to the axis of the wires one can still neglect the spatial dis-
persion since all parameters are independent of thecoordinate.
Thus, the problem is 2-D and possible to be homogenized [5].
However, if there is a lattice of scatterers with which the wires
interact, the situation becomes quite different (even for propa-
gation orthogonal to the wires). Here the problem is not 2-D and
the wire current is influenced by all the SRR particles positioned
along its infinite length. It results in the abnormal frequency be-
havior of the effective permittivity of the structure.

VII. CONCLUSION

In the present paper, we have developed an analytical model
for a structure similar to the one for which the negative re-
fraction at microwave frequencies was first observed (formed
by combined lattices of infinitely long wires and split-ring res-
onators) [8]. We have derived a self-consistent dispersion equa-
tion and studied the dispersion properties of the lattice. The ex-
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plicit dispersion equation clearly confirms the existence of the
narrow passband within the resonant band of the split-ring res-
onators. In this passband, the group and phase velocities of the
propagating wave are in opposite directions (i.e., a backward
wave). Negative refraction can be explained in terms of back-
ward waves without introducing the concept of negative mate-
rial parameters. However, in the present case the homogeniza-
tion turns out to be possible in the frequency range of low-fre-
quency backward waves. The obtained dispersion curves have
been used to calculate correctly the effective permittivity and
permeability in the frequency band where the structure can be
homogenized. It is interesting to see that the dispersion curves
agree well with the Veselago theory which predicts backward
waves when both permittivity and permeability are negative.
Outside the resonant band of the SRR particles, the effective
permittivity of the whole structure is the same as that of the
wire lattice and the effective permeability is equal to 1. How-
ever, within the SRR resonant band, there is a subband where the
homogenization is forbidden since the complex mode satisfies
the dispersion equation at these frequencies. We found that the
frequency region in which bothand are negative coincides
approximately with the backward wave band. In this region, the
frequency dependence of the effective permittivity is abnormal.
We interpret this as the result of the low-frequency spatial dis-
persion which is inherent for the wire medium in the presence
of the resonant scatterers. The approximate coincidence of the
backward-wave band and the band of negative material parame-
ters confirms, in general, the concept of the structure under con-
sideration as a uniaxial variant of Veselago media. However, the
coincidence of two bands is not exact, and this question needs to
be clarified in a more accurate way than above. We think that the
most constructive approach is to take into account the resistive
losses of the metal, which can be a crucial factor for the homog-
enization model. If the presence of losses increases this small
difference, the concept of the uniaxial Veselago medium for the
structure from wires and SRRs must be revised. This study is
planned for the future.
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