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Persistence is considered in one-dimensional diffusion-limited cluster-cluster aggregation when the diffusion
coefficient of a cluster depends on its sizasD (s)~s?. The probabilities that a site has been either empty or
covered by a cluster all the time define the empty and filled site persistences. The cluster persistence gives the
probability of a cluster remaining intact. The empty site and cluster persistences are universal whereas the filled
site depends on the initial concentration. For0 the universal persistences decay algebraically with the
exponent 2/(2- y). For the empty site case the exponent remains the sameforbut the cluster persistence
shows a stretched exponential behavior as it is related to the sibalavior of the cluster size distribution.

The scaling of the intervals between persistent regions demonstrates the presence of two length scales: the one
related to the distances between clusters and that between the persistent regions.
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[. INTRODUCTION sion coefficient,D(s)~s” with y<2. In DLCA one meets
immediately the possibility of defining several persistent
Persistence in dynamical systems is usually defined as thguantities, each of which describes a different aspect of the
probability P(t) that at a fixed point in space a fluctuating aggregation process. An important difference from, e.g., spin
nonequilibrium fieldg(x;t) does not change sign up to time models(Ising, Pott$ is the asymmetry between the clusters
t [1]; that is, the probability that sga(x;t) —(#(x;t))] re-  and the empty space.
mains unchanged. It was originally introduced for a simple The persistence probabilities considered in this work are
diffusion proces$2,3] and since then has been considered in(i) the probability of a cluster to remain unaggregatelds-
spin system$4—12], reaction-diffusion systenjd3-19, the  ter persistendeand (ii) the probability that a site has been
voter model[20,21], and for interface$22—25. Some ways empty(empty site persisteng@nd(iii ) filled (filled site per-
of measuring it experimentally exi$26-30, as well as a sistencg up to timet. Notice that all these arecal quanti-
few exact result$31—-34. ties. It would be possible to start also from definitions that
In many systems persistence decays algebraicBly) involve a global quantity like the average cluster 4i2&,37]
~t~% with a nontrivial persistence exponefit The signifi-  but these would be harder to study numerically tkian(iii )
cance of the phenomenon stems from the fact that the exp@bove, which also have the pleasant aspect of being, possi-
nent is not, in general, related to the usual static or dynamibly, experimentally relevant.
exponents. This in turn implies that not necessarily all of the We first discuss the three persistence definitions with size-
properties of a system are characterized by a single lengtindependent diffusion coefficientsy&0) in order to clarify
scale. the universality of these quantities. The filled site persistence
The length scales may not be well separated, whichurns out to be nonuniversal in contrast to the two others.
causes problems if one studies the universality aspects dfhereafter we concentrate on the two universal ones and
persistence. For example, in the diffusion-reaction mddel consider the influence of size-dependent diffusian Q).
+A—J the empty site persistendprobability that a site We discover that for & y<<2 these decay algebraically with
has not been visited by a partigleas first claimed to be the same exponent but for<O they are unrelated. Finally,
nonuniversal[14—16. Afterward the same authors argued we consider the distribution of persistent regions and inter-
for universality and claimed the poor separation of twovals between them. As the empty site persistence exponent
length scales, the diffusive scalby~t* and the persistence 6 is twice the dynamic exponegtthe length scale§y and
one£p~t9, to be the origin of the confusiofl7,18. Such L, become well separated at late times. Before this, how-
an effect was also suggested to be the reason for the poever, the effect of the presence of two length scales can be
scaling of the interval size distribution between the persistenticely demonstrated in the scaling of the interval size distri-
regions in the one-dimensionagtstate Potts moddl4]. In butions.
neither of these two problems is the length scale separation This paper starts by introducing the model and describing
evident. It is therefore worthwhile to look for a system wherethe quantities of interest in Sec. Il. In Sec. Il each persis-
one could, without controversy, both verify the universality tence probability is considered separately. Section IV dis-
of persistence and at the same time explicitly demonstrateusses the scaling of the region and interval size distribu-
the effect of the presence of two length scales. tions. The dependence of the persistent quantities on
In this article we study persistence in an aggregation proeoncentration and initial conditions is studied by simulations
cess. The particular one used is the one-dimensionadt the beginning of Sec. V. The end of that section shows the
diffusion-limited cluster-cluster aggregatigpLCA) model  numerical results for the region and interval size distribu-
[35], with each cluster diffusing with a size-dependent diffu-tions. Section VI concludes the paper.
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IIl. MODEL AND QUANTITIES OF INTEREST

