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Dissertation for the degree of Doctor of Technology to be presented with
due permission for public examination and debate in Auditorium F1 at
Helsinki University of Technology (Espoo, Finland) on the 26th of April,
2000, at 12 o’clock noon.

Espoo 2000



ISBN 951–22–4958–8



Preface

This thesis has been completed while I have been working in the Laboratory of Biomedi-

cal Engineering, Helsinki University of Technology, and in various departments of Helsinki

University Central Hospital (currently Health Care Region of Helsinki and Uusimaa). I

have been a student in graduate school “Functional Research in Medicine”. I am deeply

grateful to my supervisor, Professor Toivo Katila, for the support during my studies and

excellent working conditions in the Laboratory of Biomedical Engineering. I would also like

to thank Professor Kristian Liewendahl, Professor Carl-Gustav Standertskjöld-Nordenstam
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VI O. Sipilä, P. Nikkinen, S. Savolainen, M.-L. Granström, E. Gaily, V.-P. Poutanen,
H. Pohjonen, K. Liewendahl. Transmission imaging for registration of ictal and inter-
ictal single-photon emission tomography, magnetic resonance imaging and electroen-
cephalography. Eur J Nucl Med, 27:202-205, 2000.

Statement of involvement

All publications included in this thesis are a result of a group effort. In Publ. I, the author of
this thesis implemented and documented the segmentation algorithms utilized. In Publ. II,
the author took actively part in preprocessing the images, analyzing the results and writing
the publication. Publ. III consists mainly of the work done by the author of this thesis.
In Publ. IV, the author of this thesis implemented the segmentation utilities and took part
in implementation of the registration protocol and writing the publication. The phantom
measurements and simulations in Publ. V as well as the registration protocol and phantom
measurement of Publ. VI were designed and implemented by the author. The filling and
imaging of the phantoms were done in collaboration with the physicists of the group. The
software in Publs. V and VI was implemented by the author, except the Borgefors’ algorithm.
Publs. III, V and VI were written by the author of this thesis.



iii

List of abbreviations

2D two-dimensional
3D three-dimensional
3-NN three nearest neighbours
5-NN five nearest neighbours
CT X-ray computed tomography
DMSA dimercaptosuccinic acid
ECD ethyl cysteinate dimer
EEG electroencephalography
FBP filtered backprojection
FWHM full width at half maximum
GL gray level histogram or adaptive thresholding
GM gray matter
HSE herpes simplex encephalitis
HMPAO hexamethylpropylene amine oxime
HUCH Helsinki University Central Hospital
k-NN k nearest neighbours
LEGP low energy general purpose
LEUHR-PAR low energy ultra high resolution parallel
LVQ learning vector quantization
ML-EM maximum likelihood expectation maximization
MEG magnetoencephalography
MRI magnetic resonance imaging
NMR nuclear magnetic resonance
OS-EM ordered subsets expectation maximization
PDw proton density weighted
PET positron emission tomography
PVE partial volume effect
rCBF regional cerebral blood flow
RF radio frequency
RMS root-mean-squared
ROI region of interest
SAM Helsinki Stroke Aging Memory (research study)
SD standard deviation
SNR signal-to-noise ratio
SOM self-organizing map
SPECT (SPET) single photon computed emission tomography
T1w T1 weighted
T2w T2 weighted
VOI volume of interest
WM white matter



1 1 INTRODUCTION

1 INTRODUCTION

Modern medical imaging modalities produce three-dimensional (3D) digital information from

inside the human body without invasive operations. Imaging examinations belong to widely

used diagnostic procedures. Development of fast computers enables new applications, con-

tinously growing the amount of image data produced in hospitals. Efficient use of imaging

requires powerful means to extract the information from the large amount of data. Image

processing is a growing field of research interest in medical as well as in other applications.

In medical imaging, the reliability of imaging as well as of further processed results is of

uttermost importance.

Emission tomography is based on measuring the distribution of a radiopharmaceutical ad-

ministered to a patient. To provide information on a physiological function, the radiophar-

maceutical, usually consisting of the radionuclide and the bounding compound, should model

but not affect the system under study [1]. Isotopes used in single photon emission computed

tomography (SPECT) decay emitting photons, which are detected and used to form the

image. The half life of the isotope is usually several hours or even days.

SPECT is utilized for a large variety of applications, including oncological and cardiac stud-

ies, inflammatory diseases, study of kidney function and cerebral diseases. Study of regional

cerebral blood flow (rCBF) has diagnostic value e.g. in patients with epilepsy [2], cerebral

infarction [3] and herpes simplex encephalitis (HSE) [4]. Tracers utilized in imaging rCBF in-

clude 99mTc-hexamethylpropylene amine oxime (99mTc-HMPAO) and 99mTc-ethyl cysteinate

dimer (99mTc-ECD). They have a high first-pass brain extraction rate, and the maximum

uptake is achieved in 30-60 s from injection [5]. After that, the cerebral perfusion pattern

is stable for several hours allowing imaging immediatelly or at a later time, e.g. when an

epileptic seizure is over [2]. Most studies are evaluated visually by a physician. Semiquanti-

tative analysis of brain perfusion SPECT images can be based on regions of interest (ROIs),

which are compared to each other or normalized to cerebellar or whole brain mean counts for

comparison to age-dependent normal databases. Dopamine transporter and receptor stud-

ies are utilized e.g. for patients with Parkinson disease or schitzophrenia. Quantification of

the specific binding of the radiophamaceutical is often computed as striatum to cerebellum,

striatum to frontal lobe or caudatus to putamen ratio based on operator drawn ROIs [6].

In epileptic patients, interictal imaging alone is not reliable [2]. In an ictal study, the

tracer is injected as soon after the seizure onset as possible to detect the primary epileptic

zone. According to the results of Zubal et al. [7] with 99mTc-HMPAO, injecting immediately

after the seizure onset is optimal, since hyperperfusion is detected in the area of seizure

onset. In a later time, there may be no detectable differences in rCBF since the rCBF
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in an epileptic region is in transition from hyper- to hypoperfusion. Injection during the

evolution of the seizure may show as well hypo- as hyperperfusion regions. In this case,

the primary epileptogenic region may already be seen as a hypoperfusion area and the

distribution pattern of the seizure as a hyperperfusion area. Video-electroencephalography

(video-EEG) monitoring is necessary when injecting for ictal and interictal SPECT in order

to verify the state of the patient.

Several aspects lower the quality of information from SPECT. The images are degraded by

several imaging errors including radiation attenuation and scatter, which makes quantitative

analysis difficult. Manual drawing of ROIs makes the analysis subjective when compared

to automatic segmentation methods. Although functional defects can be detected with

SPECT, the localization of the defects is more difficult due to the modest resolution of

SPECT. Anatomical details can be obtained from X-ray computed tomography (CT) or

from magnetic resonance imaging (MRI).

