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Tyon tarkoituksena oli selvittdd, onko aivosdhkokéayrastd (EEG) laskettuja pa-
rametreja mahdollista kdyttda happivajeesta kédrsineiden vastasyntyneiden auto-
maattisessa monitoroinnissa. EEG on jo nyt yleisesti kaytosséd vastasyntyneiden
teho-osastoilla, mutta tarve kvantitatiivisille mittareille, joiden tulkintaan ei tarvita
ladketieteen asiantuntijaa, on suuri. Lisaksi yksi suurimmista haasteista on pystya
arvioimaan tarkasti, kuinka vakaviin neurologisiin ongelmiin happivaje johtaa.
Tyossa laskettiin kahdeksan erilaista muuttujajoukkoa 42 téysiaikaiselle vauvalle
seka hiljaisen etta aktiivisen unen aikana. Nama muuttujat mittasivat amplitudin
ja vaiheen korrelaatioita, aivopuoliskojen vélistd synkroniaa, multifraktaalisuutta
seké taajuusjakaumaa. Témén jalkeen tutkittiin muuttujien kykya erotella eri
vakavuusasteisia ryhmia ja testattiin luokittelualgoritmia vauvojen tulevan tervey-
dentilan ennustamiseen. Hiljaisen unen huomattiin olevan herkempi havaitsemaan
eroja eri vakavuusasteisten ryhmien vélilla ja tilastollisen testauksen perusteella
suurin osa valituista muuttujajoukoista erotteli merkittavasti eri vakavuusryh-
mid. Ne vauvat, jotka toipuivat hapenpuutteesta taysin, pystyttiin loytamaan
EEG-pohjaisella luokittimella tarkemmin kuin pelkan kliinisen arvion avulla.
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Symbols and abbreviations

Symbols
« Significance level
cov Covariance
D(q) Q-order singularity dimension
E Expected value
Fs Sampling frequency
H Hilbert transform
h(q) generalized Hurst exponent

S or Im  Imaginary part of a complex value
P(a,b)  Joint probability
K(z,y) Kernel function

) Phase

p.v. Cauchy principal value

R or Re Real part of a complex value

P Pearson’s linear correlation coefficient

Ts Spearman’s correlation coefficient

0 Phase difference

o Standard deviation

T Time-lag

44 Sum of ranked values
Abbreviations

AEC Amplitude Envelope Correlation

aEEG Amplitude-integrated Electroencephalography
AS Active Sleep

ASI Activation Synchrony Index

CP Cerebral Palsy

CPSD Cross Power Spectral Density

EEG Electroencephalography

ETDF Energy-weighted Temporal Dependency Function

FFT Fast Fourier Transformation

HIE Hypoxic-Ischemic Encephalopathy

MFDFA Multi-Fractal Detrended Fluctuation Analysis
MRI Magnetic Resonance Imaging

NC Nestedness Coefficient

NICU Neonatal Intensive Care Unit
PLV Phase-Locking Value

PPC Phase-Phase Correlation

PSD Power Spectral Density

QS Quiet Sleep

SVM Support Vector Machine

wPLI Weighted Phase-Locking Index



1 Introduction

Eight percent of childhood deaths and 24% of newborn deaths worldwide are caused
by asphyxia [1, 2, 3]. Asphyxia is a condition where the body does not receive enough
oxygen. During birth this condition can be caused by many different reasons such as
a prolapsed cord or placental abruption [4]. Although asphyxia has long been the
leading cause in neonate deaths in western countries [3], very little is still known
about the exact effects and mechanisms of this condition.

Asphyxia often leads to neurological problems that are usually caused by an
asphyxia related brain damage called hypoxic-ischemic encephalopathy (HIE). In
Finland, about 200 newborns are diagnosed with HIE every year [5]. These babies
can later on be diagnosed with various long term neurological disorders like learning
disability or cerebral palsy (CP). In the neonatal period the brain has an extremely
high level of plasticity, which leads to both opportunities and challenges in the
treatment process [6].

Neonates with a mild HIE often recover fully or have only mild neurological
problems, while the ones with a severe HIE will usually have severe neurological
problems if they survive. The hardest group to evaluate is the group of babies with
a moderate HIE. They can either recover fully or have severe neurological problems
although the original severity looks similar in a standard evaluation. [4, 7] There are
not yet any existing measurements or tests that could always correctly predict the
outcome of neonates with HIE.

The goal of this study was to further improve our understanding of the brain
activity in neonates that have asphyxia related neurological problems. This is done
by using different computational parameters obtained from a four channel EEG
measurement and comparing them to the severity of HIE and outcome of the babies.
This research also aims to shed light on the possibilities of using EEG in the treatment
process of asphyxiated neonates.

The used data was from a continuous EEG that was measured within the first
five days of the babies’ life. From this data, two different 20-minute epochs were
extracted for each baby: one during quiet sleep and one during active sleep. The
research questions were the following:

1. Is there a difference between active and quiet sleep epochs?

2. Does the measured epochs reflect the clinical state and history of the baby?
3. What can these epochs tell us about the prognosis of the baby?

4. Can we predict the clinical outcome based only on EEG data?

The first question compares the different phases of neonatal EEG. As with adults,
the brain activity of a newborn depends highly on the sleep-wake cycle. While
neonates in the intensive care mostly sleep, the comparison in this study is only made
between the sleep stages. With this question we try to conclude if the computed
EEG features stay the same in different sleep stages and if their predictive value is
present only in one of the sleep stages or in both.



With the second question, the goal was to understand if the measured EEG reflects
the clinical diagnosis given by a medical doctor. If the calculated EEG variable
corresponds to the severity estimate of HIE, it can be considered as a potential tool
that could also help the clinician to make the diagnosis. It also confirms that EEG
can represent the overall neurological state of the baby.

The third question asks about the relationship between the EEG features and the
outcome of the baby. If there is a strong correlation with a certain computational
feature and the severity of neurological problems, this feature could be used to
evaluate the outcome prognosis. A good estimation of the future is highly valuable
not only for the clinician but also for the parents.

With the fourth and final question we try to address to the need of computerized
decision making and monitoring. If we could evaluate the severity of brain activity
related problems automatically, the correct treatment could be given faster and more
precisely. An automatized system would help in constant monitoring and especially
in situations when a specialist is not available around the clock.

The subjects of this study were selected to be only babies with HIE, brain damage
caused by lack of oxygen in the central nervous system. While the brain activity also
depends strongly on the gestational age, only full-term babies were selected for this
study. The total number of subjects was 42.

The used computed features were selected based on the literature and with the help
of a medical doctor who has experience in evaluating normal and abnormal neonatal
EEG visually. There were eight different feature classes in total: amplitude envelope
correlation (AEC) [8], phase locking value (PLV) [9], weighted phase lag index
(wPLI) [10], nestedness coefficient (NC)[11], activation synchrony index (ASI)[12],
multifractal detrended fluctation analysis (MFDFA) [13], power spectral density
(PSD) and cross power spectral density (CPSD). The used frequency bands were
between 0.25 Hz and 30 Hz.



2 Background

In this section the background of the study field is discussed. The first part offers
the basic knowledge about EEG and about the physiological phenomena it measures.
Also the use of EEG in a clinical environment is discussed. The second part discusses
the characteristic aspects of neonatal brain activity and the techniques that are used
to measure it. The third part introduces hypoxic-ischemic encephalopathy which is
the common factor across the study subjects.

2.1 Electroencephalography

Nervous system is responsible for maintaining homeostasis. It also enables us to
perceive and understand the surrounding world and move through it. The most
complex part of the nervous system is the brain, which contains about 86 billion
neurons — cells that are able to convert stimuli into electrical impulses called action
potentials. Action potentials are able to propagate along the neuron surface due to
the ion movement that is mainly caused by sodium and potassium. On average, each
neuron connects with 1000 other neurons, which results to thousand trillion (10'9)
connections called synapses within the brain. [14]

The electrical activity occurring in the brain can be recorded with electroen-
cephalography (EEG). EEG was first developed by Richard Caton in 1875 and has
since been widely used in research and in different clinical applications [15].

EEG is measured by placing voltage sensitive electrodes over the scalp. The
positions of the electrodes are described by the international 10-20 system that uses
landmarks of the skull in order to standardize the electrode locations across subjects
and trials [16, 17]. Each position has a name that consists of a number and a letter:
F for frontal, C for central, T for temporal and O for occipital. Even numbers refer
to the right and odd numbers to the left hemisphere. This positioning system is
presented in Figure 6.

The electrodes placed over the scalp measure the potential difference between
two distinct points. Potential differences are obtained either between each electrode
pair or from each electrode relative to some reference point [14]. The exact number
of electrodes and the use of reference point vary depending on the research setup
and goals [4].

The measured potential difference is caused by electrical currents generated by
the neurons that are located close to the brain surface. This outer layer of the brain
is called cerebral cortex. Even if the cell is located in the brain surface, single action
potentials are too small to be detected by EEG. Thus EEG measures instead of
individual action potentials EEG measures the voltage fluctations of synchronized
activity caused by multiple synaptic connections [14]. The mechanisms of these
rhythmic oscillations that are seen with EEG are not fully understood but they
are hypothesized to be caused by postsynaptic potentials that share a common
cortical origin [15, 18]. The postsynaptic potential is considered to last longer than
single action potentials and stretch simultaneously over a large cell membrane area.
Potential differences formed in the deeper parts of the brain or horizontally oriented



cortical cells are thought to contribute only little to the recorded EEG. [15]
Oscillations are most often studied by dividing the activity into four frequency
bands called delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz)
[4]. In healthy adults, alpha waves are present in a relaxed but awake state, beta
waves in an active state, theta waves in an emotionally stressed state and delta waves
during sleep [14]. These different frequency components are presented in Figure 1.
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Figure 1: Four main types of EEG oscillatory activity: delta (0.5-4 Hz), theta (4-8
Hz), alpha (8-13 Hz) and beta (13-30 Hz) waves. [14]

All electrical recordings are vulnerable to artefacts that are caused by the move-
ment of electrodes or disturbances in recording equipment and recording environment.
During EEG measurements, all body movements such as blinking affect the obtained
signal. Some artefacts are easy to spot because of their unusual appearance or with
the help of additional monitoring such as electrocardiogram, which is an electric
recording of heart activity. However, some noise is always present and can affect the
interpretation of EEG. [15]

Despite the risk of artefacts, EEG is an extremely informative tool when assessing
the brain activity. It is also non-invasive and can be easily used together with
different equipment such as heart monitoring. EEG allows long term monitoring also
in difficult environments like intensive care units.

2.2 EEG of neonatal brain

Development of the nervous system starts during the first weeks of gestation and
ends in the young adulthood. In some form the central nervous system changes
throughout the lifetime. [14] The highest plasticity of the brain takes place before
and after birth. Most rapid transformation happens with the synapses: after the
7th gestational week the number of synapses first increases rapidly and then reaches
a peak between first and fourth year of life, depending of the cortex region. The
newborn brain has thus more neuronal synapses than an adult brain. [19]

Brain activity plays a critical role in the development of the brain [4]. Sensory
inputs based on new experiences create neuronal activity and modify the brain after



birth. Modification happens through neuronal arborization, branching of the axons,
through adding and removing synapses, through stabilizing the synaptic connections
and through controlled cell death [4, 19]. These modifications can take place between
neighbouring neurons or between groups of neurons located further apart. In the
newborn brain local connectivity seems to be more dominant than long-distance
connections. [20]

However, all neuronal development is not caused by sensory input. It has been
shown that immature central nervous system produces internal or spontaneous
activity that also modifies the brain [11, 21]. Especially the early brain development
is mostly caused by this internal activity and is thus quite free from any environmental
influence. This spontaneous activity has typically discontinuous and synchronous
pattern: short activity bursts are followed by more silent periods simultaneously in
the two hemispheres. Disorganization in these rhythms often lead to abnormalities
in brain development. [4, 21]

The overall background activity of neonates can be classified as mainly continuous
or discontinuous and usually EEG develops towards a more continuous pattern as the
newborns reach full-term age of 37 weeks. The appearance of ongoing and continuous
activity needs sufficiently large cortical networks that are activated via connections
within the cortex or from thalamus to cortex. Although bursts in discontinuous
EEG also include delta, alpha and beta frequencies, they are not physiologically the
same as oscillations in mature brains. For example, delta activity is only present in
sleeping adults whereas in newborns they are normal in awake state. [4, 15]

Neonatal brain activity does not depend solely on development and maturation
but also on the sleep-wake cycle. Full-term babies already have detectable sleep stages
that resemble the ones in adults. The sleep-wake cycle can be divided in four classes:
waking, active sleep (REM sleep), quiet sleep (non-REM sleep) and unknown states
that are considered as transitional phases [15]. One sleep cycle lasts approximately
50 minutes which is faster than in adults [22]. Active sleep (AS) is characterized
by a continuous and quiet sleep (QS) by a discontinuous activity. QS usually has a
higher voltage and lower frequency than AS. Because the EEG patterns look very
similar, active sleep and wakefulness can be difficult to distinguish from each other.
[15] Especially quiet sleep is diagnostically sensitive to show abnormalities in the
brain activity [23].

When studying neonatal brain activity, multiple methods can be used. Visually
EEG can be studied both in short and long term. The dominating background
activity, continuity of EEG, localization of activity and synchrony between the
hemispheres can be seen quickly from live EEG recording. These recordings are
usually done with 9-15 electrodes as seen in Figure 2. Long term monitoring is
often presented in a form of amplitude-integrated EEG (aEEG), which is a single or
double channel recording that is filtered, rectified and smoothed before presented in a
compressed 24-hour period. The aEEG signal presents the maximum and minimum
variations of the EEG amplitude as a wide band from which it is easy to see the
overall trend of EEG, study the development of sleep-wake cycle and spot periods of
inactivity or seizures. [4]

Besides studying EEG visually, there are numerous computational methods that



can be used to characterize not only neonatal EEG but EEG in general. The
main components of EEG are frequency, amplitude and phase, and most of the
computational feature classes describe these parameters. One can for example
calculate the amount of different frequency components of EEG signal, study the
correlation of phases in different spatial locations or see if there if a certain waveform
occurs simultaneously in every EEG channel.
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Figure 2: Newborn EEG is usually recorded from 9-15 electrodes which are the round
marks on the cap. Picture by Sampsa Vanhatalo.

