© 2002 IASTED. Reprinted, with permission, from Proceedings of the IASTED
International Conference on Internet and Multimedia Systems and Applications,
Kauai, Hawaii, USA, August 12-14, 2002, pp. 164-169.

A BROWSER FRAMEWORK FOR HYBRID XML DOCUMENTS

Kari Pihkala, Mikko Honkala, and Petri VVuorimaa
Telecommunications Software and Multimedia Laboratory,
Helsinki University of Technology,

P.O. Box 5400, FI-02015 HUT

ABSTRACT

Hybrid XML documents are documents, which contain
severa XML languages, separated by a namespace.
Recently, the usage of hybrid documents has increased.
The trend has been to specify XML languages as
modules, which are combined to construct complete
documents. As the number of languages gets higher, a
way to flexibly handle these kinds of documents is
required. This paper describes a framework for an XML
browser to handle hybrid documents. The features of the
framework are demonstrated with a hybrid document
containing SMIL, XForms, and XML Events.

KEY WORDS: XML, SMIL, XForms, XML Events,
X-Smiles, browser.

1. Introduction

World Wide Web Consortium (W3C) has defined a set of
markup languages based on eXtensible Markup Language
(XML) [1], e.g., XSL Formatting Objects (XSL FO),
Synchronised Multimedia Integration Language (SMIL)
[2], Scalable Vector Graphics (SVG) [3], XML Events
[4], XForms [5], and XHTML [6]. XSL FO is a page
layout presentation format. SMIL can be used to define
spatial and tempora properties of multimedia
applications, while SVG is asimilar format for vector
graphics and animations. XML Events enables including
scripts and logic into XML documents. Finally, XForms
is the next generation language for web forms and
XHTML is an XML based version of the popular HTML
language.

A browser is the most common client to access web
applications. Unfortunately, thecurrent commercial
browsers have limited support for XML languages. Most
of browsers support only few of the XML specifications.
This dows the spreading of XML based applications.
Therefore, we have developed an open source XML
browser called X-Smiles (www.x-smiles.org). The main
advantage of the X-Smiles is that it supports most of the
W3C XML specifications, eg., XSL FO, SMIL,

© 2002 IASTED

Finland

SVG, XML Events, XForms, and VoiceXML [7]. Support
for XHTML is under work. The browser is implemented
in Java, thus enabling porting it to various devices. [8]

Although, different XML based markup languages can be
rendered separately in X-Smiles; it can also display
hybrid documents. A hybrid document is an XML
document, which contains several XML languages,
distinguished by a namespace. In this paper, we use the
term host language to denote the main language of an
XML document. A host language usualy has the default
namespace in the document and it also defines the layout
for the document. Typical host languages are XHTML,
SMIL, and SVG. A language, which is embedded inside a
host language, is called a parasite language. XML Events
and XForms are examples of parasite languages. These
hybrid documents can be validated with hybrid document
types [9]. However, building support for them is not as
straightforward.

In this paper, we describe a framework, used in X-Smiles,
to handle hybrid documents. The idea is that each
XML language is implemented as a separate component
cadled Markup Language Functional Component
(MLFC). Each MLFC knows how to handle a specific
XML based language. The framework allows MLFCs to
communicate with each other, thus making it possible to
handle hybrid documents.

The structure of the paper is the following. The overall X-
Smiles architecture isintroduced in section 2. In section
3, the framework is presented. Section 4 describes a case
study based on the framework, while section 5 draws
conclusions.

2. The X-Smiles Architecture

In this section, the overall architecture of the X-Smiles
browser is presented.

The X-Smiles XML browser has been implemented to
render several XML languages [8]. It is capable of
rendering, e.g., SMIL, XSL FO, and SVG documents.
This is achieved using several MLFCs, each rendering
one specific XML language. Having each MLFC as an

Kari
© 2002 IASTED

Kari
© 2002 IASTED. Reprinted, with permission, from Proceedings of the IASTED International Conference on Internet and Multimedia Systems and Applications, Kauai, Hawaii, USA, August 12-14, 2002, pp. 164-169.

independent component alows them to be alded or
removed from the browser at will. Figure 1 depicts the
overal architedure of the browser. The achitedure is
composed of four major layers (from bottom to the top):
XML processng, Browser Core Functionality, MLFCs,
and Graphicd User Interfaces (GUIS). At the bottom, the
XML Parser and XSL Transformer process the XML
documents, converting them into a DOM tree In the
midde, the Browser Core cntrols the browser’s internal
state, such as configuration data, document history, etc.
The MLFCs render XML languages, as mentioned ealier.
There ae two speda MLFCs (i.e., source ad tree
MLFCs), which only display the source mde of the
document. The Graphicd User Interfaces (GUI) can be
used to customizethe browser for various devices.

| General GUI | MLFC sedificaul |

XSL FO| SMIL SVG XForms | Events
MLECs MLFC | MLFC | MLFC MLFC

Browser Core

XML Broker
Configuration

4

A 4

XSL Transformer

XML Parser

Figure 1. Architecture of the X-Smiles browser.

