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Abstract. Estimating overcomplete ICA bases for image windows is a difficult problem. Most algorithms require
the estimation of values of the independent components which leads to computationally heavy procedures. Here we
first review the existing methods, and then introduce two new algorithms that estimate an approximate overcomplete
basis quite fast in a high-dimensional space. The first algorithm is based on the prior assumption that the basis vectors
are randomly distributed in the space, and therefore close to orthogonal. The second replaces the conventional
orthogonalization procedure by a transformation of the marginal density to gaussian.
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1. Introduction

Recently, modeling image windows using statistical
generative models has emerged as a new area of re-
search [4, 12, 14, 15, 32]. Using statistical generative
models enables principled derivation of methods for
denoising, compression, and other image processing
operations, and it is also useful for neurophysiological
modeling of visual brain areas.

A fundamental generative model for low-level fea-
tures of images is independent component analysis
(ICA) [6, 18, 21]. In ICA the observed data is expressed
as a linear transformation of latent variables that are
nongaussian and mutually independent. We may ex-
press the model as

x = As =
n∑

i=1

ai si (1)

where x = (x1, x2, . . . , xm)T is the vector of observed
random variables, s = (s1, s2, . . . , sn)T is the vector of
the latent variables called the independent components
or source signals, and A is an unknown constant matrix,
called the mixing matrix. In image processing, typically
the xi are pixel gray-scale values and the columns ai

are the basis vectors or features of the image windows.

In the classic case, we assume that the number of
independent components equals the number of the ob-
served variables, i.e. n = m. Exact conditions for the
identifiability of the model were given in [6], and sev-
eral methods for estimation of the classic ICA model
have been proposed in the literature [1, 3, 5, 6, 11,
23, 31]; see [16] for a review, or [18] for a shorter
introduction.

Recently, a non-classic modification of the model,
where it is assumed that the number of independent
components is larger than the number of observed
variables (n > m), has attracted the attention of a
number of researchers [29, 33, 35]. Such a model is
especially interesting when ICA is used for image
modeling, because it leads to decomposition of image
windows that is closely related to overcomplete
wavelet bases (see [33]), which seem to be in some
ways superior to ordinary wavelet bases. Basically,
the larger number of independent components in the
model means that we have a larger ‘dictionary’ from
which to construct the representation. The dictionary
consists of the basis vectors that are given as columns
ai of the mixing matrix A. Using an overcomplete
basis may also allow for some invariances (e.g. with
respect to translation) in the representation [37].
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Some methods have already been proposed for es-
timating the mixing matrix in the ICA model with
n > m, a problem often called estimation of an over-
complete ICA basis. Some methods are reviewed be-
low. A drawback with most proposed methods is that
they are computationally very demanding. This is ba-
sically because the model then becomes a model with
missing data: the computation of the likelihood is not
straightforward as in the basic case. In fact, the eval-
uation of the likelihood contains an integral and even
reasonable approximations of that integral are hard to
compute [29]. On the other hand, since these methods
are usually applied to data of very high dimensions, it
would be very useful to have an estimation method that
can cope with very large dimensions with a moderate
computational load.

In this paper, we propose two methods for approxi-
mate estimation of the ICA model with overcomplete
bases. The methods are computationally efficient when
compared with existing methods, and appear to give
quite good approximations of the optimal estimates.

2. Review of Existing Methods

First, we provide a short review of existing methods for
estimating overcomplete bases.

2.1. Estimation of the Independent Components

An interesting property connected with overcomplete
bases is that the values of the independent components
cannot be exactly recovered even if the mixing matrix
is known. This is because the mixing matrix A is not
invertible. Therefore, even after estimating the mixing
matrix, the problem of optimal estimation of the re-
alizations of the independent components needs to be
solved. This is an important problem that has already
been treated in the wavelet literature. We shall not treat
it in detail here, see [36] instead. However, many meth-
ods for estimating the mixing matrix use as subroutines
methods that estimate the independent components for
a known mixing matrix. Therefore, we shall first very
briefly treat methods for reconstructing the indepen-
dent components, assuming that we know the mixing
matrix.

Let us denote by m the number of mixtures and by
n the number of independent components. Thus, the
mixing matrix has size m × n with n > m, and there-
fore it is not invertible. The simplest method of esti-

mating the independent components would be to use
the pseudoinverse of the mixing matrix. This yields

ŝ = AT (AAT )−1x (2)

In some situations, such a simple pseudoinverse gives
a satisfactory solution, but in many cases we need a
more sophisticated estimate.