MRI is based on the phenomenon of nuclear magnetic resonance (NMR) [8]. Nuclei with an

odd number of nucleons, exposed to a uniform static magnetic field, can be excited with a ra-

dio frequency (RF) pulse with the proper frequency and energy [1]. After the exitation pulse,

an NMR signal can be recorded. The return to equilibrium is characterized by relaxation

times T1 and T2, which depend on the nuclei imaged and on the molecular environment.

Mainly hydrogen nuclei (protons) are imaged in clinical applications of MRI, because they

are the most NMR-sensitive nuclei and have the largest physiological concentration among

biologically important nuclei in the human body [8]. In Fourier imaging techniques, the im-

age is reconstructed from the measured data using Fourier transformation [1, 9]. Selection

of the pulse sequence and the imaging parameters affects contrast between tissue types in

the images. As an added advantage when comparing to other imaging modalities, spatially

matched multispectral information can be obtained using different acquisition parameters.

Besides its other applications, MRI is one of the basic neurological examinations. Although

more expensive than CT and with limited availability, MRI has superior contrast between

soft tissues in the brain when compared to CT. Since the patient is not exposed to ionizing

radiation, patient safety does not limit the obtainable resolution and there are usually no

ethical problems with imaging volunteers for scientific purposes. Besides visual examination

in every day clinical practise, computer assisted analysis of MR images has been under major

research interest. Because MRI produces accurate anatomical information, segmentation of

MR images allows 3D visualization and quantitative analysis. Clinical application areas

include 3D surgery planning and simulation, 3D radiation treatment planning and follow-

up of tumour response during therapy, and follow-up of brain tissue volumes in neuro-

degenerative diseases such as multiple sclerosis [10, 11, 12, 13, 14]. Extraction of intra- as well
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as extracranial tissue boundaries, e.g. for source localization in magnetoencephalography

(MEG) or EEG, is also an important application (e.g. [15]). Factors that may degrade

image quality and complicate computer assisted analysis include geometrical distortions,

noise and intensity nonuniformity (i.e. intensity values vary with the location in the image).

In computer assisted analysis of medical images, the most difficult operation is usually

segmentation of the data. Segmentation means extraction of objects of interest from the

image. The object can be an organ such as the brain or a specific type of tissue such as

the white matter in the brain. In this work, the term segmentation includes both grouping

of the volume elements (voxels) of the image to larger regions and labelling of meaningful

entities constructed from the grouped voxels. Manual segmentation is usually too time-

consuming for clinical practice since the image can consist of tens or even hundreds of slices.

General and at the same time automatic methods have not been invented. Fortunately, the

processing time can be considerably lowered with semi-automatic methods. As the quality

of the analysis following segmentation depends on the accuracy of the segmentation result,

the evaluation of the segmentation method is very important. Inherent error present in

segmentation results is due to the fact that the image is formed of discrete voxels leading to

the partial volume effect (PVE), i.e. a voxel may contain signal from several tissue types.

Image registration is utilized to achieve spatially correlated information from different imag-

ing modalities, enabling voxel-by-voxel comparison of images with complementary informa-

tion. Registration of digital images is never perfect due to the discrete nature of the voxels.

Other error sources are usually also present. However, the registration error should not be

the limiting factor in the analysis of the registered images in order the registration to be

useful.

The aim of this thesis was to improve clinical value obtained from SPECT and MRI by

developing data processing methods and validating their usefulness, accuracy and reliability

in clinical environment. More specifically, the clinical challenges included 1) improvement in

the reliability of ROI analysis of SPECT images, 2) gathering tissue boundary and volumetric

information from brain MRI and validating the reliability of the process, and 3) improvement

in localization of epileptogenic foci in epilepsy surgery candidates.
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2 SPECT

Modern SPECT devices are usually based on the use of a rotating gamma camera [16]. The

detector head(s) travel around the patient and register the emitted photons in a preselected

accuracy. Collimation ensures that photons incident in the prescribed direction only arrive

to the detector. Due to collimation, the sensitivity of SPECT is quite poor: only one photon

per thousand is usually registered [17]. The image is reconstructed from the measured line

projections. The most common reconstruction method in clinical use is filtered backprojec-

tion (FBP) [18]. Iterative methods [19, 20] have become a useful clinical option due to the

rapid development of computers. The advantage of iterative methods is that known distor-

tions during acquisition can be modelled and included in the projections and compensated

during the reconstruction [21].

Quantitative analysis of SPECT images is usually directed to measuring activity ratios and

object sizes [21]. Image quality is mainly determined by resolution, contrast (including

sensitivity and noise) and activity administered to the patient (total counts during imaging)

resulting in an optimization problem. When imaging objects that are small compared to

the system resolution, increased resolution improves image quality more than does a large

increase in counts [22]. However, the optimal compromise between resolution and sensitivity

will depend on the total available photons [23]. Besides the intrinsic resolution of detectors,

factors affecting the resolution of a SPECT system are collimator characteristics [21, 23, 24,

25], spatial and angular sampling [21, 26], acquisition mode [21], and reconstruction method

[19, 25]. For example, the intrinsic resolution (full width at half maximum, FWHM) of

Picker SX300 and Picker Prism 3000XP gamma cameras, utilized in this thesis, was 3.9-4.5

mm and 2.8-3.5 mm [6], respectively. The collimator dependent system resolution at 10 cm

in air (FWHM) was 8.0-8.6 mm (low energy general purpose, LEGP, collimator) and 6.7

mm (low energy ultra high resolution parallel, LEUHR-PAR, collimator) for these cameras,

respectively [6]. Filtering in connection with reconstruction is often a severe problem as the

cutoff frequency imposes a difficult trade-off between correct voxel intensity and resolution

[21, 27].

The most important physical factor affecting the quality of SPECT is photon attenuation

[21, 25]. Primary photons are lost by photoelectric absorption or by scattering in the patient,

resulting in image artefacts and inaccuracies in quantification [25]. Attenuation correction

methods can be based on the assumption of uniform attenuation inside the patient [21, 25]. In

more accurate methods, attenuation coefficient distribution is modelled through experimen-

tal measurements and included in iterative reconstruction of the image [25]. Transmission

imaging enables the most accurate methods for attenuation correction [28]. Another major

factor degrading visual image analysis and quantitative accuracy is the detection of scattered
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photons [21, 25, 29, 30]. If scatter is coherent, the photon will be undistinguishable from

primary non-scattered photons. Even Compton scattered photons are often confused with

primary photons [25]. Scatter correction methods include different windowing techniques

of the recorded energy spectrum limiting the detection of scattered photons [30], as well as

compensation methods for the effects of recorded scattered photons such as filtering and

convolution methods [29, 30].