2.3 Hypoxic-ischemic encephalopathy

Hypoxic-ischemic encephalopathy (HIE) is a medical condition that is defined as
brain damage caused by oxygen loss, deprivation of blood supply or both [7]. The
term is used only in cases where the damage takes place right before or after birth.
HIE can lead to developmental or cognitive delays, motor impairments or even death
[4, 7]. In this section we first discuss the mechanisms of HIE: what is HIE, what are
the factors causing it and how does it affect brain activity. Next, the medical aspects
such as diagnosis and treatment are presented. Finally, there is a short overview of
the different methods that are used to predict the outcome of the neonates with HIE.

2.3.1 Mechanisms of HIE

The most significant risk factor causing HIE is asphyxia, lack of oxygen. Birth
asphyxia can originate from low maternal blood pressure, cardiac complications,
prolapsed cord, placental abruption, trauma or multiple other reasons. [4] Asphyxia
is always a dangerous condition but it has even more severe effects on babies that
have not reached full-term age [24]. Birth asphyxia affects the whole body and can
cause multiple organ failures [4, 25].

Deprivation of oxygen leads to a widespread cell death. Cells are unable to function
correctly without enough oxygen and it causes disturbances in their metabolism.
Especially neuronal cells are vulnerable to the lack of oxygen while they use a lot of
energy to maintain their depolarized state. [26] Cell death is usually limited to the



time period of oxygen deprivation and it often stops when there is oxygen available
again. [4]

The duration and severity of asphyxia mainly determine the range of cell death
in the brain. Severe asphyxia damages important parts of the brain such as basal
ganglia, thalamus and key parts of sensory and motor cortices. In prolonged moderate
asphyxia the most vital areas remain unharmed and the damage might be restricted
to watershed area, brain regions that receive blood supply from the most distal
branches of arteries. In mild or moderate asphyxia, the babies may recover fully
without any permanent changes in the brain. [7, 23]

In addition to short term effects of asphyxia, it also triggers an inflammatory
reaction that can continue from days to weeks. The immune system reacts to the
cell death by releasing different chemical signals such as protein hormones called
cytokines. These chemical signals either stimulate or inhibit normal cell functions.
[14, 26] The precise functions of these secondary reactions are not fully known but
they are considered to be an important factor in the severity of HIE and in the
outcome of the baby [4, 25].

Because of the short and long term effects of asphyxia, brain injuries of HIE
develop with a delay. Although clear damage is difficult to detect instantly, asphyxia
still affects normal brain development and activity in many ways. One of the clearest
signs are epileptic seizures: spikes, sharp waves and combinations of those two.
Different abnormal background patterns are also common in neonates with HIE.
Continuous low voltage pattern and burst suppression, alternation of very little
activity and high-voltage bursts, have been connected to subjects with poor outcome.
Abnormalities can be also local: only some parts of the brain show slow or suppressed
activity. [4, 23] HIE can also cause disturbances in sleep-wake cycle [27, 28].

2.3.2 Diagnosis and treatment

Diagnosis of HIE is done based on a combination of multiple aspects including
alertness, reflexes and brain activity. HIE severity is divided to three classes: mild
(class I), moderate (class II) and severe (class III). This classification was first
introduced in 1977 by Sarnat and Sarnat who presented a table that uses several
visible features to estimate the severity of HIE [29]. This table has been later modified
and updated many times but the basic outline of the original table is still widely in
use. Table 1 shows an example of the Sarnat classification.

In addition to the visible signs, some measurements can be used to diagnose
HIE and to estimate the HIE class. The amount of base present in blood and the
pH-value of blood at the time of the birth can indicate if the baby has suffered from
asphyxia. As discussed in the previous section, HIE has also been associated with
different EEG abnormalities and early EEG monitoring can reveal these patterns.
Structural analysis of the brain with different neuroimaging techniques can also be
used to aid the diagnosis. [23] The neurological injury is however not a static state
so the HIE classes only describe the situation at a certain time point.

After HIE is diagnosed, the main goal in the treatment is to prevent any further
damage on the baby. Usually the newborn is medically monitored and treated to



Table 1: Sarnat classification of HIE. Modified from Lagercrantz and colleagues [4].

Grade I mild Grade IT moderate Grade III severe
Alertness Hyperalert Fatigue Coma
Posture Mild flexion Strong flexion Decerebration
Stretch reflexes Overactive Overactive Decreased or absent
Muscle tone Normal or increased Hypotonia Flaccid
Seizures None Frequent Uncommon
Pupils Dialated, reactive Small, reactive Variable or fixed
Respiration Regular Periodic Apnea
Duration <24h 2-14 days Weeks

maintain a normal blood glucose level and pressure, and to prevent or control any
seizures. For example, a drug called Mannitol can be used to reduce swelling and
different Barbiturates to suppress seizures. [23]

It has been noticed that reduction of temperature can greatly reduce the amount
of cell death in the brain in the secondary phase of HIE. Hypothermia is considered
to suppresses the metabolic rate, produce certain neurotransmitters and help to
maintain sufficient intracranial pressure. [30, 31]. Because of this observation,
hypothermia is now a standard method in the treatment of neonates with HIE. In
Neonatal intensive care unit (NICU) of Helsinki University Central Hospital, cooling
treatment has been used since 2006.

Cooling is usually used with neonates with moderate or severe asphyxia and
Table 2 shows the more detailed inclusion criteria. In hypothermia treatment the
body temperature is lowered to 33-34°C for 72 hours after which the temperature is
slowly raised back to normal. [5, 32]

Clinical outcomes of the asphyxiated neonates can be divided to different categories
based on the severity of the disability that is caused by HIE. Normal outcome is
considered when no neural abnormalities are found. Mild abnormality includes mild
speech, motor or cognitive delay. Moderate abnormality includes mild dystonic or
hemiplegic CP and severe abnormality tetraplegic or dyskinetic CP, severe mental
retardation and severe epilepsy. Final outcome group is formed by babies that have
died because of HIE.

2.3.3 Evaluating clinical status and outcome

Accurate estimation of the current state of a neonate with HIE is important in order
to give the correct treatment. A good estimation of the future outcome is also highly
valuable while it helps to modify the therapeutic decisions accordingly and give more
knowledge not only for the clinician but also for the parents. Although different
clinical parameters such as Apgar scores, heart rate and certain biomarkers correlate
with the HIE gradus as well as the outcome, they do not work well individually
[33]. The hardest group to evaluate is the HIE class II. They can either recover
fully, have a severe disability or end up somewhere between the extreme ends. Thus
it is important to have additional information that can help the clinician to make



Table 2: Inclusion criteria for hypothermia treatment in NICU, Helsinki University
Central Hospital [5]. Modified from TOBY trial protocol [31].

If criteria 1-3 and some of criteria 4 and 5 are filled, aEEG monitoring and
possibly the cooling treatment will be started. All neonates with asphyxia will be
monitored with aEEG if it is available to use.

Gestational age more than 36 weeks
No abnormalities that require surgery in neonatal period
Age less than six hours at the time of treatment
Significant asphyxia, including one of the following criteria:
e Apgar point less than 6 at 10 minutes after birth
e Need for endotracheal or mask ventilation, at 10 minutes after birth
e Acidosis within 60 minutes of birth, defined as any occurrence of pH
<7.00
e Base deficit over 16mmol/L in any blood sample within an hour of birth.
5. Moderate to severe encephalopathy including clinical seizures OR all of the
following criteria
e Altered state of consciousness (decreased or missing reactions to stimuli)
e Hypotonia
e Abnormal reflexes including abnormal /missing suck or Moro
6. At least 30 minutes of amplitude integrated EEG recording that shows
abnormal background aEEG activity or seizures. There must be one of the
following:
e normal background with some seizure activity
e moderately abnormal activity
e suppressed activity
e continuous seizure activity

=W =

conclusions of the clinical state and direction of the baby.

The most common outcome prediction method is the usage of HIE classes. It
has been shown that most babies with mild HIE gradus belong to the normal group
1 and some to group 2, whereas about half of the babies with moderate or severe
HIE belong to the most severe group, group 3. [29, 34] The duration and changes of
the HIE gradus have also been associated with different outcome expectations [35].
However, some clinical parameters used in HIE scoring may be difficult to measure
soon after birth and are hard to monitor constantly.

HIE gradus and outcome can also be estimated based on anatomical changes.
Ultrasound can be used to image the brain structures when the plates forming the
skull are not yet grown together. Magnetic resonance imaging (MRI) is also used to
detect abnormalities in the neonatal brain. [4] Besides detecting brain lesions, imaging
techniques can show different developmental steps that are connected with outcome
estimates. For example, the appearance of the posterior limb of the internal capsule,
a structure of the white matter, has been associated with the motor outcome [36].
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The problem with structural imaging is that some changes may occur progressively
and they can easily be underestimated in the neonatal period. Additionally, these
methods are difficult to use during the critical period in NICUs. [4, 23].

One of the most popular technique in estimating the severity of HIE is the aEEG.
It is a reliable indicator of the current clinical status and outcome prognosis. For
example, when the normal aEEG band varies between 10 and 40 'V, in severe HIE
the activity band can be significantly narrower and drop below 10 ©V [33, 37, 38].
An example of a normal and burst suppressed aEEG trace are shown in Figure
3. aEEG has also been shown to correlate with metabolic changes in the brain
[39]. Easy interpretation and usability have made aEEG a standard monitoring
method in NICUs but it is necessary to remember that aEEG analysis is not usually
quantitativea and can thus vary between different observers and observing times [28].

00:00 & 092107 01:00 4 MON
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w :
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Figure 3: Left figure represents normal aEEG and right figure is an aEEG recording
of a paitent with severe HIE with burst suppression and seizures. Upper images
show the aEEG trend from a cerebral function monitor, CFM. Signals below show
7-second epochs of raw EEG. [4]

Although aEEG is proved to be a good tool in neonatal intensive care, the most
promising method in clinical assessment and prediction is normal EEG. It is able
to show smaller changes in the brain activity than aEEG [37]. Traditional way of
utilizing EEG measurements has been a visual interpretation of the signal by a
specialist. Visual analysis of the amplitude, interhemispheric symmetry, continuity
and waveform have been shown to correlate well with the outcomes [37, 38, 40].
Specialist expertise is however not always available and thus there is a need for
computational parameters and automatized analysis. Visual patterns also hard to
quantify and different studies tend to use varying definitions to determine what is
for example considered as low amplitude [28].

Automated systems for distinguishing normal EEG patterns from abnormal ones
have been developed. These techniques have concentrated on bursting properties,
amplitude variations and frequency content of the signal. For example, increasing
amount of slow delta waves [41, 42|, duration of burst intervals [43] and low overall
amplitude [41, 44] have been associated with poor outcome. These different quanti-
tative methods have shown promising results. Although individually they cannot
distinguish all HIE classes, they have good predicting value when used together
[41, 45].
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3 Research material and methods

This section introduces the used data set and the methodological choices made in
this study. The main emphasis is in presenting the selected computational features
but also the methods that are used to evaluate and classify the data are discussed.

3.1 Dataset

The dataset used in this study was collected at the Helsinki University Children’s
Hospital during a four-year period from January 2011 to December 2014. Based on
medical reports, newborns who had showed signs of asphyxia were selected for a
closer inspection. For the selected 61 newborns an estimation of HIE gradus was
then given by a medical doctor.

HIE gradus was estimated for 52 neonates. The status of the remaining nine
babies was not possible to estimate or it was diagnosed to be something else than HIE.
From the neonates with HIE diagnose, seven were excluded from the study because
of missing EEG monitoring data or an unknown outcome. The outcome score was
based on the last available evaluation from the routine follow-up clinic. Two neonates
were excluded because their gestational age was under 36 weeks. Additionally, one
baby was later excluded because of an exceptionally abnormal EEG data. Total
number of the subjects was 42.

From the babies used in this study 13 had a mild (class I), 19 had a moderate
(class II) and 10 had a severe (class III) HIE gradus. The outcomes at the age of
approximately one year were divided to three groups: normal outcome (group 1),
mild or moderate abnormalities (group 2), and severe abnormalities or died (group 3).
More detailed descriptions of the different abnormalities were presented in Section
2.3.2. 18 of the babies were estimated to belong to group 1, 13 to group 2 and 11 to
group 3. Figure 4 shows the respective HIE classes for each outcome group.

HIE gradus
20+ @ |: mild
@ II: moderate
@ @ lIl: severe
815
o]
>
(%]
©
@10+
Ne]
€
=}
z
5r
0
1.normal 2: mﬂd/moderate 3: severe/died

Qutcome

Figure 4: Number of subjects in each outcome group. Colour indicates the estimated
HIE class after birth, blue being mild, red moderate and black severe HIE gradus.
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EEG was recorded within the first few days after birth, at the age of 70.21 £+
23.87 (mean £ SD) hours. The age distribution is presented in Figure 5 and we
can see that the most severe group had the EEG recorded a bit earlier than other
subjects. The goal was to get EEG data that is approximately from the age after
the hypothermia treatment.

—
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@12 ® HIE gradus
] : @ I: mild
l§10 4 @ II: moderate
_g 8 : ® Ol severe
5 6 S o 3
el o o o
333
8 o 8 $ 8 8 3 A
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Figure 5: The age of each subject at the time when EEG was recorded. Colour
indicates the estimated HIE class after birth, blue being mild, red moderate and
black severe HIE gradus.

Data was collected from the two frontal channels, F3 and F4, and from the
two parietal channels, P3 and P4, positioned according to the international 10-20
standard. EEG was recorded at a sampling frequency of Fs =250 Hz using NicoletOne
EEG amplifier (Cardinal Healthcare/Natus, USA) and 21 channel EEG caps (sintered
Ag/AgCl electrodes; Waveguard, ANT-Neuro, Germany). All four channels shared
a common reference point at the nasion, which is the point between the eyes, just
above the bridge of the nose. The used channels are highlighted in Figure 6.

For this study, 20-minute epochs were extracted from the EEG data. First set
of epochs was selected from periods of quiet sleep, which were visually estimated
from the EEG signals. An example of quiet sleep recording is presented in Figure 7.
Neonatal quiet sleep is characterized by higher voltage and lower frequency compared
to active sleep. It also includes bursts of activity separated by more inactive periods.

The second set included epochs from active sleep. Active sleep has lower voltage
and higher frequency and it is more continuous than QS as can be seen from Figure
7. For 11 newborns it was impossible to extract AS epochs while there were no clear
signs of that sleep stage. From these babies only two came from the HIE class II
while others were from the most severe class III. The outcome group was 3 for all
others than the HIE class II babies who were estimated to belong in outcome groups
1 and 2. This resulted to a small group sizes in HIE class III and in outcome group 3.

