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Crack dynamics and crack surfaces in elastic beam lattices

Jan Åström,1 Mikko Alava,2,3 and Jussi Timonen1
1Department of Physics, University of Jyva¨skylä, P.O. Box 35, FIN-40351 Jyva¨skylä, Finland

2NORDITA, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
3Helsinki University of Technology, Laboratory of Physics, P.O. Box 1100, FIN-02015 HUT, Finland

~Received 24 September 1997!

The dynamics of propagating cracks is analyzed in elastic two-dimensional lattices of beams. At early times,
inertia effects and static stress enhancement combine so that the crack-tip velocity is found to behave ast1/7.
At late times a minimal crack-tip model reproduces the numerical simulation results. With no disorder and for
fast loading, a ‘‘mirror-mist-mirror’’ crack-surface pattern emerges. Introduction of disorder leads, however, to
the formation of the ‘‘mirror-mist-hackle’’–type interface typical in many experimental situations.
@S1063-651X~98!50902-6#

PACS number~s!: 03.20.1i, 62.20.Mk, 46.30.Nz

By far the simplest way to break a piece of glass is to
apply tensile stress to its surface~e.g., by bending it!. An
imperfection at the surface leads to stress concentration, and
for a high enough load a crack appears. As the crack propa-
gates it has been observed to create a pattern on the crack
surface known as the mirror-mist-hackle@1–3#. The mecha-
nisms leading to this pattern are not fully understood, and it
may look slightly different in different materials. Combining
a few qualitative descriptions@1–3# gives the following pic-
ture: At first the crack leaves behind a more or less smooth
surface ~the mirror!. As the velocity of the crack tip in-
creases, the crack surface roughens ‘‘visibly,’’ and close to
but below a half of the velocity of transverse elastic waves,
sidebranching becomes so dense that the surface looks misty.
Further increase of roughness with growing crack velocity
leads to simultaneous propagation of several macroscopic
cracks. As these cracks merge, the surface of the final crack
is usually diverted away from the initial crack plane, which
results in the hackle. If the crack continues to propagate, it
may finally bifurcate, and if the stress becomes very high,
the glass will be shattered@2,3#.

The dynamic propagation of cracks in brittle solids has
recently attracted revived interest. This topic was introduced
by Yoffe @4#, who demonstrated the instability of propagat-

ing cracks. The experimental fact that crack velocities seem
to be limited to a fraction of the Rayleigh velocity, has in-
duced several studies on this topic@5–16#. Experiments and
the corresponding theoretical models have addressed phe-
nomena such as crack branching@5–8#, oscillation of the
crack-tip velocity @7,9,10#, and spatial crack oscillations
@11#.

In this paper we study the velocity of a propagating crack
in a triangular lattice of beams@17#. This model, if there is
no disorder, has a divergent crack-tip velocity, and produces
a mirror-mist-mirror pattern as external strain is increased. If
disorder is introduced, a mirror-mist-hackle pattern is found.
The crack velocity is found to result from a combination of
crack-tip inertia effects and static-limit fracture-mechanics
effects. The specific nature of the beam lattice seems to play
a role in the formation of crack-surface topology and in the
crack velocity when it is determined by local dynamics only.

The beam-lattice model which we analyze, represents a
discretization of a brittle two-dimensional solid obeying
‘‘Cosserat elasticity’’ @18,19#. This means that large scale
rotations are possible. We use a triangular lattice in which
the lattice bonds are slender elastic beams with a square
cross-sectionw2, length l , and Young’s modulusE. The
stiffness matrix of a beam is given by
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whereA5w2 and the moment of inertia isI 5w4/12. Inertia
is introduced in the lattice by having massesm ~moment of
inertia i ! on the lattice sites, while the beams are assumed
massless. The boundary conditions we impose are such that a
strain @e(t)# is applied in the verticaly direction ~i.e., per-
pendicular to one of the principal bond directions! by con-
straining the sites at the top and bottom of the lattice to move
a distance up and down, respectively. The sites at the left and
right edges are only allowed to move in they direction to
avoid a global Poisson contraction of the lattice.~The results
presented in this paper can be compared to those reported for
different boundary conditions in Ref.@8#.! To create a notch,
which can then act as a seed for a crack, a number of bonds
Nrem;10 in the middle of the left edge are removed att50.
The other bonds are assumed to break instantly and irrevers-
ibly if their strain exceeds a threshold value, which in our
case is taken to be a constant (eb). The dynamics of the
lattice is determined by a discrete form of Newton’s equa-
tions of motion including a small viscose dissipation term
~damping coefficientc! and with zero initial velocities. The
lattice model is described in more detail in Refs.@8,20#.
Simulations for a constant strain-increase rate, and for a
strain that is constant after crack propagation begins, have
been performed. The strain rate was of the order 0.01eb ,
which is several orders of magnitude less than the sound
velocity. Disorder is introduced in the lattice by assigning
random Young’s moduli (Ei) to the lattice bonds. The values
of Ei are taken from the distributionEi5E0(11ed i), where
e is the ‘‘strength’’ of the disorder, andd iP@20.5,0.5# is a
stochastic variable. The specific values of the parameters
used in the simulations are given below.