2.1 Segmentation

In order to enhance quantification of SPECT images, accurate delineation of the objects

is desirable. If segmentation can be accomplished (semi)automatically, the analysis is more

objective than with manual methods. Because the nature of SPECT images is functional and

there are several imperfections in imaging, reliability of segmentation, manual or automatic,

should be carefully checked with phantom experiments or simulations. Besides imaging

imperfections, the segmentation method can introduce additional errors in quantification

[31].

Thresholding is the most common approach in segmenting SPECT images [31, 32, 33, 34, 35].

Fixed thresholding is problematic since the correct threshold depends on factors such as size

and contrast [31]. In patient images, neither the size of an object nor the activity vs. back-

ground activity is known beforehand preventing the utilization of phantom measurements

to decide the correct threshold value. An automatic threshold selection method (adaptive

thresholding, gray level histogram method, GL) has been adopted in some studies [31, 32].

Mortelmans et al. have proposed a least squares linear regression analysis between the ac-

tual and the estimated volumes in order to correct the systematic error from the adaptive

thresholding [31]. This means vast amount of phantom experiments for different systems in

different conditions. In Ref. [35], attenuation and scatter correction based on CT images

was applied before segmentation with the adaptive thresholding. Also a context sensitive

thresholding method using empirical rules has been developed [36]. Another approach for

segmentation has been edge detection [32, 37]. Fuzzy c-means clustering has been utilized

in classification of dynamic images investigating striatal dopamine receptor and serotonin

transporter bindings [38]. The results from these publications are difficult to compare since

there are significant differences in imaging protocols, phantoms and simulations utilized.

In Publ. I, fixed thresholding, adaptive thresholding (GL), region growing and a method

combining region growing and edge detection were tested on phantom and patient images

using 99mTc and 111In. The methods as well as the imaging and reconstruction parameters

have been introduced in the publication. Plain edge detection was not tested in this work. A

correlation of 0.72 - 0.95 was detected between the true and measured phantom volumes with
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the four methods. None of the tested methods produced optimal results to be generalized in

the use with patient images. When comparing Publ. I and the work of Alaamer et al. [35],

there were two differences in using the GL method, which may have had an impact on

the poor results obtained with GL in Publ. I. First, nonuniform attenuation and scatter

correction were not available in Publ. I. Second, one threshold was used for the whole image

trying to extract two objects with it. In [35], a volume of interest (VOI) was first defined

including only one object and background. In Ref. [39], a practical method for irregular VOI

detection based on orthogonal maximum intensity projections was presented.

In Ref. [40], fixed thresholding was further analysed in order to achieve quantitative informa-

tion from renal 99mTc-dimercaptosuccinic acid (DMSA) SPECT. The phantom consisted of

an elliptical cylinder including two cylinders or spheres with volumes of 54-220 ml simulating

the kidneys. Activity concentration in the objects was 159-337 MBq/l. Background concen-

tration was 0.5-9.8 %. The phantom was imaged using Picker Prism 2000 2-head and Picker

3000XP 3-head cameras. The images were prefiltered using Butterworth lowpass, Wiener

and Metz filters and reconstructed using FBP with a ramp filter [41]. Before thresholding,

background was estimated as the mean value of voxels in a 5x5 window and subtracted from

the image. Uniform attenuation correction [41] improved the detected activity ratio of the

objects. Segmentation still remained a problem: thresholds which produced correct volumes

and activity ratios depended on filtering and on the total activity of the object (Fig. 1).

With the regularly shaped objects utilized in this phantom experiment, the slice thickness,

camera and collimator, and background activity did not seem to have an impact on the

correct thresholds.

2.2 Transmission imaging

The main application area of transmission imaging in SPECT is nonuniform attenuation

correction. Besides that, transmission information can be utilized for scatter correction,

movement analysis and registration [28, 42]. Opposed to positron emission tomography

(PET), attenuation correction in SPECT is only an approximative correction [28]. In trans-

mission imaging, the patient is exposed to an external radiation source and the transmitted

radiation is measured. The attenuated (Nx) and nonattenuated (N0) count rates are related

by

Nx = N0e
−

∫
µ(x)dx, (1)

where µ is the linear attenuation coefficient depending on photon energy and electron density

of the material [28]. For any projection, Eq. 1 gives the integral of attenuation coefficients:

∫
µ(x)dx = ln

N0

Nx

, (2)
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Fig. 1: Object volumes as a function of the fixed threshold used for segmentation. The
thresholds are given as percentages of the maximum intensity value in the image. Thresholds
producing correct volumes depended on filtering and activities. The camera was Picker Prism
3000XP with a LEUHR-PAR collimator and voxel size was 3.2 x 3.2 x 9.3 mm3. In Fig. a)
the prefilter was Butterworth filter (4.0/0.26) and in Fig. b) Wiener filter (1.0). Otherwise
the reconstruction protocol was similar in both figures. Activity ratio of the objects (C1/C2)
varied between 2.0 and 2.2 when using the same threshold value for both objects. The correct
ratio was 2.8.
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where N0 is given by the count rate in a blank scan and Nx by the count rate in the trans-

mission image. The transmission image can be reconstructed from the measured projections

using FBP or iterative methods.

The emission count rate along any projection can be formulated as

Cx =
∫

C0(x)(e
−

∫
µ(x1)dx1)dx, (3)

where Cx is the integrated count rate from each attenuated point source C0(x) [28]. As the

attenuation coefficient term cannot be separated from the emission count rate, attenuation

correction must be approximated e.g. during the iterative reconstruction process using the

attenuation coefficients measured with transmission imaging.

Simultaneous transmission and emission imaging have the advantage of reducing the scan-

ning time and patient movement when compared to separate transmission and emission

scans [43]. In the triple head Picker Prism 3000XP gamma camera utilized in this the-

sis, a simultaneous transmission imaging protocol [44, 45] was availabe using 153Gd as the

transmission line source. The transmission and emission raw data were first corrected for

crosstalk. The transmission data was reconstructed using iterative maximum likelihood ex-

pectation maximization (ML-EM) reconstruction. This energy corrected attenuation map

was utilized in the iterative ML-EM (or in the newer software version ordered subsets expec-

tation maximization, OS-EM) reconstruction to correct attenuation. Also, scatter correction

was enabled by measuring the scatter in two 4 keV windows one FWHM below and above

the emission photopeak centerline and including this scatter image in reconstruction [45].

Besides utilizing transmission imaging in registration (c.f. Section 4.3), transmission based

attenuation correction could have an impact on ROI based quantification of deep brain

structures, such as basal ganglia. In Ref. [46], a cylindrical phantom (d = 21.5 cm, h = 19

cm) containing 10 kBq/ml Tc-99m was utilized to study the impact. Inside the cylinder,

two spheres (d = 4 cm) were inserted with sphere/background activity ratios of 9.2 and 4.5.

