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Abstract

The Self-Organizing Map (SOM) is a widely used data

visualization tool in engineering applications. The al-

gorithm performs a non-linear mapping from a high-

dimensional data space to a low-dimensional space, which

is typically a two-dimensional, rectangular grid. This

makes it possible to present multidimensional data in

two dimensions.

Often the model vectors of the SOM and a new data sam-

ple need to be compared. The SOM, however, gives no

probability measures to determine if the sample belongs

to data sets determined by map units. For this pur-

pose a modi�ed batch version of reduced kernel density

estimator (RKDE) was tested. The results were com-

pared with Gaussian Mixture Model (GMM) and S-Map.

1 Introduction

The SOM algorithm [6] produces a topology preserv-

ing mapping from high-dimensional data space to a

low-dimensional grid of map units. It also carries

out vector quantization by representing the input

vectors using model vectors of the map units.

The SOM network can be used to investigate and

to visualize the structure and dependencies in multi-

variate data, for example process states [1, 7, 9]. In

many applications the best-matching unit (BMU),

the map unit with model vector closest to a sample

vector, is important. However, following problems

exist:

� the sample may be far from the closest model

vector (problem of novelty detection) or

� there may exist several (almost) equidistant

model vectors.

These problems may be avoided by using response,

a function of the distance between model vector and

data sample x. A suitable functional form for the

response ri of unit i is for example

ri =
1

1 + jjx�mijj
2
; i = 1; : : : ; N; (1)

where mi is the model vector of unit i and N is the

number of units. This formula has some bene�cial

properties, e.g. ri 2 [0; 1]. Thus ri can be considered

as a �fuzzy indicator� of the data sample hit for the

map unit i.

However, probabilistic interpretation of the response

in Eq. 1 is not clear. The response may alternatively

be de�ned, using the Bayes' theorem, as conditional

probability of unit i given data sample x:

ri = P (ijx) =
p(xji)P (i)

p(x)
=

p(xji)P (i)P
i
p(xji)P (i)

: (2)

The priors P (i) and the conditional densities p(xji)

need to be estimated. For estimating the conditional

densities we adopt the idea that the model vectors

generate the data distribution. This leads to the

batch version of RKDE using SOM model vectors

as kernel centers.

2 Description of the methods

2.1 Gaussian mixture model

In Gaussian Mixture Model (GMM), the modeled

data is assumed to be generated by a set of Gaus-

sian distributions. The parameters of the Gaussians

are determined using the Expectation-Maximization

(EM) algorithm [3].

Initial guesses for the distribution centers were in

our tests computed using the K-means algorithm.

The simplest way to form a GMM is to compute the



covariance matrix for each cluster without any itera-

tions of the EM algorithm, which is fast to compute

but typically produces poor results.

In kernel estimation, diagonal forms of the covari-

ance matrix of each cluster are often used, because

inside a cluster the variables can be assumed to

be independent. Another reason for using diagonal

form � even though variables would not be totally

independent � is that estimation of full covariance

matrix requires lots of data which are not in many

cases available.

In the GMM simulations, Netlab software package

by Nabney and Bishop [8] was used.

2.2 Self-organizing reduced kernel

density estimator

A straightforward idea to estimate the probability

density using the SOM is to build a RKDE model

using the map model vectors as kernel centers. The

method was proposed by Hämäläinen [4]. We used

a modi�ed batch version of the method.

A simple way to estimate the prior probability for

map unit i is ratio

P (i) =
#(xn 2 Vi)

#xn
; n = 1; :::M; (3)

where Vi is the Voronoi set of unit i (set of data

vectors whose closest model vector is mi) and M is

the number of samples.

The density functions p(xji) for each map unit are

estimated using corresponding Voronoi sets Vi. Un-

fortunately this way a biased data set is obtained

because no samples can lie outside the Voronoi re-

gion. The parameter estimation may be adjusted in

several ways. Due to the topological ordering of the

SOM, the neighborhood function can be used to get

a weighted contribution of data from the neighbor-

ing units; also the priors P (i) may be computed this

way. In the distribution modeling following assump-

tions are made:

� variables in the sets Vi; i 2 1; : : : ; N (and in

the Voronoi sets of neighbors of i) are indepen-

dent and

� distributions p(xlji); l = 1; : : : ; d (d is the data

dimension) are Gaussian.

This approach di�ers from the method by Hämäläi-

nen in two ways: in his work, the priors (kernel

weights) were not adjusted and the kernel width was

determined in a di�erent way.

In the SOM experiments the training of the network

was carried out using SOM Toolbox1.

2.3 S-Map

Kiviluoto and Oja have recently proposed the S-Map

algorithm [5], which has an inherently probabilistic

background. In S-Map the softmax activations of

the Generative Topographic Mapping (GTM) [2] and

the learning algorithm of the SOM are combined.

According to tests by Kiviluoto and Oja the S-Map

seems to have better self-organizing capability than

GTM and it is computationally lighter.

