
A BROWSER FRAMEWORK FOR HYBRID XML DOCUMENTS

Kari Pihkala, Mikko Honkala, and Petri Vuorimaa
Telecommunications Software and Multimedia Laboratory,

Helsinki University of Technology,
P.O. Box 5400, FI-02015 HUT

Finland

ABSTRACT

Hybrid XML documents are documents, which contain
several XML languages, separated by a namespace.
Recently, the usage of hybrid documents has increased.
The trend has been to specify XML languages as
modules, which are combined to construct complete
documents. As the number of languages gets higher, a
way to flexibly handle these kinds of documents is
required. This paper describes a framework for an XML
browser to handle hybrid documents. The features of the
framework are demonstrated with a hybrid document
containing SMIL, XForms, and XML Events.

KEY WORDS: XML, SMIL, XForms, XML Events,
X-Smiles, browser.

1. Introduction

World Wide Web Consortium (W3C) has defined a set of
markup languages based on eXtensible Markup Language
(XML) [1], e.g., XSL Formatting Objects (XSL FO),
Synchronised Multimedia Integration Language (SMIL)
[2], Scalable Vector Graphics (SVG) [3], XML Events
[4], XForms [5], and XHTML [6]. XSL FO is a page
layout presentation format. SMIL can be used to define
spatial and temporal properties of multimedia
applications, while SVG is a similar format for vector
graphics and animations. XML Events enables including
scripts and logic into XML documents. Finally, XForms
is the next generation language for web forms and
XHTML is an XML based version of the popular HTML
language.

A browser is the most common client to access web
applications. Unfortunately, the current commercial
browsers have limited support for XML languages. Most
of browsers support only few of the XML specifications.
This slows the spreading of XML based applications.
Therefore, we have developed an open source XML
browser called X-Smiles (www.x-smiles.org). The main
advantage of the X-Smiles is that it supports most of the
W3C XML specifications, e.g., XSL FO, SMIL,

SVG, XML Events, XForms, and VoiceXML [7]. Support
for XHTML is under work. The browser is implemented
in Java, thus enabling porting it to various devices. [8]

Although, different XML based markup languages can be
rendered separately in X-Smiles; it can also display
hybrid documents. A hybrid document is an XML
document, which contains several XML languages,
distinguished by a namespace. In this paper, we use the
term host language to denote the main language of an
XML document. A host language usually has the default
namespace in the document and it also defines the layout
for the document. Typical host languages are XHTML,
SMIL, and SVG. A language, which is embedded inside a
host language, is called a parasite language. XML Events
and XForms are examples of parasite languages. These
hybrid documents can be validated with hybrid document
types [9]. However, building support for them is not as
straightforward.

In this paper, we describe a framework, used in X-Smiles,
to handle hybrid documents. The idea is that each
XML language is implemented as a separate component
called Markup Language Functional Component
(MLFC). Each MLFC knows how to handle a specific
XML based language. The framework allows MLFCs to
communicate with each other, thus making it possible to
handle hybrid documents.

The structure of the paper is the following. The overall X-
Smiles architecture is introduced in section 2. In section
3, the framework is presented. Section 4 describes a case
study based on the framework, while section 5 draws
conclusions.

2. The X-Smiles Architecture

In this section, the overall architecture of the X-Smiles
browser is presented.

The X-Smiles XML browser has been implemented to
render several XML languages [8]. It is capable of
rendering, e.g., SMIL, XSL FO, and SVG documents.
This is achieved using several MLFCs, each rendering
one specific XML language. Having each MLFC as an

Kari
© 2002 IASTED

Kari
© 2002 IASTED. Reprinted, with permission, from Proceedings of the IASTED International Conference on Internet and Multimedia Systems and Applications, Kauai, Hawaii, USA, August 12-14, 2002, pp. 164-169.

independent component allows them to be added or
removed from the browser at will . Figure 1 depicts the
overall architecture of the browser. The architecture is
composed of four major layers (from bottom to the top):
XML processing, Browser Core Functionality, MLFCs,
and Graphical User Interfaces (GUIs). At the bottom, the
XML Parser and XSL Transformer process the XML
documents, converting them into a DOM tree. In the
middle, the Browser Core controls the browser’s internal
state, such as configuration data, document history, etc.
The MLFCs render XML languages, as mentioned earlier.
There are two special MLFCs (i.e., source and tree
MLFCs), which only display the source code of the
document. The Graphical User Interfaces (GUI) can be
used to customize the browser for various devices.

