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Elastic lines on splayed columnar defects studied numerically

Viljo Petiji,' Matti Sarjala,' Mikko Alava,! and Heiko Rieger?
YHelsinki University of Technology, Laboratory of Physics, P.O. Box 1100, 02015 HUT, Finland
2Theoretische Physik, Universitdit des Saarlandes, 66041 Saarbriicken, Germany
(Received 29 August 2005; revised manuscript received 4 November 2005; published 28 March 2006)

We investigate by exact optimization method properties of two- and three-dimensional systems of elastic
lines in presence of splayed columnar disorder. The ground state of many lines is separable both in two (2D)
and three dimensions (3D), leading to a random walk-like roughening in 2D and ballistic behavior in 3D.
Furthermore, we find that in the case of pure splayed columnar disorder, in contrast to point disorder, there is
no entanglement transition in 3D. Entanglement can be triggered by perturbing the pure splay system with

point defects.

DOI: 10.1103/PhysRevB.73.094517

I. INTRODUCTION

Transport properties of type-II superconductors are influ-
enced by the presence of various kinds of disorder.! Pinning
of vortex lines hinders their motion, which, in response to an
applied current, causes dissipation. From the practical point
of view it is highly desirable to avoid the appearance of
vortex creep which gives rise to a finite resistivity. It was
proposed by Hwa et al.” that splayed columnar defects re-
sulting from heavy ion irradiation of superconducting
samples, would significantly enhance the vortex pinning, and
thus reduce the vortex creep leading to a higher critical cur-
rent density j.. An additional important aspect might be the
inhibition of vortex motion due to forced entanglement in-
duced by the disorder.?

The predictions concerning j. have been verified in ex-
periments on samples with different sources of splayed
defects.*® Kwok et al.® reported that well above the match-
ing field B, where the density of vortices equals to the den-
sity of columnar defects, the irreversibility line of sample
with splay is below of the one without splay defects. As
evidence of strong entanglement above the matching field, it
was discovered® that although the irreversibility is decreased
in samples with splay defects, values of j. are still greatly
increased compared to unirradiated samples. On the other
hand the comparison of samples with one and two families
of splay defects did not reveal any differences in the values
of j..” Molecular dynamics simulations for B >B§, show the
increase of j,. in the samples with splay disorder.®® The au-
thors of Ref. 9 have also performed simulations on samples
with B<B,, for which they obtained a milder enhancement
of j.. On the basis of these observations they suggested that
in the case B> B, the additional increase of j. is due to
vortex entanglement.

The ground state properties of an ensemble of flux lines in
such disordered environments has, to our knowledge, never
been investigated. Single flux line properties in the presence
of tilted columnar defects at zero temperature were studied
by Lidmar et al.'® They show that the behavior of the lines
depends on the energy distribution of the lines. This is mani-
fested in roughening, or mean-square displacement as a func-
tion of sample height H:
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w(H) = (r(2)*). = (r(2))? ~ H*. (1)

Here, z is the distance along the height direction, and r the
transverse displacement. According to Lidmar et al., the
roughness exponent { is sensitive to the shape of the distri-
bution of the tilt angle and the energy distributions of the
defects.!” For instance, with an opening angle of 90° and for
a uniform energy distribution the roughness exponent in two-
dimensional (2D) is {=3/4, in contrast to the point-disorder
result 2/3."" In samples with a fixed starting point a single
line has the following geometry. It occupies a splay defect
until a jump to a energetically more favorable one takes
place. The lines undergo jumps from splay defect to splay
defect so that the average distance between two successive
jumps grows as Az~z.!9 Thus though the jump density de-
creases with growing z the roughening exhibits a non-trivial
scaling.

The natural question arises how the single-line physics
outlined above changes in the presence of many interacting
lines, at a constant line density p. In this paper, we study this
in both 2D and three dimensions (3D). There are studies of
the role of disorder in two-dimensional samples,'? while the
three-dimensional case corresponds to bulk superconductors.
We find that at finite line densities, the physics changes in
particular as the roughening of lines is concerned: the rough-
ness exponent becomes {=1/2 in 2D and {=1 in 3D. The
ballistic behavior of the lines leads to the absence of true
entanglement in 3D.

This paper is organized as follows. In Sec. II we explain
the details of our numerical model. The scaling of roughness
is discussed in Sec. III. We also study in Sec. IV whether
inserting a new line causes rearrangements in the configura-
tion of previously inserted lines, i.e. as the density is in-
creased. The results shown in Sec. V demonstrate that in
pure splay disorder lines do not entangle. Entanglement can
be induced by perturbing splay with point disorder. The sum-
mary and discussion are presented in Sec. VI.