Alderson striatal phantom was also imaged using the striatum/background activity ratios

of 3.0 and 2.0. In imaging protocol 1, both nonuniform attenuation and scatter correction

were utilized. Transmission, emission and scatter data were acquired simultaneously with a

triple head Picker Prism 3000XP gamma camera. In imaging protocol 2, only nonuniform

attenuation correction was applied during the iterative reconstruction. In imaging protocol 3,

conventional reconstruction using FBP with low pass postfiltering and uniform attenuation

correction (µ = 0.11 cm−1) was utilized. The imaging distance was 15.9 cm for protocols

1 and 2 and 13.9 cm for protocol 3. Two 3.6 mm slices were summed and calculation of

activity ratios was performed using circular ROIs placed over the spheres and background.

For the sphere with true activity ratio of 9.2, the results for protocols 1, 2 and 3 were 9.3, 8.0
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and 6.0, respectively. For the other sphere (true ratio of 4.5), the results were 4.3, 3.7, and

3.0 for protocols 1, 2 and 3. The measured activity ratios of the striatal phantom were 2.4

and 1.6 for protocol 1 and 2.2 and 1.6 for protocol 3. According to these results, transmission

imaging based attenuation correction and scatter correction seemed to improve the reliability

of ROI based quantification.
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3 BRAIN MRI

In MRI, a compromise between signal-to-noise ratio, resolution and imaging time has to be

made [47]. Resolution of an MR image can be as good as 1 mm3. MRI signal imperfections

include noise, intensity nonuniformity and geometrical distortions. The signal-to-noise ratio

(SNR) is proportional to the voxel size [48], which also serves as an estimate for spatial

resolution in a well-designed system [49]. Sources of intensity nonuniformities in MR images

include RF coil nonuniformities, time domain filtering, uncompensated gradient eddy cur-

rents, main field nonuniformity and crosstalk between slices [50]. Geometric distortions may

be produced by main field inhomogeneity, gradient defects and signal sampling imperfections

[49].

3.1 Preprocessing

The purpose of preprocessing is to reduce the impact of factors lowering the quality of

images when considering computer assisted analysis. Noise and intensity nonuniformities

cause tissue clusters to grow larger, loose tightness and overlap with each other in the

feature space. Noise reduction without extensive loss of details can be performed with the

anisotropic diffusion method [51]. Besides anisotropic diffusion method, a one pass adaptive

Gaussian filter was utilized in Publ. IV prior to the 3D region growing [52].

Different methods for overcoming the problems related to intensity nonuniformity can be

found from literature. In phantom methods, a phantom filled with water or oil is imaged

and the images are used to estimate the variation in the intensity profile [50, 53]. The

gray scales of different slices and different patients have been standardized using a small

phantom placed within the RF coil close to the head of a patient [54]. The profile of the

inhomogeneities can also be approximated by selecting or segmenting samples from slices

and fitting a linear ramp [55], two-dimensional (2D) surface [56, 57] or a 3D function [58] to

them. The result from heavy low pass filtering has also been used to estimate inhomogeneities

[59]. Homomorphic filtering is a popular approach to implement the separation of the profile

found by low pass filtering from the rest of the contents [60, 61, 62]. Also, a proper selection

of the samples for the classifier can help to overcome the effects of inhomogeneities [10, 63].

However, according to the comparisons made by Velthuizen et al. [64], these methods can

give significantly different correction images, and they suggested that it is not clear whether

the RF nonuniformity corrections are in fact yet well understood. In the nonparametric

correction method of Sled et al. [65], a model for tissue intensitities was derived directly

from the data.
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Related to Publs. II and III, methods for reduction of intensity nonuniformity were tested,

as only visual evaluation was needed to confirm considerable intensity nonuniformity inside

a slice as well as between slices (Figs. 2-4) in these data sets. The sets originated from

the Helsinki Stroke Aging Memory (SAM) study [66]. Three spatially matched spin echo

images were obtained: proton density weighted (PDw), T2 weighted (T2w) and T1 weighted

(T1w). The details of the acquisition parameters have been introduced in Publs. II and III.

Classification of normal and abnormal brain tissue types from these data sets would enable

computation of quantitative measures for enhancing diagnosing of dementia using MRI.

Phantom data for estimating the intensity profile were not available from the 2 years’ period

of imaging the patients of the SAM study. Homomorphic filtering and 2D surface fitting

approaches did not produce satisfactory results, as homomorphic filtering lowered the reso-

lution of the image and the result of surface fitting greatly depended on the locations of the

fitting points. The surface fitting approach was also considered unsuitable, since in some

of the data sets evenly distributed areas of similar tissue (e.g. white matter, WM) did not

exist in every slice due to the large infarction regions. Standardization of the gray scales of

different slices using a small silicon tube filled with water-MnCl2 (1 mmol) mixture placed

close to the head of a patient was also tested in a few patients and found to be unreliable

since the gray value of the tube section varied according to the place in the slice plane in-

dicating that the intensity nonuniformity field was 3D. No correction was finally applied to

the images in Publs. II and III.

3.2 Segmentation

Besides statistical and neural network classification, segmentation methods utilized in brain

MRI include thresholding, region growing and histogram based methods [60, 61, 67, 68,

69, 70, 71], edge detection [72] and grouping [73], deformable models [74, 75], contextual

classification [76, 77, 78], knowledge-based methods [12, 11] and scale space methods [79].

Most methods are semi-automatic requiring some initial training or manual postprocessing

of the results. One approach for segmentation is elastic registration (c.f. Section 4). Many

methods are hybrid approaches combining several methods (e.g. [80, 81]).

3.2.1 Statistical and neural network classification

Statistical and neural network classification methods can be divided in two classes depending

on whether user interaction is needed in initialization (supervised methods) or not (unsuper-

vised methods, clustering). In supervised methods, the user teaches the system by selecting

samples known to belong to a certain tissue class. Thus, the user has control over the clas-
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a) b)

c)

Fig. 2: A a) proton density, b) T2 and c) T1 weighted MRI slice with gray matter (white
dots) and white matter (black dots) sample points from a patient with cerebral infarction.
Intensity nonuniformity can be seen e.g. as lower intensity values in the left bottom corner
of the proton density weighted slice.

sification process. On the other hand, interaction makes the result more reliable on the user

and segmentation becomes less automatic. Also, new characteristics of the data unobserved

by a human interpreter may be revealed when using unsupervised methods [82].

The most common features used in classification of brain tissues from MR images are the

intensity values. If multispectral MRI data are available, a feature vector consisting as many
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Fig. 3: Mean intensity values and standard deviations of gray and white matter sample points
in nine a) proton density and b) T2 weighted slices from the same data set as slices in Fig. 2.

gray values as there are multispectral coregistered images is usually adopted. If other modal-

ities are included in classification, they have to be registered with the MR images as in [10].