The DLCA model is here considered on a one- NE(t):k; kne(kit), @

dimensional lattice of. sites with periodic boundary condi-

tions. Initially the lattice is filled up to a concentratigh -

such that occupied lattice sites correspond to particles and PE(t)=|21 Ipe(lit). 2
sites connected via nearest neighbor occupancy belong to the -

same cluster. Each cluster performs a random walk, anghpviously these two are related by the equatiR(t)=1
when two clusters collide, they aggregate irreversibly to-—N_(t). Similar formulas apply to other persistence defini-
gether. The diffusion coefficient of a cluster of s&is given tions, too, except in the cluster persistence case(Bqis

by D(s)=D;s”. D, sets the time scale and it is irrelevant replaced by

regarding the dynamic scaling properti@8—41. We con-

centrate ony<2 for which the growth of the average cluster -
size is algebraic. PC(t):,zl Pc(lit) )
The persistence probabilities studied in this work are the
following. and naturallyP(t) # 1— Ng(t).
(1) Empty site persistence: the probability that an origi-
nally empty site has never been occupied by a cluster, ll. PERSISTENCE PROBABILITIES
Pe(t)~t ™ %.

(2) Filled site persistence: the probability that a site origi- A. Emply site persistence

nally covered by a cluster has been covered by it all the time, We start by giving a heuristic argument for obtaining the

Pe(t)~t~ %, empty site persistence exponent for arbitrary Since the
(3) Cluster persistence: the probability that a cluster haglusters on both sides of a persistent empty region are inde-
not aggregated?(t)~t~ ’c. pendent, we are led to consider the maximum excursion of a

When the probabilities decay algebraically, one has théingle, diffusing cluster. The only complication is that for
persistence exponenti, 6, and fc. The cluster persis- 7 0 collisions will change its diffusivity.

tence differs from the other persistence definitions since it is_ AS the average cluster siz8(t)~t* with z=1/(2-y)
not a quantity defined per a fixed site on the lattice but is %39’4@ we take each cluster to havetimme-dependendif-

property associated with each cluster. usion coefficient D(t) =Dgt?*~S(t)”. The probability

In special cases the DLCA model is closely related togigf)ﬁgor?feﬂtitri]gna cluster at positiox at timet obeys a
other models, in one dimension. For example, when the clus- q
ters are considered to be pointlike particles WIt'h ‘mass” aP(x;t)=DotZ32P(x;t). (4
the DLCA model becomes equal to the reaction-diffusion

modelAs+ Ay — A, . FOry=0, i.e., when the diffusionis A time transformation

mass independent, this reduces to coalescing random walkers

A-+A—A, which is exactly solvablé42,43. This may fur- T(t)= Do {2+l (5)
ther be connected to the zero temperatiistate Potts model vz+1

in the limit g—<0, in which the empty site and cluster per- . . o . i )
sistences have recently been studiéd.?. reduces this to an ordinary diffusion equation with the diffu-

The terminology and notation used are as follows. TheSion constanD=1. The persistence of the empty space be-
word region is reserved for a bunch of consecutive persisterffveen particles diffusing with a constabthas recently been
sites. The distances between regions, i.e., between two cofonsidered foA+A—A in [4] and we just quote the main
secutive persistent sites, is called an interval. The word clugesults here. - .
ter has the obvious meaning. The number of clusters of size !N the long time limit the probability densitpe(r;t|¢)

s per lattice site at time is ng(t) with the normalization that a persistent empty regigariginally of size€) has size
S.sn=1. Region size is denoted Hyand the number of T attimeTis given by

regions of sizd (per sitg by px(l;t). The subscript is the .