From the 42 subjects 20 were girls and 22 boys, with gestational age of 39.64 +
1.69 weeks. 26 of the newborns went through hypothermia treatment, during which
no EEG could be recorded. Cooling was done for 5 (38%) of grade I babies, 11 (58%)
of grade IT babies and 10 (100%) of grade IIT babies. Additionally, information about
Apgar points, pH, BE, weight and height at birth, was collected. Information about
given medication that can potentially affect the electrical functions of neonatal brain
was also included in the research material.
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Figure 6: International 10-20 system for EEG recording. Channels that were used
in this study are presented in blue. All channels shared a common reference point
located at the nasion.

Quiet sleep
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Figure 7: Figure shows an example of neonatal EEG recording from parietal channels
during quiet and active sleep stages. In quiet sleep the signal is characterized by
higher voltage and lower frequency compared to active sleep. In active sleep the
signal is more continuous and the frequency is higher.

3.2 Pre-processing of data

EEG recording is sensitive to external activity and low-pass filtering was thus used to
remove artefacts that were caused by movements, sweating and electrical equipment
[4]. It is also known that neonatal EEG activity is mostly packed at frequencies
below 30 Hz [11, 46]. Because of this, EEG epochs from all subjects were filtered
with a low-pass filter with a cut-off frequency of 45 Hz. Because some newborns did
not have long-enough periods of quiet or active sleep, 20-minute epoch was collected
in several parts that were later concatenated into one continuous epoch.

After the signals were filtered and concatenated, EEG data was down-sampled
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from the original 250 Hz to 100 Hz. The selected sampling rate was slightly higher
than the Nyquist rate of 90 Hz, which is the minimum sampling rate that avoids
aliasing. Nyquist rate is twice the highest frequency component in the sampled EEG,
which in this case was 45 Hz after the filtering. The direct current component was
also removed from the epochs.

3.3 Computational features

Eight different quantitative feature classes were selected for this study. All of them
were considered potentially relevant for this topic, while they give an overall estimation
of some aspect of large-scale brain activity and are thought to be stationary. Most
of the selected features reflect correlation patters and synchrony. Synchronization is
considered to be an important factor in development of brain connections [10, 47].
Communication between different brain regions is essential for complex brain functions.
For example, long-range phase synchronization has been connected with attention
and local synchronies have been considered to arise from a single sensory modality
[48].

Synchrony can be divided to three different correlation categories: amplitude-
amplitude correlation, phase-phase correlation and phase-amplitude correlation.
Correlation between amplitudes was measured by amplitude envelope correlation
(AEC). Phase-phase correlation was estimated with two different measures, phase
locking value (PLV) and debiased weighted phase lag index (wPLI). Phase-amplitude
correlation was assessed by nestedness coefficient (NC).

Based on clinical observations with neonatal EEG, two computational feature
classes were selected. First one, activation synchrony index (ASI), reflects the co-
occurrences of activity bursts between the two hemispheres. In a normal neonatal
brain, the degree of interhemispheric synchrony is usually high. Second one, multi-
fractal detrended fluctation analysis (MFDFA), estimates the multifractal properties
or so called self-similarity of the signals. This measure has been shown to significantly
differ between healthy and pathological conditions [49].

Additionally, two feature classes were selected to describe the spectral density of
the signal. Spectral density is a more diffuse measure and can reflect well the overall
state of the brain. Decreased spectral power has also been showed to correlate with
outcome after HIE especially in delta frequency band [50, 51]. Selected features were
power spectral density (PSD) and cross power spectral density (CPSD). A summary
of selected feature classes is presented in Table 3. Because of multiple frequency
bands and channels, each feature class had a set of vectors and the total number of
feature vectors in this study was 189.

Neonatal EEG activity takes place at frequencies from near zero to around 30 Hz
[11, 46] and this was thus the frequency area of interest. The typical spectrum of
neonatal EEG is also presented in Figure 14. The frequency area was split further
into four different frequency bands: 0.25-3 Hz, 3-8 Hz, 8-15 Hz and 15-30 Hz. They
roughly correspond to delta, theta, alpha and beta frequency ranges, presented in
Figure 1.
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Table 3: Summary of computational EEG feature classes and their measurement
type, used channels and frequency bands. Last column refers to the obtained number

of variables for each feature class.

Feature Type Channels Frequency bands (Hz) N
AEC Amplitude- Between all channels 0.25-3, 3-8, 815 and 24
amplitude 15-30
correlation
PLV Phase-phase Between all channels 0.25-3, 3-8, 8-15 and 24
correlation 15-30
wPLI Phase-phase Between all channels 0.25-3, 3-8, 8-15 and 24
correlation 15-30
NC Phase- Within each channel 0.2-0.6 against 3-8, 12
amplitude 8-15 and 15-30
correlation
ASI Interhemispheric Interhemispheric 1.5-20 1
synchrony
MFDFA Multifractal Within each channel 0.25-3, 3-8, 815 and 64
spectrum 15-30
PSD Spectral density ~ Within each channel 0.25-3, 3-8, 8-15 and 16
15-30
CPSD Spectral density  Between all channels 0.25-3, 3-8, 815 and 24
15-30

3.3.1 Amplitude envelope correlation (AEC)

Amplitude envelope correlation (AEC) measures the correlation between amplitudes
of two signals regardless of the phase [8]. If the signal from one channel has large
values simultaneously with a signal from another channel, the AEC value is high.
Amplitude—amplitude correlation between signals describes co-modulation of overall
neuronal activity levels [52, 53]. These oscillations happen in time scales much
longer than those of spike synchronization and phase correlations. The amplitude-
amplitude correlations characterize spontaneous resting-state activity and are also
closely associated with correlations of slow fluctuations in the blood oxygenation
level-dependent signals between brain areas. [53, 54]

At the beginning, all of the four signals were band-pass filtered with one of the
chosen frequency ranges: 0.25-3, 3-8, 815 or 15-30 Hz. Filtering was done by
using a pair of 7th order Butterworth low-pass and high-pass filters. The filters
were applied in both forward and backward directions by using a Matlab function
filtfilt to achieve minimal alteration of the original waveform and a zero lag phase
shift [46].

In order to extend signals into the complex plane, Hilbert transform was used.
If f(t) represents the original signal, with the help of Hilbert transform we can
then produce a two-dimensional representation S(f,t) = f(¢) + jH(f(¢)) that is
located in time—frequency space. This representation is complex-valued: at each
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point, it consists of an amplitude value |S(f, )| and a phase value ¢(f,t). [55] Hilbert
transform follows Equation 1, where p.v. refers to Cauchy principal value and 7 to
time-lag.

L 1)
H([(1) = .
After filtering and performing Hilbert transform, the signal envelopes were calcu-
lated as absolute values. Envelope is an amplitude variation of the signal over time,
as presented in Figure 8. Finally the correlation between all signal envelope pairs
were calculated using Pearson’s linear correlation coefficient

dr. (1)

—oco Ul — T

pxy = ————, (2)

where cov is the covariance of the envelopes X and Y, and ¢ is the standard
deviation of one of the envelopes. Value pxy = 0 means no linear correlation and
values pxy = £1 mean a perfect negative or positive correlation. Same procedure
was performed for the four frequency bands, which resulted to total number of 24
AEC value vectors.
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Figure 8: The figure shows a quiet sleep signal (blue) and its envelope (red). Original
signal has been band-pass filtered to alpha frequency band 8-15 Hz.

3.3.2 Phase locking value (PLV)

Neuronal activity in large-scale networks shows up in multiple correlation structures.
Phase synchrony is the correlation between the phases of the signals and it describes
the consistent, non-random phase difference. Phase synchrony can vary from fast
spike synchrony to much slower time scales, even hundreds of seconds. [53, 56]. In
this research we used two different measures for phase correlation: PLV and wPLI.

PLV estimates the phase relationship between two neuroelectric signals. PLV only
uses the phase of the signal and it can thus directly estimate the phase covariance.
For example, coherence that is an often used method for estimating the strength of
correlation accounts both amplitude and phase simultaneously. [9]
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When computing PLV, signals are first filtered in the frequency range of interest
with Butterworth filters similarly as described before with AEC. As in AEC, they
are also moved to complex plane with Hilbert transformation from Equation 1 [55].

First step is to calculate the phase difference 0(t,n) = ¢1(t,n) — ¢o(t, n) between
the two signals. Variables ¢; and ¢, are the instantaneous phases of the two complex
time series. Next, the PLV value is calculated as

1
PLV = —
N

Z:l exp(i6(t,n))|, (3)

where N is the number of time points in the signal. PLV values range from zero
to one, where zero means no correlation and one corresponds to perfect correlation.
[9] A graphical illustration of PLV is presented in Figure 9. The same estimation was
done for each channel pair and for each of the four frequency bands. This resulted in
24 PLV vectors.

electrode 1 electrode 2

XLt '\:z“*‘ﬂ}

X 62(1.5) 91(1.1)

other timepoints

AVERAGING

across timepoints

PLV

Figure 9: Estimation of PLV. First the instantaneous phase for each electrode is
calculated. By averaging over all time points we obtain a complex value u, which
amplitude is the phase locking value. Modified from Lachaux and colleagues [9].

PLV can easily be misinterpreted because of background variations. It is also
sensitive to volume conduction and noise, because it includes both zero phase lag as
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well as nonzero phase lag coupling of the phases. [10, 57]. Because our data contains
a common reference point, it can significantly affect the PLV measures.

3.3.3 Weighted phase lag index (wPLI)

wPLI is an improvement of PLV and measures also phase-phase coupling [10]. It
is similar to a method called phase lag index (PLI), which was first introduced by
Stam et al. [57] with an aim to create an estimate that does not depend on presence
of common sources, such as volume conduction or reference electrodes. This is done
by excluding phase differences that center around zero or w. PLI is calculated as

PLI = |E(sign(3{X}))], (4)

where S{X} is the imaginary part of the cross-spectrum of the signal and F
is the expected value operator. If all signals sources would be uncorrelated, the
PLI value would be zero. [57] The PLV Equation 3 can be written in same format
as PLV = |Elexp(if)]|. PLI performs better than PLV in many cases but is still
affected by noise. If phase difference value is close to 0 or 7w, then noise that has
somewhat low amplitude, can rotate it across real axis, changing the sign from
positive to negative, as presented in Figure 10 [10].

Because of the noise effect, we are more confident on larger values of leading or
lagging phase differences. This realization has resulted in wPLI measure [10]. The
debiased wPLI weights the phase leads and lags by the magnitude of the imaginary
component, as illustrated in Figure 10. Debiased wPLI is computed by first estimating
the cross-spectra and its imaginary components as described in Section 3.3.8. After
that the average imaginary component of cross-spectra is computed. Finally, the
pairwise products of all imaginary components are divided by the pairwise products
of magnitudes of all imaginary components. The equation for this process is presented
below.

wPLI = =1 Dyt Wind(X;; Xe). (5)
N(N-1)W

In this equation, W;; = |S{X;}3{X,}| is the weight, W is the weight normal-
ization and < is the imaginary part of the signal [10].

Table 4 shows comparison between all phase-phase correlation estimates that
were introduced above. In this study, we only used PLV and the debiased form of
the wPLI. In conclusion from this table we can say that the PLV in more sensitive
to volume conduction effects, but wPLI tends to ignore zero-phase lags correlations
even if they are not due to volume conduction. This is because wPLI skips small
phase lags while PLV accounts them all. As with PLV, wPLI resulted in 24 value
vectors.
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Table 4: Summary of performance and behavior of different phase-synchronization
indices. Modified from Vinck and colleagues [10].
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wPLI
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A Without noise B With noise

C PLI D wPLI
Weight Weight

Real axis %_ﬁzs

Figure 10: Comparison of PLI and wPLI methods. (A) Phase differences without
noise. (B) Phase differences with noise causing the red line to rotate across the real
axis. (C) PLI weights all phase differences equally and assigns value of +1 (blue,
phase lead) or -1 (red, phase lag) depending on which side of the real axis it lies.
(D) wPLI weights phase differences according to the magnitude of the imaginary
component. Phase differences around the real axis contribute to a lesser extent than
cross spectra around the imaginary axis. Modified from Vinck and colleagues [10].

3.3.4 Nestedness coefficient (NC)

Phase-amplitude coupling is measured by NC. We estimated so called nested os-
cillations by using phase—amplitude correlation measures. Nested oscillations refer
to cross-frequency interactions: amplitude of the fast oscillation is correlated with
the phase of the slower oscillation [11]. Nested oscillations are widespread in brain
dynamics and may be an essential mechanism for regulating large-scale neuronal
activity occurring in several frequency bands [11, 58]. Phase-amplitude correlation
may reflect the modulation of the fast oscillations by the slower ones [53]. It can also
indicate phase-locking of the slow oscillation to the amplitude peaks of the faster
oscillation [46].

NC is proven to be a good method to model cross-frequency interaction during
the spontaneous activity bursts in neonatal EEG [11, 59]. It is considered to reflect
coordination of spatially overlapping networks with different functionalities [58, 60].

NC is always calculated within one signal and between 2 frequency bands. In
this study the lower frequency band was selected to be always 0.2-0.6 Hz, while the
faster oscillation was selected to be either 3-8 Hz, 8-15 Hz or 15-30 Hz. With four
channels this resulted to a total number of 12 NC value vectors for the used dataset.

The lower component was filtered with a 5th order and the higher component
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with a 7th order Butterworth low-pass and high-pass filters. Similarly to AEC, filters
were applied in both forward and backward directions. The envelope of the higher
component was then extracted and filtered with the same filter that was used for the
lower frequency band.

Figure 11 shows an illustration of phase-amplitude coupling. Blue line is the slow
oscillation while the red dashed line corresponds to the fast oscillation. Red solid line
is the envelope of the fast oscillation. The phase correlation between the two filtered
oscillations is calculated with PLV, presented in Equation 3. Before computing PLV,
both the filtered envelope and lower oscillation were moved to the complex plane
with Hilbert transform in Equation 1.

Phase-amplitude coupling
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Figure 11: An example of phase-amplitude coupling or nestedness. The phase of the
slow and the amplitude of the fast oscillating signal are synchronized. Modified from
Palva and Palva [53].

