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1. Introduction 

Basically all companies and public agencies are faced with decisions of allocat-
ing limited resources among organizational categories and selecting which 
projects and/or actions to pursue within those categories. Although economic 
calculations tend to drive many business decisions, multiple objectives, stake-
holders and/or constraints must often be accounted for. Moreover, in many 
application domains there are no “natural” and unanimously recognized 
measures to monetarize (all) impacts and considerations relevant in these 
kinds of complex decisions. By definition, methods and tools of Multiple Crite-
ria Decision Analysis (MCDA) are designed to provide decision support for 
such problems (e.g., Keeney and Raiffa, 1976; Keeney, 1992; Belton and Stew-
art, 2002; Edwards et al., 2007). Portfolio Decision Analysis (PDA) is a rela-
tively newly established research field, although it has long roots in early capi-
tal budgeting and project selection models dating back to the 1960’s (an over-
view in, e.g., Salo et al., 2011), and it has been recognized to account for a sig-
nificant share of commercial decision analysis consulting (Kleinmuntz, 2011). 
 

The distinguishing feature of PDA is in the paradigm of portfolio choice: the 
task is to choose a combination of items, a subset from a large pool of candi-
dates instead of a single alternative, which has traditionally been the standard 
set-up in most (multi-criteria) decision analysis literature. The range of re-
ported PDA applications is extensive and growing, spanning areas such as mil-
itary planning and procurement (Ewing et al., 2006; Burk and Parnell, 2011; 
Kangaspunta et al., 2012), healthcare capital budgeting (Kleinmuntz and 
Kleinmuntz, 1999; Kleinmuntz, 2007), R&D portfolio management (Golabi et 
al., 1981; Peerenboom et al., 1989; Heidenberger and Stummer, 1999; Stum-
mer and Heidenberger, 2003), environmental planning (Peerenboom et al., 
1989; Bryan, 2010; Lahtinen et al., 2016), public sector resource allocation 
(e.g., Phillips and Bana e Costa, 2007) and air traffic management (Grushka-
Cockayne et al., 2008). Interestingly, the seminal overviews in PDA (Salo et 
al., 2011; Morton et al., 2013) call for further research, and experiences in the 
recurrent use of PDA models to foster the practical usability and integration of 
PDA methods within organizational decision making. 
 

Infrastructure asset management refers to monitoring, strategic planning, 
project selection and procurement of the construction and maintenance of 
(mostly public) infrastructures. This Dissertation considers transportation 
infrastructure, more specifically road network assets, but buildings, under-
ground pipings and transmission networks are just a few examples of infra-
structure asset networks with similar characteristics. Imposing new invest-
ments or major expansions tend to gain most public attention and news cover-
age, but maintenance and smaller re-investments of the existing asset base 
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often consume a larger share of the responsible agencies’ resources and have a 
wider reach in terms of geography and the number of individual stakeholders 
impacted (e.g., OECD, 2008). 
 

Infrastructure asset management decisions are taken at roughly two main 
levels: (i) the network level, where the focus is on aggregate quality distribu-
tions and performance indicators of the assets and the task is to set targets and 
allocate resources among asset categories and main types of invest-
ments/expenditures, and (ii) program level, where the task is to select mainte-
nance projects and actions to annual maintenance programs subject to con-
straints set on the higher level. The network level decisions are inherently 
more strategic because they address longer time horizons, consider fairly 
broad and fundamental objectives and involve different kinds of alternatives 
that contribute to the same overall objectives and compete for the same re-
sources. The programming level decisions typically deal with tens or hundreds 
of concrete candidates, there is more detailed data available, and the outcomes 
of the decisions are clearly visible in the following year when the actual 
maintenance works take place (Sinha and Labi, 2011). 
 

There is a long tradition of models and formal practices to monetarize travel 
time, safety and vehicle costs, among others, to enable cost/benefit analysis of 
transportation infrastructure investments. However, these ‘driving cost’ mod-
els are generally not very well applicable to maintenance (e.g, Kulkarni et al., 
2004); consequently systematic and transparent approaches for understand-
ing and analyzing the inevitable trade-offs between multiple objectives have 
been called for in discussions with the Finnish road authorities as well as in-
ternationally (NCHRP, 2005; Krugler et al. 2007). Thus, transportation infra-
structure asset management seems to offer a fertile domain for PDA applica-
tions.  
 

This Dissertation develops a novel multi-criteria portfolio decision analysis 
methodology and reports two practical applications at the Finnish Transport 
Agency (FTA). One of the applications is at the strategic network level, the oth-
er at the project portfolio selection level. Responding to the call for repeated 
applications, the project portfolio selection model found its way to FTA’s an-
nual bridge maintenance decision making practice, and it was reused in the 
organization for six consecutive years. Specifically, the developed Robust Port-
folio Modeling (RPM) methodology extends the use of incomplete information 
about criterion weights and project evaluation scores from its earlier single 
choice setting to portfolio problems and develops ways to convert this infor-
mation into decision recommendations about individual project choices based 
on a comprehensive comparison of full portfolios. The RPM is also applied to 
ex post evaluation of projects in a national innovation program as well as ex-
tended methodologically to enable project interdependencies and incomplete 
project cost and budget information – practically motivated extensions await-
ing for applications in further research. 
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The rest of this summary article is structured as follows: Section 2 discusses 

the methodological foundations of the RPM methodology development. Sec-
tion 3 summarizes the contributions of the Papers [I]-[V]. Section 4 discusses 
the implications and generalizations of the lesson learned. Section 5 concludes 
and suggests avenues for further research. 