same as for the persistence probabilities and it refers to the Pe(r;T[) = — (6)
persistence definition useX e {C,F,E}. When using the T

continuum description we use the symiohstead ofl. The dth bability th | . o
letter k labels the interval sizes and the corresponding distri@nd the probability that a cluster survives up to titme

bution function isny(k;t). The number densities of persis- 5 5
tent sitegthe persistence probabilitand nonpersistent ones Pe(t|€)= ¢ _ 7 €_~t72z. @
are denoted by capital lettePs(t) andN(t), respectively. £ 27T @Dy t22

As an example, consider intervals between persistent
empty sites and their distribution functiox(k;t). The cor-  For a general initial length distribution of regiof(€,0)
responding distribution of persistent regionspig(l;t). The  the result will remain the same excefftwill be replaced by
number densities are obtained by summing the average over the initial length distributi¢6?).
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- "0 : > (rt|S) 8 Eoc: ( 1)j+1-2eXF< jZ(S_r)2>
i : Xmin  Xmax y = - _—
P T CLIN. N i V2Dt 4 ’ 20t

W ©
5 for r<s and zero otherwise.

TOTReTSIEENtLBIES For the asymptotic long time behavior it is useful to trans-

FIG. 1. The length of the nonpersistent filled part is equal to thefom Ed.(9) to a more tractable forxm as follows. Writing the
$PanR(t) = Xmin(t) + Xmad(t) Of the middle point of a cluster. The Sum in Eq. (9) in the form =___.G; and applying
length of the persistent region & — R(t). The cluster position at the Poisson sum formula [45] .G
t=0 is denoted by a thick rectangle, whose middle position is=37___ [*_ dx G(x)e?"™ leads to
marked by a dotted line. The dashed lines show the maximum ex-
cursions of the cluster.

8Dt 2Dt(2m+1)2
Pr(r;tls)= 23 |- emty —11
(s—r)

These considerations show that the persistence exponent m=0 (s—r)?
0:=(y)=2z=2/(2—y). This agrees with the exact result 72Dt(2m+1)2
0:(0)=1 [4]. Furthermore, the result is independent of the xeXp( - (10
initial spatial distribution or concentration. All these results 2(s—r)?

are confirmed by simulationsee Secs. VA and VB N o . .
From Eq.(10), the probability of finding persistent sites

inside the cluster decays exponentially at large times:
B. Filled site persistence

. . . . S
_ The meqhamsm by which th(_a filled sites bgcome nonper- PF(t|S)=f drpe(r;tls)
sistent is different at low and high concentrations. At a low 0
concentration a cluster contains typically only one persistent " _
region which is usually destroyed before the cluster aggre- Y 8[s“+7°Dt(2m+1)]
gates with its neighbor. At a high concentration a large clus- o s2r2(2m+1)2
ter is created out of many aggregation events, contains an
assembly of persistent regions, and only the regions near the m?Dt(2m+1)?
edges of the cluster are affected by its motion. xXexp — 2 (11
In the low concentration limit we consider the persistence s
problem in a continuum, valid for clusters of initial length 5
So>1. For ¢—0 the time required for a cluster to move its mﬁe _ ™Dt (12)
own length is much smaller than the time required to over- 52 282 |’

come the distance between clusters. Therefore one could as-

sume that at low concentrations collisions between clustershe persistence probability is obtained by integration

do not matter. This is true only up to some crossover time,

which diverges in the limiip— 0. However, to obtain more [~

insight we will first ignore the collisions. Pr()= fo ds pe(t|s)ns(0), (13
When clusters do not collide, the persistent sites under

different clusters are destroyed independently. A single difso that the decay will depend on the initial distribution. For

fusing cluster destroys persistent area at both ends. As Fig.dxample, fom¢(0)= 8(s—s,) it is an exponentialEq. (12)]