3. Implementation

In this section, we present the implementation of the
framework to handle hybrid documents.

3.1 Overview

The entry point to the framework is the DOM tree
construction. The main idea was to be able to use off -the-
shelf XML parser or XSLT transformer to perform the
DOM tree construction, and therefore be assured of
standards compliance, while reading the XML documents.
There are the following distinct phases in fetching an
XML document:
 �

Open Stream. A stream is opened to the URL of
the requested document. �
Generate DOM. The XML parser starts to read
the stream and generate the XML DOM one
node at the time. �
Transform DOM. If the XML document contains
an XSLT stylesheet reference, it will be

transformed with an XSLT transformer into the
presentation XML DOM.

Figure 2 describes the X-Smiles modules needed in the
framework for fetching an XML document and creating
the DOM. The XML parser or XSLT transformer is
instructed, using the JAXP [10] interface, to generate an
XSmilesDocumentImpl instead of normal DocumentImpl.
XSmilesDocumentImpl is derived from DocumentImpl
and it forwards element creation requests to XMLBroker,
which in turn uses MLFCs to create specialized DOM
elements. Created elements are stored as the descendants
of XSmilesDocumentImpl.

Figure 2. Framework architecture.

3.2 XML brokering

We separated the MLFC registration and general element
and attribute creation to an independent module, called
XML Broker. XML Broker has three main roles:
 �

MLFC Registering. All MLFCs in the system
register themselves to XMLBroker either by a
namespace (e.g.,
'http://www.w3.org/2000/12/xforms') or by the
root element's unquali fied name (e.g., 'smil '). �
Dispatching element and attribute creation.
XMLBroker checks the namespace of each
element and attribute to be created, and if it
matches any of the registered MLFCs, it
forwards the request to the corresponding
MLFC. �
MLFC Instantiation. XML Broker instantiates
MLFCs on-demand, and keeps track of the
MLFCs that have been instantiated for a
document.

Figure 1. Architecture of the X-Smiles browser.

XSL Transformer XML Parser

%
�

U� R� Z
�

V
�

H
�
	� &
�

R
�

U� H�

General GUI

 XSL FO
 MLFC

 SMIL
 MLFC

 SVG
 MLFC

MLFCs

 XForms
 MLFC

MLFC specific GUI

XML
Events
MLFC

XML Broker
Configuration

Doc. History

source
& tree
MLFCs

Kari
© 2002 IASTED

The instantiation of MLFCs works in such a way that
there is always only one instance of each type of MLFC
in a document. The same MLFC (e.g., SMIL MLFC) can
register itself under multiple namespaces and root element
tag names, but still t here is only one instance of it per
document. There can be multiple different MLFCs per
document (e.g., SMIL MLFC and XForms MLFC). Cf.
Section 3.5 discussion about the two types of MLFCs:
hosts and parasites.

The root element of an XML document plays a special
role, since there can only be one host MLFC per
document. It is identified by the root element’s name or
namespace (i.e., namespace always takes precedence over
tag name; element’s name support is merely there for
legacy XML languages, such as SMIL 1.0, which don' t
support namespaces).

3.3 MLFC responsibilities

MLFCs play an important role in the framework. Their
responsibiliti es include:
 �

DOM element creation. MLFC creates language-
specific DOM elements, when an XML
document is parsed. �
Element implementation. MLFC includes
specialized implementations of DOM elements. �
DOM attribute creation. MLFC creates
language-specific DOM attributes, when an
XML document is parsed. �
Attribute implementation. MLFC includes
specialized implementations of DOM attributes. �
Rendering. MLFC and the specialized elements
and attributes are responsible for rendering
themselves.

An MLFC contains DOM element implementations,
specialized for each element type. For instance, SMIL
MLFC contains implementations for all SMIL elements
(e.g., SMILHeadElementImpl and
SMILBodyElementImpl). If the MLFC decides to use a
generic DOM element, it returns the element creation
request back to XML Broker.

An MLFC can also contain attribute implementations,
specialized for each attribute type. Attributes are handled
similarly to elements. Again, MLFC can use generic
DOM attributes, if specialized attributes are not required.