3 Experimental results

3.1 Test data

Three data sets for testing the algorithms were gen-

erated. The parameters of the sets are shown in Ta-

ble 1. Because we wanted to reconstruct the distri-

butions using kernel estimators and compare them

with the original ones, the data sets were generated

using known distributions.

Set Dim Centers Covariance

# matrices

I 2 (0,0) diag(1,0.1)

(1,0) diag(1,0.1)

II 3 (0,0,0) diag(1,0.1,0.5)

(1,0,0) diag(0.5,1,1)

(2,2,2) diag(0.1,0.1,0.1)

III 4 (0,0,0,0) diag(1,0.1,0.5,1)

(1,1,0,0) diag(0.5,1,1,0.5)

(2,0,2,0) diag(0.1,0.1,0.1,0.1)

(-1,-1,0,-1) diag(1,1,0.1,0.1)

(0,0,2,0) diag(0.1,1,0.1,0.5)

(-1,2,0,1) diag(0.5,0.1,1,0.1)

Table 1: The parameters of the distributions. Data

set I had two, set II three and set III six Gaussian

kernels. Notation �diag(�2
1
; : : : ; �2

N
)� refers to diago-

nal covariance matrix with variances �2
1
; : : : ; �2

N
.

1Freely available at URL http://www.cis.hut.fi/projects/somtoolbox/



Plots of 1000 randomly sampled points from the dis-

tributions I�III are presented in Figures 1 (a)�(c).

The distributions II and III are projected in two

dimensions using the principal component analysis

(PCA).
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Figure 1: Plots of randomly sampled points from the

distributions used in generation of data set I (a), II

(b) and III (c).

3.2 Test procedure

Seven di�erent kernel estimation methods were com-

pared. Three of them were based on the SOM, three

used the GMM and the last one was the S-Map al-

gorithm. Descriptions of the methods are in Table 2.

All the SOM based kernel estimates were built by

�rst computing the kernel centers (model vectors)

using the SOM algorithm. In the simulations, the

Gaussian neighborhood kernel was used. Then, for

each kernel, the diagonal covariance matrix with dif-

ferent variances was estimated based on the data

sets described in Table 2.

In the GMMs, the initial guesses for kernel centers

were computed using K-means algorithm. In the

�rst case, the variances of diagonal covariance matrix

were determined using Voronoi sets of these centers.

In the last two cases, the elements of diagonal covari-

ance matrix were computed using the EM algorithm.

In the former case the variances were constrained to

be equal, in the latter they were allowed to be di�er-

ent.

The S-Map was trained using the S-Map algorithm

which computes the kernel centers and kernel width

(variance) parameter for all units during the network

training.

Method Method description

#

1 SOM and all Voronoi sets weighted

by the neighborhood function

2 SOM and the Voronoi sets of

the units and their six closest units

3 SOM and the Voronoi sets of

the units and their six 1-neighbors

4 GMM and EM,

initialization only

5 GMM and EM,

variances equal, 20 iterations

6 GMM and EM,

variances di�erent, 20 iterations

7 S-Map

Table 2: Kernel estimation methods used in the tests.

All the methods were tested for the data sets I�III.

Two versions of each data set were used: 400 and

4000 randomly chosen data vectors. The number of

kernels was 40 in all tests. After kernel estimation,

each distribution was reconstructed using kernel es-

timates. The obtained distribution q was then com-

pared to the original distribution p using Kullback-

Leibler divergence:

d =
X

i

pi log(pi=qi) + qi log(qi=pi): (4)

3.3 Results

The results for 400 samples (10 samples/kernel) are

presented in Figure 2 (a) and for 4000 samples (100

samples/kernel) in Figure 2 (b). The test error was

computed using Eq. 4. All results are averages over

100 test runs.

Four examples of data set I distributions vs. recon-

structed ones are illustrated in Figures 3 (a)�(d).

4 Discussion

The GMM with 20 iterations of EM algorithm gave

the best results. The initialized version of the al-



gorithm produced the weakest results, which is not

very surprising.

The SOM-based kernel estimates did quite well ex-

cept for the one using Voronoi sets of the BMU and

its topological neighbors. This is probably due to

the fact that neighboring units are in some parts of

the SOM quite di�erent. Taking into account that

the method requires no iterations and it didn't move

the kernel centers like GMM, the results were good.

Even though the results of the S-Map were not very

good, it succeeded in the comparison quite well in

proportion to the number of estimated parameters.

It had only one common variance parameter, the ker-

nel width, whereas all the other methods had several

dozens of parameters. It should also be noted that

the results could probably be improved by more

careful selection of training parameters.

Our primary goal was to �nd out if the SOM unit ac-

tivations could be given probabilistic interpretation

using a RKDE even if the number of samples for each

quantization unit is small. In the light of our results

this appears to be roughly possible.
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Figure 2: Test results for (a) 400, (b) 4000 samples data sets. The results of data set I are denoted by black,

data set II by grey and data set III by white color.
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Figure 3: Reconstructed vs. original distributions: results with 400 samples using method 1 (a), 6 (b) and 4000

samples using method 1 (c), 6 (d). The original distribution is denoted by gray and the reconstructed one by

black color.