2. Methodological background to  
project portfolio selection 

Multi-Criteria Portfolio Decision Analysis (MCPDA) for project selection is a 
substream of the more general PDA (Salo et al., 2011; Morton et al., 2013). 
This Dissertation focuses on the linear-additive variant of portfolio value mod-
elling without probabilistic uncertainty about the project outcomes. Thus, the 
basic set-up is to choose a subset of projects in the light of multiple evaluation 
criteria subject to the available budget and possibly other portfolio constraints. 
The problem is often referred to as multi-criteria project prioritization and 
approached with relatively straightforward scoring models accompanied with 
the logic to choose projects in descending order of the benefit/cost ratio until 
the budget is exhausted (e.g., Henriksen and Traynor, 1999; Archer and 
Ghasemzadeh, 1999; Cooper et al., 1999; 2001; Phillips and Bana e Costa, 
2007). However, this approach does not extend to multiple portfolio con-
straints. Linear Programming (LP), on the other hand, is a powerful standard 
tool that captures multiple linear constraints and has been used in capital 
budgeting problems for decades (see, e.g., Salo et al., 2011 for an overview). 
 

Throughout this Dissertation, the overall multi-criteria value of an individual 
project or other unit of analysis is modelled by an additive value function 
based on the Multi-Attribute Value Theory (MAVT; e.g., Keeney and Raiffa, 
1976; French, 1986; Belton and Stewart, 2002). Assuming preferential inde-
pendence of the evaluation criteria, each project’s overall value is represented 
as a weighted sum of the project’s criterion-specific scores, where the scores 
are possibly non-linear mappings of the measure scale to the criterion-specific 
value scale and the weights represent the relative importance of the criteria, 
more specifically, the relative value increase associated with increasing the 
criterion-specific performance from its worst level to its best. The additive val-
ue model provides an easy-to-understand analytical structure of the problem. 
Often it provides a satisfactory approximation of the preference structure, and 
has been employed in countless practical applications (see, e.g., overviews by 
Keefer et al., 2004; Hämäläinen, 2004). 
 

Golabi et al. (1981) derive a measurable value function for project portfolios 
and show that under certain preferential independence assumptions the over-
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all value of a project portfolio can be expressed as the sum of the values of the 
projects it contains. Recently, a more general class of portfolio value functions 
has been developed (Liesiö, 2014), while methods and applications in this Dis-
sertation build on the linear-additive portfolio value model. Combined with a 
set of linear constraints, such as the budget, the problem to maximize the mul-
ti-criteria overall value of a project portfolio (and thus to select the optimal 
projects) can be formulated as an Integer Linear Programming (ILP) problem 
in which each project-specific decision variable assumes a value 1, if the pro-
ject is included in the portfolio and 0 otherwise (e.g., Stummer and Hei-
denberger, 2003; Bertsimas and Tsitsiklis, 1997). This formulation implicitly 
sets the baseline value of each project to zero, i.e., the value associated with 
not choosing the project – a topic that has attracted attention recently (e.g., 
Clemen and Smith, 2009; Morton, 2010; Liesiö and Punkka, 2014; Morton, 
2015). A fundamentally similar value model is applied also in Paper [IV], alt-
hough there the decision variables are continuous amounts of asset units in 
different classes (cf. states in Markov Chains) in each period. 
 

The solution to the aforementioned ILP problem can be obtained with a 
standard MILP solver and it typically provides a unique 0/1 solution of which 
projects to choose and which not. However, it does not provide any insight into 
which projects may be “close” to entering the portfolio if the model parameters 
change a little or how to construct a new solution if the decision maker were to 
divert from the suggested solution due to external factors not captured in the 
formal mathematical model, for example. The model with such complete in-
formation can serve its purpose well, particularly if there is a chance to organ-
ize an interactive session with decision makers (e.g., Decision Conferencing, 
Phillips, 2007; Phillips and Bane e Costa, 2007) where on-the-fly computa-
tions can be carried out to support post-optimal sensitivity analyses or to test 
the impacts of forcing particular projects in or out of the portfolio, for example 
(e.g., Kleinmuntz, 2007). However, several approaches have been developed to 
study the robustness of the decision recommendations and to support the elic-
itation of preference statements for comparable multi-criteria decision analy-
sis with the single choice paradigm (e.g, Salo and Hämäläinen, 2010). Thus, it 
seems natural to extend these approaches to portfolio models. 
 

Preference Programming methods build on the MAVT and model incom-
plete information about the criterion weights and scores (Salo and Hämä-
läinen, 2010 for an overview and summary; selected early developments and 
recent advances, e.g., Kirkwood and Sarin, 1985; Hazen, 1986; Weber, 1987; 
Arbel, 1989; Rios Insua and French, 1991; Salo and Hämäläinen, 1992; 1995; 
2001; Salo and Punkka, 2005; Mustajoki and Hämäläinen, 2005; Punkka and 
Salo, 2013; 2014). Incomplete information is modelled by imposing a set of 
linear constraints on the criterion weights that are consistent with the elicited 
preference statements. Typical statements are concerned with (possibly in-
complete) rank-ordering of the importance of the criteria: for example criteri-
on 1 is the most important one and criteria 5 and 6 are the two least important 
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ones, i.e., among the bottom two without stating which one is ahead of the 
other. These statements translate into constraints that the weight of criterion 1 
must be (pairwise) higher than or equal to all other weights and that the 
weights of criteria 5 and 6, respectively, cannot exceed any of the weights of 
criteria 1-4. Project scores are modelled as real-valued intervals wide enough 
to cover the ‘true’ values. 
 

Dominance is a central concept in Preference Programming: an alternative is 
dominated, if there exists another feasible alternative that yields higher or 
equal overall value with all feasible weights and scores, and strictly higher with 
some. One can assume that a rational decision maker would not choose a dom-
inated alternative, wherefore focus can be put on the set of non-dominated 
alternatives. Additional information refers to reducing the set of feasible 
weights and scores. Due to the linearity of Preference Programming, this addi-
tional information can only reduce the set of remaining non-dominated alter-
natives, thus enabling a gradual elicitation of information until a single non-
dominated alternative has been found. Several decision rules have also been 
developed to propose robust alternatives whose value performs reasonably 
well across the feasible parameter region (e.g., Punkka and Salo, 2014). 
 