Also, linear combinations of the PDw, T2w and T1w images can be utilized [59, 60, 61, 83]

although they produce correlated features. Values computed using the neighbourhood of the

voxel can be included in the feature vector. This can result in fewer isolated misclassified
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Fig. 4: Same as Fig. 3, but for T1 weighted slices.

voxels (less influence from noise), but on the other hand loss in spatial resolution [10]. The

classification of the neighbouring voxels can also be used as one criterion in the classification

process resulting in usually iterative contextual methods (e.g. [78, 84]).

Several classification methods have been applied to MR images [85, 86]. Popular super-

vised statistical classification methods with parameter estimation are the nearest mean and

maximum likelihood classifiers [10, 54, 87, 88]. Nonparametric methods include k nearest

neighbours (k-NN) classifier [54, 87, 89][Publ. II, Publ. III] and Parzen window techniques

[90]. Unsupervised clustering methods can be divided in two classes: algorithms that give

crisp labels such as k-means (c-means, minimum distance method) and ISODATA [88, 90, 91],

and algorithms producing fuzzy labels such as fuzzy c-means [87, 88, 92, 93]. With fuzzy

labelling, a voxel can belong to several classes with different shares. This is one way to deal

with voxels affected by the partial volume effect. Neural network classification of the tissues

from MR images has often been based on a feedforward network trained with backpropa-

gation [10, 54, 56, 87]. Methods based on self-organizing maps, both unsupervised (SOM)

and supervised (LVQ) versions [94], have been utilized [95][Publ. II] as well as the Hopfield

[96] and the locally excitatory globally inhibitory oscillator [97] networks. In the adaptive

segmentation of Wells et al. [98], a Parzen window technique for classification was utilized

iteratively with a Bayesian approach for estimating and correcting intensity nonuniformity

field.

In Publ. II, initial experiments were performed to find a reliable classification method for
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multispectral data with a visible intensity nonuniformity. Neural network based algorithms

were tested since they should be relatively insensitive to selection of the training set [10]. The

methods were compared to the widely used k-NN method, which does not make assumptions

on the underlying distribution. A SOM [94] based method, a feedforward neural network

trained with backpropagation and a 3-NN classifier were utilized. The SOM based method

consisted of first training a SOM and detecting the nodes giving ambigous classification.

For these nodes, an additional map was trained using the supervised LVQ algorithm [94] in

order to enhance the classification. The pooled form of the 3-NN algorithm [99] consisted

of choosing the class with the largest number of samples among the 3 nearest neighbours in

the feature space for the voxel to be classified. The feature vector was selected based on the

information found from literature. The algorithms were applied mainly to one slice from a

multispectral MR image set containing PDw, T2w and T1w images. The accuracy of the

classification results was evaluated using a test point set selected by a neuroradiologist. It

was found out that the SOM based and the 3-NN methods produced results with almost

the same accuracy (about 70-95% for different tissue classes). The backpropagation method

produced results with lower accuracy. The stability of the SOM based method was better

than the stability of the 3-NN classifier.

In Publ. III, generalization of the methods to interslice and interpatient classification was

studied with 10 patient data sets. After initial trials with SOM and LVQ based methods,

5-NN method, and with different feature vectors, the 5-NN method was chosen for classi-

fication. The Generalized Mahalanobis Distance [100] was adopted to check whether the

quality of the images allowed interslice or interpatient training scheme at all due to intensity

nonuniformity in the images. The results indicated that even intraslice training for classifi-

cation of gray matter (GM) and WM was not necessarily reliable. With interslice training

scheme, using a middle slice for training, the mean correct classification rate of all samples

given by a neuroradiologist was 85 % for the 10 data sets. Although this percentage was

acceptable, the quality of the results was highly variable, as the correct classification rate for

one class inside one slice could be as low as 13 %. Thus, the segmentation could not be called

operational. To achieve more accurate segmentation, the classification was recommended to

be performed slice by slice with user supervision. If better results with less user interaction

were required using intensity based classification methods, the images should have had larger

intensity differences between the classes. In this work, the required mean intensity difference

for GM and WM, to obtain good separability between them, was also computed. The new

values produced in fact better separability between GM and all other classes. Besides larger

mean intensity differences between classes, smaller variances inside classes would have been

produced more reliable classification.
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3.2.2 Evaluation of segmentation results

The evaluation of the accuracy of a segmentation result is a complicated task. With patient

images the ground truth is not available. With phantom or simulated images the truth is

known, but the similarity to patient images may not be close enough due to simpler geometry

or difficulties in exact modelling of the NMR signal from different tissues. Usually, the

accuracy of a segmentation result is at least assessed visually by a medical expert. Another

common procedure is to let a medical expert classify (semi)manually the whole image or

some samples from it and to take the classification as a golden standard to which the results

are compared (e.g. [10, 50, 55, 56, 76, 88, 101]). Different methods are often compared with

each other [10, 54, 87, 102, 103]. The result of classification of tumour images can be based

on comparison with the golden standard obtained using contrast agent [54, 87]. In phantom

experiments [89, 90, 93, 104] as well as in simulated images [105], the volumes or areas

of target tissues are known. Estimates for volumes can also be found from literature [60]

although there are individual variances even in normal cases. Individual estimates of the

volumes are available from postmortem studies [92, 106]. The accuracy also depends on the

modalities available (T1w, T2w and PDw images, CT, etc.) [10, 56]. Besides the accuracy

of the result, stability, e.g. to training set in supervised methods, should be checked. The

accuracy of classification in Publs. II and III was evaluated by comparing the classification

of tests samples to the labelling of them by a neuroradiologist.
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Selection of a registration method depends on factors such as patient-friendliness, accuracy,

speed and interactivity [107]. The application and imaging modalities can also restrict the

choice. When registering brain images from different modalities but from the same patient,

rigid methods are usually adequate. After a rigid transformation between images I1 and I2

has been found, voxels I1(	xi) are transferred to locations 	x′
j ∈ I2 defined by the following

transformation:

	x′
j = 	t +R	xi, (4)

where 	t is the translation vector and R the rotation matrix. Scaling between 	xi and 	x′
j is

not a variable, since voxel dimensions of each image are known.