A more sophisticated estimator of s can be obtained
by maximum a posteriori estimation [10, 29, 33]. We
can write the posterior probability of s as follows [33]:

p(s | x, A) = 1x=As

∏
i

pi (si ) (3)

where 1x=As is an indicator function that is 1 if x = As
and 0 otherwise. The (prior) probability densities of the
independent components are given by pi (si ). Thus, we
obtain the maximum a posteriori estimator of s as

ŝ = arg max
x=As

∑
i

log pi (si ). (4)

Alternatively, we could assume that there is noise
present as well. In this case, we get a posterior of the
form

log p(s | x, A) = − 1

2σ 2
‖As − x‖2

+
n∑

i=1

log pi (si ) + C (5)

where C is an irrelevant constant, and the covariance
of the noise is assumed to be of the form σ 2I.

The problem with the maximum a posteriori estima-
tor is that it is not easy to compute. This optimization
cannot be expressed as a simple function in analytic
form in any interesting case. It can be obtained in closed
form if the si have a gaussian distribution: In this case
the optimum (for the no noise case) is given by the
pseudoinverse in (2). However, since ICA with gaus-
sian variables is of little interest, the pseudoinverse is
not a very satisfactory solution in many cases.

In general, therefore, the estimator given by (4) can
only be obtained by numerical optimization. A gradient
ascent method can be easily derived. One case where
the optimization is easier than usual is when the si have
a Laplacian distribution:

pi (si ) = 1√
2

exp(−
√

2|si |). (6)
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Ignoring uninteresting constants, we have

ŝ = arg min
x=As

∑
i

|si | (7)

which can be formulated as a linear program and solved
by classical methods for linear programming, see e.g.
[29].

The use of the Laplacian distribution is well justi-
fied in feature extraction, where the components are
supergaussian (also called leptokurtic or sparse [16]).
Using the Laplacian density also leads to an interest-
ing phenomenon: The ML estimator gives coefficients
ŝi of which only m are non-zero. Thus, only the min-
imum number of the components are activated. Thus
we obtain a sparse decomposition in the sense that the
components are quite often equal to zero.

Another direction of research is given by Monte
Carlo methods. One such method, Gibbs sampling, has
been used for estimating the s in [34]. The advantage
of this method is that richer models of the distributions
of the si can be used. The drawback is that the method
is computationally quite demanding.

It may seem at first glance that it is useless to try to
estimate the independent components by these meth-
ods because they cannot be estimated exactly in any
case due to the non-invertibility of the mixing matrix.
This is not so, however; due to this phenomenon of
sparsity, maximum a posteriori estimation is very use-
ful. In fact, in the case where the independent compo-
nents are very supergaussian or sparse, most of them
are very close to zero because of the large peak of the
pdf at zero. Thus, those components that are not zero
may not be very many, and the system may be invert-
ible for those components. If we first determine which
components are likely to be clearly non-zero, and then
invert that part of the linear system, we may be able to
get quite accurate reconstructions of the independent
components. This is done implicitly in the maximum
a posteriori estimation method. For example, assume
that there are three speech signals mixed into two mix-
tures. Since speech signals are practically zero most of
the time (which is reflected in their strong supergaus-
sianity), we could assume that only two of the signals
are non-zero at the same time, and succesfully recon-
struct those two signals [27]. In the same way, image
decompositions often assume that only a limited num-
ber of components is active at any one time, see e.g.
[36].

2.2. Estimation of the Mixing Matrix

Now we return to our main subject, the estimation of
overcomplete bases.

2.2.1. Maximizing Joint Likelihood. To estimate the
mixing matrix, one can use maximum likelihood (ML)
estimation. In the simplest case of ML estimation, we
use the joint likelihood of A and the realizations of
the si , and maximize it with respect to all these vari-
ables. The joint likelihood for T observations s(t), t =
1, . . . , T can be easily derived from (5):

log L(A, s(1), . . . , s(T )) = −
T∑

t=1

[
1

2σ 2
‖As(t) − x(t)‖2

+
n∑

i=1

log pi (si (t))

]
+ C

(8)

Maximization of (8) with respect to A and si could be
accomplished by a global gradient ascent with respect
to all the variables [33]. This was probably the first
method that enabled the estimation of overcomplete
bases.