3.3.5 Activation synchrony index (ASI)

ASI measures the interhemispheric synchrony by comparing the co-ocurreces of
activity bursts between the two hemispheres, as seen in Figure 12. Interhemispheric
synchrony is one of the key components when assessing background activity of the
brain. ASI has proved to separate well the normal synchrony from the modest and
severe asynchrony [12]. ASI increases within the first few months before birth and
can thus also serve as a maturational measure.

In this study we first had to exclude the common reference point. The intrahemi-
spheric signals were extracted from each other: P3 was extracted from F3 and P4
from F4. This resulted to two signals — one from the left and one from the right
hemisphere. These signals could then be used to calculate ASI value: the statistical
independence between two amplitude envelopes from two hemispheres. Following
Koolen and colleagues [61] the two EEG epochs were cut to 2.5-minute parts and
ASI was calculated for each part separately. After obtaining ASI values for each part,
they were averaged to get one, more stable ASI value.

ASI was calculated by following the work of Réasanen and colleagues [12]. Signals
were first down-sampled to 50 Hz from the original 100 Hz. The higher frequencies
that are related to the activity bursts were emphasized with a 1st order finite impulse
response high-pass filter.
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Amplitude envelopes of the filtered signals were obtained by using fast Fourier
transformation (FFT). FFT works similarly to Hilbert transform in Equation 1
while it also moves the signal from the original space to frequency domain. FFT was
computed by sliding a Hamming window through the signal. The used Hamming
window was a bell-shaped curve that had a width of two seconds. It was moved
with a step-size of 100 ms through the signal. Amplitude envelopes were obtained by
summing those FFT bins that corresponded to the selected frequencies of 1.5-25 Hz.

These envelopes were then quantized to () different amplitude levels. First, a
random subset of the samples was clustered using a standard k-means algorithm
and then each sample was assigned to the nearest resulting cluster. As a result, two
distinct sequences corresponding to the two input signals A and B were obtained.
Quantization was done in order to represent the two signals with sufficiently small
number of amplitude levels, that ideally cover the entire scale of amplitudes. The
discrete representation also enables the estimation of the joint probabilities of the
quantized amplitude values across the two signals. In this study, ¢) = 8 quantization
bins were used similarly to Résédnen and colleagues [12], and Koolen and colleagues
(61, 62].

Next, an energy-weighted temporal dependency function (ETDF) was calculated
between the two quantized envelopes. ETDF measures the statistical dependencies
across all possible signal level pairs with different time-lags. These dependencies
are also weighted by the relative frequency of each pair. ETDF was calculated with
equation

P, (a,b)?

ETDF(r) =Y AMP(a)AMP(b)W, (6)

a,b
where time-lag 7 was set range from -5 to 5 s. AMP(a) refers to the amplitude
corresponding to quantization level a in signal A and respectively AMP(b) in B.
P.(a,b) is the joint probability, which means the probability of observing level a in
signal A when second signal B is delayed by 7. P(a) and P(b) are the individual
probabilities of the two levels. Resulting ETDF is normalized by extracting the
global minimum value from all ETDF values.

Finally the ASI value is calculated by

1

Tengih(7) Z ETDFWm(r)>, (7)

T=—5s

ASI = ETDFyppm(7 = 0) /(

where BT DF,,,., is the normalized ETDF value. Equation 7 gives the ratio between
ETDF,,m(t = 0) and the mean value of ETDF,,,.,,(T) over the whole time-lag
range. This ratio describes the amount of coupling of the signals without a delay
when compared to the delayed coupling [62].

Using only two signals (F3-P3 and F4-P4) and one frequency band (2.5-20 Hz)
resulted to one ASI value for each subject.
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Figure 12: ASI measures interhemispheric synchrony that is seen as a co-occurrence
of bursts in both hemispheres (boxes with black outline). The upper example shows
high synchrony and high ASI, typical for a normally developing neonate. The example
below shows low synchrony and low ASI, typical for an abnormal EEG function.
Modified from Videman and colleagues [63].

3.3.6 Multifractal detrended fluctation analysis (MFDFA)

Biomedical signals such as EEG often include fractal structures — some repeating pat-
terns that appear with different intervals and in different scales. These varying fractal
structures are found by a measure called MFDFA that estimates the multifractal
spectrum of the signal [13]. MFDFA is calculated for each signal separately.

Signals were first filtered to frequency ranges 0.25-3, 3-8, 815 or 15-30 Hz,
similarly to AEC. After filtering, MFDFA was computed for each of the four signals
in five steps that were introduced by Kantelhardt and colleagues [13]. First step was
to calculate the sum of the signal in order to obtain signal profile Y:

i) = kzi: zy, — (). (8)

In this equation, (z) is the mean of the signal and ¢ € [1, N], N being the number of
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data points in the signal.

The second step was to divide the profile Y into N, segments that do not overlap
each other. Segments were defined to have a length of s = [10, 18,31, 56, 100]. The
lengths of s were selected by using a logarithmic scale between 10 and 100. Ng was
calculated by Ny = int(/N/s) for each value of s.

In the third step, the local trend y, of each segment was determined. This was
done by applying the least-square fit that tries to minimize the difference between
each signal point and the fitted model. The model was selected to be a first order
polynomial. When the trends were obtained, the variance between the fitting
polynomial and the segment was calculated by

LS Vi = 1)s + 1] — o)), o)

=1

F? =
(5,0) = -
where v € [1, Ny] is the segment index and s the window length.

The fourth step was to average over all segments, which resulted to a ¢'" order
fluctuation function. Here we used values ¢ € [—5,5] with a step size of 0.5, as
instructed in paper from Ihlen [64]. Averaging was done with equation

2N 1/q
E) = {55 S (P20} (10)

The fifth step was to determine the scaling behaviour of each fluctuation function
F,(s). This was done by analysing plots where F,(s) is plotted against s in a
logarithmic scale. The slope of this log-log plot is the Hurst exponent H and function
h(q) is called generalized Hurst exponent [13]. With h(q) is it also possible to calculate
the g-order singularity dimension:

- qhéq_)z S (11)

D(q) plotted against h(q) is the so called multifractal spectrum. From this
spectrum, four variables were extracted: peak hq, width hq, tail Dq and height Dq.
First three metrics are more conventional [13, 64] and the last one has been shown
to correlate well with abnormal EEG [65]. Selected variables are presented in Figure
13. All four variables were calculated for each channel and four frequency ranges,
which resulted to 16 value vectors for each variable and thus to 64 different MFDFA
vectors.

D(q)
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Figure 13: An example of the MFDFA multifractal spectrum, which is a plot of D(q)
against h(q). The used variables were peak hq, width hq and tail Dq that all describe
the multifractal spectrum.

3.3.7 Power spectral density (PSD)

Spectral density describes the distribution of the signal power into different frequency
components. EEG attenuation has been associated with severe HIE [66, 67] and this
can be detected with spectral density analysis.

Spectral density was calculated with Welch’s power spectral density estimate.
Compared to other methods, Welch’s method has an advantage of minimizing the
estimate variance. [68] Spectral density was computed for each channel individually
for each of the four frequency bands. A Matlab function called pwelch was used to
calculate the Welch’s estimate.

Signal was first divided to a maximum of eight sections that are as long as possible
and have a 50% overlap. After dividing the signal to overlapping segments, each
section was moved to the time-frequency space with a sliding Hamming window. The
obtained estimates of the frequency power were then averaged.

This procedure resulted in an single-sided periodogram, a frequency-power pre-
sentation that had a bin-size of 1 Hz. In single-sided estimate the power is only
accounted for positive frequencies. An example of a periodogram for one subject and
for one channel is shown in Figure 14. To estimate PSD for the wanted frequency
ranges, the bins within the wanted ranges were averaged.
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Figure 14: Power spectral density for one subject and for one channel. The power is
strongest with small frequencies and then decreases significantly after 30 Hz, which
supports the decision to use frequency range 0.25-30 Hz in this study.

3.3.8 Cross power spectral density (CPSD)

While PSD is calculated within each channel individually, cross power spectral density
(CPSD) is measured between each channel pair. CPSD can be interpreted as a Fourier
transform of a cross-correlation between two signals. Cross-correlation measures the
similarity of two signals as a function of time-lag between them so CPSD provides
information on the power shared by a given frequency for the two signals. Signals
were filtered with the same method as used with AEC for the four frequency band.
Cross correlation between signals X and Y was then calculated with

Rxy(T)=E[X(t+ 1)Y ()], (12)
where FE is the expected value operator and 7 € [0, N] is the time delay. CPSD for
frequency f was then defined by taking the FFT from Rx y (7).

CPSD was calculated using Matlab function cpsd. Four frequency bands and
four channels resulted in 24 CPSD values for each subject.
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3.4 Evaluation and classification methods

This section introduces the tools that are used to analyse the computed EEG features.
First part of this section introduces the Wilcoxon rank tests. Wilcoxon rank sum test
was used to compare the feature values between the three HIE classes and the three
outcome groups. Wilcoxon signed rank test compares paired values and it was used
to compare the two sleep stages. The last three parts in this section are connected
to the classification of the outcomes. We first discuss the analysis of feature stability,
then methods used for feature selection and finally we present the used machine
learning method.

3.4.1 Wilcoxon rank tests

To determine which of the computed features vary significantly between the HIE or
outcome groups, a statistical test called Wilcoxon rank sum test was used.

Wilcoxon rank sum test is used to determine whether two samples come from
the same distribution or not. More specifically, it uses a null hypothesis that the
medians of the two samples are the same. It is a nonparametric alternative to the
t-test of two samples. By using the ranks instead of actual values, the calculations
are simplified and there is no need to make assumptions of the normality of the
distribution. Ranking is done by ordering all samples from both groups together
and then assigning a rank for each value based on its position: the smallest value is
replaced by 1, second smallest by 2 and so on. If two or more observation have the
same value, they are replaced by the mean of their supposed rankings. [69, 70]

In Wilcoxon rank sum test, the calculated test statistic parameter is the sum of
ranked values of the first group, W. For large enough sample sizes, Wilcoxon rank
sum test uses z-distribution to test the null hypothesis, equality of the medians. The
z-score is calculated with the expected value F(WW) and the variation V(W) of rank
sum W with formula

Z = . (13)

After calculating this z-score, it needs to be compared to the z-value table in
order to determine the p-value of the null hypothesis. When assuming that null
hypothesis is true, the p-value is the probability of observing at least as extreme
value as the observed value of the test statistic. The selected significance level was
0.05.

In order to compare the features from quiet and active sleep epochs, Wilcoxon
signed rank test was used. The main difference to the Wilcoxon rank sum test is
that instead of two separate groups it compares two related samples [70]. When
considering features that were calculated from AS and QS epochs, we always have
pairs: same feature from the same baby calculated both from QS and from AS.

In the Wilcoxon signed rank test we calculate the difference d = |x; — x4| for each
measurement pair. The differences are the ranked similarly to the Wilcoxon rank
sum test. The test statistic W is then calculated as the sum of the signed ranks. The
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null hypothesis is that the differences between pairs follow a symmetric distribution
with a median of zero. Under the null hypothesis, the z is defined with W and its
variance V(W) by

Z:L,V(W): N(N+125(2N+1). (14)

After calculating the z-value, it is again compared to the z-distribution and a
p-value is obtained. [70]

3.4.2 Stability

If the results of this study were to be used in clinical practice, the used EEG features
would have to be stable. Stability in this context means that the feature values should
not vary too much between different epochs and epoch lengths. If the variation is too
great, the feature cannot be used in clinical applications while it is too unreliable.

To test the stability of the used computational features, they were computed
individually for epoch lengths of 5, 10 and 20 minutes. After the feature set for each
epoch length was computed, the relative variance was studied by

where variance o was the variance between the 5, 10 and 20 minutes values and
mean f the mean of the same three values for each subject individually. The absolute
values of the subject specific relative variances were then averaged to get the feature
specific estimation of the relative variance.

Because the epochs were obtained from both quiet and active sleep periods, the
relative variances were calculated for all the 189 feature vectors in both of these
sleep stages individually. The relative variances from the two sleep stages were also
compared to each other in order to estimate possible differences in stability.

3.4.3 Feature selection

Only quiet sleep EEG data was used for the automatic analysis of the outcome.
This was done because we could not extract active sleep epochs for most of the
newborns from the outcome group 3. Using all the 189 feature vectors from QS to
estimate the outcome with a machine learning algorithm would not make sense as
there are only 42 subjects. Selecting all the parameters would result to overfitting
while there would be too many parameters relative to the number of observations.
Thus it was decided to limit the number of used features to three. This decision was
made without any quantitative analysis, while the goal of the classification was to
perform an exploratory preliminary analysis, not the best possible classification.
The goal of the algorithm was to find the most normal cases (group 1) and the
most severe cases (group 3). The performance of the classifier was estimated with
sensitivity and specificity. Sensitivity measures the proportion of those babies that
are correctly identified as belonging to the first group. Specificity describes the
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proportion of babies that are correctly classified to the other remaining group. The
exact formulas are given later in Equation 17.

All features that had a relative variance over 0.2 were excluded while they were
thought to be unstable. The exact limit was decided based on the inspection of
relative variances: about 10% (22) of the features were above this limit while 90%
(167) were below it. In order to select the three features, three different approaches
were used: forward selection, brute force and Wilcoxon rank sum test’s p-value based
selection.

In forward selection the features are added one by one to the model. The first
parameter was set to be the one with the lowest p-value obtained from Wilcoxon
rank sum test using Equation 13. After that each feature was added to the model
separately and the one that gave the best prediction sensitivity together with the
first parameter was selected. Same procedure was repeated by testing all remaining
features together with the two already selected ones. If two or more parameters gave
the same sensitivity the one with lower p-value was selected.

Brute force selection refers to testing all possible combinations. In this method
all sets of three variables were tested. After excluding the unstable features the total
number of features was 167, which resulted to a total number of 762355 sets. The
brute force method is time consuming but usually more accurate than the forward
selection.

Third approach was to select the three features based solely on the Wilcoxon
rank sum test p-values and visual inspection of the features’ distribution. Three
variables with the smallest p-values may not describe the dataset very well, while
they can all be from the same feature. To get a variable set that represents the
overall state of the brain, this approach was limited so that there would be only one
variable selected from one EEG feature.