shows, the length of the nonpersistent filled part is equal tand for ny(0)=2 exg —s%/(ws3) /s, We get, using the ap-

the span of the middle point. The sp&{t) of a random  proximation(12), a stretched exponential

walk is defined afRR(t) = Xmin(t) +Xma{t) , Wherex,i,(t) and

Xmad{t) are the maximum displacements in the negative and

positive directions at timé, respectively. I 2 DL sy
The probability distribution for the span of an unlimited Pr(t)~ 32 © %

random walk is given by44] 0

(14

For the exponential initial distributiong(0)=s, ‘e~ %%, the

W(R:t)= 8 D (—1)i+1j2exp( _I'R ) (8) application of the saddle point method gives

V27Dt =1 2Dt

128Dt 3[ =2Dt| "
. _ . pe(~\/——exd - 5| — . (19
In our case the maximum span is limited by the size of the 3msy 2\ s
clusters and the probability distributiopg(r;t|s) that an
interval of lengthr of a cluster initially of sizes has survived All of these examples show a stretched exponential decay
up to timet is for the persistence probability. The stretching exponent de-
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pends on the initial condition and is therefore nonuniversal. s
The long time behavior, in the approximation ignoring colli- (r(t|s)>=j drrpe(r;tls)=s—(R(t[s)) (16)
sions, is governed by the rat[a)t/sg, and the decay depends °
on concentration due to the factsy.

The approximate span distribution can also be used tand use the normalized approximate form for the span dis-
calculate the mean size of persistent regions. First write  tribution

2 2
- S(R—s)[1—(1+&s72)e 957+ 282R % ¥R Rs<s,
wn(R;t|s)= 17
0, R>s,
|
where &= 7°Dt/2, to calculatg/R(t|s)), from which C. Cluster persistence

Cluster persistence is considered in detail elsewfbe
but, for completeness, we briefly report the main results and

_ 2Dt 18 their implications.
(r(tls))~sexp — 242 (18) It turns out that the cluster persistence probability
exp(—Cths), <0,

As an example, for the simplest case of a fixed initial sige Pc(t)~{ t7%% y=0, (20)

[ng(0)=8(s—5p) ], the mean length of surviving regions is t=22=), 0<y<2,
where Bg fits well to the expressioBs=2/3(1—2z) and

(r(tlse)) 3 ., C>0 is a constant. The discontinuity of the exponentyas
(Ssun) = Pe(tlso) 8Dt ' (19 0" can be understood in terms of a mean-field random

walk analysis. The completely different behavior fpr 0
and y=0 is related to the behavior of the cluster size distri-

Here again, the decay exponent depends on the initial distrUtion. Itis known to scale as

bution ng(0). _ )
In the high concentration limitpb— 1, we adopt another Ns(t) =S(6) “F(s/S(D)), (21)

mean-field type approach: we consider a deterministic mode}here 5(t) is the average cluster sif85]. For small argu-
combined with scaling arguments. Let the average clustelrnent values X—07) the scaling functionf(x) decays as

and empty interval sizes initially b&, andd,, respectively. x~7for 0= y<2 and as exp(x“"') for y<0 [38,41. These

The concentratiorp=sy/(sp+ dg)~1 for sp>dj. . . X
Now consider the doubling times,t,, ... &, ... at (r;splg;seg?sn be used to obtain a scaling relation between the

which the average cluster and interval sizesspre2's, and
d;=2'd,, respectively. At each stepthe doubled cluster is fc=(2—1)z (22)
constructed as follows. Firstl,,_;/2 sites(these do not have c '

to persistent but they may b&om both ends of the cluster  Thjs equation together with E¢20) allows one to deter-
are made nonpersistent. Second, the resulting cluster is disine - for 0<y<2. That is, by solving for the cluster per-
plicated. The probability of finding persistent sitggn), at  sjstence one obtains the small size tail of the scaling func-
stepn decays ap(n)~e «(9" for high enough/\llazllues ab.  tion, the knowledge of which is of primary importance in
Sinces,=2"sy~t?, it follows thatp(t)~t~ (¥ aggregation systems. This connection may exist in other