The methodological development in this Dissertation extends Preference 
Programming methods to portfolio problems. With incomplete information, 
there is typically no unique solution to the portfolio ILP problem, but the set of 
non-dominated portfolios needs to be computed as basis of further analyses. 
The dominance relations are defined on a pairwise basis. The number of pos-
sible portfolios grows exponentially with the number of projects, wherefore the 
explicit enumeration of all combinations and pairwise comparisons between 
them is computationally intractable (e.g., Stummer and Heidenberger, 2003). 
Thus, the extension to portfolio problems constitutes a computational chal-
lenge that has been addressed by the field of Multi-Objective Zero-One Linear 
Programming (MOZOLP; Bitran, 1977; Villareal and Karwan, 1981; Kiziltan 
and Yucaogly, 1983). Furthermore, the possibly vast number of non-
dominated portfolios, which overlap in their project composition, challenges 
the established processes for presenting results and guiding further analysis 
within the single choice paradigm where the number of alternatives is typically 
very limited. 
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3. Contributions and structure of the 
Dissertation 

Table 1 summarizes the contributions of Papers [I] – [V]. Papers [I] and [II] 
present methodological developments, which establish the fundamental prin-
ciples, definitions and computations of the Robust Portfolio Modeling (RPM) 
methodology. Papers [III] and [IV] are applications in the field of infrastruc-
ture asset management; Paper [III] focuses on project portfolio selection with 
the RPM methodology and Paper [IV] focuses on resource allocation at the 
strategic network level with a novel combination of standard Operational Re-
search (OR) methods. In addition, Paper [III] makes a methodological contri-
bution by presenting an approximative computational algorithm for large 
RPM problems. Paper [V] is an RPM application focusing on ex post project 
performance evaluation in innovation management, and it shares some struc-
tural and processual characteristics with the application in Paper [III]. 
 

More specifically, Paper [I] establishes the Robust Portfolio Modeling (RPM) 
methodology that extends Preference Programming methods to portfolio prob-
lems where a subset of projects is selected in view of multiple project evalua-
tion criteria and portfolio constraints such as the available budget. The portfo-
lio value model is linear-additive, i.e., the sum of the weighted sums of the 
selected projects’ criterion weights and scores. The value model follows the 
multi-criteria project portfolio optimization model of Golabi et al. (1981) as 
well as the additive project value model applied in Preference Programming. 
The novelty of RPM lies in the combination, i.e., the introduction of incom-
plete information about the projects’ scores and criterion weights into portfo-
lio problems. Adopted from Preference Programming, the incomplete infor-
mation is captured by set inclusion, which is often elicited as ordinal state-
ments about the relative importance of the criteria and interval-valued evalua-
tions of the project scores. 
 

The use of incomplete information can be generically seen as a proactive or 
embedded global sensitivity analysis: instead of eliciting fixed input parame-
ters for a starting point (which typically results into a unique optimum solu-
tion, followed by post-optimal sensitivity analysis around this solution param-
eter by parameter), the incomplete information approach begins with a broad-
er set of feasible input parameters, advises what partial conclusions can be 
drawn based on such information and guides the efforts to elicit additional 
(more detailed) information to resolve the pending ambiguity/flexibility and 
make final choices between the remaining candidate projects.  
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Table 1. Summary of the Papers 

 Research objectives Methodology Main results 

[I] Methodology develop-
ment: Apply and extend 
Preference Program-
ming principles to pro-
ject portfolio selection 
problems. 

Multi-Attribute Val-
ue Theory, incom-
plete weight and 
score information 
modeled via linear 
constraints, multi-
objective multi-
dimensional knap-
sack problem (with 
interval valued objec-
tive function coeffi-
cients). 

Establishment of the 
RPM methodology; 
computation of non-
dominated portfolios, 
the concept of project-
specific core index and 
principles of the deci-
sion support process 
and robust decision 
recommendations. 

[II] Methodology develop-
ment: Extend the RPM 
methodology to account 
for project interdepend-
encies, incomplete cost 
information and varia-
ble budget levels. 

RPM methodology 
and multi-objective 
zero-one linear pro-
gramming (with in-
terval-valued objec-
tive function coeffi-
cients). 

More comprehensive 
modeling of portfolio 
features, budget-
depended core index, 
cost/benefit analysis on 
portfolio level; compu-
tation of all efficient 
(non-dominated) port-
folios to replace and 
extend the computation 
in paper [I]. 

[III] Application in infra-
structure asset man-
agement: Build an RPM 
model and repeated 
process to support real-
life decision making in 
selecting projects 
(bridges) to annual 
maintenance portfolios 
out of hundreds of pro-
ject candidates. 

RPM methodology; 
Monte Carlo simula-
tion and mixed inte-
ger linear program-
ming. 

Repeated RPM applica-
tion adopted into oper-
ational decision making 
practice at the Finnish 
Transport Agency. 
Methodologically, a 
new approximative 
algorithm for compu-
ting non-dominated 
portfolios in large RPM 
problems. 

[IV] Application in infra-
structure asset man-
agement: Build a multi-
criteria model and facil-
itate senior workshops 
to support top level 
resource allocation be-
tween asset classes and 
maintenance or invest-
ment types. 

Multi-Attribute Val-
ue Theory, linear 
programming, Mar-
kov chains, Monte 
Carlo simulation. 

A model and approach 
to systematically struc-
ture and yield decision 
support to one of the 
main aggregate-level 
challenges at national 
transportation agen-
cies. A novel combina-
tion of standard OR 
methods. 