3.4.4 Support vector machine (SVM)

SVM, first introduced by Cortes and Vapnik [71], is a machine learning algorithm
that is used for supervised classification. It was chosen to be used in this study
because it showed good results in initial testing, is easy to modify to different shapes
of data and works quite well with small sample sizes. SVM is also intuitive and
theoretically well motivated.

SVM attempts to assign binary group labels to data points that are located in
some feature space. This is done by finding one or more hyperplanes that separate
the two groups from each other. Hyperplanes are selected so that the gap between
the two groups is as wide as possible. Data points closest to the hyperplane form
so called support vectors. Because hyperplane separates two classes we obtain two
support vectors: one for each class. Hyperplane and support vectors are illustrated
in Figure 15.

Data points are not always separable by a linear hyperplane. When this is the
case, hyperplane can be selected so that it separates many, but not all points: some
of the points are classified in the wrong group. Another approach is to use so called
Kernel trick. Kernel is a function that maps the data points from the original space
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hyperplane

-(R support vector

Figure 15: Two dimensional illustration of support vector machine classification.
Hyperplane separates the two classes marked with circular and square items with
maximum gap. Data points closest to the hyperplane form the support vectors.

to a new, higher-dimensional space. Goal is that the two classes are then linearly
separable in the new space. Kernel function can be defined as a dot product in some
feature space, following

K(z,y) =< ¢(x), ¢(y) > . (16)

Separating hyperplane was expected to be linear, which means that no Kernel
trick was applied. Because SVM only works with binary classification, it was decided
to divide the original question, separating three outcome classes from each other, to
two parts: first combining outcome groups 1 and 2, then groups 2 and 3. In first
case the sensitivity measured how well could we detect outcome group 1 babies from
the other two groups. In the second case the sensitivity then measured how well
could we detect outcome group 3 babies from the other two groups.

Before applying the SVM learner, data was divided to train and test sets with a
6-fold cross validation. This fold size was selected while it is computationally less
expensive and the bigger fold size is said to be less biased [72]. Because there were 42
subjects, it meant having 7 subjects for testing and 35 for training. Disjoint partition
was done so that each subsample had roughly the same class proportions. In forward
selection and brute force methods we used also a 5-fold cross validation for the test
set. The test set had 35 subjects so it was further divided to trainings set of 30
subjects and testing set of 5 subjects.

Because outcome group 3 was significantly smaller than the combination of
groups 1 and 2, we used ADASYN algorithm [73] to create more data points in the
subsamples. ADASYN synthesizes new data points to the minority class using a
weighted distribution. Using this algorithm, the bias caused by the different group
sizes should be avoided. [73]
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The SVM classification score for classifying observation x is the signed distance
from x to the decision boundary ranging. A positive score for a class indicates that x
is predicted to be in that class, a negative score indicates that x belongs to the other
class. From the these scores we can then construct a confusion matrix, presented
in Figure 5. From the confusion matrix we can then calculate the sensitivity and
specificity with the following equations. Sensitivity refers to the true positive rate
and specificity to the true negative rate so these two measures give a good overview
of the classifier performance.

True Positives

sensitivity =
4 True Positives + False Negatives

o True Negatives
speci ficity =

True Negatives + False Positives

Table 5: Confusion matrix is used to estimate classifier performance.

Predicted group
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4 Results

All the obtained results are presented in this section. The first four parts show the
results of the research questions that were introduced in the beginning of this work.
The last part of this section discusses the relationship between the features and how
they correlate with each other.

4.1 Quiet and active sleep epochs

Brain activity of a newborn is dependent on the sleep-wake cycle. In this study, both
active and quiet sleep epochs were extracted for each baby. To determine whether or
not the computational EEG features differ in these two sleep stages, we compared
each EEG variable obtained from QS and AS epochs.

In order to draw conclusions of the similarities or differences between QS and AS,
the correlation between QS and AS was calculated using Pearson’s linear correlation
coefficient described in Equation 2. Because linear correlation can sometimes be
misleading if there is a systematic difference, also the Wilcoxon signed rank test was
applied. All variables and their statistical test results are presented in Appendix A.
Additionally, all variables were plotted and inspected visually. A least square fit was
added to each figure to show the direction of the correlation.

In AEC the correlation coefficient was statistically significant with all variables.
The coefficients were between 0.48 and 0.86 so the dependence between QS and
AS values was clearly positive. The sign rank sum test rejected the null hypothesis
with all frequency bands except with 0.25-3 Hz. Rejection meant that the difference
between values in AS and QS does not come from a distribution with zero median.
This result can be seen visually from Figure 16. From the visual inspection it was
clear that the QS AEC values were usually lower than the one from AS, as in Figure
16b.

Also in PLV all the variables showed significant correlation. The Pearson’s
correlation coefficients were between 0.68 and 0.94 — even closer to one than in
AEC. The strong correlation can be observed in Figure 17a. Wilcoxon sign rank test
showed only six variables where the null hypothesis could be rejected so most of the
variables can be concluded to give very similar results in QS and in AS.

The variables in wPLI showed almost no correlation between quiet and active
sleep. Correlation was significant only in two variables and the correlation coefficient
was only around 0.4 with these two. Wilcoxon signed rank test was rejected in only
two cases and neither QS or AS gave constantly lower or greater values than the
other. The only trend seemed to be that if there was a high wPLI value in QS, AS
value was then low. This also applied the other way around: if there was a high
wPLI value in AS, then the QS value was low. This trend can be seen in Figure 17b.

NC had more correlation in the variables from parietal channels. The correlation
coefficients were moderate varying between 0.31 and 0.59. The signed rank test
showed that the null hypothesis could be rejected in all but two cases. QS values
were with the rejected variables significantly lower than the ones in AS. This can be
seen also in the Figure 17c.
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Figure 16: Two AEC variables show the effect of signed rank test. In the left plot
the difference between QS and AS values follow a distribution with a zero median.
In the right plot the null hypothesis is rejected and we can see that the QS values
are lower than AS values.
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Figure 17: Examples of quiet and active sleep correlations.

ASI had a statistically significant correlation with a correlation coefficient of
0.030. The null hypothesis could not be rejected in Wilcoxon signed rank test. The
ASI correlation between QS and AS is presented in Figure 17d.

From the four MFDFA features the peak hq showed the most significant correlation
between QS and AS values. These correlations were all in the higher frequency bands.
Peak hq also showed many rejected null hypothesis in signed rank test. In all rejected
cases the QS values were significantly lower than the AS values, as can be seen in
Figure 18a. In the other three features width hq, tail Dq and height Dq, there were
almost no significant correlation as seen in Figure 18b. The signed rank test showed
few cases from frequency band 3-8 Hz and 8-15 Hz where the QS and AS followed
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different distributions. There was no clear direction between QS and AS in width hq
and tail Dq but in height Dq the QS values were in all significant cases higher than
the AS values.

In PSD the values of QS and AS correlated well and there were only three variables
without significant correlation. The correlation coefficients were between 0.39 and
0.79. In the signed rank test all variables from frequency bands 3-8 Hz and 8-15 Hz
were rejected. In these variables the QS values were lower than the AS values which
is visible in Figure 18c.

All variables in CPSD showed significant correlation between active and quiet
sleep. The correlation coefficients were high, varying between 0.57 and 0.98. Again
all the variables from frequency bands 3-8 Hz and 8-15 Hz showed p-values under
.05 in signed rank test. Figure 18d shows how the QS values are lower than the AS
values, similarly to PSD.

The relative variances of the computational EEG features were also compared in
QS and AS. Most of the features had a low variance between the different epoch
lengths but MFDFA variable tail Dg, PSD and CPSD had clearly greater variances.
For these features the variance were equally large in both AS and QS. The inspection
of relative variances did not provide any evidence of systematic stability difference
between the sleep stages.

As a conclusion we can say that the simpler methods, such as AEC, PLV and
PSD tended to have a good correlation in active and quiet sleep. More complex
features like wPLI and MFDFA had often poor correlation. There was also a clear
effect of the frequency bands: for example, the lowest band of 0.25-3 Hz often showed
less correlation than the other bands. It was also noticeable that many features
showed lower constantly lower or higher values in AS than in QS. Because of the
big differences between the two sleep stages, it made sense to evaluate the research
question two and three individually for both stages.

4.2 Feature correlation with the HIE gradus

The second research question was about the relationship between the quantitative
EEG variables and clinical state of the baby. Clinical condition was considered to be
best reflected by the HIE gradus of the baby. There were three separate HIE classes:
mild (class I), moderate (class II) and severe (class III). The class for each neonate
was estimated by a medical doctor as described previously.

Each variable was treated as an individual measurement. They are summarized
in Table 3. All variables were plotted against the HIE classes with box plots and
were then examined visually. Wilcoxon rank sum test was used in order to see if the
classes differed from each other with a statistical significance. This resulted to an
individual p-value between each HIE gradus pair. For quiet sleep, all the statistically
significant p-values are listed in Appendix B. For active sleep the results can be
found from Appendix C.

AEC variables showed some significant correlations mostly between HIE classes I
and II. In QS the significant differences were mostly in lower frequencies but in AS
they were visible in all frequency bands. Additionally, the QS epochs showed one
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Figure 18: Examples of quiet and active sleep correlations.
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significant result between classes I and III, and two significant difference between
classes IT and III. All statistically significant differences between AEC distributions
were to the same direction: the more severe HIE class, the lower the AEC value.
One example is presented in Figure 20a. Although the significant results were quite
well distributed between the channel pairs, the parietal pair P3-P4 did not show any
results.

PLV showed more significant differences in AS than in QS epochs. All but one
of them were between HIE classes I and II, and in the two lower frequency band.
The one other significant difference was in QS frequency band 15-30 Hz between
classes II and III. All the statistical significances showed similar trend: the more
severe HIE, the lower the PLV value. This can be seen in Figure 20b. As with the
AEC variables, there were no significant results between channel pair P3-P4. It is
noticeable however that this pair showed the biggest PLV values.

Variables in wPLI showed more significant results in QS than in AS. All frequency
bands and HIE class pairs were present among the significant results, also all channel
pairs expect the left hemisphere pair F3-P3. Although there were many significant
results especially in QS, they were not coherent: some showed that the wPLI value
was larger in the more severe HIE classes, some had it the other way around. Based
on visual analysis it would seem like the former case was more dominant trend in QS
and one example of this kind of wPLI distribution can be seen in Figure 19a. In AS
there was no clear trend. All in all, the smaller frequencies had larger wPLI values
than higher ones and again the parietal channel pair showed the larger values than
the other pairs.

With NC there was only one significant difference that is shown in Figure 20c.
It was from AS epoch in frequency band of 3-8 Hz and from channel P4, showing
significant difference between classes I and II. It would seem that the more severe
HIE class, the more nestedness in active sleep. Lower frequencies showed slightly
larger NC values than higher frequencies in both QS and AS.

ASI values did not differ significantly between any of the HIE classes. There were
also no clear difference between active and quiet sleep variables.

MFDFA had four different measures describing the multifractal spectrum: peak
hq, width hq, tail Dq and height Dq. Peak hq showed some significant results in
frequency band 3-8 Hz between classes I and II and twice between I and III. These
variables showed that the peak hg was smaller for class II than class I but class III
had then larger values than class II. QS showed more significant results than AS
and in both cases the peak hq values were larger in smaller frequency bands. Width
hq had significant results also in the higher frequency bands. They all followed the
same trend: the more severe HIE class, the larger the width hq value. Again QS
showed more results than AS.

Tail Dq showed differences especially in higher frequencies and in QS. There
were significant differences between all classes and all of them followed the same
direction: the more severe class, the larger the tail Dgq value. One example can be
seen in Figure 19b. Height Dq showed only one significant result in the AS and it
was between classes I and II. In QS there were significant differences only between
classes I & III and IT & III. Only one of these statistically significant differences was
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Figure 19: Boxplots present some QS feature values divided to the three HIE classes.
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Figure 20: Boxplots present some AS feature values divided to the three HIE classes.

from the lowest frequency range and it showed that the class III was lower than class
IT. All other height Dq variables showed larger values for the more severe classes.

All variables in PSD showed that the more severe is the HIE class, the lower
is the magnitude of PSD. It was also noticeable that the the higher the frequency
band was, the lower were the PSD values. While in QS there were many significant
differences especially between class III and the other two, there were no significant
differences in AS. Figure 19¢ shows one of the significant variables.

The last feature CPSD followed the same trends as PSD: more power in smaller
frequencies and the more severe the class, the lower is the magnitude. In QS all
variables showed statistically significant differences between HIE classes I and III,
most between II and III, and some between I and II. Some even showed a significant
difference between all classes as can be seen in Figure 19d. In AS there were only
some significant results between classes I and II.
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4.3 Feature correlation with the outcome

The third research question aimed to shed light on the relationship between the EEG
variables and the clinical outcome of the baby. Outcome was evaluated by a medical
doctor on a scale of normal (group 1), mild or moderate (group 2), and severe or
died (group 3). Because both HIE class and outcome group describe the severity of
the brain injury, it could be expected that the features change similarly between the
three groups.

Variables and methods were similar to the previous research question. All variables
were plotted against the outcome groups with boxplots and were then examined
visually. Statistically significant differences were studied with Wilcoxon ranks sum
test, which resulted to an individual p-value between each outcome group pair. The
statistically significant results are listed in Appendices B and C next to the HIE
class results.

AEC variables did not differ significantly between any outcome groups in AS. In
QS there was one significant result between groups 1 and 2 in frequency band of 8-15
Hz. This difference was to the opposite direction than with HIE classes: the more
severe case, the higher is the AEC value.

Similarly to AEC, also PLV was unable to separate any outcome group with AS
variables. There was one significant variable in QS in frequency range of 0.25-3 Hz.
However, here was no linear trend while group 1 and group 2 both had significantly
higher PLV values than group 2. When considering HIE classes, the PLV was lower
in the more severe cases.

Variables in wPLI showed more significant differences in quiet than in active sleep.
As with HIE classes, all channel pairs expect the left hemisphere pair F3-P3 showed
significant results. Results were distributed to all frequency ranges and outcome
pairs. With HIE classes the differences did not show any trend and that was the case
also between the outcome groups in AS. In QS the significant results were all to the
same direction: the more severe the outcome, the larger wPLI values. One example
is presented in Figure 21a.

NC values had significant differences both between outcome groups 1 and 2, and
between 2 and 3. They were present in all frequency ranges and in both active and
quiet sleep. In significant cases, group 2 had always higher NC values than group 1.
However, group 3 had lower values than group 2 in QS but higher values in AS. At
least AS would seem to follow the results obtained from HIE class comparison.