Another approach to maximization of the likelihood
is to use an alternating variables technique [10], in
which we first compute the ML estimate of the A for
fixed si (t) and then, using this new A, we compute the
ML estimates of the si (t), and so on. The ML estimate
of the si (t) for a given A is given by the methods of
the preceding section. The ML estimate of A for given
si (t) can be computed as:

A =
( ∑

t

x(t)x(t)T

)−1 ∑
t

x(t)s(t)T (9)

This algorithm needs some extra stabilization, however.
For example, normalizing the estimates of the si to unit
norm is necessary. Further stabilization can be obtained
by first whitening the data. Then we have (considering
infinitely small noise)

E{xxT} = AAT = I (10)

which means that the rows of A form an orthonormal
system. This orthonormality could be enforced after
every step of (9) for further stabilization.



142 Hyvärinen and Inki

2.2.2. Maximizing Likelihood Approximations.
Maximization of the joint likelihood is a rather crude
method of estimation. From a Bayesian viewpoint,
what we really want to maximize is the marginal
posterior probability of the mixing matrix. Thus, the
posterior should be marginalized with respect to s.

The marginal posterior cannot be easily computed,
however, and approximations must be used. A rather
simple modification of joint likelihood estimation can
thus be obtained by using a Laplace approximation of
the posterior distribution of A. This improves the sta-
bility of the algorithm, and has been succesfully used
for estimation of overcomplete bases from image data
[28], as well as for separation of audio signals [27].
For details on the Laplace approximation, see [29]. An
alternative for the Laplace approximation is provided
by ensemble learning [26], but this has not yet been
applied to this particular problem.

One direction of research is to use an expectation-
maximization (EM) algorithm [2, 30]. Using gaussian
mixtures as models for the distributions of the inde-
pendent components, the algorithm can be derived in
analytical form. The problem is, however, that its com-
plexity grows exponentially with the dimension of s,
and thus it can only be used in small dimensions. Suit-
able approximations of the algorithm might alleviate
this limitation [2].

A very different approximation of the likelihood
method was derived in [10], in which a form of com-
petitive neural learning was used to estimate overcom-
plete bases with supergaussian data. This is a compu-
tationally powerful approximation that seems to work
for certain data sets. The idea is that the extreme case
of sparsity or supergaussianity is encountered when at
most one of the ICs is non-zero at any one time. Thus
we could simply assume that only one of the compo-
nents is non-zero for a given data point, for example
the one with the highest value in the pseudo-inverse re-
construction. This is not a realistic assumption in itself,
but it may give an interesting approximation of the real
situation in some cases. The validity of such a strong
approximation still needs to be explored, however.

3. Approximate Estimation
by Quasi-Orthogonality

The maximum likelihood methods discussed in the pre-
ceding section give a well justified approach to ICA es-
timation with overcomplete bases. The problem with
most of the methods in the preceding section is that they

are computationally quite slow. A typical application of
ICA with overcomplete bases is, however, feature ex-
traction. In feature extraction, we usually have spaces
of very high dimensions, and computational consid-
erations may severely limit the class of methods that
we can use. Therefore, we introduce in this and the fol-
lowing section methods that are a bit more heuristically
justified, but have the advantage of being not more ex-
pensive computationally than methods for basic ICA
estimation.

Our approximative approach is justified by the fact
that in feature extraction for many kinds of natural data,
the ICA model is only a rather coarse approximation. In
particular, the number of potential “independent com-
ponents” seems to be infinite: The set of such compo-
nents is closer to a continuous manifold (parameterized
by location, orientation, frequency, etc.) than a discrete
set. One evidence for this is that in image feature ex-
traction, basic ICA estimation methods give different
basis vectors when started with different initial values,
and the number of components thus produced does not
seem to be limited.

Any basic ICA estimation method thus gives a rather
arbitrary collection of components which are some-
what independent, and have sparse (supergaussian or
leptokurtic) marginal distributions. We could argue,
therefore, that it is the sparseness that is important,
and the exact dependence relations between the com-
ponents are secondary. In fact, recent research has re-
vealed important dependencies between the estimated
components [14, 15, 38, 39].

In the following, we propose two methods that give
bases for overcomplete sparse decompositions. The
method in this section is based on a Bayesian prior on
the mixing matrix, and the method in the next section
uses a method of gaussianization that has been pro-
posed in projection pursuit literature. The main com-
putational advantage of the algorithms stems from the
fact that we do not compute estimates of the si in every
step, as in most algorithms. Although here we discuss
only the case of sparse (supergaussian) components,
these methods can also be used on data with subgaus-
sian sources [20].

3.1. Sparse Approximately Uncorrelated
Decompositions

Let us assume, for simplicity, that the data is
prewhitened as a preprocessing step, as in most ICA
methods. Then, if the basis were not overcomplete, the
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mixing matrix could be constrained orthogonal, and the
independent components are simply given by the dot-
products of the whitened data vector z with the basis
vectors ai .