[V] Application in innova-
tion management: Build 
an RPM model to iden-
tify subsets of out- and 
underperforming pro-
jects in ex post evalua-
tion and explore con-
nections to ex ante fac-
tors to explain the per-
formance. 

RPM methodology; 
statistical interfer-
ence. 

A demonstration that 
the RPM can be applied 
generically in various 
contexts and decision 
making or portfolio 
evaluation settings that 
feature data on multiple 
evaluation criteria and 
a large set of projects or 
other evaluation items. 
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Towards this end, Paper [I] establishes several important concepts, mainly 

elaborated from the single choice setting in Preference Programming to the 
portfolio setting in RPM. The exact definitions and proofs are developed with-
in the RPM methodology, but the concepts and the analysis logic are applica-
ble beyond the RPM and even beyond formal mathematical models to every-
day decision making and normative analysis. 
 

In Paper [I], first, under incomplete information it is rational to search for 
and focus on non-dominated solutions. In RPM, the non-dominated portfolios 
are feasible combinations of projects for which there does not exist another 
feasible portfolio that would yield an equal or higher overall value with all fea-
sible weights and scores. A non-dominated portfolio does not necessarily yield 
the highest value with any feasible parameters; for instance a portfolio that 
ranks second across the whole feasible region would be deemed a robust 
choice facing the uncertainty. Second, perhaps the most characteristic concept 
of RPM is the project-specific core index. The core index translates the portfo-
lio level results to project level so that, by definition, for each project it is the 
share of non-dominated portfolios that contain the particular project. In par-
ticular, the core index is utilized to identify subsets of core projects that are 
included in all non-dominated portfolios, exterior projects included in none 
and borderline projects included in some, but not all non-dominated portfoli-
os. Thus, as for decision recommendations, the core projects can be deemed as 
certain choices and the exterior projects can be discarded from further analy-
sis. The third key concept in RPM is the additional information, and, more 
specifically, the insight that the elicitation of additional information can be 
focused only on narrowing the borderline projects’ score intervals and/or giv-
ing more conclusive statements on the criterion weights. In RPM, additional 
information corresponds to further preference statements that reduce the fea-
sible set of weights and scores (referred to as the information set). Paper [I] 
contains a proof showing that such additional information can only reduce the 
set of non-dominated portfolios, wherefore the (inclusion) status of the previ-
ously identified core and exterior projects cannot change and thus the focus 
should be eyed on the borderline projects. Paper [I] also outlines a staged deci-
sion support process, in which it is encouraged to start with broad preference 
statements and wide score intervals, and to gradually elicit additional infor-
mation focusing on the borderline projects to converge towards a unique port-
folio. 
 

Paper [II] extends the RPM methodology to account for (i) project interde-
pendencies, (ii) incomplete cost information and (iii) variable budget levels. It 
retains the key features of RPM from Paper [I], but the extensions permit 
more comprehensive modelling of project synergies and other mutual interde-
pendencies as well as allow interval-valued project costs and portfolio-level 
cost/benefit analysis. The interdependencies, such as value synergies or mutu-
al exclusivity, are modelled via linear constraints and in some cases with 
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dummy projects (e.g., Stummer and Heidenberger, 2003). However, in RPM 
the synergy values, too, can be given as intervals and their role in the non-
dominated portfolios can be analysed with the corresponding dummy projects’ 
core indexes similarly to the ordinary projects. The possibility to use value 
intervals is relevant particularly when modeling synergies, which may often be 
even more uncertain than the concrete project evaluations. With the exten-
sions developed in Paper [II] one can, for example, express that certain syner-
gies may or may not occur by setting an interval with a zero lower bound and 
an optimistic scenario as an upper bound. 
 

The issues of uncertain (i.e., incomplete) cost information and varia-
ble/flexible budget level are relevant in practical project portfolio decisions. 
Towards this end, Paper [II] admits interval-valued cost estimates as an input 
parameter and develops the concept of efficient portfolios, which can be seen 
as an extension of the non-dominated concept in the face of incomplete cost 
and budget information. Given an information set of feasible criterion weights, 
project scores and project costs, a portfolio is efficient, if no other feasible 
portfolio gives a higher overall value at a lower cost. The portfolio efficiency 
analysis yields two key results for the decision makers: First, a benefit-cost 
band that describes the upper and lower bound of overall value that non-
dominated portfolios can assume at different levels of the total budget. A tradi-
tional counterpart to this band would be a cumulative benefit-cost curve ob-
tained by maximising the portfolio value with fixed parameter values (com-
plete information) and gradually increasing total budget. Second, the portfolio 
level results are again taken to the project level by the core index. However, in 
Paper [II], it is defined as the budget-depended core index, which allows an 
analysis of how each project’s core index evolves as a function of the total 
budget. These two benefit-cost analyses results can be utilized to support the 
determination of both the preferred size of the portfolio and its project compo-
sition. 
 

From the computational point of view, the extensions in Paper [II] are made 
possible by relaxing the non-negativity assumptions of the objective function 
coefficients and constraints that were vital in Paper [I]. Paper [II] develops a 
novel Multi-Objective Zero-One Linear Programming (MOZOLP) algorithm 
with interval-valued objective function coefficients for the computation of effi-
cient portfolios in RPM. The new algorithm outperforms and replaces the one 
developed in Paper [I], making it the prevailing method of computing (exactly) 
all efficient portfolios in RPM. 
 