We first consider the crack velocity analytically within a
‘‘minimal’’ model @16#. The result will then be extended to
the regime of slow crack propagation in the initial phase and
compared to numerical simulations. In Fig. 1 we show the
lattice in the neighborhood of a crack tip. A crack is propa-
gating from the left, and stress is applied in the vertical di-
rection. We first study the case in which the externally ap-
plied strain~e! is close to the failure threshold (eb) in the
diagonal bonds of the lattice~i.e., the bonds that are not
horizontal in Fig. 1!. In this case only a small distortion
around the crack tip is needed to break the next bond, which
means that the crack will propagate fast. Breaking of a bond
at the crack tip induces a net force on the sites numbered 1
and 2 in the figure. These sites will therefore, as long as the
force applied on them can be considered constant, undergo
constant acceleration. The crack will propagate a half of a
lattice unit when bond 1 breaks. This happens when
u21u35(eb2e) l sinu, wherel is the bond length andu is
the in-plane angle of the diagonal bonds;u2 and u3 are

defined in Fig. 1. Notice thatu2 andu3 are only the dis-
placements of the sites due to the crack propagation. The
slow displacements induced by the external strain are not
included in them. The net force on bond 3 results from the
bending of bond 2. When the external strain is close to the
failure threshold, all displacements around the crack tip are
small, and, therefore, the net force on site 3 is negligible as
compared to the force on site 2. The latter force (F) is given
by

F5
Ew2

l
e l sin u@sin2 u1~w/ l !2 cos2 u#, ~1!

whereEw2/ l is the axial stiffness of a beam. Newton’s equa-
tion of motion gives simply

u25
Ft2

2m
~2!

for the displacementu2. We have assumed thatt50 when
the bond between sites 1 and 2 breaks. Sinceu3'0 for e
close toeb ~i.e., largee!, we obtain the crack-tip velocity in
the form

v~e!5 l /2F 2ml~eb2e!/e

Ew2@sin2 u1~w/ l !2 cos2 u#G
20.5

. ~3!

This equation implies that the crack-tip velocity diverges as
(eb2e)20.5 when e→eb . Strictly speaking there are also
horizontal displacements and angular rotations of the sites,
but these do not affect much the crack velocity, which is
confirmed by the simulations results below. Notice that Eq.
~3! was derived under the assumption of ‘‘large’’ strains,
which is particularly appropriate for overloading, or for cases
in which the available elastic energy exceeds the Griffith’s
energy.

For lower strains we have to consider the crack-tip dy-
namics to the next order, in which the force resulting from
bending of the horizontal bonds that are closest to the crack
tip, i.e., bonds 2 and 3 in Fig. 1, has to be taken into account.
If T is the ~constant! time between two consecutive bond
breakings at the crack tip, we can calculate the displacements
of sites 1 and 4 in the same way as above. Then we obtain
the force on sites 2 and 3 through bending of bonds 2 and 3.
The total displacementsu2 andu3 are then given by

u25
GF~5T2t2/21Tt31t4/6!

2m2 1
Ft2

2m
, ~4!

u35
GF~T2t2/21Tt3/31t4/6!

2m2 , ~5!

where G5Ew4/ l 3 is the bending stiffness of the bonds.
Bond 1 will break whent5T. Using the breaking criterion
above and solving forT gives us again the crack-tip velocity

v~e!5 l /2FA f 2

4m2 1
28G fe8

3m2 2
f

2m

14G f

3m2

G 20.5

, ~6!

FIG. 1. The local geometry of a triangular beam lattice close to
a crack tip. The sites and bonds are numbered, and the directions of
displacementsu1 ,u2 ,u3 are indicated.
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where e85(eb2e)/e, and f 5Ew2@sin2 u1(w/l)2 cos2 u#/l.
Notice that this equation gives Eq.~3! in the limit e8→0.

When the external strain is close to the failure threshold
of the diagonal bonds, as above, the crack will propagate
fast, and there will not be time for stress relaxation in the
neighborhood of the crack tip. If we would try to use Eq.~6!
to determine the crack-tip velocity for small external strains
~i.e., largee8!, we would obtainv(e)}e0.25. However, fore
small, the crack will initially propagate slowly, and there will
appear stress enhancement around the crack tip just as in the
static case. The static or quasistatic stress relaxation around a
narrow crack of lengthL produces a stress enhancement at a
sharp tip (e t) of the forme t}eAL @1#. By combining the two
scaling expressions,e t}eAL, v}e t

0.25, with the fact that the
crack-tip velocity is defined byv5dL/dt, we can estimate
the behavior of the crack-tip velocity at small strains. If the
crack begins to propagate withe5es at t5t0 , the crack
velocity is given by

v~ t !}es
2/7~ t2t0!1/7. ~7!