3. Implementation

In this sdion, we present the implementation of the
framework to handle hybrid dacuments.

3.1 Overview

The etry point to the framework is the DOM tree
congtruction. The main ideawas to be ale to use off-the-
shelf XML parser or XSLT transformer to perform the
DOM tree onstruction, and therefore be awred of
standards compli ance, whil e reading the XML documents.
There ae the following distinct phases in fetchingan
XML document:

Q Open Stream. A stream is opened to the URL of
the requested document.

Q Generate DOM. The XML parser starts to read
the stream and generate the XML DOM one
node at the time.

a Transform DOM. If the XML document contains
an XSLT stylesheet reference, it will be

© 2002 IASTED

transformed with an XSLT transformer into the
presentation XML DOM.

Figure 2 describes the X-Smiles modules needed in the
framework for fetching an XML document and creating
the DOM. The XML parser or XSLT transformer is
instructed, using the JAXP [10] interface, to generate an
XSmilesDocumentlmpl instead of normal Documentlmpl.
XSmilesDocumentlmpl is derived from Documentlmpl
and it forwards element creation requests to XMLBroker,
which in turn uses MLFCs to create specialized DOM
elements. Created elements are stored as the descendants
of XSmilesDocumentimpl.

XML XSLT
_| Doc Sheet

XML Parser

XSLT Transformer

XSmiles
Doclmpl

ev:listener

Figure 2. Framework architecture.

3.2 XML brokering

We separated the MLFC registration and general element
and attribute aedion to an independent module, cdled
XML Broker. XML Broker hasthreemain roles:

Q MLFC Registering. All MLFCs in the system
register themselves to XMLBroker either by a
namespace (eg.,
‘http://mww.w3.0rg/200012/xforms) or by the
root element's unqualified name (e.g., 'smil").

Q Dispatching element and attribute creation.
XMLBroker cheds the namespace of ead
element and attribute to be aeaded, and if it
matches any of the registered MLFCs, it
forwards the reguest to the arresponding
MLFC.

Q MLFC Ingtantiation. XML Broker instantiates
MLFCs on-demand, and keeps trak of the
MLFCs that have been instantiated for a
document.

Kari
© 2002 IASTED

The instantiation of MLFCs works in such a way that
there is always only one instance of eadh type of MLFC
in a document. The same MLFC (e.g., SMIL MLFC) can
register itself under multi ple namespaces and roct element
tag names, but till there is only one instance of it per
document. There can be multiple different MLFCs per
document (e.g., SMIL MLFC and XForms MLFC). Cf.
Sedion 3.5 discusdon about the two types of MLFCs:
hosts and parasites.

The roat element of an XML document plays a spedal
role, since there can only be one host MLFC per
document. It is identified by the root element’s name or
namespace(i.e., namespace &ways takes precalence over
tag name; element’'s name suppat is merely there for
legacy XML langueges, such as SMIL 1.0, which don' t

suppat namespaces).
3.3 MLFC responsibilities

MLFCs play an important role in the framework. Their
responsibiliti es include:

Q DOM element creation. MLFC credes language-
spedfic DOM elements, when an XML
document is parsed.

Q Element implementation. MLFC includes
spedalized implementations of DOM elements.

o DOM attribute creation. MLFC creaes
language-spedfic DOM attributes, when an
XML document is parsed.

Q Attribute implementation. MLFC includes
spedalized implementations of DOM attributes.

QO Rendering. MLFC and the spedalized elements
and attributes are responsible for rendering
themselves.

An MLFC contains DOM element implementations,
spedalized for eat element type. For instance, SMIL
MLFC contains implementations for all SMIL elements
(eg., SMILHeadElementl mpl and
SMILBodyElementimpl). If the MLFC deddes to use a
generic DOM element, it returns the dement credion
request bad to XML Broker.

An MLFC can also contain attribute implementations,
spedalized for ead attribute type. Attributes are handled
similarly to elements. Again, MLFC can use generic
DOM attributes, if spedalized attributes are not required.