Paper [III] reports an extensive application in the field of infrastructure asset 
management. More specifically, it develops and applies an RPM model to sup-
port bridge maintenance portfolio selection where tens of bridges out of hun-
dreds of candidates are selected into annual rehabilitation/re-investment port-
folios in view of multiple evaluation criteria and portfolio constraints. The ap-
plication was developed with the Finnish Transport Agency (FTA) for five of its 
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administrative regions, whose bridge maintenance managers used the RPM 
results to support their selection decisions that led to actual investments and 
visible maintenance actions. As an indication of the perceived added value and 
actual use, the model results were updated upon request annually with fresh 
measurement data for six consecutive years. The repeated application also 
gave a unique track record of structurally unchanged (updated) model data 
and corresponding evolution of the core index results. Such data allowed us to 
make longitudinal analysis of how the core index results were “followed” or 
not. In comparison with the broad spectrum of portfolio modeling possibilities 
introduced in Paper [II], the model itself in Paper [III] is rather straightfor-
ward, applying only the basic concepts of RPM. The key deliverable result was 
the core index value ranking of the bridges, accompanied with the underlying 
criterion scores and other measurements as raw data. Thus, rather than in the 
intricacies or complexity of the mathematical model, the relevance of this pa-
per stems from the art of practical application and lessons learned in process, 
many of which extend to other application fields of RPM or other PDA meth-
ods. 
 

From the model structuring point of view the key characteristics of the Paper 
[III] application were (i) the large problem size, i.e., ranging from nearly 200 
to over 600 candidate bridges per region, (ii) the requirement to build the 
model on existing data and factors available in the national bridge inventory 
database, because it would not have been feasible to assume any new bridge-
by-bridge measurements or expert judgements conducted for such a broad set 
of alternatives, and (iii) an early recognition of the tacit knowledge that would 
not be captured by the quantified factors and of the possible timing-related 
connections to other assets’ maintenance programs. This made it clear at the 
outset that the RPM model would not be used for a complete quantification of 
the whole decision problem, but rather to deliver a systematic approach to 
support multi-criteria prioritization of the large data mass at the heart of port-
folio planning. Such characteristics are common in a wide range of practical 
PDA applications, wherefore the set-up provides a research platform from 
which to draw generalizable conclusions. 
 

The findings of Paper [III] suggest that (i) the key concepts of RPM, most no-
tably the incomplete information, non-dominated portfolios and the core in-
dex can be well understood and adopted by decision makers with limited expe-
rience in decision analysis, (ii) even inconclusive results – be it the core index 
listing of RPM, a partial ranking (Salo and Punkka, 2014), clustering/sorting 
(Zopounidis and Doumpos, 2002) or another form of indicative prioritization 
– can offer an attractive value-to-effort ratio and lead to a better fit with the 
needs and realities of organizational decision making than the aim to provide a 
single ‘optimal’ portfolio subject to the information available at the time of the 
analysis intervention, and (iii) useful RPM models can be built on limited ex-
isting data even if this data does not meet all the requirements of an ideal set 
of measurable attributes (see, e.g., Keeney, 1992) by involving the decision 



Contributions and structure of the Dissertation 

17 

makers into the model structuring process and running at least one iteration 
round where the DMs can holistically assess and reflect the key results of the 
proposed model. Apart from paving the way towards a model that fits the pre-
vailing decision making practices, such involvement and iteration supports 
buy-in even if the results include a few anomalies or exceptions that motivate 
decisions that divert from the recommendations of the formal model. In the 
repeated application, the managers learned to read the updated results in a 
way that best supported their decision making – the extended set of results 
(including complementary data on each bridge, not just the model parameters 
and/or blind core index values) played an important in this respect. 
 

As a methodological contribution, Paper [III] develops an approximate algo-
rithm for the computation of non-dominated portfolios in RPM. The dynamic 
programming algorithm developed in Paper [II] was not computationally ca-
pable for solving the problem with hundreds of projects. The new approxima-
tive algorithm is based on a weighted max-norm distance to a utopian portfo-
lio (which has a higher overall value than any feasible portfolio for all feasible 
scores and weights) instead of straightforward maximization of the portfolio 
value, wherefore it can find also non-dominated portfolios that are not neces-
sarily optimal with any feasible parameter combination (cf., unsupported effi-
cient solutions in multiple objective optimization, see, e.g., Bowman, 1976; 
Miettinen, 1999). It is proven that all the solutions generated by the algorithm 
are non-dominated, but it cannot be guaranteed that all non-dominated port-
folios are found – hence the notion approximative. The algorithm draws ran-
domly generated weights for the max-norm dimensions and project scores and 
solves a Mixed Integer Linear Programming (MILP) problem in each round. 
The typical computations carried out in Paper [III] took about one hour (Dual-
core, 1.8 Ghz, 1 GB memory), and consequently the algorithm is practically 
feasible at least for the tested 200-600 project problems, but it would not sup-
port on-the-fly computations in live workshops with the decision makers, for 
example. 
 

Paper [IV] is a resource allocation application focused on a higher hierar-
chy/aggregation level in infrastructure asset management, i.e., the budget allo-
cation between asset classes and types of maintenance activities. More specifi-
cally, the focus was on the overall maintenance and rehabilitation of the road 
network. This high level allocation is particularly challenging, because the as-
sets and activities as well as their direct impacts and relevant time horizons are 
quite different – yet they serve joint fundamental objectives to secure mobility 
both short and long term and they compete for the same funding pool. Thus, 
systematic and transparent decision support has been called for (e.g., NCHRP, 
2005; Krugler et al., 2007). The application developed in Paper [IV] does not 
explicitly involve the RPM methodology, but it does combine a multi-attribute 
value model with incomplete preference information and a (dynamic) optimi-
zation model, analyzed in workshops with the Finnish Road Administration’s 
senior managers to facilitate exploratory discussions about the funding levels 
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and possible departures from the status quo. The case study was recognized as 
a Finalist for the INFORMS Decision Analysis Society Practice Award1 in 2007. 
 