Notice that this equation holds only fore just abovees .
We first tested Eqs.~3! and ~6! using the simulation

model. We determined the crack-tip velocity in lattices of
size 403200 and 803200, with E51.0, w51.0, l 51.15,
andm50.05. The external strain was increased from zero up
to eb , and the crack-tip velocity was computed at each bond
failure. The results are shown in Fig. 2 together with those
given by Eqs. ~3! and ~6!. For large strains@i.e. for
(eb2e)/e<0.02#, Eqs.~3! and ~6! both give the correct ve-
locity, while Eq. ~6! gives, as expected, a somewhat better
result for small strains. For (eb2e)/e>0.2 the simple ap-
proach leading to Eqs.~3! and ~6! fails. Stress enhancement
around the crack tip is now important, and thus the velocity
is satisfactorily predicted by Eq.~7! ~cf. Fig. 3!. Notice also
the system-size dependent cross over to local crack-tip dy-
namics.

In the case of constant external strain we found that, if the
strain was high enough for the crack to propagate, the crack

velocity remained constant throughout the entire simulation,
except for a short initial phase. Moreover, the velocity for a
particular strain was exactly the same as that for dynamic
boundary conditions at the time when the dynamic strain was
similar to the constant strain.

While one may find the behavior of the crack-tip velocity
by local considerations supplemented with static fracture me-
chanics, phenomena like tip splitting or crack branching and
surface roughening are at present only accessible by com-
puter simulations. Using the same parameters as in Figs. 2
and 3, and by increasing the external strain from zero up to
eb , the crack pattern of Fig. 4A is obtained. In the very
beginning of crack propagation, it propagates slowly and the
situation is very much like in the quasistatic case. The crack
propagates straightforward with no side branches, and a mir-
ror region is formed. When dynamical effects first become
important, the external strain is still quite far fromeb . This
means that bending deformations of the horizontal bonds are
still quite large@cf. Eq. ~6!#. Breaking of bonds by bending
leads to the formation of large sidebranches@6–8#. These
sidebranches form the mist region. Whene approacheseb ,
bending is no longer important, and a mirror region reap-
pears. At the same time the crack velocity increases without
bounds. This is in contrast with experiments, in which the
hackle region appears and the velocity is limited to a fraction
of the Rayleigh velocity@21#, unless the stress becomes so
high that the whole body is shattered. In our case the reap-

FIG. 2. The crack-tip velocityv as a function of (eb2e)/e for
lattices of size 403200 and 803200, with E051.0, w51.0,
l 51.15, andm50.05. The lines are given by Eqs.~3! and ~6!.

FIG. 3. The crack-tip velocityv as a function of (e2es) for the
same lattice as in Fig. 2. The line is given by Eq.~7!.

FIG. 4. Crack patterns formed in a lattice of size 403120, with
E051.0, w51.0, l 51.15, m50.05, i 50.1, c50.02, t0550, and
eb50.06. A,e50.0 and B,e50.1.
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pearance of the mirror seems to result from the crack propa-
gating in a ‘‘soft’’ direction of a beam lattice.

It has been suggested that branching is the mechanism
that restricts the crack-tip velocity to a fraction of its theo-
retical value@5#. Velocity fluctuations typical of the branch-
forming region can be seen in Figs. 2 and 3. There are,
however, no visible signs of a reduced crack-tip velocity in
this region. Fluctuations are rather sensitive to the choice of
lattice parameters~like the moment of inertia of the sites and
the width of the beam elements!, which means that there
might be @7,8# a range of parameter values for which the
branches do affect the velocity. We did simulations also for
other parameter values but found no effect on the velocity.
The branches always seemed to form at least a few bond
lengths behind the crack tip. This is consistent with the re-
sults of Refs.@22#, in which branching was shown not to be
connected with velocity fluctuations.

In contrast with the ordered case above, the hackle region
will appear if disorder is introduced in the model. In Fig. 4B
we use the same lattice as in Fig. 4A but now the disorder
strength ise50.1. When the external strain reaches a high
enough value, macroscopic cracks begin to form ahead and
on the sides of the main crack. This is analogous tostatic
crack propagation in two-dimensional disordered media@23#.

As these cracks merge, the final crack will deviate from the
initial crack plain and a rough crack surface is formed. The
crack-tip velocity is, of course, strongly affected by disorder
in the hackle region. It is difficult, however, to determine a
unique velocity in this region as several cracks propagate
simultaneously. In the mirror and mist regions there was no
visible effect of disorder on the crack-tip velocity.

In summary, we have presented a simple minimal crack
tip analysis of the velocity of a crack as a function of exter-
nal strain. This is sufficient for understanding the accelera-
tion of the crack tip in an elastic beam lattice. As long as a
staticlike stress enhancement around the tip is important, the
crack will accelerate ast1/7. There is then a crossover to
strictly local behavior, dictated by the constitutive laws and
inertia. If there is no disorder in the lattice, a mirror-mist-
mirror pattern is formed on the crack surface with increasing
external strain. Introducing disorder in the model is sufficient
for the experimentally observed mirror-mist-hackel pattern
to appear. This indicates that microscopic randomness such
as vacancies and microcracks are important in the roughen-
ing and dynamics of cracks. This is expected to be found
also for ‘‘slow’’ fracture @24# in which it is the intrinsic
disorder which seems to lead to the roughening of crack
interfaces.
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