According to this simple argument the filled site persis-models and offer a way to approach the problem of comput-
tence probability decays algebraically for large enough coning the cluster size distribution.

centrations. The persistent sites are swept by domain walls,
which annihilate at aggregation. Since the probability to be
touched by a domain wall depends on their density, the per-
sistence exponent depends on concentration, implying non-
universality. Simulations qualitatively agree with this behav- In the following, we concentrate only on the universal
ior and furthermore show that the persistence probabilitempty and cluster persistences. The interval size distributions
decays algebraically for low concentrations, too. The reasobetween consecutive persistent sites are studied using the
for the deviation from the span argument lies in the approxinatural scaling assumption

mation, which neglects the collisions between clusters. We

return to this issue in a more detail in Sec. V A. Ny (k;t) =Ky (t) ™ *fy(k/Ky (1)), (23

IV. DISTRIBUTIONS OF PERSISTENT INTERVALS AND
REGIONS
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whereK(t) is the average interval size aXddenotes either 10°
C or E. Inserting the scaling forni23) into Eq. (1) and re- é
placing the sum by an integral results in e

a)

+
&
f
+

< 0@ +
< 0@

N0 = K07 [ “dy y8(y). (24)

md < 0 @O
md < 0O

As Py(t)—0 for t—oo it follows from the relationPy(t) =
=1—Ny(t) thatNy(t)—1 ast—o. The only way to keep o’
the right hand side of Eq24) constant is to require=2, as

a direct consequence of mass conservation. Note that the
above argument does not require the persistence probability
P«(t) to decay algebraically.

Since the persistence exponents are larger than the dy-
namic exponentfy>z, the persistence length scale will be
much larger than the diffusive one at large times. The persis-
tent regions are well separated and get destroyed by uncor-
related processes since the correlations grow only’.am 10°
the scaling limit the scaling functions are therefore simple
exponentials ¥

< < 0@ O
[ ]
=] ©
mM< U@ O
0O® O
<1 0@ O

a

-
m<g @ O
[ ]

10

<moe
<m0 ®H
<«/m O @0
<«m 0O +
<m 0@ O +
+

O

et

Ny(k;t) =Ky (t) 2 WKx®), (25) 107

<m 0@ O +

Consider next persistent empty sites. At large times the v
region size distribution is given by E@6) for a monodis- =
perse initial condition. For other initial distributiomg(0) it o
is obtained as 10

<m 0@ O
<«m 0@ O
<m D@ O
<m Ce @]
<«m 0@
<m U@ O
<«<m 0@ O
0e
0e

<4n
4m

- €o _
pE(r;T):j d€ pe(r;T|€)P(€,0)= —=e "o,
0 i
(26) 0.0

where T is the rescaled tim¢Eq. (5)] and the last form 10°
corresponds to the initial distributioRz(¢,0)= ¢, *e™ ‘o, t
The dependence on the diffusion exponent enters only
through the time scald@~t¥(?~7. The spatial and time
dependences ipg(r;t) are decoupled. From this it follows
that the average size of the persistent empty regions,
Lg(t), is a constant at large times. For the monodisperse 10~ | o = o

and exponential initial conditions we geLg°"\t) ° " o
=Pe(T[€o) 10 drrpe(r;T|¢o)=€o3 and  LEAD)  _ e H o
=[odrrpe(r;T)/f5drpe(r;T)=€,, respectively. These 107" | © . o
both are independent of time. The simulatigsse Sec. V [P £ —F
confirm this.

10
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=<
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<

<
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<

£

[ J
[ ]
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V. SIMULATIONS

The simulations are done on a one-dimensional lattice
with periodic boundary conditions with a standard algorithm 107
[41]. In all the simulationsD;=1, the system sizes range
from 5x10* to 1.5x10°, and the data are averaged over
1000-50 000 realizations.