3.4 Initialization

The initialization phase is used to perform pre-rendering
tasks, for instance, XML Events adding event listeners to
the DOM tree. One implication of using XML parser and
XSLT transformer to generate the specialized DOM tree
is that at element creation time, the element’s child

elements or even its own attributes are not known. Thus,
the initialization cannot happen at the DOM creation. The
solution is to call a special initialize() method for all
DOM elements and attributes after DOM creation, when
all the elements and attributes are available.

3.5 Host and parasite MLFCs

An MLFC can be a host, a parasite, or both. There is a
strict rule: one host MLFC is created per a document. The
host is identified by the document’s root element and it
decides the master layout for the document. The layout
model can differ between different host MLFCs. For
example, XHTML has a flow type of layout, while SVG
uses explicit coordinates for placement.

A parasite MLFC always needs a host to live in. Parasite,
such as XForms MLFC, may only define layout for its
own elements. Sometimes the parasite does not have
visible components (e.g., XML Events MLFC). Figure 2
above depicts the creation of an XML DOM, where SMIL
MLFC is the host and there are two parasites: XForms
and XML Events. In the figure, the host elements in the
DOM have white background, while the parasites have
darker background.

3.6 Interaction between the MLFCs

The elements cannot usually live in the DOM without
communicating with each other. Consider, for example,
an XForms element that lives in a SMIL document. The
SMIL document needs to be able to access the graphical
component of the XForms element in order to place it on
the screen, at the location specified by the SMIL
document. Another example is an event listener that must
be able to fire event handlers specified by some other
language.

One requirement for the framework was that the host
MLFC is independent of the possible parasite MLFCs. It
must also be possible to add new MLFCs without
modifying the existing ones. Therefore, interaction
between elements is solved by defining two entities:
Service Provider and Service Caller, as depicted in Figure
3. The Service Provider is an interface that a DOM
element or attribute can implement. The Service Caller is
another element or attribute that knows how to use the
Service Provider’s interface. The elements then
communicate directly with each other, and not via XML
Broker or browser core. Some elements may not need
communication, or they may also communicate via DOM
events.

Kari
© 2002 IASTED

Figure 3. Interaction between DOM elements and
attributes.

Service Providers are defined using interfaces. There is,
for instance, a general service VisualComponentService.
A DOM element, which implements this interface, has a
method for accessing the visual component as well as
activating and de-activating the component, and setting
the zoom level. Using these methods the parent element
can control the rendering of the component. Both, host
and parasite elements, can be Service Providers or Service
Callers. For example, XML Events parasite element will
call activate() for its EventHandlerService children, both
host and parasite children, when an event is dispatched.
The framework itself allows any mix of parasites and
hosts (as long as the root is a host element). It is up to the
elements to check the type of the parent or child if it
needs to communicate with it.

3.7 Limitations and constrains

While the framework described in this article is aimed to
be extensible, there are few known limitations to the
framework.

First, there is currently no support for specialized
document implementations. The framework will always
create a default document implementation for the XML
document, XSmilesDocumentImpl. In some cases, it
would be desired for the MLFC to be able to create its
own DocumentImpl. For example, a HTML-DOM
Document interface contains some methods that are not
possible to implement with the current version of the
framework. This limitation is a result of not knowing, at
document creation time, what will be the host MLFC. A
possible resolution would be to delay the creation of the
DocumentImpl until the root element is read from the
XML stream.

Secondly, initialization phase may cause performance
degradation. The DOM tree needs to be initialized after it
has been fully constructed. This may make the framework
ineff icient for large documents, since the whole document
needs to be retrieved and transformed into a DOM tree
until it can be rendered. A resolution would be to
initialize and render parts of the tree, while constructing
the whole tree. SAX interface could also be used to create
and initialize the tree.

4. A Case Study: SMIL, XForms, and XML
Events

In this section, we describe how the described framework
handles a hybrid document containing SMIL, XForms,
and XML Events.

4.1 The hybrid document

As an example service, an imaginary car sales service was
created, depicted in Figure 4. The user can select desired
values using the controls on the left, and the changes will
be reflected in the car model shown on the right. The user
can press the “Order” button to send the values to the
server. To achieve this, the form controls are written in
XForms language, capturing of events and control logic in
XML Events and ECMAScript, and the layout and visual
appearance in SMIL. SMIL is the host language providing
the layout, while XForms and XML Events are parasite
languages.