3.4 Initialization

The initialization phase is used to perform pre-rendering
tasks, for instance, XML Events adding event listeners to
the DOM tree One implicaion of using XML parser and
XSLT transformer to generate the spedalized DOM tree
is that at element credion time, the dement’s child

© 2002 IASTED

elements or even its own attributes are not known. Thus,
the initiali zation cannot happen at the DOM credion. The
solution is to cdl a spedal initialize() method for all
DOM elements and attributes after DOM credion, when
al the dements and attributes are avail able.

3.5Host and parasite MLFCs

An MLFC can be ahost, a parasite, or bath. There is a
strict rule: one host MLFC is creaed per a document. The
host is identified by the document’s root element and it
deddes the master layout for the document. The layout
model can differ between different host MLFCs. For
example, XHTML has a flow type of layout, while SVG
uses explicit coordinates for placement.

A parasite MLFC always needs a host to live in. Parasite,
such as XForms MLFC, may only define layout for its
own elements. Sometimes the parasite does not have
vishle cmmponents (e.g., XML Events MLFC). Figure 2
above depicts the aeaion of an XML DOM, where SMIL
MLFC is the host and there ae two parasites. XForms
and XML Events. In the figure, the host elements in the
DOM have white badkground, while the parasites have
darker badkground.

3.6 Interaction between the MLFCs

The dements cannot usualy live in the DOM without
communicating with ead other. Consider, for example,
an XForms element that lives in a SMIL document. The
SMIL document neals to be ale to accessthe graphica
component of the XForms element in order to placeit on
the screen, at the locaion spedfied by the SMIL
document. Another example is an event listener that must
be @le to fire event handlers pedfied by some other

language.

One requirement for the framework was that the host
MLFC is independent of the possble parasite MLFCs. It
must also be posshle to add new MLFCs without
modifying the eisting ones. Therefore, interadion
between elements is lved by defining two entities:
Service Provider and Service Caller, as depicted in Figure
3. The Service Provider is an interface that a DOM
element or attribute can implement. The Service Caller is
another element or attribute that knows how to use the
Service Provider's interfface The dements then
communicate diredly with ead other, and not via XML
Broker or browser core. Some dements may not need
communication, or they may also communicae via DOM
events.

Kari
© 2002 IASTED

DOM
Document
Legend
Service
Q Caller
Service
= Provider

..I/\Io |nteract|on

needed
between elements

.. .,
1N ‘s
o)
.,
. . .‘

Figure 3. Interaction between DOM elementsand
attributes.

Service Providers are defined using interfaces. There is,
for instance, a general service VisualComponentService.
A DOM element, which implements this interface has a
method for accessng the visua component as well as
adivating and de-adivating the component, and setting
the om level. Using these methods the parent element
can control the rendering of the component. Both, host
and parasite dements, can be Service Providers or Service
Callers. For example, XML Events parasite dement will
cdl activate() for its EventHandler Service children, both
host and parasite cildren, when an event is dispatched.
The framework itself allows any mix of parasites and
hosts (as long as the roat is a host element). It is up to the
elements to ched the type of the parent or child if it
neals to communicae with it.

3.7 Limitations and constrains

Whil e the framework described in this article is aimed to
be etensble, there ae few known limitations to the
framework.

First, there is currently no suppat for spedalized
document implementations. The framework will always
creae adefault document implementation for the XML
document, XSmilesDocumentimpl. In some caes, it
would be desired for the MLFC to be ale to crede its
own Documentimpl. For example, a HTML-DOM
Document interface ontains ssme methods that are not
possble to implement with the airrent version of the
framework. This limitation is a result of not knowing, at
document credion time, what will be the host MLFC. A
possble resolution would be to delay the aedion of the
Documentimpl until the root element is read from the
XML stream.

© 2002 IASTED

Seoondly, initialization phase may cause performance
degradation. The DOM treeneeds to be initialized after it
has been fully constructed. This may make the framework
inefficient for large documents, since the whole document
needs to be retrieved and transformed into a DOM tree
until it can be rendered. A resolution would be to
initialize and render parts of the tree while nstructing
the whole tree SAX interface ould also be used to crede
and initializethe tree

4. A Case Study: SMIL, XForms, and XML
Events

In this sedion, we describe how the described framework
handles a hybrid document containing SMIL, XForms,
and XML Events.

4.1 The hybrid document

As an example service, an imaginary car sales ®rvicewas
creaed, depicted in Figure 4. The user can seled desired
values using the mntrols on the left, and the changes will
be refleded in the ca model shown on the right. The user
can press the “Order” button to send the values to the
server. To achieve this, the form controls are written in
XForms languege, capturing of events and control logic in
XML Events and ECMAScript, and the layout and visual
appeaancein SMIL. SMIL isthe host language providing
the layout, while XForms and XML Events are parasite

languages.