10

A. Dependence on concentration and initial conditions FIG. 2. The persistence probabilitiés) Pc(t), (b) Pg(t), and

e . ... (c) Pg(t) for size-independent diffusion coefficientg 0) and for
We test the sensitivity of the persistence probabll|t|esconcentrations(ﬁ:0_20 ©), 0.50 (), and 0.80 ¥). Results
against concentration changes and two different initial consq, simulations using random and monodisperse=(1) initial

ditions. The first initial condition used is random: each latticecongitions are denoted by open and filled symbols, respectively.

site is filled with probability¢. The other one is determinis- pjyses(+) are obtained with monodisperse initial conditions for
tic and monodisperse with equidistant clusters of a given sizg=0.20 ands,= 10. The insets show the running exponents.
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FIG. 3. (a) Filled site persistence probability arid) average 10 10° 102 10* " 10°
cluster size of those clusters that contain persistent sites for deter- t
ministic initial conditions withy=0, sy;=11, and¢$=0.2. The solid
line is given by Eq(12) and the dashed line show¥? behavior. FIG. 4. The cluster and empty site persistence probabilities

Pc(t) (filled symbols and Pg(t) (empty symbols for y=
So- We present data only for size-independent diffusion co-—1.0(V), 0.0J), and 0.750).
efficients but we have checked that fg# 0 the behavior is
similar. others. The cluster persistence decays algebraically only for
As Fig. 2 shows, a change in the initial condition does noty=0 and faster than any power bfor y<0 in accordance
have a significant effect on any of the persistences. A changgith Eq. (20).
in the concentration affects only the amplitudes of the cluster
and empty site persistence distributions. The numerical esti- C. Intervals between consecutive persistent sites

mates for the exponents obtained from the saturated part of . o .

the running exponents aré.(0)=1.48+0.03 and 6(0) In Sec. IV we argued tha.t .the size distribution of mtgrvals

—1.00+0.02. These are in excellent agreement with the exPeIWeen persistent quantities would scale according  to

act resultsfe(0)=2 [5,47] and 6(0)=1 [4]. nx(k_;t)=KX(_t) fy(k/IKx(t)) with a simple exponenthl
For the filled site persistence the distribution shows a>caling funct|.0.n[Eq. (25)]. When the corresponglng Persis-

transition from an algebraic decay to a relatively faster ondence probablhty d_ecays algebr§1|caII§/x(t)~Axt % with a

when decreasing the concentration. The nonalgebraic dec&Pnuniversal amplitudéy(4), this can be presented also as

seen in simulations is only a crossover behavior. The discregx(K;t) =t~ 2Fx(k/t*). .
ancy between the analysis of Sec. IlIB and simulations is There is a difference between these two scaling forms: for

due to cluster aggregation. This occurs for times larger thathe latter the scaling functions will not overlap each other for

the average collision time.,;~ 1/(D ¢?), which indeed di- different concentrations due to the nonuniversal amplitude

verges for¢—0. The large time persistence probability of dependence. Therefore for clarity we show the scaling plots

filed sites is dominated by the clusters, that have collided!sing this formulation. Furthermore, we prefer to show the

with others. This is illustrated in Fig. 3, which shows both scaling of the complement of the cumulative distribution

the persistence probability and the average size of those clus-

ters that contain persistent sites. There is a clear crossover |x(k§t)22 Ny(i;t). 27

from the behavior given by the analysis of Sec. Ill Btat i=k

~300 to the one for which the collisions are significant.