Computation of the rigid transformation can be based on the use of external artificial mark-

ers, attached to the skin or to a stereotactic frame [108, 109, 110, 111][Publ. IV, Publ. VI]

or implanted into the skull [112, 113, 114], or on the use of internal anatomy related land-

marks [115, 116, 117]. In these cases, a small number (rarely over 15) of corresponding

point locations in both images are known, and the transformation is found by an iterative or

noniterative fitting of the two point sets. Other approaches are based on choosing features

from both images without the knowledge of spatial point-to-point correspondence. Popu-

lar features include head or brain surfaces [5, 118, 119, 120, 121, 122], in which case the

average point-to-point distance between the corresponding surfaces in the images is itera-

tively minimized to find the registration transformation. In gray scale correlation methods

[7, 123, 124, 125], a measure to be minimized is computed from the intensity values of the

images. With specially designed headholders [126, 127, 128, 129], the image sets can be

aligned already during the imaging sessions.

In an elastic transformation, a line may be mapped to a curve [130]. Elastic registration

is needed for interpatient or patient to atlas registration [131, 132]. Images from human

torso may also require elastic registration. In addition, elastic matching can be used for

segmentation [133]: after elastic registration of an image to a preclassified object (atlas

or another already segmented image), the borders and class labels of different regions can

directly be transferred to the volume to be segmented.

In clinical practice, it is important that clear guidelines for imaging exists since there are

often special requirements for the images used in registration, depending on the specific

application, desired accuracy and imaging modalities. In retrospective registration, the slice

thickness should be small enough, and there should be no gaps between the slices, to ensure

good resolution in determining the registration transformation and to enable the computation

of oblique slices without heavy interpolation. The registration method used may also have
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some special requirements. If external markers are utilized, they should not be removed

between the imaging sessions to ensure the same placements in different modalities. The

requirements must also be adapted to other relevant factors. For example, with modalities

using ionizing radiation, patient dose may limit the obtainable resolution.

4.1 Brain SPECT and MRI

Due to the lack of detailed anatomical information in SPECT images, many studies have

adopted the use of external markers for registration of SPECT and MR (or CT) images [108,

109, 110][Publ. IV, Publ. VI]. Surface matching methods have also been applied [5, 122, 134,

135]. In surface based approaches, the surface of the brain is usually segmented from both

modalities and the surface points are used to find the registration transformation. This type

of registration requires accurate segmentation of the brain, which can be a difficult problem

with SPECT. In addition, a lesion in the cortex can disturb the registration since it can be

differently visible and have a different size in SPECT than in MRI. Gray scale correlation

methods have become popular in registration of two SPECT images [7, 136, 137, 138]. This

type of registration has also been obtained using principal component analysis for dynamic

dopamine receptor studies [139].

In Publ. IV, a registration procedure was implemented to include anatomical information

from brain MR images to assist ROI analysis of SPECT images. Registration was based

on the use of external skin markers. The markers consisted of plastic tubes filled with a

homogenous mixture of coconut butter and 99mTcO−
4 . The length of the conical markers was

10 mm and the maximum diameter 4 mm. In patient studies, the number of markers was

usually 6. The two marker sets obtained from the images were registered using a noniterative

least-squares method [140]. The details of the method have been introduced in Publ. IV.

The clinical benefits of registered SPECT and MRI were demonstrated in patients suffering

from epilepsy, brain tumour, HSE and cerebral infarction. Different visualization techniques

were also demonstrated.

4.2 Registration error

For appropriate clinical use of registration data, an estimate for the spatial errors accu-

mulated to the transformed image during the registration process is needed. If the correct

location of a voxel is marked with 	x′′
j and the result from registration with 	x′

j (Eq. 4), the

error in location, often referred as a residual, is

ej = |	x′′
j − 	x′

j|. (5)
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The root mean squared (RMS) residual of several voxel locations is computed as

R =

√
1

N

∑
e2

j , j = 1, ..., N, (6)

where N is the number of locations included in computation of the RMS error.

In registration of SPECT and MR images using external markers, the locations of the markers

in the images are known allowing the determination of the error in these points after the

transformation. This error cannot be used as an independent estimate for the accuracy, since

the markers have been used for computing the transformation. It still serves as a practical

estimate for the success of the registration process, since it indicates the lower bound of the

registration error [108][Publ. V]. No measure, except for visual clues, is obtained for the error

in ROIs. Several factors affect the error: initial imaging errors in SPECT and MRI, possible

movement of patient, skin or the markers during or between imaging sessions, number of

markers utilized and their distribution and visibility in the images [Publ. V]. In addition,

these factors are filtered through the registration transformation.

Phantom measurements [108, 109, 117, 121, 129, 141][Publ. V] and simulations [112, 116,

117, 141, 142][Publ. V] can be performed to estimate the residuals of known transformed

test points. Cadaver studies [112, 143] resemble patient studies but are not suitable for

SPECT. Besides visual investigation of patient images, the error can be studied with the

help of extra markers attached to the patient [113, 141] or by comparing anatomical details

in the case of anatomical images. Different registration methods can also be compared with

each other [144, 145, 146]. Correction of geometrical distortions in MRI becomes important

in neurosurgery applications with high requirements of registration accuracy [112, 147].

Factors affecting the registration error of brain SPECT and MRI using external markers

were studied in Publ. V. Phantom measurements using a dedicated brain phantom and

two SPECT and MRI devices were performed. Simulations were also utilized. For the

simulations, the error model in external markers was checked using the results from the

phantom measurements. The error in the external markers used for registration and in the

internal test markers was divided in two parts consisting of a discretizing error due to the

inherent discrete size of the voxels and of a locating error due to the finite size of the markers.

Errors due to movement of markers or a patient were neglected. Additional errors could be

due to artefacts in the images. Details of the phantom measurements and simulations can

be found in Publ. V.

In phantom experiments, the RMS error in the test markers inside the phantom was 3-5 mm

depending on the imaging equipment and parameters and the number of external markers

used in registration. Based on the simulations, about 2 mm in these residuals came from

the uncertaintity in locating the test markers. The size of the registration error was site
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dependent being in its minimum near the centre of mass of the external markers used in

registration. When an error comparable to the resolution of the original images (7-10 mm

for SPECT, 2 mm for MRI) was included in the test markers, the largest mean RMS residual

after registration was smaller than the largest resolution error (9±1 mm). The registration

error was not limiting the accuracy of ROI analysis of registered MR and SPECT images,

provided that the marker system was properly designed and attached to the patient.

4.3 Transmission imaging for registration

In Publ. VI, SPECT transmission imaging was utilized for registration of ictal and interictal

SPECT, MRI and EEG of epileptic patients. The patients were from the epilepsy surgery

program of Epilepsy Unit, Hospital of Children and Adolescents, Helsinki University Central

Hospital (HUCH). The patients were under video-EEG monitoring when injecting for ictal

and interictal SPECT. Both SPECT images were obtained during the same week of long-term

monitoring indicating that the electrodes were securely glued during both imaging sessions

and not detached in-between. The metallic electrodes were visible in SPECT transmission

images (Fig. 5) and utilized as external markers for registration of ictal and interictal SPECT.