Figure 4. A simple multimedia service.

4.2 SMIL MLFC

The SMIL MLFC in the X-Smiles browser is capable of
rendering SMIL 2.0 Basic language [2] documents. The
MLFC has been designed to be dynamic (i.e., run-time
changes in the SMIL elements will be reflected in the
presentation). Thus, a script can modify the appearance of
the presentation.

Kari
© 2002 IASTED

In the example, SMIL controls the spatial and temporal
dimensions of the document, providing the layout and
timing information for all the elements in the document.

4.3 XForms MLFC

The XForms MLFC implements most of the XForms
working draft. Since the specification does not define any
layout, the language cannot be used as a host language.
Instead, it can be used as a parasite language, letting a
host language decide the layout of the XForms controls
[11].

In the example, XForms is used to provide the form
controls on the left. When the user selects items from the
controls, the instance data is updated, and the price is
automatically calculated. Instance data is submitted to the
server, when the “Order” button is pressed. Figure 5
depicts how XForms is embedded in SMIL. The XForms
control is used like a SMIL media element, under the
“par” element. The “par” element will define the region
and timing information for the control.

 <text region="text1" src="data:,1.
Select the car:" begin="1s"/>
 <par region="sel1" begin="1s"
 ev:event="DOMActivate"
 ev:handler="#audiohandler">
 <xfm:selectOne xform="form1"
 ref="order/car"
 selectUI="checkbox">
 <xfm:item value="buggy">
 Buggy</xfm:item>
 <xfm:item value="explorer">
 Explorer</xfm:item>
 <xfm:item value="formula">
 Formula 3000</xfm:item>
 </xfm:selectOne>
 </par>

Figure 5. Snippet showing XForms elements.

4.4 XML Events MLFC

XML Events MLFC provides scripting functionality in
the X-Smiles browser. It assumes that the other MLFCs
will dispatch events to the DOM tree. It listens to them
and accordingly evaluates event handlers. The event
handler code is included in an additional element called
“script” . Currently, it has not been defined in the XML
Events specification, but it has been implemented in our
solution to run ECMAScript. ECMAScript can be used to
modify the DOM elements, thus controlli ng the run-time
presentation look. XML Events can either be parasite
elements or parasite attributes.

In the example, XML Events is used to tie changes made
in the form controls to the presentation. Listeners wait for
XForms events and run a handler, when a change event is
observed. The handler is made of a piece of ECMAScript,

which changes the “src” attribute of the audio element.
Figure 6 depicts how the audio element is changed with
ECMAScript according to the selected car model. The
event listener is defined as attributes for the par element
shown in Figure 5.

 <!-- This changes the audio -->
 <ev:script id="audiohandler"
 type="text/ecmascript">
 ...
 // Change the audio element
 aud=document.getElementsByTagName(
 "audio").item(0);
 if (car == "buggy")
 aud.setSrc("buggytus.wav");
 if (car == "explorer")
 aud.setSrc("expl.wav");
 if (car == "formula")
 aud.setSrc("metal.wav");
 </ev:script>
 <audio id="audioplay"
 src="buggytus.wav"/>

Figure 6. Snippet showing how ECMAScript
changes the audio track.

4.5 Interfaces

Figure 7 depicts the interfaces of the elements and
attributes used in the car demo. Only the SMIL elements
are host language elements, other elements are parasites.
SMIL media elements can be both. Two interfaces are in
use, VisualComponentService and EventHandlerService.
The SMIL time containers (e.g., seq and par), are Service
Callers, being able to display any element implementing
VisualComponentService. Of course, the time containers
can also contain the usual SMIL elements.

Figure 7. Implemented MLFC interfaces.

The XForms control elements (e.g., output, range, and
submit) implement a VisualComponentService, allowing
any host language to control their appearance. In this
case, the SMIL time containers were used. The control
elements also send a DOMActivate event, when their

Kari
© 2002 IASTED

value is changed. The setValue element also implements
an EventHandlerService interface allowing it used as an
event handler.

The XML Events “ listener” element listens to DOM
events, in the example, the DOMActivate event. The
element is a Service Caller, assuming that the event
handler will provide EventHandlerService. In our
implementation, either “script” element or XForms
declarative elements can be used as event handlers.