After this crossover time, the clusters including persisten

empty sites grow similarly to the other ones. . Y — = Oy Oy i
To summarize, the simulations support the universality ofthlsf‘:'h?l/jlfdlx scale asx(kit) =t Pgx(k/t™) with gx(x)

empty and cluster persistences and show without doubt that Ay e "X

the filled site persistence is nonuniversal. Similar

ftis easy to see from the scaling m(k;t) and Eq.(25) that

concentration-dependent behavior has been observed also for 2 . .
persistence of bubbles in soap frofl27]. 5
Lt
B. Dependence ony <@ 16
All the dynamic scaling properties of the DLCA depend
on y and the same is true for the persistence probabilities as 0-5_2 _'1 (') y
Fig. 4 shows. The empty site persistence probability decays Y

algebraically for all values of<2. The analytical prediction

fe=2z is compared to simulations in Fig. 5. The agreement F|G. 5. Comparison of the numerically obtained empty site per-
is excellent. Hence, there are no nontrivial correlations andistence exponenéiz(CJ) to the mean-field resultg=2z=2/(2
the clusters surrounding persistent empty sites grow like the- y) (solid line) as a function of the diffusion exponet
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0 ' ‘ ‘ 0.5

«—1=131072
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0.2 |
]
107" $=0.5, y=—1.0 ]
N 01 |
10° 0=0.2, v=0.0 \ ‘ ‘ g 0 10 20 30 40
0 10 20 30 40 s

kot
_ ) _ FIG. 8. The size distributions of persistent empty regions for
FIG. 6. Scaling plot for the complement of the cumulative dis- ,=0 and ordered initial conditions wite,=10 and¢$=0.2. The
tribution of intervals between two consecutive persistent empttime instants range frort= 2% to t=2".

sites att=2°, ..., 214 for concentrations and diffusion exponents
shown in the figure. The value used for the persistence exponeqfe same rate at which the curves in Fig. 7 shift towards zero.
Oe=2(2=7). Our estimate from the numerical data giveg.(t)

_ _ . ~t705020.03 \yhich is consistent witly (t)~t~Z Thus the
Figure 6 shows that the scaling works for the empty site,qor scaling in Fig. 7 fok<t’e is just a manifestation of the
persistence and that the scaling function is an exponentiglyite time behavior with two competing length scale,
one indeed. The plots for the cluster persistence are similar ,z t0c Thi ; ; fa e i
(not shown. The scaling function is universal and all the -t .andﬁp te. This effect vanlshgs in the spalmg imit. A
similar, although not as clear, violation of scaling induced for

curves in Fig. 6 would overlap each other if one plottedio same reason is seen in tpstate Potts modéH].
Ke(t)I(k;t) as a function ok/Kg(t). Note that the diffusion

exponenty has no influence on the scaling function. . .

Although the summation in Eq27) smooths the data, at D. Persistent regions
the same time it loses information about the sthélle be-  Figures 8 and 9 show the empty region distributions for
havior. This is illustrated in Fig. 7 where no summation isthe initial cluster size distributionsii(0)=8(s—s,) and
done. Fok<t” the scaling does not work. The reason is then (0)=s, ' exp(~s/sy). These confirm the analytical predic-
followmg. The s%allr_lg should W_ork in the |Imk7>00 angj tions of a lineafEq. (6)] and an exponentidEq. (26)] de-
t—ce with y=k/t’e fixed. In particular, the conditiok>t"  cay Hence, the dependence on the diffusion exponent enters
should be satisfied for the two length scales of the problem t%nly through a multiplicative factor of 2= in the dis-
be well separated. Define now a time-depengg(t) so that  triputions and the average region size approaches a constant
the scaling works foy>y,(t). This quantity gets smaller at at |ate times. In Fig. 8 the smallest times shown are not large

k/t% N

FIG. 7. Scaling plot for the distribution of intervals between two  FIG. 9. The size distributions of persistent empty regi@pper
consecutive persistent empty sitegar2®, ... 2" for $=0.2 and  curves and clusterslower curve$ for random initial conditions
v=0. and y=0.75. The measurement times are shown in the figure.
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enough for the analysis of Sec. IlIA to be valid but the lisions between clusters become important and start to domi-

tendency of the distribution to approach a straight line isnate the persistence behavior.

clearly visible. The cluster persistence probability is universal and decays
Naturally, the size distribution of persistent clusters re-algebraically for 6= y<2 and as a stretched exponential for

mains unaltered for a monodisperse initial condityf0) ~ y<0. For 0<y<2 the persistence exponent is given by

= 6, 5. The same is true also for size-independent diffusionc(7)=22=2/(2—y) and it is discontinuous ay—0"
o . _ .. ... since 6c(0)=3. All these results are in close connection
coefficients (y=0) no matter what the initial distribution is. \yitn the scaling of the cluster size distribution, especially

Therefore we present only the result for random initial con-yith the smallx decay of the scaling functiof(x)~x"". In

function is a pure exponential, i.e., it remains unaltered.  — (2— 1)z The scaling relation together with the result for
0 offers a way to determine the small size tail of the cluster
VI. CONCLUSIONS size distribution in DLCA.