Alternative methods for registration of ictal and interictal SPECT include surface fitting

[5, 122] and gray scale correlation methods [7, 136]. These methods are practical in the

sense that there are no special requirements for the SPECT system. The method developed

in this work requires the availability of transmission imaging. The advantages of the method

included the determination of the EEG coordinate system in relation to SPECT and MR

images without further transformations. As the ictal and interictal SPECT was performed

during long-term video-EEG monitoring, the patient always had the electrodes at the scalp

at least during the other SPECT study, whether the electrodes were used in registration

or not. As the metallic electrodes further attenuate the emission radiation in SPECT, it

also seemed important to utilize an accurate attenuation correction method enabled by

transmission imaging.

After registration, ictal and interictal SPECT images were scaled to a mean cerebral intensity

of 100:

Is(x, y, z) = I0(x, y, z) ∗ 100/M, (7)

where Is are the scaled and I0 the original voxel intensities and M the mean cerebral intensity

in I0 [5]. After subtraction of the interictal from the ictal image, the subtraction image was

thresholded to include only values greater than 2 standard deviations (SDs) above zero as

in [5]. Although the thresholding aimed to minimize the influence of statistical variance in

the subtraction image, careful interpretation of the subtraction image was necessary. For
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Fig. 5: a) Transaxial, sagittal and coronal slices from a transmission SPECT image. Elec-
trode OZ has been detected for registration (cross on each slice). b) The electrodes used for
this patient have been marked with a circle in the electrode map.

example, besides a threshold value, Zubal et al. [7] included criteria based on the size of the

foci and the placement of it (inside gray matter) to decide whether an epileptogenic focus

has been detected in the subtraction image.

Registration accuracy in computing the subtraction image should be as good as possible,

because even a slight spatial mismatch between the two images to be subtracted can result

in a substantial error in the subtracted voxel values [148]. An approach based on external

markers has been considered to be an accurate registration method and used as a golden

standard for other methods [145, 146], provided that the attachment of the markers is secure.

The evaluation of the behaviour of the registration error using external markers and Arun’s

algorithm [140] was already studied in Publ. V.

The subtraction SPECT image was registered with MRI by fitting the electrode locations

to the head surface segmented from MRI. Borgefors’ algorithm [149] was utilized for fitting.

For error estimation, both ictal and interictal SPECT were separately registered with MRI,
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and their electrode locations in the MRI coordinate system were compared. In Publ. VI,

utilization of the new registration procedure was demonstrated with five patients. The RMS

residual of the registered electrode locations in ictal and interictal SPECT was about 2 mm.

When ictal and interictal SPECT were separately registered with MRI, the RMS residual of

the electrode locations varied from 3 to 5 mm.
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5 CONCLUSIONS

In clinical applications, accuracy and reliability of an image processing method has to be

confirmed before using the method. As the ground truth in patient images is not available,

tedious phantom experiments and simulations are often needed. Besides them, visual investi-

gation by a medical expert is always utilized. Practical aspects such as special requirements

for patient imaging, imaging time and required operator time have also to be considered.

Clinical benefits of the method finally state whether extra efforts for image processing should

be made. In this section, the main results from sections 2-4 are collected and conclusions on

the usability of the methods in clinical environment are made.

The first clinical problem in this thesis was improvement of ROI analysis in SPECT images.

Phantom experiments in Publ. I indicated that automatic delineation of ROIs in SPECT

images was problematic. Phantom tests in Ref. [40] gave similar results. No single fixed

threshold value was found to give a correct volume or a correct activity ratio for two objects.

In Publ. I, attenuation was corrected with a method assuming uniform attenuation. Uniform

attenuation correction improved the detected activity ratio of objects, but segmentation still

remained a problem in Ref. [40]. Correct threshold values depended on filtering and the

total activity of the object.

A protocol with transmission imaging based attenuation correction and scatter correction,

utilizing an iterative reconstruction algorithm, produced activity ratios of 80 - 100 % of

the correct activity ratios in objects representing deep brain structures in Ref. [46]. The

conventional protocol with uniform attenuation correction and without scatter correction

underestimated the activity ratios (65 - 80 % of the correct ratios). Accurate attenuation

and scatter correction increased the reliability of activity measurements using ROIs. Clinical

use of transmission imaging and iterative algorithms is still inhibited by longer acquisition

and reconstruction times than with conventional protocols.

In Publ. IV, the impact of low resolution and of the lack of detailed anatomical information

in SPECT on ROI based analysis was compensated by developing a registration method

to include anatomical information from MRI. The clinical benefits of registration were also

demonstrated. As SPECT and MRI produced information of very different nature, the

complementary information by registration offered help e.g. in analyzing hypoperfusion orig-

inally due to cortical atrophy. The utilization of external markers for registration has some

practical restrictions. Both SPECT and MRI have to be performed during the same day

without detaching the markers. The markers should not disturb the activity distribution of

the brain in the SPECT image, while the algorithm for fitting the marker sets requires as

widely distributed marker locations as possible to produce accurate results. Transfer of the
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images to a separate workstation for registration and the manual localization of the markers

from the images cause extra work.

The accuracy of the registration method was studied with phantom experiments and simu-

lations in Publ. V. The registration error inside the phantom was 3-5 mm, of which about 2

mm came from the uncertaintity in locating the test markers in the images. The size of the

registration error was site dependent being in its minimum near the centre of mass of the ex-

ternal markers used for registration. Even with an error comparable to the resolution of the

original images added in the test markers, the largest mean RMS residual after registration

was smaller than the resolution of the SPECT images. As a conclusion, the accuracy of the

registration procedure did not limit the ROI analysis of registered images, provided that the

design and attachment of the marker system were appropriate. Marker movement during

or between the imaging sessions was not considered, since it can individually vary from pa-

tient to patient. In practice, if a marker is detached for some reason, the movement can be

noticed in the images or the marker has dropped off completely. As six markers are usually

utilized in patients, two markers can be lost and registration still be obtained. According to

the phantom experiments, the accuracy of registration with 4 instead of 6 external markers

decreased less than 0.5 mm. Possible patient movement during imaging means lower image

quality altogether. The registration procedure was considered to be suitable for clinical use

and offered improvement in ROI based analysis of SPECT images.

The second goal was to obtain quantitative information from brain MRI. Opposed to seg-

mentation of SPECT images, volumetric information from MRI is usually considered to be

accurate enough, assuming that the resolution is accurately known and geometrical distor-

tions are not significant. The problem lies more in automatic processing of the images, as

manual ROI definition from tens or even hundreds of slices is too time-consuming. Auto-

matic methods set quality requirements for the original images. In Publ. II, a SOM based

method and a k-NN classifier produced accurate classification results of normal brain tissues

as well as tissue types in an infarction region (correct classification rate of 70 - 95 %). The

results were obtained for a single slice. Stability of the result was 75 - 82 %.