ASI values did not have significant differences between any of the three outcome
groups. This was the case also with the HIE classes.

MFDFA showed again more significant results in QS than in AS. In AS there was
only one significant difference in width hq and one in height Dq. In QS there were
significant differences in width hq, tail Dq and height Dq. With width hq there were
differences between all outcome groups but they did not follow the same trend: in
AS group 3 had larger values than group 2 but in QS they were lower. Additionally,
in QS group 3 had lower values and group 2 higher values than group 1.

In tail Dq the significant differences were in the higher frequency ranges between
groups 1 and 3 or groups 2 and 3. They all followed the same trend: the more severe
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outcome, the larger the tail Dg values. Figure 21b shows one tail Dq variable with
significant differences. This trend goes hand in hand with the results from HIE class
comparison. In height Dq there was only one significant result in AS where the group
3 had lower values than group 2. In QS there were more significant differences and
they were located in higher frequency bands and between groups 1 & 3 and 2 & 3.
As with the HIE class comparison, the height Dq values were higher with the more
severe groups.

Only one PSD variable showed statistically significant difference in AS but almost
all variables showed differences in QS. All of the significant differences were between
groups 1 and 3 or groups 2 and 3. All the QS variables followed the same trend as
with HIE classes — the more severe is the case the lower is the PSD magnitude. The
only significant result in AS was however to the opposite direction: group 3 had
higher PSD values than group 1. One QS variable is presented in Figure 21c.

CPSD showed also only one significant difference in AS: group 3 had higher
CPSD values than group 1. In QS almost all CPSD variables showed statistical
difference between groups 1 and 3, and most of them also between 2 and 3. All
statistically significant results showed that group 3 had lower CPSD values than the
other two groups, which can be also seen Figure 21d. This follows the results with
HIE classes except there was no difference between the less severe groups 1 and 2.

4.4 Classification

The fourth research question was about the computational classification of the
subjects. Because of the lower number of subjects in AS, the classification was
performed only with the QS variables. Those variables that had a relative variance
of over 0.2 were excluded from the classification algorithm and 22 such variables
were found. Four of those were from the MFDFA feature tail Dgq, six from CPSD
estimates and the rest from PSD estimates.

Because the number of newborns in the outcome group 3 was only 11, each fold
in the 6-fold partition had only one or two babies from this group. Because of the
imbalance between the two classes, we used ADASYN algorithm [73] to synthesize
data points to the minority training group. However, this did not improve the
classifier performance notably. In some situations, the ADASYN improved the
sensitivity but at the same time lowered the specificity. All the SVM algorithms
used a linear hyperplane.

Forward selection and p-value based methods were each applied 10 times to get
an overview of the classifier performance. The round with the highest sensitivity
was considered as the best results and the ranges of sensitivity and specificity were
also reported. The results are written in the form: best result [min, maz]. Brute
force method was applied only once for both of the two classification problem while
it takes significantly longer to run through.

Classification between groups 1 & 2 and group 3 with forward selection achieved
a sensitivity of 0.64 [0.27, 0.64] and a specificity of 0.90 [0.77, 0.90] at its best. The
confusion matrix obtained using forward selection is presented in Table 6. The
selected features and the resulting prediction accuracy varied between each fold,
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which highlights the fact that the algorithm performance is highly affected by the
individuals that are selected to the training and testing sets. The selected features
were mainly from the parietal channels of PSD and CPSD but also all of the other
features were present, especially wPLI and height Dq.

Table 6: Confusion matrix of classifying group 3 with forward selection. The matrix
represents the round with the highest sensitivity.

Predicted group

1& 2 3
1&2 28 3

Real group
3 4 7

The same classification problem with the brute force method gave a sensitivity
of 0.73 and a specificity of 0.74. Results are shown in Table 7. The outcome group
was identified almost as accurately as with the forward selection method. Again
the features varied a lot between the folds and they were mostly located in features

height Dg, PSD and CPSD.

Table 7: Confusion matrix of classifying group 3 with brute force method.

Predicted group

1& 2 3
1& 2 23 8

Real group
3 3 8

Based on visual analysis of the computed EEG features and p-values from the
Wilcoxon rank sum test, three variables were selected for classification of group 3.
The selected features were wPLI from channel pair P3-P4 and with frequency band
of 3-8 Hz, tail Dq from MFDFA in channel P4 with frequency band of 8-15 Hz, and
CPSD between channels F4 and P4 in frequency band of 8-15 Hz. The selected
variables are presented in Figure 21.

The resulting confusion matrix is presented in Table 8. The achieved specificity
was 0.97 [0.90, 0.97] and sensitivity 0.64 [0.55, 0.64] Although the selected variables
were always the same, the results were slightly different between each round because
the training groups were different every time.

Classification between group 1 and groups 2 & 3 had a specificity of 0.67 and a
sensitivity of 0.67 [0.33, 0.67] with the forward selection. The confusion matrix is
presented in Table 9 and we can easily see the low specificity: over half the babies
that were classified to group 1 are actually from groups 2 and 3. Again the selected
features varied a lot between folds and runs. Interestingly the selected variables were
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Table 8: Confusion matrix of classifying group 3 with p-value based method. The
matrix represents the round with the highest sensitivity.

Predicted group

1& 2 3
1&2 30 1

Real group
3 4 7

mostly from wPLI and there were no variables selected from PSD, which was not
the case when classifying group 3 with the same method.

Table 9: Confusion matrix of classifying group 1 with forward selection. The matrix
represents the round with the highest sensitivity.

Predicted group

1 2&3
12 6
Real group
2&3 16 8

With brute force method the group 1 was classified with an accuracy of 0.72
and specificity of 0.63 as is shown in Table 10 This means that over two thirds of
the babies from group 1 were identified right, which is slightly better than with the
forward method. The specificity was however even lower. Similarly to the forward
method, the selected variables were mostly from wPLI.

Table 10: Confusion matrix of classifying group 1 with brute force method. The
matrix represents the round with the highest sensitivity.

Predicted group

1 2& 3
13 )
Real group
2& 3 15 9

For classifying group 1 we again chose three variables based on p-values and
visual analysis. One variable was the same as with the group 3 prediction, the CPSD
variable that is presented in Figure 21d. The other two were wPLI between channels
P3 and P4 in frequency range of 15-30 Hz, and NC in channel F3 with frequency
range of 8-15 Hz. These variables resulted to a sensitivity of 0.71 [0.46, 0.71] and to
a specificity of 0.63 [0.56, 0.78]. The confusion matrix is presented in Table 11.
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Table 11: Confusion matrix of classifying group 1 with p-value based method. The
matrix represents the round with the highest sensitivity.

Predicted group

1 2&3
14 4
Real group
2&3 10 14

When classifying between groups 1&2 and 3, there were two subjects from group 3
that were classified constantly wrong with all three feature selection methods. There
were also 11 subjects from groups 1 and 2 that were always classified right. The
p-value based method was notably more stable than the forward selection method,
in which the misclassified subjects were quite different in each round. In the second
classification problem there were only 2 subjects from group 1 that were constantly
classified right and no subjects that would have been constantly classified wrong.
P-value based method was again more stable than the forward selection but the
misclassified subjects varied more from round to round than in the first classification
problem.

Although the subjects from group 2 were considered to be the hardest to classify,
we could not see any difference when compared to the other two groups. The only
group specific difference was seen when classifying between groups 1&2 and 3 with
the p-value based method: subjects from group 1 were always classified right.

4.5 Comparison between the features

For this study, a total number of 189 feature vectors were calculated. They came
from eight different feature classes, that are described in Table 3. Five of the eight
feature classes measured some kind of correlation between the four channels. AEC
measures amplitude-amplitude correlation, PLV and wPLI describe the phase-phase
correlation, ASI quantifies the interhemispheric synchrony of bursts and CPSD
describes the spectral relationship between each channel pair. Three features were
computational measures of individual signals. NC describes the phase-amplitude
correlation, MFDFA the multifractal spectrum and PSD the spectral form of the
signal.

If two features measure the same property, it can be assumed that there would
be some noticeable linear correlation. For example, both PLV and wPLI describe the
phase-phase correlation of signal pairs, although they have many differences that are
summarized in Table 4. Also PSD and CPDS both measure spectral density, even
though the former considers only single channels and the latter describes the cross
correlation of two channels. We also used four measures to describe the multifractal
spectrum calculated in MFDFA so it could be expected that these four variables
showed some correlation with each other.

A correlation matrix was calculated from the QS features in order to inspect the
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correlation between the features. The resulting matrix is presented in Figure 22,
where each row and each column correspond to one of the 189 variables. For example,
the first row and column is the wPLI calculated from channel pair F3-F4 in frequency
range of 8-15 Hz. The color of each cell tells about the Spearman’s correlation
coefficient value — red for positive correlation and blue for negative. Spearman’s
correlation is defined as a Pearson correlation coefficient between the ranked values.
If the cell is not coloured, the null hypothesis that there is no relationship between
the variables is true with a 95% confidence level. Also the cells that have a low
correlation value of —0.2 < ry < 0.2 are white.

From the correlation matrix we can see that the diagonal elements have a perfect
positive correlation, while they are the correlations of each variable to its self. It is
also noticeable that some of the diagonal boxes that are each describing one feature
are more full with coloured cells than other boxes of the matrix. Features wPLI,
PLV, AEC, PSD and CPD have many positive correlation coefficients, which means
that the different variables within each feature correlate well with each other. For
example, the wPLI calculated from channel pair F3-F4 in frequency range of 5-8 Hz
has a good correlation with the variable from same position and range of 15-30 Hz.
This is the red cell on column 3 and row 4.

In these same features there are some white areas with no linear correlation — for
example in PLV it would seem that the frontal pair F3-F4 does not correlate well
with the other pairs. We can also see from the white grid in the PSD box that the
variables that have a frequency range of 0.25-3 Hz do not have a linear correlation
with the other three frequency bands. This is can be due to the vulnerability of
the Pearson’s correlation coefficient to outliers [74] while there was one subject with
substantial PSD values in this frequency band.

NC and MFDFA have less correlation. The NC variables show a clear division
between the frontal and parietal channels: variables from channels F3 and F4 correlate
well with each other but not with variables from P3 and P4, and the other way
around. In the correlation matrix this can be seen from the two separate red areas in
the NC box. The MFDFA measures peak hq, width hq, tail Dg and height Dq have
very little correlation within each of them but there is a clear correlation between
them. Width hq, tail Dq and height Dq variables measured from the same multifractal
spectrum have a good positive or negative correlation, which can be seen from the
diagonal elements in these boxes. Width hq has a clear negative correlation with tail
Dq and height Dq, and the last two have a positive correlation with each other. Peak
hq has very little correlation with the other three measures.

The phase-phase correlation measures wPLI and PLV do not show any clear
linear relationship with each other. This can be caused by the fact that even though
they measure the same thing, they work quite differently: wPLI skips small phase
lags while PLV accounts them all. Surprisingly enough there is a strong correlation
between AEC and PLV measures and between AEC and the spectral measures
PSD and CPSD even though they measure different aspects of the EEG. A clear
relationship is also seen between the two spectral measures.
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Figure 22: Spearman’s correlation matrix of all computational EEG features. Each
row and column corresponds to one feature variable. Yellow and grey scales tell the
exact features inside every feature class. The brightest red corresponds to 1 (perfect
positive correlation) and blue to -1 (perfect negative correlation). White cells either
have a p-value over 0.05 or correlation between —0.2 < r; < 0.2. The single row
feature in the middle is ASI.
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5 Discussion

This study provides further evidence of the usefulness of computational EEG features
when assessing neonatal brain activity. The results show that these features can be
affected by different sleep stages and different epoch lengths. Some of them showed
a good separation of different HIE classes and outcome groups. It was also shown
that these features can be used in automated outcome classification with promising
results. In this section these results are discussed and evaluated.

5.1 Stability of the features

Most of the features were quite stable between the different epoch lengths. The feature
classes that showed most variation between the sleep stages were MFDFA measure
tail Dg and the two spectral measures. Especially PSD values were substantially
different between the three epoch lengths.

Some features were very similar across the two sleep stages. Especially AEC,
PLV and CPSD showed strong correlations, while wPLI and some MFDFA measures
varied a lot between AS and QS. At some level this also affected the statistically
significant differences between HIE classes and outcome groups in AS. The features
that had only small variation between the sleep stages also showed more significant
results in AS. The comparison between the sleep stages also showed that there were
differences especially in the specific frequency bands, not so much on specific spatial
locations. This can be explained by the different spectral properties between quiet
and active sleep — especially the amount of delta oscillations varies between the sleep
stages [4].

Because we were not able to extract AS epochs for many of the most seriously
affected babies, the comparison between the two sleep stages was done with a smaller
subject number. The correlation between features calculated for quiet and active sleep
epochs could be something else than linear or there could be stronger correlations if
the subjects were divided to smaller subgroups based on the severity of HIE. Even
without these scrutinies included, the comparison between AS and QS supported
the claim that QS is diagnostically more sensitive to variations in brain activity [23].
This can be seen from the amount of statistically significant results that are listed in
Appendix B and Appendix C.

5.2 Separating HIE classes and outcome groups

There were many features that correlated well with the clinical status. A total
number of 69 feature variables showed significant differences at least between one
gradus pair in QS which is seen in Appendix B. With a significance level of a = 0.05
there should only be by chance about 10 features with significant results. The feature
classes that showed statistically significant group differences on this confidence level
were AEC, PLV, wPLI, MFDFA, PSD and CPSD. Figure 19 shows some of these
significant results.
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In AS there were 37 feature variables showing significant group differences with
significance level 0.05 which is shown in Appendix C. These variables were mostly
from AEC, PLV and CPSD, that were all quite stable between the two sleep stages.
Also in the other feature classes the overall trends followed fairly well the ones in
quiet sleep. All the statistically significant differences in AS were between HIE classes
I and IT which is understandable while class III only included one baby.

Less features correlated with the outcome. In QS there were 56 variables that
showed significant differences with a confidence level of 0.05 and 36 variables if the
level was lowered to the Bonferroni corrected level. In AS there were 9 variables with
significance level 0.05 but none with the Bonferroni corrected level. Most of these
statistically significant variables in QS also showed significant results when comparing
HIE classes. Exceptions were few variables of wPLI, nestedness and MFDFA — they
showed significant differences only between the outcome groups. In AS none of the
variables that gave significant results between outcome groups showed significant
results between HIE classes.