II. MODEL

We consider the following model of a system of interact-
ing lines in a two- or three-dimensional disordered environ-
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FIG. 1. Schematic figure of the graph consisting of splayed col-
umns in two and three dimensions. In the latter case, note the two
additional bonds connecting the columns.

ment: The lines live on the bonds of a graph consisting of an
ensemble of splayed columns embedded in a box with a
width L and a height H (Fig. 1). Each column is described
with a transverse coordinate r(z) at height z from the bottom
level:

r(z) =ry+az, (2)

where r; is a random point on the basal plane and a is a
randomly chosen variable that defines the magnitude and the
orientation of the tilt of a given column.

The number of columnar defects M is set to M=L and
M=L? in two and three dimensions, respectively. The aver-
age distance between two nearby columnar defects defines
the in-plane length unit of the model. The lines enter the
system at the bottom plane (z=0) and they exit at the top
plane (z=H), and we use both fixed and free entrance points,
and free exit points. The case of a fixed entry point and a free
exit point is that considered by Lidmar et al. for a single
line,!® who discuss an experimental scenario for the same. In
addition, a rough enough surface could pin the end points of
flux lines. Strong pinning along large surface steps has been
reported in Ref. 13. More recent experimental results'* indi-
cate that surface pinning has measurable effects on the flux
lattice dynamics.

In this paper we study the case in which the columns have
a random, uniformly distributed orientation within a cone
with a fixed opening angle. In our model, changing the open-
ing angle of the cone is equivalent to a rescaling of the sys-
tem height, for which reason we consider only the opening
angle of 90°.

The number N of lines threading the sample is fixed by
the prescribed density p=N/M. Within this version of the
model, the number of lines cannot exceed the number of
columns, which means in the case of splay disorder that
B<B,. The graph could be, in principle, modified such that
lines can traverse the system also between the columnar de-
fects which would correspond to B> B,

In the transverse directions we use both periodic and open
boundary conditions. In the latter case the defects crossing
the boundary are cut such that lines cannot follow them
across the system boundaries. Note that one cannot let flux
lines escape from truly open boundaries since the line den-
sity would decrease with z, the longitudinal coordinate. In
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order to avoid correlations in systems with H>L we first
construct a graph of size H¢ from which we cut a piece of
size L.

In 2D, lines can change defects only at their crossings and
in 3D when the defects are close enough to each other. In 3D,
columns are connected by introducing an extra segment be-
tween the lines at the shortest mutual distance whenever this
distance is shorter than a fixed value r.. When r, is kept
relatively small compared to the average distance between
the columnar defects the choice of the energy cost of the
bond connecting two defects can be arbitrary. We choose
zero energy cost and r.=1.4. We have also checked the value
r.=0.5 which did not change the results.

We model the disordered environment by assigning a ran-
dom (potential) energy e;;=ru to each bond (i, ), where r;;
is the Euclidean length of the bond and « is a random num-
ber which determines the type of disorder. In the case of
splay disorder the random variable u is drawn independently
for each column such that bonds along a given column share
the same value of u. Point disorder is modeled with a simi-
larly constructed graph. The only difference is that u is
drawn independently for each bond which destroys the cor-
relations along the columns. For point disorder we use uni-
formly distributed u and for splay disorder the following
distribution in order to make comparisons to single line re-
sults by Lidmar et al.:'°

P(u) =", (3)

for 0<u <1 and otherwise P(u)=0. With v=1, this reduces
simply to a uniform distribution.

For computational convenience we focus on the short
screening length limit."> We restrict ourselves to hard-core
interactions between the lines, which means that their con-
figuration is specified by bond-variables x; €{0,1}, x;=1
indicating that a line segment occupies a bond between
nodes i and j, and x;;=0 indicating that no line segment
occupies this bond. The total energy of the line configuration
is given by

H= E Xij€ij “4)
(i)
where the summation is performed over all bonds. The cor-
responding Hamiltonian in a continuum limit is given by the
following formula:

N H 2
dr-
H:Zf dz Z[—r’] +V,[ri(z).z]
—-1J0 2| dz

+ 2 Vinlrid) -] (5)

J(#i)

where r,(z) denotes the transversal coordinate at
longitudinal height z of the ith flux line. The interactions
Vindr(z)—1,(2)] are hard-core repulsive and the disorder po-
tential V,[r,(z),z] is &-correlated in the case of point disorder
and strongly correlated along columns in the case of colum-
nar disorder. The elastic energy is mimicked in our numerical
model by the positivity of all energy costs per unit length,
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(b

FIG. 2. Schematic figure of adding lines to the graph. (a) The
ground state of a single line with arrows indicating the direction of
the optimal path. (b) The bold line is the optimal path from bottom
to top in the residual graph. The residual graph is constructed by
changing the energy costs of the bonds to negative along the dotted
line. In addition, the direction of paths in the residual graph on the
dotted bonds must be opposite to the direction of the previously
inserted path shown in (a). (c) The final line configuration after the
path segments with opposite directions are canceled.

which ensures for instance the minimization of the line
length in the absence of randomness.