In Publ. III, interslice training scheme was adopted after a series of tests to check the

separability of tissue types in the feature space. The images were suffering from a visible

intensity nonuniformity. Using a k-NN method, acceptable (mean correct classification rate

of 85 %) but highly variable results were obtained for 10 patient data sets. The tests indicated

that intensity differences between tissue types, especially between GM and WM, should be

larger or the variances inside classes smaller to obtain reliable segmentation results with an

operational intensity based method. To save manual work and to obtain reliable results,

the separability of tissue classes should have been checked before imaging a large series of
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patients, as the quality requirements for automatic computer based analysis are usually more

strict than for visual analysis. In the SAM study, over 400 patients have been imaged using

the same equipment and imaging parameters. Extracting quantitative information from

these images is possible, but requires more manual work than expected.

The third application in this thesis was localization of epileptogenic foci for epilepsy surgery.

Epilepsy surgery candidates usually undergo several imaging examinations for localization of

the epileptogenic focus to be removed during surgery. In Publ. VI, a method for registration

of ictal and interictal SPECT, MRI and EEG was developed. The methodology was based on

SPECT transmission imaging, also allowing as accurate attenuation correction as available

to be utilized in reconstruction of the images from patients with metallic electrodes at the

scalp. A subtraction SPECT image computed from the ictal and interictal images helped

the comparison of the changes in rCBF in these images. The accuracy of registration of ictal

and interictal SPECT images was about 2 mm. Careful interpretation of the subtraction

image was still needed, as the changes in rCBF depended on the injection time in relation

to seizure onset. The accuracy of registration of the subtraction image with MRI was about

3-5 mm. After registration of SPECT images and MRI, the EEG coordinate system was

defined in SPECT and MR images without further transformations, providing possibilities

for MRI assisted EEG source localization (e.g. [15]).

The inconvenience for the patient from the registration procedure was a longer SPECT

imaging time due to transmission imaging. For registration, additional operator time was

also required. On the other hand, the extra time required for registration was only a very

small part of the total time needed for studying and taking care of a surgery patient, and

the registration procedure offered help in spatial localization of the seizure foci.

In this thesis, image processing methods were developed for SPECT and MR images. The

methods were validated in clinical environment. The reliability of ROI analysis of SPECT

images was enhanced using registration with MRI. Quality requirements for brain MRI

data to make segmentation more automatic were evaluated. The registration methodology

developed for epilepsy surgery candidates improved the localization of the epileptogenic foci.

As a conclusion, improved analysis of SPECT and MR images was obtained with the carefully

evaluated methodology presented in this thesis. The registration procedure for brain SPECT

and MRI is in clinical use for selected patients in HUCH (currently Health Care Region of

Helsinki and Uusimaa), as well as the registration procedure for epilepsy surgery candidates.
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Publication I: Segmentation methods for volume determination with 111In/99Tcm

SPET (Nucl Med Commun 16:370-377, 1995)

Fixed and adaptive thresholding, region growing and a method combining region growing

and edge detection were tested on phantom and patient images obtained with 99mTc and
111In SPECT (SPET). None of the tested methods produced accurate or stable results.

Fixed thresholding and region growing may be adaptable for segmenting clinical images, if

the parameters are optimized using phantom experiments. Preferably, the object boundaries

have to be included from anatomical modalities using registration.

Errata: In page 371 in section Results, the sentence “Using RGE, the gradient chosen was

0.5..” should be “Using RGE, the weight φ of the gradient was chosen to be 0.5..”.

Publication II: Stability study of some neural networks applied to tissue charac-

terization of brain magnetic resonance images (Proceedings of the IAPR 13th Inter-

national Conference on Pattern Recognition, Vol. IV, 472-477, 1996)

A SOM based method was compared with a feedforward neural network trained with back-

propagation and a k-NN classifier for tissue classification from multispectral MR images.

The algorithms were tested on spatially matched PDw, T2w and T1w slices from a patient

suffering from cerebral infarction. The most accurate results were achieved with the SOM

based method and with the k-NN classifier. The SOM based method was the most stable

method.

Publication III: Experiences on data quality in automatic tissue classification

(Report TKK-F-A794, Helsinki University of Technology, 1999)

Tests for evaluating the separability of tissue classes in multispectral MR images, and on

the other hand class distances required to obtain reliable classification, were presented in

this paper. Intraslice, interslice and interpatient training schemes for 5-nn classification

were considered. Interslice training was utilized in classification of images from 10 patients

with ischemic stroke giving results of satifactory but highly variable quality, indicating that

operational intensity based classification was not possible. Based on the experience with

these data sets, similar tests were recommended before imaging a large patient series in

order to avoid extra manual work and to obtain reliable classification results.

Publication IV: Registration and display of brain SPECT and MRI using exter-

nal markers (Neuroradiology 38:108-114, 1996)

A registration system based on external markers and on a noniterative least-squares method

for brain SPECT and MRI was developed. The clinical benefits of registration were demon-

strated with images from patients suffering from epilepsy, encephalitis, brain tumour and
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cerebral infarction. Different visualization techniques for registered information were intro-

duced.

Errata: Theoretically three markers are adequate for the registration, if they are not colinear.

Publication V: Accuracy of a registration procedure for brain SPET and MRI:

phantom and simulation studies (Nucl Med Commun 18:517-526, 1997)

The accuracy of the registration protocol introduced in Publ. IV was evaluated using phan-

tom measurements and simulations. The error model for the simulations was verified by the

results from the phantom experiments. It was concluded that the registration accuracy was

not the limiting factor in ROI analysis of the registered images provided that the external

marker system was properly designed and attached. The major error source was the modest

spatial resolution of SPECT (SPET).

Errata: In Table 1, under Phantom Experiment A, MRI, instead of the latter Study A1

there should read Study A2.

Publication VI: Transmission imaging for registration of ictal and interictal

single-photon emission tomography, magnetic resonance imaging and electroen-

cephalography (Eur J Nucl Med 27:202-205, 2000)

A method for registration of ictal and interictal SPECT, MRI and EEG was developed. For

SPECT studies, 99mTc-ECD was injected intravenously while the patient was monitored

on video-EEG to document ictal or interictal state. Imaging was performed using a triple-

head gamma camera equipped with a transmission imaging device. The gold plated silver

electrodes at the patient’s scalp, visible in the transmission images, were utilized as mark-

ers for registration of the ictal and interictal SPECT images. The interictal SPECT image

was subtracted from the ictal image after scaling. For registration of MR and subtraction

SPECT images, the external marker set of the ictal SPECT study was fitted to the surface

of the head from MRI. The estimated RMS error of registration in the final result combining

locations of the electrodes, subtraction SPECT and MR images was 3-5 mm.
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