Key features of the model are (i) an additive value model that spans over a 
quality class distribution describing the status of the particular subnetwork, 
i.e., the value model was built on the quality classes and the quantity of, e.g., 
road kilometers in each class, (ii) a Markov chain model to describe the deteri-
oration of the quality (distribution) over time and the rehabilitating impacts of 
maintenance actions that were connected to the funding decisions (cf., Golabi 
et al., 1982; Golabi and Shepard, 1997), and (iii) a Linear Programming model 
that ties the two together, technically by maximizing the linear-additive overall 
value subject to constraints that captured the deterioration-improvement dy-
namics and other portfolio constraints, to yield dynamic resource allocation 
recommendations for the funding of the different specified activities. As a pro-
active sensitivity analysis, incomplete information based on a partial rank-
ordering of the relative importance was applied to the criterion weights, and 
the results were also studied in the extreme points of the feasible weight region 
to explore a broad spectrum of the solution space. 
 

The key findings and contributions of Paper [IV] are (i) the model itself, 
which combines innovatively several standard Operations Research methods – 
fitted into a largely pre-set problem structure and data – to tackle a long-
standing strategic challenge calling for methodological support, (ii) the case-
specific strategic insights and their enthusiastic uptake by senior management, 
most notably the quantification and analytical backbone to many implicitly 
recognized issues provided in an aggregate level analysis as well as a clear 
highlighting of the key trade-offs faced in the allocation decisions, and (iii) 
similarly to Paper [III], a demonstration that the concepts of incomplete in-
formation and relatively straightforward PDA model components are well un-
derstood and accepted by decision makers with limited background in decision 
analysis, and (thus) even non-exhaustive models yielding only partial or indic-
ative conclusions can be valuable in complex practical applications. 
 

Paper [V] shifts the perspective to another context by reporting how RPM 
was applied to ex post analysis of an innovation program data. An RPM model 
was built, including a multi-criteria model span over the funded projects’ ex 
post performance evaluation data and incomplete information about the crite-
rion weights. The core index was utilized to identify sets of out- and underper-
forming projects (basically the core and exterior projects). The corresponding 
recorded ex ante characteristics of the two sets were compared and statistical 
interference accompanied with expert judgement by the program manager 
were applied to explore significant causal relationships between ex ante indi-
cators and ex post performance to facilitate understanding and possibly sup-
port better project selection in similar programs in the future. The application 

                                                           
1 https://www.informs.org/Recognize-Excellence/Community-Prizes-and-Awards/Decision-
Analysis-Society/DAS-Practice-Award  - Past Awardess 
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shares characteristics with Papers [III] and [IV] in the sense that value model 
was set to be built on an existing set of data and only the criterion weights 
were subjected to judgement (whereby incomplete information was applied). 
Thus, this application fosters the notion that in practical applications the mod-
el often has to fit to the existing structure and data, which may force to com-
promise some of the assumptions and ideal procedures to build (value) mod-
els. As a key contribution to this Dissertation, Paper [V] demonstrates that 
RPM and its key concepts can be applied to ex post evaluation and in other 
contexts as well, although the determination of the out- and underperforming 
projects could have been conducted with other methods as well (for example, 
the ranking interval approach introduced by Punkka and Salo, 2014). In addi-
tion, this application fosters the observation that the concepts of incomplete 
information and the core index can be readily understood and adopted in 
practical applications. 

4. Discussion and lessons learned 

The Dissertation presents strong concepts that are widely applicable in portfo-
lio decision analysis – and even more broadly in generic quantitative (busi-
ness) analysis. In this Dissertation, incomplete information, non-dominated 
solutions, the core index and additional information have been extend-
ed/developed and successfully applied in the context of multi-criteria project 
portfolio selection, but their key ideas extend in different variants to other con-
texts as well. In general one could even ask that, if (and when) easy-to-use 
methods and computational tools for proactive sensitivity/robustness analysis 
do exist, why should any quantitative analysis be conducted with fixed param-
eter values and post-optimal sensitivity analysis? Experiences from the appli-
cations suggest that the approach to enter the analysis with incomplete infor-
mation, guided exploration of initial results derived from the non-dominated 
solutions and focused elicitation of additional information, if even needed, is 
well understood and supported by decision makers with limited prior exposure 
to mathematical (decision) analysis. Taken to other business contexts, a simple 
Monte Carlo simulation of a cash flow model with uncertain input parameters 
and subsequent analysis of the NPV and IRR distributions and the most im-
portant risk factors, for example, is a generic example of applying somewhat 
similar concepts in a perhaps more familiar setting to many business users. 
The RPM methodology provides a structure to apply these universal concepts 
and implement the decision support process in multi-criteria project portfolio 
problems. 
 

As a highlight of the RPM methodology, the concept of the core index is par-
ticularly suitable to project portfolio problems, because it translates portfolio-
level results (set of non-dominated portfolios) to project level and steers the 
focus on perhaps the most boiling question in such assignments: which pro-
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jects to choose and which not. More generally, the core index and its related 
decision recommendations demonstrate the philosophy to enter analysis with 
incomplete information and see what partial conclusions can be drawn based 
on it already; for example, what parts of the solution can be “locked” and what 
parts are affected by or dependent on the remaining uncertainty. Even if the 
uncertainty is not “resolved” and the analysis would not converge to a unique 
solution, the ability to cluster the problem to certain and uncertain parts can 
be highly valuable particularly in large problems – identification of the cer-
tainly “no” may be as valuable as the certainly “yes”. Furthermore, methodo-
logically guided support to focus the efforts of acquiring additional infor-
mation only on the parameters where these really matter should save time and 
add efficiency to the decision making process. 
 