In this paper we have considered persistence in an aggre- It is worth emphasizing that the universal empty and clus-

gation process, in the case of one-dimensional DLCA. Th er persistences decay with the same exporignt 0 =2z

P - . =2/(2—vy) for 0<y<2 but have nothing to do with each
h local ties: ty, filled, and clust :
eMpnasis 15 on “ota’ properties: emply, 1hed, and clSter ther for y<<0. In fact, for y=0 we can write Pc(t)

persistences together with the corresponding region and if? [P(t)]", wherel takes the values 3/2 and 1 for=0

terval size distributions. We have shown that the three per-_ ) .
d 0< y<2, respectively. The same persistence exponents,

sistences are independent and each has its distinct scalif »
properties. i.e.,,I'=1, for positivey are due to the fact that the clusters

The perhaps most natural choice, the probability that Qiving the dominant contribution to the cluster persistence

site has remained in the same state—filled or empty—is nor@’® those that asymptotically become stationary. Any other

universal. The filled site persistence is responsible for this¥@/ue ofl" makes the Interpretation more opaque. A similar
The empty site persistence is universal. The difference in thEation, Pc(t)~[Pe(t)]", with a nontrivial I" has recently
dynamics of empty and filled sites in DLCA thus becomesP€€n observed also for noninteracting random walke
apparent. The cluster persistence is a third independent qua@i?d for the Potts modglL2] in one dimension. A challenge
tity since it classifies clusters whereas the two other persid?" the future is to understand the origin and limitations of
tence definitions are considered at a fixed point in space. NS refationship. _

To summarize, the universality of empty site persistence [N conclusion, we have presented a rather comprehensive
is supported both by mean-field continuum arguments and bZF”dy o_f various local persistence prqbab|!|t|es in the one-
simulations. The former leads to a relatively simple relationdimensional DLCA model. Our study is of interest also for
between the persistence exponent and the dynamic exponeHe Sake of practical realizations. Aggregation processes are
9= 2z, verified by simulations. This is one of the few ex- plentlful,_and all of the definitions—whether a point in space
ampleg4] where the inequality>zd, whered is the spatial 'S ©ccupied or not by a cluster, or whether clusters survive
dimension, is satisfied. The consequence of this is that th!@tgct—mght well be possible to measure experimentally. .It
persistent empty regions do not have a fractal character. Thi§ Interesting _also_ to note that, When_ the decay of a persis-
is not true, for example, for the persistent regions in the Isind€Nce Probability is algebraic and universal, the exponent is
[10] or diffusion-annihilatiorf 17] models. The fact thatg is always directly In some relatlon_ to the dy_nam|cal exporent
notably larger tharz makes the separation of the diffusive of the aggregation process. It is an _obv!ous question to ask
and persistence length scales clearly visible in the scaling dioW the various quantities work out in higher dimensions.
the interval size distribution.

The filled site persistence decays asymptotically algebra-
ically for y<2 and for all concentration®g(t)~t~ . The The authors thank P. E. Salmi for numerous discussions.
persistence exponerds depends on concentration and is E.K.O.H. also thanks A. J. Bray and P. L. Krapivsky for
therefore nonuniversal. At low concentrations the filled sitediscussions and S. Majaniemi for helpful remarks. This re-
persistence decays as a stretched exponential up to search was supported by the Academy of Finland’s Center of
concentration-dependent crossover time, after which the coExcellence program.
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