= George's Car Garage [_[o[=]
Filz Edit ‘iew Boockmarks Help

file:D:/demo.smil -

George's car garage
1. Selectthe car. Explorer -

2. Select the model. Convertible v‘

3 selsctnownests [Monster v

Ready.

Figure4. A simple multimedia service.

42 SMIL MLFC

The SMIL MLFC in the X-Smiles browser is capable of
rendering SMIL 2.0 Basic language [2] documents. The
MLFC has been designed to be dynamic (i.e., run-time
changes in the SMIL elements will be reflected in the
presentation). Thus, a script can modify the appearance of
the presentation.

Kari
© 2002 IASTED

In the example, SMIL controls the spatial and temporal
dimensions of the document, providing the layout and
timing information for all the dements in the document.

4.3 XFormsMLFC

The XForms MLFC implements most of the XForms
working draft. Since the spedficaion does not define any
layout, the languege canot be used as a host language.
Instead, it can be used as a parasite language, letting a
host language dedde the layout of the XForms controls
[17].

In the example, XForms is used to provide the form
controls on the left. When the user seleds items from the
controls, the instance data is updated, and the price is
automaticdly caculated. Instance data is sibmitted to the
server, when the “Order” button is presed. Figure 5
depicts how XForms is embedded in SMIL. The XForms
control is used like a SMIL media dement, under the
“par” element. The “par” element will define the region
and timing information for the antrol.

<text region="text1l" src="data:, 1.
Sel ect the car:" begin="1s"/>
<par region="sel 1" begi n="1s"
ev: event =" DOVAct i vat e"
ev: handl er =" #audi ohandl er" >
<xf m sel ect One xfornm="forml"
ref="order/car"
sel ect Ul =" checkbox" >
<xfmitem val ue="buggy">
Buggy</xfmitenp
<xfmitem val ue="explorer">
Explorer</xfmitenp
<xfmitemval ue="fornula">
Formul a 3000</xfmitene
</ xf m sel ect One>
</ par >

Figure5. Snippet showing XForms elements.

4.4 XML EventsMLFC

XML Events MLFC provides scripting functionality in
the X-Smiles browser. It asaumes that the other MLFCs
will dispatch events to the DOM tree It listens to them
and acordingly evaluates event handlers. The event
handler code is included in an additional element cdled
“script”. Currently, it has not been defined in the XML
Events gedfication, but it has been implemented in our
solution to run ECMAScript. ECMAScript can be used to
modify the DOM elements, thus controlli ng the run-time
presentation look. XML Events can either be parasite
elements or parasite atributes.

In the example, XML Events is used to tie dnanges made
in the form controls to the presentation. Listeners wait for
XForms events and run a handler, when a change event is
observed. The handler is made of a pieceof ECMAScript,

© 2002 IASTED

which changes the “src” attribute of the audio element.
Figure 6 depicts how the audio element is changed with
ECMAScript acording to the seleded ca model. The
event listener is defined as attributes for the par element
shown in Figure 5.

<l-- This changes the audio -->
<ev:script id="audi ohandl er"
type="text/ecmascript">

/1 Change the audi o el ement
aud=documnent . get El emrent sBy TagNane(
"audio").iten(0);
if (car == "buggy")
aud. set Src("buggyt us. wav");
if (car == "explorer")
aud. set Src("expl . wav"
if (car == "fornula")
aud. set Src("netal . wav");
</ev:script>
<audi o i d="audi opl ay"
src="buggyt us. wav"/ >

Figure 6. Snippet showing how ECMAScript
changes the audio track.

45 Interfaces

Figue 7 depicts the interfaces of the dements and
attributes used in the ca demo. Only the SMIL elements
are host language dements, other elements are parasites.
SMIL media dements can be both. Two interfaces are in
use, VisualComponentService and EventHandler Service.
The SMIL time containers (e.g., seq and per), are Service
Callers, being able to display any element implementing
Visual ComponentService. Of course, the time cntainers
can also contain the usual SMIL elements.

SMIL XML Events

XFor

VisualComponent
Service Caller
VisualComponent
Service Provider

EventHandler
@ Service Caller

EventHandler

Service Provider

(o]

Figure 7. Implemented MLFC interfaces.

The XForms control elements (e.g., output, range, and
submit) implement a VisualComponentService, alowing
any host languege to control their appeaance In this
case, the SMIL time ontainers were used. The oontrol
eements aso send a DOMActivate event, when their

Kari
© 2002 IASTED

value is changed. The setVaue dement also implements
an EventHandlerService interface dowing it used as an
event handler.