Due to the considerations in the preceding subsec-
tion, we assume in our approach that what is needed is
a collection of basis vectors which has the following
two properties.

1. The dot-products aT
i z of the observed data with the

basis vectors have maximally sparse (supergaus-
sian) marginal distributions.

2. The aT
i z should be approximately uncorre-

lated (“quasi-uncorrelated”). Equivalently, the vec-
tors ai should be approximately orthogonal
(“quasi-orthogonal”).

A decomposition with these two properties seems to
capture the essential properties of the decomposition
obtained by estimation of the ICA model. Such de-
compositions could be called sparse approximately
uncorrelated decompositions.

3.2. The Phenomenon of Quasi-Orthogonality

It is clear that it is possible to find highly overcomplete
basis sets that have the first property of the two given
above. Classic ICA estimation is usually based on max-
imizing the sparseness (or, in general, nongaussianity)
of the dot-products, so the existence of several different
classic ICA decompositions for a given image data set
shows the existence of decompositions with the first
property.

What is not obvious, however, is that it is possible to
find strongly overcomplete decompositions such that
the dot-products are approximately uncorrelated. The
main point here is that this is possible because of the
phenomenon of quasi-orthogonality.

Quasi-orthogonality [22, 24, 25] is a somewhat
counterintuitive phenomenon encountered in very
high-dimensional spaces. In a certain sense, there
is much more room for vectors in high-dimensional
spaces. The point is that in an n-dimensional space,
where n is large, it is possible to have (say) 2n vectors
that are practically orthogonal, i.e. their angles are close
to 90 degrees. In fact, when n grows, the angles can be
made arbitrarily close to 90 degrees. This must be con-
trasted with small-dimensional spaces: If, for example,
n = 2, the even the maximally separated 2n = 4 vectors
exhibit angles of 45 degrees.

For example, in image decomposition, we are usu-
ally dealing with spaces whose dimensions are of the
order of 100. Therefore, we can find decompositions of,
say, 200 vectors, such that the vectors are quite orthog-
onal, with all the angles between basis vectors staying
above 80 degrees.

3.3. Derivation of Quasi-Orthogonal Prior

Our goal is now to formulate a Bayesian prior for quasi-
orthogonality. Such a prior would give high probabili-
ties to mixing matrices with quasi-orthogonal columns.
The starting point is to assume that the elements of the
basis vectors are drawn randomly, independently from
each other.

We now calculate the probability density for the
dot product between two randomly and independently
drawn basis vectors: aT

i a j . Assume that the basis vec-
tors are of unit length. In this case these basis vec-
tors can be considered to be points on the surface of
an m-dimensional unit sphere. The volume of an m-
dimensional sphere of radius r is

V (r ) = Cmrm, (11)

where Cm = π
m
2

�[ m
2 +1] is a constant. When we take the

portion of the surface of the m-dimensional unit sphere
that is within an angle of α to a fixed vector, and project
this onto a hyperplane orthogonal to this vector, we get
an m − 1 dimensional ball of radius sin(α). When we
take the derivative of this with respect to the radius we
get the length of the boundary. Therefore, the infinites-
imal area of a band of width dα at an angle α on the
surface of an m-dimensional sphere, which gives us the
probability density function of α, can be computed as

pα(α) dα = cm sinm−2(α) dα (12)

Here, the surface area is scaled to one using the constant
cm = m−1

m
�[ m

2 +1]√
π�[ m−1

2 +1]
. By denoting the dot product as

x , i.e. α = arc cos(x), we get the following probability
density for the dot-product:

px (x) = cm(1 − x2)
m−3

2 (13)

In this way we get a prior probability for the mixing
matrix A, assuming that all the dot products aT

i a j are
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independent:

p(A) =
∏
i< j

cm
(
1 − (

aT
i a j

)2) m−3
2 (14)

Strictly speaking, the dot products are not quite inde-
pendent of each other in this space. For example, if there
were m orthogonal vectors in this space, the probability
for any of the other n−m vectors to be orthogonal to all
these vectors would be zero. In most cases, however,
this approximation appears to be good enough.

3.4. Posterior of Mixing Matrix

To use the above quasi-orthogonal prior given in (14)
in the ICA likelihood, we make another approxima-
tion. Consider the likelihood for ordinary (not over-
complete) ICA:

log L(A) =
∑

t

n∑
i=1

log pi
(
wT

i z(t)
) + T log |det W|.