5.3 Classifier performance

The SVM classifiers had a better sensitivity when detecting group 1 instead of group
3. The best sensitivity 0.72 was achieved with the brute force method but it also had
the lowest specificity. When detecting group 3, forward selection and p-value based
methods achieved a sensitivity of 0.64 at least once. The results varied a lot between
each round and especially forward selection seemed to have quite large ranges for
both sensitivity and specificity. The p-value based method was quite stable when
detecting group 3, but less so when detecting group 1. Brute force method resulted
in a slightly higher sensitivity 0.73 but it’s specificity was quite low. Because it was
only tested once, not much can be said about its stability.

If the EEG based prediction was used in clinical work, it should be at least as
accurate as the evaluation of medical doctor. The medical doctor evaluates the
condition of the baby with the HIE class and these gradings can be seen in Figure
4. Using only the HIE classes, the prediction of outcome group 3 would have a
sensitivity of 0.82 and specificity of 0.98. When searching the normal outcome,
outcome group 1, the sensitivity would be 0.56 and specificity is 0.88. The SVM
classifier constructed in this study did not reach a performance that would match
that of using HIE classes. However, all of the SVM methods gave a better sensitivity
than HIE class when predicting group 1. From Figure 4 we can see that the babies
HIE class II often fall to the outcome group 1. The comparison of different methods
is presented in Table 12.

Because we used information from all subjects when selecting the features in the
p-value based method, it is not as data driven as the two other methods. For forward
selection and brute force methods it was obvious that the number of subjects was
too low while the results varied a lot between each fold and each run in the case of
forward selection. When investigating the selected features, we could still see that
the features that separated group 3 from the others were different from those that
separated group 1. For example, the variables from CPSD appeared to separate



50

Table 12: Results of predicting the outcome with HIE classes and with different SVM
based methods. Forward selection and p-value based methods were applied 10 times
and the table presents their minimum and maximum results. The largest value of
each row is highlighted.

HIE Forward  Brute P-value
class selection  force based

Between Sensitivity| 0.82 [0.27,0.64] 0.73  [0.55, 0.64]

1&2 and 3 Specificity | 0.97 [0.77,0.90] 0.74  [0.90, 0.97]

Between 1 Sensitivity| 0.56 [0.44, 0.72] 0.72  [0.56, 0.78]
and 2&3

Specificity | 0.88 [0.33, 0.67] 0.38  [0.46, 0.71]

group 3 well but not group 1, and the wPLI variables the other way around.

The SVM algorithm was used only to do some exploratory preliminary analysis.
Because the algorithm was only tested with a set of three features, with linear
hyperplane and without any optimization, the results were expected to be moderate.
If the classifier parameters were optimized more, it could improve the results.

5.4 Limitations

Several factors can impact the achieved results and should be studied in more detail
in the future. The first factor is the selection of the feature classes: there could be
more sophisticated measures that would perform better than the ones selected to
this work. It could also be possible to combine several different features or simplify
the used features for example by calculating the mean over each channel.

One of the main problems with the HIE classes is that the neonatal HIE status is
not static: it evolves over time and in this study only one time point was used to select
the class for each baby [4, 40]. Because of this, we should always have knowledge
of the clinical status at the exact time when EEG is recorded [75]. The outcome
prediction based on HIE classes shown in Table 12 could also be more accurate if the
fluctuation of the HIE gradus was known. Also the outcome estimation was made
from only one time point approximately at age 1 and some neurological problems
caused by asphyxia, such as learning deficit, cannot be diagnosed at this age [4, 23].
The true outcomes of the study subjects were thus unknown. The estimates of both
HIE gradus and outcome were also made by a single medical doctor, which can cause
some error.

Another factor that can affect the results is maturation. The feature correlation
to age was inspected visually but more objective and quantitative analysis should
take place. The age of the neonates at the time of the EEG recording varied a lot
as seen from Figure 5. While the brain activity of a newborn can be quite different
after five days [21], the age can have some effect on the results.

Also different medications can have a huge impact on the neonatal brain activity.
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Typical medication for critically ill neonates include substances like phenobarbitone,
banzodiazepines and morphines, and they all decrease the overall amplitude and
increase discontinuity of the EEG signal [23, 28]. This should be taken into consid-
eration while the most severe HIE cases are also those who often receive the most
medication.

One additional factor affecting the brain activity is the hypothermia treatment.
The rewarming after the treatment changes the EEG signal, especially the discon-
tinuity of it [76]. From the 42 subjects in this study, over 60% (26) were cooled.
Hypothermia treatment is more often used to neonates with more severe HIE grading.
In this study, all the subjects from HIE class III and only 5 of the 13 babies from
class I underwent the hypothermia treatment.

5.5 Future prospects

The results showed that the computational EEG features vary significantly between
the different HIE classes and outcome group and should thus be studied more in
order to guarantee the best possible treatment for neonates with HIE. Especially the
values of wPLI, MFDFA and CPSD seemed to separate well between the severity
of HIE and outcome. The classification showed that it is indeed possible to use
these features to predict the severity of the neurological problems that follow HIE.
Although the predictions only achieved moderate results, they are promising for the
future use of EEG in clinical work.

Next step for this study would be to test the most promising features with a
larger number of subjects. This would offer a valuable confirmation of the results
presented in this study. The features should also be compared to a background
activity grading of the EEG epochs made by a specialist. Now we used a measure from
the past (HIE gradus) and from the future (outcome) — background grading would
offer valuable information about the same time point the features were calculated.
The limitations discussed before should also be inspected more carefully. If the
classification algorithm was extended to classify multiple groups and optimized more
carefully, there is a possibility that it could be implemented in clinical use.
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6 Conclusions

The aim of this study was to inspect the potential of computational EEG features
when assessing and predicting the neurological state of the asphyxiated neonates.
The work was divided to four different research questions, presented in the beginning
of this thesis. Eight different feature classes were calculated from the 4-channel EEG
recording in frequency bands between 0.25-30 Hz for both quiet and active sleep.
This resulted to a total number of 189 features.

The first research question asked, if the computed EEG features were different
between quiet and active sleep. Some feature classes, such as AEC, PLV and CPSD,
showed fairly good consistency between the two sleep stages. There was quite a lot
variation but also many systematic differences.

With the second research question, the goal was to find out if the features reflect
the HIE classes of the babies. Most of the feature classes showed significant results
and especially AEC, MFDFA, PSD and CPSD separated the classes well. Features
computed from quiet sleep epochs reflected the different HIE classes better and only
QS features that did not separate the three classes at all were ASI and NC.

The third research question asked about the relationship between the features
and the outcomes of the babies. There were slightly less significant results than with
the HIE classes and they had a big overlap to the features that were significant in
the HIE class separation. However, AEC did not separate outcome groups as well as
HIE classes, and NC separated them better than HIE classes. Active sleep showed
even less significant results with outcome than with HIE classes.

With the fourth question the aim was to do a preliminary analysis of the usability
of these features in automatized classification. The best achieved sensitivity was 0.74
and specificity 0.97 when classifying between groups 1&2 and 3. When classifying
between groups 1 and 2&3, a sensitivity of 0.72 and a specificity of 0.67 were achieved.
Although the results varied quite a lot between each run and each fold, we were able
to show that there is a potential advantage in using these computed EEG features
to predict the outcome of the asphyxiated neonate.

This study estimated the clinical usefulness of computational EEG features and
we were able to show that there is a lot of potential in them. The results show that
the use of quiet sleep epochs could be a better choice when evaluating neonates with
HIE. It is important at least to know the sleep stage when selecting the epochs
used in the analysis. It was showed that there are many different features, spatial
locations and frequencies that can be used when estimating the severity of the injury
and especially AEC, wPLI, MFDFA and CPSD should be studied more.

With a larger sample size, more accurate HIE class and outcome group evaluations
and a more precisely optimized classifier it could be possible to achieve even better
results in the future. It is also important to study the factors that influence the
EEG signal: maturation, medication and possible hypothermia treatment. A further
development of computational EEG features combined with machine learning methods
can become an important tool in the monitoring and diagnosing of neonates after
asphyxia.
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Appendices

A Feature comparisons between QS and AS

The tables show the comparison between QS ans AS epochs for each feature. The
vectors were compared with the Wilcoxon sign rank test, for which the resulting
p-values are listed. If the p-value is lower than 0.05 the null hypothesis is rejected
and it can be assumed that the vectors come from two individual distributions. Also
the Pearson’s correlation coefficients were calculated for each variable. If the p-value
is under 0.05, the null hypothesis of no correlation at all, can be rejected. P-values
lower than 0.05 are again marked with a grey background.

Frequenc Wilcoxon Pearson's Correlation
Feature Channel q v signed rank p-  correlation coefficient
band (Hz) -

value coefficient pvalue
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value coefficient pvalue
widthhqg  F3 8-15 0.048 0.05 0.776
widthhqg  F3 0.25-3 0.900 0.05 0.785
width hq F3 15-30 0.593 0.06 0.720
width hq F3 3-8 0.057 -0.14 0.428
width hq F4 8-15 0.041 -0.23 0.169
width hq F4 0.25-3 0.460 -0.12 0.477
width hq F4 15-30 0.251 -0.02 0.913
width hq F4 3-8 0.330 0.14 0.402
width hq P3 8-15 0.362 0.01 0.966
width hq P3 0.25-3 0.826 0.10 0.563
width hq P3 15-30 0.128 0.09 0.621
width hq P3 3-8 0.090 0.16 0.354
width hq P4 8-15 0.405 -0.28 0.097
widthhg P4 0.25-3 0.144 -0.26 0.132
widthhq P4 15-30 0.706 0.03 0.877
widthhq P4 3-8 0.040 -0.08 0.634
tail Dq F3 8-15 0.000 0.04 0.802
tail Dq F3 0.25-3 0.489 0.20 0.245
tail Dq F3 15-30 0.220 0.01 0.949
tail Dq F3 3-8 0.177 -0.15 0.379
tail Dq F4 8-15 0.002 -0.29 0.084
tail Dq F4 0.25-3 0.034 0.23 0.175
tail Dq F4 15-30 0.220 0.15 0.385
tail Dq F4 3-8 0.338 0.03 0.842
tail Dq P3 8-15 0.300 -0.15 0.381
tail Dq P3 0.25-3 0.850 0.01 0.955
tail Dq P3 15-30 0.226 -0.01 0.943
tail Dg P3 3-8 0.002 -0.14 0.427
tail Dg P4 8-15 0.120 -0.32 0.058
tail Dg P4 0.25-3 0.838 0.03 0.856
tail Dq P4 15-30 0.604 -0.03 0.856
tail Dq P4 3-8 0.018 0.37 0.026
heightDg F3 8-15 0.000 0.10 0.577
heightDq F3 0.25-3 0.637 0.10 0.571
heightDq F3 15-30 0.102 0.13 0.454
heightDqg F3 3-8 0.040 -0.11 0.540
heightDg  F4 8-15 0.001 -0.34 0.040
heightDg F4 0.25-3 0.441 0.04 0.828
heightDg F4 15-30 0.084 0.17 0.329
heightDg F4 3-8 0.099 0.09 0.617
heightDg  P3 8-15 0.113 -0.19 0.267
height Dg  P3 0.25-3 0.900 0.04 0.801
height Dg  P3 15-30 0.011 0.15 0.392
heightDg  P3 3-8 0.004 0.07 0.670
height Dg P4 8-15 0.071 -0.30 0.078
heightDg P4 0.25-3 0.059 -0.05 0.788
heightDq P4 15-30 0.414 0.06 0.734
heightDg P4 3-8 0.018 0.03 0.856

Frequency ) Wilcoxon Pearsor\'s Corre.lavtion
Feature Channel signed rank p-  correlation coefficient
band (Hz) -

value coefficient pvalue
PSD F3 8-15 0.000 0.58 0.000
PSD F3 0.25-3 0.660 0.07 0.679
PSD F3 15-30 0.660 0.46 0.005
PSD F3 3-8 0.024 0.55 0.001
PSD F4 8-15 0.000 0.64 0.000
PSD F4 0.25-3 0.950 0.09 0.607
PSD F4 15-30 0.362 0.40 0.016
PSD F4 3-8 0.004 0.67 0.000
PSD P3 8-15 0.000 0.81 0.000
PSD P3 0.25-3 0.706 0.07 0.679
PSD P3 15-30 0.604 0.53 0.001
PSD P3 3-8 0.010 0.79 0.000
PSD P4 8-15 0.000 0.78 0.000
PSD P4 0.25-3 0.637 0.69 0.000
PSD P4 15-30 0.480 0.60 0.000
PSD P4 3-8 0.001 0.76 0.000
CPSD F3-F4 8-15 0.000 0.86 0.000
CPSD F3-F4 0.25-3 0.258 0.58 0.000
CPSD F3-F4 15-30 0.388 0.97 0.000
CPSD F3-F4 3-8 0.006 0.84 0.000
CPSD F3-P3 8-15 0.000 0.92 0.000
CPSD F3-P3 0.25-3 0.239 0.85 0.000
CPSD F3-P3 15-30 0.396 0.98 0.000
CPSD F3-P3 3-8 0.000 0.77 0.000
CPSD F3-P4 8-15 0.001 0.90 0.000
CPSD F3-P4 0.25-3 0.330 0.88 0.000
CPSD F3-P4 15-30 0.187 0.98 0.000
CPSD F3-P4 3-8 0.001 0.81 0.000
CPSD F4-P3 8-15 0.000 0.90 0.000
CPSD F4-P3 0.25-3 0.451 0.83 0.000
CPSD F4-P3 15-30 0.140 0.98 0.000
CPSD F4-P3 3-8 0.000 0.84 0.000
CPSD F4-P4 8-15 0.000 0.89 0.000
CPSD F4-P4 0.25-3 0.338 0.84 0.000
CPSD F4-P4 15-30 0.338 0.98 0.000
CPSD F4-P4 3-8 0.000 0.80 0.000
CPSD P3-P4 8-15 0.000 0.93 0.000
CPSD P3-P4 0.25-3 0.027 0.88 0.000
CPSD P3-P4 15-30 0.120 0.98 0.000
CPSD P3-P4 3-8 0.000 0.88 0.000
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B Significant results for QS variables

Statistically significant results from the Wilcoxon rank sum test in QS for each HIE
gradus and outcome group pair. We used Bonferroni correction for adjusting the
confidence level with the number of individual comparisons — instead of testing if the
feature differs between any of the three groups, we tested each pair individually. This
means that the used confidence level of o = 0.05 should be lowered to 0.05/3 ~ 0.017.
Grey background indicates a p-value < .05 while light red indicates < .017. The
rightmost column shows the relative variances with values > 0.2 highlighted in grey.