As for suitable application contexts for RPM and multi-criteria PDA in gen-
eral, the Dissertation suggests that infrastructure asset management is quite 
attractive. Particularly in maintenance, project portfolio selection problems 
are common and recurrent. The decision makers need to consider multiple 
evaluation criteria and portfolio balance constraints, because the underlying 
transport agencies are typically not-for-profit public organizations and unam-
biguously accepted monetarized or otherwise unidimensional decision criteria 
do not exist (e.g., Kulkarni et al., 2004; Krugler et al. 2007; Sinha and Labi, 
2011; own empirical evidence from the Finnish Transportation Agency). Multi-
criteria decision problems tend to be challenging and there seems to be a 
widespread call for systematic quantitative support in infrastructure mainte-
nance decision making. 
 

Large project data sets are often available in infrastructure asset manage-
ment, which is one of the prerequisites for practical PDA applications. In most 
developed countries, the transportation agencies or asset owners perform pe-
riodic measurements and inspections of the assets, and typically there are also 
different kinds of significance classifications and traffic volume indicators 
available. Wide transportation networks can contain hundreds or even thou-
sands of pieces of a particular asset, which form the candidates in the portfolio 
selection problems. In general, preferably at least tens of projects with multi-
criteria data are needed to make use of the key properties of RPM and create 
added value to the decision making process. Such data is typically either 
adopted from an existing database (as in the applications in this Dissertation) 
or generated in a distributed manner via an internet survey, for example 
(Brummer et al., 2008). In some cases, the project appraisal and evaluations 
can be carried out as a part of the participatory PDA process (e.g., Kleinmuntz, 
2007; Lindstedt et al., 2008), but this is a more laborious path and requires an 
extensive commitment and effort from the decision making organization. Ar-
guably, problem contexts that offer existing project data have a lower hurdle to 
commit required resources and decision maker(s) to these kinds of novel ap-
plications. In these cases the modelling needs to adjust to the data, not the 
other way around. This Dissertation demonstrates that workable and practical-
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ly valuable RPM applications can be built on existing data – the main prereq-
uisite is that the data exists. A similar phenomenon is prevalent with the wide-
spread trend of big data analysis, for example, when statistical models or other 
“advanced analytics” techniques seek to explore and make findings from large 
existing databases that were not necessarily designed and collected for such 
analysis purposes in the first place. 
 

All three applications in this Dissertation motivate the conclusion that par-
tial and indicative decision recommendations and guidelines can be valuable 
results of quantitative decision support models. This conclusion has been sup-
ported by feedback from the participants within client organizations. At least 
in infrastructure asset management, where the models have been built on ex-
isting data and exhaustive modelling of “everything” has seemed overwhelm-
ing, it has been a significant step forward to capture the reasonably straight-
forward data-backed parts of the problem into the formal model and to leave 
on purpose some relevant issues that influence the final decision making out-
side the model scope. This has yielded flexible results that are designed to 
leave room for subjective judgements in project selections, which has been 
much appreciated by the decision makers (instead of a rigid optimal result 
without guidance of how to proceed, if that one results turns out infeasible or 
unsatisfactory due to factors that were not incorporated into the model). One 
could argue that such a modelling is left half-way and fails to produce defini-
tive conclusions, but in these applications it has been the mutually desired 
depth of analysis. Indeed, the RPM methodology would offer readily available 
tools to continue the process, but the partial/flexible results – most notably 
the core index ranking – were deemed to serve their purpose sufficiently. 
 

It is worth noting that in addition to the applications in this Dissertation, the 
RPM has been applied in various other contexts as well: To support priority 
setting in a Scandinavian research program (Lindstedt et al., 2008), screening 
of innovation ideas and development of research agendas in forest-based in-
dustries (Könnölä et al., 2007; 2011; Brummer et al., 2008; 2011), and fore-
sight of emerging policy issues for the Bureau of European Policy Advisors 
(Vilkkumaa et al., 2014). Reality-based illustrative case studies to demonstrate 
variants of the RPM have been developed at least in military applications 
(Kangaspunta et al., 2012; Kangaspunta and Salo, 2014). It has also been ar-
gumented in the light of a literature review and typical problem characteristics 
that the RPM would be suitable to support environmental decision making 
(Lahtinen et al., 2016). Moreover, independent variants of the core index have 
been developed and applied, with an explicit reference to the RPM, in influen-
tial works on European air traffic management (Grushka-Cockayne et al., 
2008) and Australian environmental investments (Bryan, 2010). As another 
example of an international “spin-off” of the RPM, the PROBE method (Lou-
renço et al., 2012) shares the problem set-up in Paper [II] but focuses the 
analysis on the robustness/efficiency of specified full project portfolios and the 
stability of the corresponding project selection recommendations. 
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5. Conclusions and future research  
directions 

The Dissertation has presented and applied in practice a novel multi-criteria 
portfolio decision analysis methodology, the Robust Portfolio Modeling 
(RPM). The fundamental concepts of the methodology are widely applicable in 
various practical contexts, and as a general philosophy the incomplete infor-
mation based modeling and analysis approach extends even beyond the field 
of decision analysis. The RPM methodology offers rather sophisticated model-
ing, processual and computational features to capture incomplete information 
about criterion weights and project scores, project interdependencies, incom-
plete cost information and cost/benefit analysis subject to variable budget lev-
els. The applications, however, rely on the basic concepts, which have been 
widely adopted and appreciated by decision makers in the infrastructure asset 
management sector. The application in Paper [III] found its way into repeated 
use as a part of the annual maintenance decision making practice at the Finn-
ish Transport Agency, which in part highlights its practical relevance. Fur-
thermore, a repeated application is still a relatively rare contribution in aca-
demic (decision analysis) research, and it offers a track record of longitudinal 
use-case data for, e.g., context-specific analysis of the actual decision making 
practices or to be utilized as a rich set of anonymous project test data in future 
methodological research (e.g., Tervonen et al., 2016). The Dissertation has also 
fostered the view that infrastructure asset management, particularly the annu-
al maintenance resource allocation and project selection decisions, are a fertile 
ground for practical applications of the RPM or similar variants of PDA. 
 