(15)

where the wT
i are the rows of the inverse of A, and W =

A−1. If the mixing matrix is constrained orthogonal, we
have in fact W = AT .

The last term log |det W| gives the scaling of the
probability mass when the linear transformation given
by W is performed. When the previously mentioned
assumptions about A hold, i.e. the basis vectors ai

are quasi-orthogonal (randomly distributed) and of unit
length, the scaling of the probability made by A or its
inverse can be considered roughly constant. In practice,
the purpose of the last term log |det W| is basically to
make to wi more or less orthogonal, which is equivalent
to making A orthogonal. In fact, this term disappears
if the ai are constrained orthogonal. Therefore, assum-
ing the vectors ai quasi-orthogonal, we discard the last
term in (15).

In this form, the method can be extended to the over-
complete case. The determinant can be computed for
square matrices only, whereas the quasi-orthogonality
measure in (14) can be calculated for any A.1

The probability for z given A can be approximated
as follows:

p(z(t) | A) ≈ C
∏
i=1

pyi

(
aT

i z(t)
)

(16)

where C is a constant and the variable yi is the dot prod-
uct between ai and z. As in ordinary ICA estimation

[17], it seems that the exact form of pyi is not that
important, as long as it is supergaussian when yi is su-
pergaussian, and subgaussian when yi is subgaussian.

The posterior probability for the problem can be
written as

p(A | z) = p(z | A)p(A)

p(z)
(17)

Here p(z) is constant with respect to A. Note that p(A)
now assigns a higher probability to quasi-orthogonal
matrices (when the dimension of the space is large), so
that the assumption of quasi-orthogonality of the basis
vectors holds and the approximation (16) for p(z | A)
can be used.

Finally, we thus have the following posterior prob-
ability for A:

log p(A | z(t), t = 1, . . . , T )

≈
∑

t

n∑
i=1

log pyi

(
aT

i z(t)
)

+ αT
∑
i< j

log
(
1 − (

aT
i a j

)2) + const. (18)

Here, α is a constant that is affected not only by m, but
also by the approximations we have made. In practice,
we do not attempt to find a formula for computing α,
but instead adjust it empirically. This allows us to give
different strengths for the prior.

In the following, we maximize the posterior in (18)
to estimate A, and we denote the maximizing argument
by Â. The difference to maximum likelihood estimation
of the classic ICA model (i.e. when A is square) simply
is that |det (A)| is replaced by p(A).

Previously one of the authors proposed a modifi-
cation of FastICA to perform a similar estimation by
quasi-orthogonality [13], but the quasi-orthogonality
measure in the present method has been derived
from first principles and it seems that the present
method gives better estimates. In [19] we approximated
log p(A) more heuristically with a power function of
the dot products, which also seemed to work, although
it produced no low-frequency basis vectors for image
data.

3.5. Simulations

First, we tried our method on simulated data. We
mixed 40 independent components with Laplacian
distributions into a 20 dimensional data space, i.e. A
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was a matrix of size 20 × 40. The sample size was
50000.

A general problem in estimating overcomplete bases
is that components whose contributions to the data are
very small (as measured by the norm of the correspond-
ing column of A) are very difficult to estimate. To avoid
this problem, the standard deviations of the sources
were uniformly distributed between 0.75 and 1.5. The
basis vectors were uniformly distributed on the surface
of the 20-dimensional unit sphere.

As a preprocessing step, the data was whitened. We
then maximized the posterior in (18) by gradient as-
cent. The parameter α was set to the value of 0.34 and
log pyi (y) = −log cosh y. (A rescaling of this density
function was implicitly included in α.)

To investigate the quasi-orthogonality of the ob-
tained basis vectors (in the whitened space), we can
look at the minimum angle between one basis vector
and the rest. This minimum angle can be calculated
from the maximum of the absolute values of the dot
products between the basis vector in question and the
rest. These angles are depicted in Fig. 1. Note that all of
these angles are above 60 degrees, which shows good
quasi-orthogonality. The probability density shown by
the solid line in Fig. 1 for comparison gives the dis-
tribution that one would expect for these angles if the
estimated basis vectors were distributed randomly in
the space. One can see that in fact, the obtained vec-
tors are even more orthogonal than corresponding ran-

0 10 20 30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 1. The quasi-orthogonality of the estimated basis vectors
when 40 independent components are mixed into a 20-dimensional
space, using the quasi-orthogonalizing prior. Asterisks: The min-
imum angles between the estimated basis vectors with Laplacian
distributed sources. Solid line: Probability density that the minimum
angle would have if the vectors were really generated randomly.

dom vectors. Note that even though we generated the
mixing matrix randomly, we then whitened the data,
which quasi-orthogonalizes the basis vectors by a small
amount.