Frequency GRADUS OUTCOME Relative
Feature Channel )
band (Hz) -1l I- 1 -1 1-2 2-3 1-3 variance

AEC F3-F4 3-8 0.019 0.663 0.145 0.889 0.772 0.946 0.00
AEC F3-P3 8-15 0.466 0.945 0.278 0.043 0.105 0.911 0.00
AEC F3-P3 0.25-3 0.010 0.033 0.642 0.764 0.247 0.252 0.00
AEC F3-P3 15-30 0.378 0.070 0.028 0.307 0.056 0.200 0.00
AEC F3-P3 3-8 0.024 0.077 0.642 0.327 1.000 0.406 0.00
AEC F3-P4 0.25-3 0.029 0.002 0.780 0.920 0.093 0.200 0.01
AEC F3-P4 3-8 0.038 0.224 0.227 0.889 1.000 0.805 0.01
AEC F4-P3 3-8 0.038 0.281 0.515 0.238 0.487 0.875 0.00
PLV F3-F4 15-30 0.788 0.010 0.182 0.589 0.297 0.216 0.00
PLV F3-P4 0.25-3 0.024 0.063 0.780 0.002 0.037 0.458 0.01
PLV F3-P4 3-8 0.038 0.224 0.687 0.167 0.093 0.946 0.00
PLV F4-P3 3-8 0.046 0.207 0.687 0.704 0.385 0.736 0.00
wPLI F3-F4 0.25-3 0.539 0.113 0.369 0.307 0.049 0.185 0.03
wPLI F3-F4 15-30 0.318 0.094 0.024 0.704 0.271 0.157 0.00
wPLI F3-F4 3-8 0.099 0.801 0.402 0.039 0.562 0.669 0.02
wPLI F3-P4 8-15 0.466 0.191 0.278 0.484 0.049 0.076 0.01
wPLI F3-P4 15-30 0.135 0.033 0.182 0.952 0.271 0.406 0.01
wPLI F4-P3 0.25-3 0.234 0.008 0.088 0.180 0.487 0.007 0.03
wPLI F4-P3 15-30 0.848 0.566 0.687 0.063 0.028 0.381 0.00
wPLI F4-P3 3-8 0.010 0.801 0.088 0.289 1.000 0.357 0.02
wPLI F4-P4 8-15 0.008 0.051 0.003 0.222 0.148 0.033 0.01
wPLI P3-P4 8-15 0.026 0.012 0.515 0.674 0.105 0.144 0.01
wPLI P3-P4 15-30 0.205 0.029 0.010 0.645 0.072 0.033 0.01
wPLI P3-P4 3-8 0.539 0.148 0.059 0.238 0.037 0.003 0.02
NC F3 8-15 0.818 0.077 0.100 0.032 1.000 0.084 0.01
NC P4 8-15 0.300 0.242 0.828 0.075 0.028 0.637 0.01
NC P4 15-30 0.420 0.136 0.306 0.089 0.011 0.132 0.01
NC P4 3-8 0.250 0.302 0.877 0.043 0.082 0.605 0.01
peak hq F3 3-8 0.032 0.029 0.556 0.347 0.325 0.669 0.00
peak hq F4 3-8 0.046 0.012 0.251 0.952 0.247 0.200 0.00
peak hq P3 3-8 0.032 0.261 0.515 0.075 0.325 0.605 0.00
width hq F3 8-15 0.192 0.041 0.369 0.535 0.020 0.045 0.02
width hq P4 15-30 0.084 0.011 0.598 0.039 0.020 0.669 0.01
width hq P4 3-8 0.125 0.020 0.003 0.254 0.354 0.033 0.02
tail Dq F3 8-15 0.730 0.018 0.077 0.826 0.005 0.021

tail Dq F3 15-30 0.939 0.029 0.059 0.645 0.105 0.062 0.17
tail Dq F4 8-15 0.283 0.191 0.114 0.271 0.202 0.004

tail Dq P3 8-15 0.300 0.176 0.032 0.920 0.118 0.062 0.09
tail Dq P4 8-15 0.337 0.029 0.051 0.734 0.028 0.004 0.12
tail Dq P4 15-30 0.645 0.011 0.051 0.589 0.385 0.045 0.15
tail Dq P4 3-8 0.205 0.033 0.024 0.589 0.118 0.170 0.16
height Dg F3 8-15 0.490 0.002 0.028 0.535 0.001 0.002 0.06
height Dg F3 15-30 0.818 0.041 0.129 0.704 0.148 0.271 0.08
height Dg F4 8-15 0.591 0.176 0.204 0.289 0.132 0.004 0.07
height Dg F4 0.25-3 0.514 0.029 0.251 0.509 0.224 0.084 0.09
height Dg F4 15-30 0.099 0.449 0.077 0.389 0.202 0.033 0.07
height Dg  P3 8-15 0.730 0.103 0.145 0.368 0.037 0.234 0.07
height Dg P4 8-15 0.818 0.010 0.067 0.889 0.015 0.002 0.07
height Dg P4 15-30 0.220 0.004 0.100 0.509 0.082 0.132 0.05
height Dg P4 3-8 0.135 0.003 0.002 0.826 0.118 0.023 0.07




PSD F3 8-15 0.399 0.001 0.000 0.180 0.009 0.009
PSD F3 0.25-3 0.283 0.018 0.003 0.238 0.064 0.002
PSD F3 15-30 0.125 0.010 0.001 0.734 0.072 0.037 0.08
PSD F3 3-8 0.135 0.002 0.000 0.327 0.006 0.007
PSD F4 8-15 0.234 0.001 0.000 0.734 0.020 0.018
PSD F4 15-30 0.116 0.005 0.000 0.826 0.037 0.016 0.08
PSD F4 3-8 0.084 0.004 0.001 0.889 0.043 0.051
PSD P3 8-15 0.125 0.006 0.000 0.254 0.005 0.026
PSD P3 0.25-3 0.050 0.006 0.001 0.562 0.005 0.002
PSD P3 15-30 0.035 0.070 0.002 0.459 0.056 0.121 0.07
PSD P3 3-8 0.167 0.005 0.000 0.435 0.006 0.033
PSD P4 8-15 0.099 0.000 0.000 0.412 0.001 0.001
PSD P4 0.25-3 0.156 0.002 0.000 0.238 0.004 0.000
PSD P4 15-30 0.078 0.001 0.000 0.764 0.006 0.003 0.07
PSD P4 3-8 0.078 0.000 0.000 0.734 0.001 0.001
CPSD F3-F4 8-15 0.514 0.001 0.000 0.484 0.056 0.016 0.00
CPSD F3-F4 0.25-3 0.107 0.006 0.000 0.704 0.011 0.003
CPSD F3-F4 15-30 0.145 0.006 0.001 0.857 0.056 0.041 0.00
CPSD F3-F4 3-8 0.618 0.001 0.000 0.435 0.009 0.013 0.02
CPSD F3-P3 8-15 0.084 0.002 0.000 0.435 0.005 0.016 0.00
CPSD F3-P3 0.25-3 0.046 0.016 0.001 0.984 0.049 0.011
CPSD F3-P3 15-30 0.060 0.094 0.004 0.617 0.056 0.157 0.00
CPSD F3-P3 3-8 0.179 0.003 0.000 0.412 0.001 0.023 0.01
CPSD F3-P4 8-15 0.107 0.001 0.000 0.459 0.002 0.013 0.01
CPSD F3-P4 0.25-3 0.029 0.113 0.008 0.509 0.354 0.062
CPSD F3-P4 15-30 0.026 0.006 0.000 0.674 0.011 0.033 0.00
CPSD F3-P4 3-8 0.107 0.003 0.000 0.674 0.001 0.041 0.03
CPSD F4-P3 8-15 0.167 0.001 0.000 0.238 0.003 0.009 0.00
CPSD F4-P3 0.25-3 0.055 0.506 0.007 0.704 0.451 0.170
CPSD F4-P3 15-30 0.035 0.005 0.001 0.562 0.028 0.029 0.00
CPSD F4-P3 3-8 0.145 0.001 0.000 0.289 0.002 0.007 0.02
CPSD F4-P4 8-15 0.156 0.000 0.000 0.459 0.003 0.002 0.00
CPSD F4-P4 0.25-3 0.021 0.002 0.001 0.412 0.072 0.001
CPSD F4-P4 15-30 0.116 0.006 0.002 0.795 0.064 0.041 0.00
CPSD F4-P4 3-8 0.084 0.000 0.000 0.645 0.001 0.001 0.02
CPSD P3-P4 8-15 0.250 0.002 0.000 0.193 0.001 0.004 0.00
CPSD P3-P4 0.25-3 0.145 0.037 0.003 0.389 0.006 0.023
CPSD P3-P4 15-30 0.099 0.001 0.001 0.368 0.002 0.002 0.00
CPSD P3-P4 3-8 0.337 0.006 0.001 0.207 0.003 0.010 0.02
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C Significant results for AS variables

Statistically significant results from the Wilcoxon rank sum test for AS. The p-values
are presented for each HIE gradus pair and outcome group pair. We used Bonferroni
correction for adjusting the confidence level as described in Appendix B. Grey
background indicates a p-value that is smaller than 0.05 while light red indicates
smaller than 0.017. On the rightmost column presents the relative variances and the
ones that are over 0.2 are highlighted in grey.

Frequency GRADUS OUTCOME Relative
Feature Channel )
band (Hz) -1 -1 1-11 1-2 2-3 1-3 variance

AEC F3-F4 15-30 0.006 0.316 0.714 0.688 0.264 0.413 0.00
AEC F3-F4 3-8 0.002 1.000 0.429 0.949 0.440 0.488 0.00
AEC F3-P3 8-15 0.026 0.526 0.571 0.300 0.923 0.850 0.01
AEC F3-P3 15-30 0.007 0.421 0.571 0.568 0.791 0.659 0.00
AEC F3-P3 3-8 0.008 0.526 0.857 0.657 0.923 0.659 0.01
AEC F3-P4 0.25-3 0.039 0.526 0.286 0.244 0.440 1.000 0.02
AEC F3-P4 15-30 0.004 0.316 0.714 0.434 1.000 0.659 0.01
AEC F3-P4 3-8 0.017 0.632 0.857 0.626 0.549 0.413 0.01
AEC F4-P3 8-15 0.036 0.421 0.286 0.079 0.791 0.659 0.01
AEC F4-P3 15-30 0.010 0.316 0.571 0.568 0.549 0.571 0.01
AEC F4-P3 3-8 0.007 0.526 0.857 0.816 0.923 0.753 0.01
AEC F4-P4 15-30 0.036 0.421 0.429 0.320 0.791 0.950 0.01
AEC FA-P4 3-8 0.009 0.632 1.000 0.816 0.923 0.850 0.01
PLV F3-F4 3-8 0.036 0.526 0.286 0.949 0.791 0.488 0.00
PLV F3-P3 3-8 0.012 0.632 0.286 0.719 0.791 0.488 0.00
PLV F3-P4 0.25-3 0.002 0.632 0.429 0.060 0.791 0.284 0.01
PLV F3-P4 3-8 0.015 0.211 0.286 0.688 0.659 0.345 0.00
PLV F4-P3 0.25-3 0.036 0.105 0.286 0.212 0.198 1.000 0.01
PLV F4-P3 3-8 0.004 1.000 0.429 0.916 0.791 0.950 0.00
PLV F4-P4 3-8 0.024 0.947 0.571 0.882 0.659 0.488 0.00
wPLI F3-F4 0.25-3 0.327 0.421 0.143 0.816 0.022 0.051 0.04
wpPLI F3-F4 3-8 0.048 1.000 0.429 0.144 0.659 0.753 0.01
wPLI F3-P4 15-30 0.389 0.526 0.714 0.751 0.044 0.147 0.00
wpPLI F4-P4 15-30 0.043 0.632 1.000 0.434 0.791 0.950 0.01
wpPLI P3-P4 0.25-3 0.764 0.211 0.429 0.026 0.044 0.488 0.02
NC F3 8-15 0.133 0.842 0.571 0.112 0.044 0.089 0.01
NC P3 15-30 0.412 0.211 0.286 0.019 0.549 0.068 0.01
NC P4 3-8 0.024 0.737 0.286 0.122 0.659 0.659 0.01
peak hq P3 3-8 0.011 0.737 1.000 0.182 0.264 0.186 0.00
width hq F3 3-8 0.029 0.421 0.571 0.539 0.659 0.950 0.01
width hq P4 3-8 0.412 0.526 0.286 0.983 0.022 0.051 0.02
tail Dg F3 15-30 0.003 0.316 1.000 0.751 0.923 0.659 0.08
tail Dg P3 15-30 0.032 0.947 0.286 0.197 0.088 0.345 0.19
heightDg F3 15-30 0.029 0.105 0.429 0.539 0.549 0.850 0.02
height Dg P3 15-30 0.459 0.842 0.714 0.122 0.044 0.068 0.06
PSD FA 8-15 0.412 0.526 0.286 0.244 0.132 0.038

CPSD F3-F4 8-15 0.389 0.842 0.286 0.688 0.088 0.027 0.01
CPSD F3-P3 0.25-3 0.043 0.105 0.286 0.626 0.132 0.231

CPSD F3-P3 3-8 0.043 0.737 0.286 0.882 0.549 0.659 0.09
CPSD F3-P4 0.25-3 0.019 0.316 0.286 0.485 0.791 0.488

CPSD F3-P4 15-30 0.015 0.632 0.143 0.751 0.549 0.850 0.00
CPSD F4-P3 8-15 0.036 0.947 0.429 0.719 0.440 0.284 0.01
CPSD F4-P3 0.25-3 0.017 0.947 0.429 0.539 0.264 0.186

CPSD F4-P3 15-30 0.032 0.632 0.143 0.657 0.791 0.413 0.00
CPSD F4-P3 3-8 0.024 0.947 0.143 0.783 0.440 0.488 0.09
CPSD F4-P4 0.25-3 0.048 0.842 0.429 0.783 1.000 0.950

CPSD F4-P4 3-8 0.048 0.526 0.286 1.000 0.791 0.753 0.08
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