There are several avenues for further research in both methodological devel-
opment and applications. Generalization of the portfolio value modeling, al-
lowing non-linear criterion-specific value functions on the portfolio level, for 
example, is an important and central topic in PDA overall. The RPM relies on a 
linear-additive value model, where portfolio constraints can be applied to 
shape the balance of the portfolio value and/or its project composition. How-
ever, such applications are not always theoretically elegant and the linear-
additive structure may limit the modeling of practically relevant preferences. 
Seminal work has already been conducted to enable a broader spectrum of 
measurable multiattribute value functions in portfolio problems (Liesiö, 2014; 
Morton, 2015; see also Montiel and Bickel, 2014), perhaps partly inspired by 
the application in Paper [IV]. As a next step, the relaxed value modeling 
should be tested in practical application(s) to gain experiences and learn ways 
to adapt the sophisticated methodology to actual decision making practices 
and existing data. Infrastructure asset management could very well be a suita-
ble context for such application(s). 
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Another avenue of methodological research would be to develop decision 
rules and formal process guidelines to utilize the core index values of the bor-
derline projects. In this Dissertation the key project-level results are presented 
in the rank-ordering set by the core index values and these values are shown 
also for the borderline projects. The ordering was adopted as a basis for priori-
tization also among the borderline projects, although the RPM theory supports 
conclusive decision recommendations only for the core and exterior projects 
and implicitly expects additional information to narrow the set of borderline 
projects or to turn to the portfolio level decision rules to converge towards a 
unique full portfolio. The prioritization of borderline projects based on their 
core index values was viable in practice – it is a useful heuristic as discussed in 
Paper [III], but there is room for development and formalization. In addition, 
behavioral research on the use of the core index values in actual decision mak-
ing situations would be interesting: an experimental tracking of how and why 
project choices are made in RPM based on the core index values and/or other 
decision support options related to additional information, with a simulated 
task to converge to a unique portfolio at the end of the process. The data sets 
generated in Paper [III] are available for such experiments. 
 

In a somewhat similar vein, it would be interesting to see a “full scale” prac-
tical application, i.e., actual context and data with executive decision makers 
involved, which would deploy the advanced features of the RPM methodology 
and possibly even its latest extensions (e.g., Liesiö, 2014; Tervonen et al., 
2016). This Dissertation focuses on – and defends the practical merits of – the 
basic concepts and rather straightforward versions of portfolio modeling and 
formalized decision support process. However, to test and unleash the full po-
tential of the advanced methodologies, the RPM/PDA community should aim 
at applications where (i) the multiattribute value model(s) are carefully con-
structed with the decision makers by applying for example the principles of the 
Value Focused Thinking methodology (Keeney, 1992) and the latest advances 
in portfolio value modeling (e.g., Liesiö, 2014; Morton, 2015) and/or (ii) ele-
ments of group decision making are involved so that the whole spectrum of the 
groups’ preferences is captured in the feasible weights and other parameters, 
and the RPM is used to facilitate negotiations to form a collectively approved 
project portfolio (see, e.g., Vilkkumaa et al., 2014), and/or (iii) the concept of 
additional information is fully deployed and interactively elicited from the de-
cision makers to conclude the process only when a unique portfolio recom-
mendation is set (cf., e.g., decision conferencing; Phillips, 2007; Kleinmuntz, 
2007). 
 

Observed from the “market demand” perspective, there are two challenging 
development avenues: (i) PDA support for hierarchical resource allocation 
problems, and (ii) support for updating an existing portfolio or a continuous 
project prioritization plan to incorporate new appraisals and/or updated in-
formation. These needs are faced continuously in infrastructure asset man-
agement and in other application contexts as well. Hierarchical allocation 
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problem refers to a setting that considers primarily the top level allocation of 
budgets between various asset classes and/or activities (such as Paper [IV]), 
but simultaneously needs to consider what is gained in return at different 
budget levels and which projects could be funded (application in Paper [III], 
methodology in Paper [II]). This Dissertation, like many other reported PDA 
methodologies and applications, considers both levels but not simultaneously. 
The combination easily leads to a large, processually, cognitively and/or com-
putationally heavy model. However, the topic is of such high practical rele-
vance that a workable balance between methodological rigor and pragmatic 
application is worth searching for.  
 

The need to augment, cut or reshuffle an existing project portfolio stems 
from the fact that project portfolios are seldom built from scratch. The RPM 
and other PDA methods can be used to support such considerations, but tech-
nically the analysis needs to be conducted by re-computing the full portfolio 
problem with the updated set of project candidates, data and/or constraints. 
However, it would be interesting to develop and apply decision support meth-
ods with the explicit initial notion that there is a tentative portfolio as a base 
case and the objective is to shape its profile to some direction (e.g., value-wise, 
balance-wise) or to decide whether new candidate(s) would fit into the portfo-
lio and which of the existing ones may be forced out (possibly associated with a 
termination cost, for example). This can also be viewed as a need to maintain a 
constantly up-to-date ranking of the project candidates, possibly from various 
perspectives separately (see, e.g., Mavrotas et al., 2008), to be able to react 
swiftly to sudden impulses to modify the portfolio. Possible development to-
wards using RPM or similar PDA methods more clearly for rank-ordering or 
clustering of projects (e.g., the sorting problematique; Roy, 1996; Zopounidis 
and Doumpos, 2002) could be made by building on recent research in ranking 
intervals (Punkka and Salo, 2014) because of the evident similarities of the 
inputs and purpose of the analysis. 
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