The other thing of interest is, of course, how close the
estimated basis vectors are to the original basis vectors.
This can determined by looking at the absolute value of
the elements of AT Â. Some care must be taken in evalu-
ating this matrix. If we took the maximum dot products
from each column of the matrix, results where several
estimated vectors are close to the same original vec-
tor might look good. Or, if we took the maximum dot
products in each row, we might get results that look sat-
isfactory in cases where an estimated basis vector is in
the middle of two original basis vectors. To avoid these
problems, we use a matching approach. We find the best
matches between estimated basis vectors and the origi-
nal ones: First we find largest dot product, remove both
the real and the estimated basis vectors corresponding
to it, and repeat this until we have a “match” for each
basis vector.

The angles (in degrees) between the estimated ba-
sis vectors and the matched original basis vectors are
shown in Fig. 2. We can see that nearly all the compo-
nents were quite correctly estimated. The results are far
superior to those obtained by ordinary FastICA [11].
Note that no subset of the basis vectors was in an or-
thogonal configuration in the whitened space, which
partly explains why the results with ordinary FastICA
are so poor.
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Figure 2. The angles between the real and matched components,
using the quasi-orthogonalization approach. Squares: Laplacian dis-
tributed sources estimated with the present algorithm. Asterisks: For
comparison, estimation of complete basis using FastICA, in sym-
metric mode.
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3.6. Experiments on Image Data

Next, we tested our method on image feature ex-
traction. We sampled 12 × 12 image windows from
13 natural images. We removed the mean (DC com-
ponent) from the windows and whitened the data vec-
tors thus obtained. From this 143-dimensional space
we estimated 288 components, i.e. a basis that is twice
overcomplete. We used the same parameter α = 0.34
that we used in the simulations with the Laplacian
distributed sources. A supergaussian density was as-
sumed for the independent components by again taking
log pyi (yi ) = −log cosh yi .

In Fig. 3, the basis vectors are shown. They are quite
similar to what one obtains with ordinary ICA using
a supergaussian prior for the independent components.
In Fig. 4, we show the distances between the estimated
basis vectors in the whitened space; these show that the
basis vectors are really quasi-orthogonal.2

To further analyze the basis vectors, Gabor func-
tions were fitted to each vector by a least-squares fit.
Thus, every basis vector was described using a lim-
ited number of parameters, including spatial position,
orientation and frequency. Before fitting the Gabor

Figure 3. The basis vectors obtained with the quasi-
orthogonalizing prior. The basis vectors are quite similar to
those obtained by ordinary ICA, but the basis is 2 times
overcomplete.
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Figure 4. The minimum angles between the estimated components
in the whitened space, using the quasi-orthogonalization approach on
image data. Asterisks: The minimum angles between the estimated
image basis vectors. Solid line: The distribution this quantity would
have, if the vectors were drawn randomly.

function, we upsampled the basis functions by a fac-
tor of three in both dimensions, and then applied a
3 × 3 averaging filter on them. This eliminated cer-
tain spurious minima. A problem with these Gabor fits
was that often the optimization converged to a solu-
tion with a narrow envelope and a very low frequency
(with a zero crossing at the center). In such cases,
the frequency tells little about the actual function. To
avoid this problem, we calculated numerically the mean
frequency of the Fourier power spectrum from these
parameters.

First, we plotted the joint distribution of orienta-
tion and frequency [28] in Fig. 5. We can see that

Figure 5. The distribution of the orientation and frequency in the
2 times overcomplete basis estimated by quasi-orthogonality. Each
point in this polar plot is one basis vector. The distance from the origin
is proportional to the frequency, and the angle gives the orientation.
The innermost semicircle represents frequencies with a wavelength
at 12 pixels (i.e. window size). The other semicircles represent wave-
lengths of 6, 3, and 2 pixels, respectively.
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Figure 6. The spatial distribution of basis vectors inside the sam-
pling window. The inner square is the sampling window. Each
bar gives the position and orientation of a basis vector, and the
size of the envelope of the basis vector is proportional to the bar
size.

the two parameters are quite independent from each
other. Orientation has strong concentrations along the
multiples of 45 degrees. Likewise, we plotted the
spatial positions (of the centers of the basis vec-
tors) in Fig. 6. We can see that the distribution
of the centers is quite uniform inside the sampling
window.