The XML Events “listener” element listens to DOM
events, in the example, the DOMActivate event. The
element is a Service Caler, asuming that the event
handler will provide EventHandlerService. In our
implementation, either “script” element or XForms
dedarative dements can be used as event handlers.

In addition to the presented interfaces, it is possble to
embed XForms elements and SMIL media dements as
parasites in XHTML, SVG, and XSL FO documents.
Also, XML Events can be included in XHTML, SVG, and
XSL FO documents.

5. Conclusion

The XML language spedficaions are evolving towards
small sets of elements, which will be combined in hybrid
documents. Such an approach has arealy been taken with
XForms and XML Events. Also, modularizaion of
languages will li kely produce hybrid dacuments.

This paper presented a framework to render hybrid
documents. The X-Smiles browser uses MLFCs to render
XML langueges. Each MLFC can render one XML
language. A central module, cdled XML Broker, is used
to forward parsed XML tags and attributes to the
asociated MLFCs. An MLFC creges DOM elements and
attributes, which are then appended to a DOM tree This
results in a DOM tree with spedalized DOM elements
and attributes, ead providing functionality for itself. The
elements and attributes can communicae with eat other
via interfaces. This enables embedding one language in
another.

As an example, a simple SMIL document was creded
with XForms and XML Events embedded in it. The
document was then rendered using relevant MLFCs,
showing how they interad with ead other. This $owed
that the aurrently implemented interfaces are quite smple,
but till powerful. They alow elements to modify others
layout, to define timing for displaying, and can fire
adions.

The main benefit of the given framework is that it is
highy modular. New MLFCs can be «aeded
independently, still alowing them to interad with the old
ones. New MLFCs can also take alvantage of already
cregded MLFCs' functionality. This is in line with the
current effort made & W3C to crede reusable XML
languages and modules. The framework also guides the
internal structure of the MLFCs to be robust, and to
follow standards.

However, the framework has few drawbadks. Currently,
document objeds won't implement the standardized

© 2002 IASTED

interfaces. Also, there may be some performance
degradation, because of the initialization phase of the
DOM tree Both of these limitations will be addressed in a
future version.

In the future, the need for more interfaces is obvious. The
interfaces in the aurrent MLFCs will be revised, and new
interfaces will be developed, kegping them as generic as
posdble. After al, they are the key for XML languages to
co-operate. Also, more MLFCs for various XML
languages can be implemented. For instance, MathML as
aparasite language, to embed it in any host language.

6. Acknowledgement

The aithors Kari Pihkala and Mikko Honkala would like
to thank Nokia Oyj Foundation for providing the
scholarships and suppart during the research work.

References

[1] T. Bray et a., Extensible Markup Language (XML)
1.0 (second edition), W3C Recommendation, Oct. 6, 200Q
http://mww.w3.0rg/TR/2000REC-xmI-20001006

[2] J. Ayars et d., Synchronized Multimedia Integration
Language (SMIL 2.0), W3C Recommendation, Aug. 7,
2001, http://mww.w3.org/TR/smil 20/.

[3] J. Ferraiolo et al., Scdable Vedor Graphics (SVG) 1.0
Spedficaion, W3C Recommendation, Sept. 4, 2001
http://mww.w3.0org/ TR/SVG/.

[4] S. McCarron et a., XML Events, W3C Working Draft,
Oct. 26, 2001 http://www.w3.0rg/TR/200YWD-xml-
events-20011026.

[5] M. Dubinko et al., XForms 1.0, W3C Working Draft,
Jan.18, 202, http://www.w3.0org/TR/2002WD-xforms-
20020118

[6] S. Pemberton, XHTML 1.0: The Extensible
HyperText Markup Languege, W3C Recommendation,
Jan. 26, 200Q http://mww.w3.org/TR/xhtml1/.

[71 VoiceXML Forum, Voice &tensible Markup
Language version 1.0, W3C Note, May 5, 200Q
http://mww.w3.org/TR/voicexml/.

[8] P. Vuorimaa ¢ al., A Java based XML browser for
consumer devices, the 17th ACM Symposium on Applied
Computing, Madrid, Spain, March 10-13, 2002 pp. 1094
1099

[9] M. Altheim et a., Modularization of XHTML, W3C
Recommendation, Apr. 10, 2001,
http://mww.w3.org/TR/xhtml-modul arization/.

[10] R. Mordani et al., Java APl for XML Processng,
Version 1.1, Java Community Process Specification, Feb.
6, 2001, http://java.sun.com/xml/jaxp-1_1-spec.pdf.

[11] M. Honkala and P. Vuorimag XForms in X-Smiles,
VWWWV Journal, 4(3), 2001, pp. 151-166.

Kari
© 2002 IASTED