In addition to the presented interfaces, it is possible to
embed XForms elements and SMIL media elements as
parasites in XHTML, SVG, and XSL FO documents.
Also, XML Events can be included in XHTML, SVG, and
XSL FO documents.

5. Conclusion

The XML language specifications are evolving towards
small sets of elements, which will be combined in hybrid
documents. Such an approach has already been taken with
XForms and XML Events. Also, modularization of
languages will li kely produce hybrid documents.

This paper presented a framework to render hybrid
documents. The X-Smiles browser uses MLFCs to render
XML languages. Each MLFC can render one XML
language. A central module, called XML Broker, is used
to forward parsed XML tags and attributes to the
associated MLFCs. An MLFC creates DOM elements and
attributes, which are then appended to a DOM tree. This
results in a DOM tree with specialized DOM elements
and attributes, each providing functionality for itself. The
elements and attributes can communicate with each other
via interfaces. This enables embedding one language in
another.

As an example, a simple SMIL document was created
with XForms and XML Events embedded in it. The
document was then rendered using relevant MLFCs,
showing how they interact with each other. This showed
that the currently implemented interfaces are quite simple,
but still powerful. They allow elements to modify others
layout, to define timing for displaying, and can fire
actions.

The main benefit of the given framework is that it is
highly modular. New MLFCs can be created
independently, still allowing them to interact with the old
ones. New MLFCs can also take advantage of already
created MLFCs’ f unctionality. This is in line with the
current effort made at W3C to create reusable XML
languages and modules. The framework also guides the
internal structure of the MLFCs to be robust, and to
follow standards.

However, the framework has few drawbacks. Currently,
document objects won’ t implement the standardized

interfaces. Also, there may be some performance
degradation, because of the initialization phase of the
DOM tree. Both of these limitations will be addressed in a
future version.

In the future, the need for more interfaces is obvious. The
interfaces in the current MLFCs will be revised, and new
interfaces will be developed, keeping them as generic as
possible. After all , they are the key for XML languages to
co-operate. Also, more MLFCs for various XML
languages can be implemented. For instance, MathML as
a parasite language, to embed it in any host language.

6. Acknowledgement

The authors Kari Pihkala and Mikko Honkala would like
to thank Nokia Oyj Foundation for providing the
scholarships and support during the research work.

References

[1] T. Bray et al., Extensible Markup Language (XML)
1.0 (second edition), W3C Recommendation, Oct. 6, 2000,
http://www.w3.org/TR/2000/REC-xml-20001006.
[2] J. Ayars et al., Synchronized Multimedia Integration
Language (SMIL 2.0), W3C Recommendation, Aug. 7,
2001, http://www.w3.org/TR/smil20/.
[3] J. Ferraiolo et al., Scalable Vector Graphics (SVG) 1.0
Specification, W3C Recommendation, Sept. 4, 2001,
http://www.w3.org/TR/SVG/.
[4] S. McCarron et al., XML Events, W3C Working Draft,
Oct. 26, 2001, http://www.w3.org/TR/2001/WD-xml-
events-20011026/.
[5] M. Dubinko et al., XForms 1.0, W3C Working Draft,
Jan.18, 2002, http://www.w3.org/TR/2002/WD-xforms-
20020118/.
[6] S. Pemberton, XHTML 1.0: The Extensible
HyperText Markup Language, W3C Recommendation,
Jan. 26, 2000, http://www.w3.org/TR/xhtml1/.
[7] VoiceXML Forum, Voice eXtensible Markup
Language version 1.0, W3C Note, May 5, 2000,
http://www.w3.org/TR/voicexml/.
[8] P. Vuorimaa et al., A Java based XML browser for
consumer devices, the 17th ACM Symposium on Applied
Computing, Madrid, Spain, March 10-13, 2002, pp. 1094-
1099.
[9] M. Altheim et al., Modularization of XHTML, W3C
Recommendation, Apr. 10, 2001,
http://www.w3.org/TR/xhtml-modularization/.
[10] R. Mordani et al., Java API for XML Processing,
Version 1.1, Java Community Process Specification, Feb.
6, 2001, http://java.sun.com/xml/jaxp-1_1-spec.pdf.
[11] M. Honkala and P. Vuorimaa, XForms in X-Smiles,
WWW Journal, 4(3), 2001, pp. 151-166.

Kari
© 2002 IASTED