Next, we tested the limits of the method by esti-
mating highly overcomplete bases: 4 and 8 times. The
parameter α was simply scaled by dividing it with 2
and 4 to give the values 0.17 and 0.085. Some re-
sults are shown in Figs. 7 and 8. We can see that the
4 times overcomplete basis is quite well estimated.
Even in the 8 times overcomplete basis, only a few ba-
sis vectors are a bit messy. The orientation-frequency
plot as is Fig. 5 is shown in Fig. 9 for the 4 times
overcomplete basis. The 8 times overcomplete basis
yielded similar results (not shown). The minimum an-
gles as in Figs. 1 and 4 are shown for the 8 times
overcomplete set in Fig. 10, to demonstrate that even
here, the vectors were rather quasi-orthogonal; in par-
ticular, no two vectors were too similar. This was of
course also the case in the 4 times overcomplete basis
(not shown).

Figure 7. The basis vectors obtained with the quasi-
orthogonalizing prior, this time 4 times overcomplete.

4. Approximate Estimation by Gaussianization

4.1. Gaussianization vs. Orthogonalization

The second method that we propose for approximate
estimation of overcomplete ICA bases is based on gaus-
sianization. This idea comes from projection pursuit lit-
erature [8]. The point is to replace orthogonalization or
quasi-orthogonalization by a nonlinear transform that
makes the projections onto already estimated basis vec-
tors gaussian.

We use a deflationary estimation of the independent
components [7, 11], which means that we first estimate
one independent component (typically by maximizing
a measure of nongaussianity), then estimate a second
component somehow discarding the direction of the
first one, and so on, repeating the procedure n times.

The question is then, how to discard the already esti-
mated components. Typically this is done by constrain-
ing the search for new independent components to the
space that is orthogonal to the already found compo-
nents; this is more or less equivalent to removing the
estimated independent components from the data by
linear regression, assuming that the data is prewhitened.

In the gaussianization procedure, we do not remove
the components from the data, but we attempt to remove
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Figure 8. Basis vectors obtained with the quasi-orthogonalizing prior, this time 8 times overcomplete.
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Figure 9. The distribution of the orientation and frequency in the
4 times overcomplete basis estimated by quasi-orthogonality. Each
point in this polar plot is one basis vector. See caption of Fig. 5.
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Figure 10. The minimum angles between the estimated compo-
nents in the whitened space, using the quasi-orthogonalization ap-
proach on image data, this time with an 8 times overcomplete basis.
Asterisks: The minimum angles between the estimated image basis
vectors. Solid line: The distribution this quantity would have if the
vectors were drawn randomly.

the nongaussianity associated with the component.
First considering the non-overcomplete case, assume
that we have estimated the i-th component as the lin-
ear combination yi = aT

i z (we assume that the data is
whitened). To gaussianize this direction, we compute
the cumulative distribution function, say F of yi . Then
we compute for every observation yi (t) = aT

i z(t) the
transform h(t) = 
−1(F(yi (t))), where 
 is the cumu-
lative distribution function of the standardized gaussian
distribution. This variable h has a gaussian distribution
[8]. To reconstruct the observed z(t) after this gaussian-
ization, we transform the data back as

z(t) ← ai h(t) + (
I − ai aT

i

)
z(t) (19)

The above justification for gaussianization is not ex-
actly valid for overcomplete bases. The dot product
between the i-th basis vector and the whitened data

vector can be written as:

aT
i z = aT

i As = si +
∑
j 
=i

aT
i a j s j (20)

The first term is the i-th independent component. The
second part is not zero in general, and includes con-
tributions from other independent components. There-
fore, it is impossible to remove only the nongaussian-
ity related to one component, leaving others intact.
However, the gaussianization transformation presented
above is the only monotonous (and growing) transfor-
mation that produces a gaussian distribution for the
dot-product. Other transformations would either pro-
duce a nongaussian yi or add noise.

Note that even after m marginal gaussianizations
(where m is the dimension of the data) the data is still
not distributed according to a joint gaussian distribu-
tion: Forcing m marginal distributions to be gaussian
does not, in general, make the joint distribution gaus-
sian. In fact, the marginal gaussianizations may interact
because the directions are not necessarily orthogonal,
so that even the m components that were gaussianized
need not have gaussian distributions after the whole
process is finished. Compare this with the case of or-
thogonalization. In orthogonalizing deflation, it is com-
pletely impossible to estimate more than m components
since one cannot have more than m orthogonal vectors
in an m-dimensional space. This is exactly why we had
to use quasi-orthogonalization instead of exact orthog-
onalization in the method of the preceding section.

With gaussianization, we do not need to modify the
estimation method to use it for overcomplete bases.
Note, however, that gaussianization is only applicable
in deflationary mode, in which we estimate the compo-
nents one by one; it cannot easily be used in the sym-
metric mode where all the components are estimated
in parallel.

4.2. Simulations

We applied our method first on simulated data. The data
we used with this approach was identical to that used
with the quasi-orthogonalizing prior. The procedure
for the estimation was as follows: first we whitened
the observed data. Then we estimated one component
by using FastICA [11] with the tanh nonlinearity, and
then we gaussianized (using the cumulative distribution
functions) the component in the direction that FastICA
found. Then we estimated another component by Fas-
tICA, and so on.
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Figure 11. The quasi-orthogonality of the estimated basis vectors
when 40 independent components are mixed into a 20-dimensional
space, in the case of the gaussianization method. Asterisks: The min-
imum angles between the estimated basis vectors with Laplacian
distributed sources. Solid line: Probability density that the minimum
angle would have if the vectors were really generated randomly.

We evaluated the angles between estimated basis
vectors in the same manner as with the quasi-
orthogonalizing prior. The minimum angles are shown
in Fig. 11. All of these angles are above 52 degrees,
which shows that we again obtained quite quasi-
orthogonal basis vectors. The distances between the
original basis vectors and their matched estimates are
shown in Fig. 12. Almost all the components were
properly estimated. For comparison, the figure shows
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Figure 12. The angles between the real basis vectors and the
matched estimates, for simulated data using the gaussianization pro-
cedure. Squares: Laplacian distributed sources estimated with the
present algorithm. Asterisks: For comparison, estimation of com-
plete basis using ordinary FastICA, in deflation mode.

the results of estimating the components with ordinary
(not overcomplete) ICA, which is able to estimate only
a small part of the components, and even them with
large errors.

4.3. Experiments with Image Data

Finally, we applied our algorithm for image feature ex-
traction. The image data was similar to that used with
the quasi-orthogonalizing prior. In Fig. 13 we have the
obtained basis vectors of a 4 times overcomplete basis.
Note that due to the deflationary (one-by-one) estima-
tion approach, the estimate of a 2 times overcomplete
basis is simply given by the upper half of this plot.
These basis vectors are again similar to those obtained
by basic ICA estimation, or the method of the previous
section.

After the twice overcomplete basis, however, basis
vectors which no longer resemble ICA basis vectors
start to appear gradually (in the lower half of the plot).
One should note that if gaussianization is continued,
the data distribution will converge weakly to a gaussian
distribution [9]. Therefore, it is natural that after some

Figure 13. The image basis vectors obtained with the method using
gaussianization. The order in which the vectors were obtained was
left upper-hand corner to right lower-hand corner, scanning row by
row. The upper half of the plot thus shows what one would obtain
if one only estimated a 2 time overcomplete basis. The whole set of
vectors gives a 4 times overcomplete basis.
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Figure 14. The angles between the estimated components in the
whitened space, for image data and the gaussianization approach,
considering the 2 times overcomplete basis. Asterisks: The minimum
angles between the estimated basis vectors. Solid line: Probability
density that the minimum angle would have if the vectors were really
generated randomly.

point, the basis vectors found by the algorithm will
no longer resemble normal ICA basis vectors, and are
more influenced by nonlinear structures, possibly due
to previous gaussianizations.

In Fig. 14, we have the distances between the esti-
mated directions in the whitened space (for the whole 4
times overcomplete basis), showing that the basis vec-
tors are quite different from each other.

5. Conclusion

We introduced two new methods for estimating over-
complete ICA bases from images. They were based on
simply extending the estimation principles of basic ICA
to the overcomplete case. The first method was based
on using a Bayesian prior on the basis vectors, and
the second on gaussianization. Simulations and exper-
iments on image data show that the methods work sur-
prisingly well, thus offering computationally efficient
alternatives for more statistically principled methods.
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Notes

1. One should note, however, that generally p(A) and det(A) do
not quite behave similarly, even when A is a square matrix. The
determinant goes to zero if there exists a dimension not spanned
by the basis vectors, whereas p(A) goes to zero if any two basis
vectors point in the same direction. So, for a square A, p(A) =
0 ⇒ det(A) = 0, but not vice versa.

2. Note that this method can also be used to find a complete or un-
dercomplete basis. The complete basis we obtained with image
data had all the angles between the basis vectors above 85 de-
grees, compared with the orthogonality constraint (90 degrees)
of standard ICA methods. The basis vectors seemed to be very
similar to those we obtained when searching for overcomplete
bases.
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