At low temperatures, the line configurations will be domi-
nated by the disorder and thermal fluctuations are negligible.
Therefore we restrict ourselves to zero temperature and focus
on the ground state of the Hamiltonian (4). Computing the
ground state now corresponds to finding N nonoverlapping
directed paths traversing the graph along the bonds from
bottom to top. One has to minimize the total energy of the
whole set of the paths and not of each path individually (note
that already the two-line problem is actually nonseparable'®).
For a single line problem the lowest energy path can be
found straightforwardly with Dijkstra’s shortest path algo-
rithm. In the case of many lines Dijkstra’s algorithm is ap-
plied successively on a residual graph instead of the original
graph,'” as illustrated in Fig. 2. In the residual graph, the
properties of occupied bonds are modified as follows: If
x;=1, we set e?‘?s'd“alz—e,»j, i.e., negative, and require that the
direction of a new path must be in the opposite direction with
respect to the direction of previously inserted paths. The path
segments with two opposite directions on a given bond are
canceled. For details, see Ref. 17.

Although the lines cannot occupy the same bond of the
lattice, they may touch in isolated points if the nodes in these
points have more than three neighbors. This is now the case
only in 2D, as exemplified in Fig. 1. Since we want to cal-
culate the roughness of lines, we need to determine the indi-
vidual lines, for which we use a local rule. In 2D, the line
identification is unambiguous if we simply require that the
lines cannot cross.

In our model, flux lines are confined to the defects with no
possibility to enter the bulk (except in 3D if the jumps from
one defect to another are counted as such). We also tested the
case wherein a homogeneous bulk between the splayed de-
fects is represented by a set of densely packed columnar
defects with zero tilt and with a constant energy cost per unit
length. Here, after a flux line has found a splayed defect with
a lower energy cost per unit length in the z direction com-
pared to the one in the bulk, one recovers the pure splay
disorder behavior. Thus, including the possibility for lines to
travel also in the bulk introduces another crossover length.
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We have checked numerically that this scenario holds. After
a crossover system size, which depends on the ratio of the
energy costs in the bulk and on the defects, for single-line
systems we obtain the roughness exponents of pure splay
disorder.

In many-line systems with a fixed ratio between the num-
ber of splay defects and the number of inserted flux lines, it
is not guaranteed that all lines can find a defect that is ener-
getically more favorable than the bulk. Depending on the
energy cost of the bulk, there can be only a fraction of
splayed defects which are energetically more favorable com-
pared to the bulk. If the number of such defects is smaller
than the number of flux lines there will be a fraction of lines

Jou that stay in the bulk throughout the whole sample. As a

function of the energy cost per unit length in the bulk (up,),
this scales like fyu =g (upu/ p*) with g(x) a scaling function
that decreases monotonically from 1 at x=0 to zero for
x=1 and « depending on the shape of the energy distribution
of the splayed defects [Eq. (3)].

Since the lines staying in the homogeneous bulk have no
transverse fluctuations our central results on the geometrical
properties of flux line systems in splay disorder are not ex-
pected to change qualitatively.

III. ROUGHNESS OF THE GROUND STATE

In this section we focus on the scaling of the average
roughness w, i.e., the amount of transverse wandering of the
lines. The mean-square displacement the ith Iline is
w?:(ri(z)z)z—@i(z))f, where r;(z) is the transverse coordi-
nate of the line 7 at the distance z from the bottom level and
(r(Z)>z=ﬁf (F)I r(z)dz denotes the average along the line from
the bottom z=0 to the top z=H. We define w? as the disorder
average of wi2 averaged over all lines.

In the case of point disorder our model is in the same
universality class as the directed polymer model according to
which the roughness of one line scales as w~ H¢ with well
known exponents {,p=2/3 and {3p=5/8 in two and three
dimensions, respectively.!! In 2D, the steric repulsion be-
tween the lines leads to collective rearrangement of the lines,
which yields a logarithmic growth of the roughness. In 3D,
lines can wind around each other, which suppresses the re-
pulsion resulting in a random-walk-like behavior of lines.'8

For splay disorder, we propose the following simple sce-
nario. At small z, lines do not see each other and exhibit
single-line behavior. Beyond some value of z, which depends
on the density p, the lines cannot further optimize their con-
figurations and stay on the same defects. This leads to a
linear growth of the roughness, {=1 in 3D due to ballistic
behavior. The same arguments on the structure of the optimal
line configuration hold also for 2D. However, in 2D, splayed
defects can cross each other while the individual flux lines
are identified such that they do not cross the other flux lines.
Thus, in 2D one has effectively a system of hard-core repul-
sive random walks resulting in {=1/2. Thus, one would ex-
pect a roughness scaling form

w(L,H) = LSf(H/L), (6)

where f(x) is a scaling function. In both 2D and 3D, this
scenario is independent of the splay energy distribution.
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FIG. 3. Doubly logarithmic plots for the roughness w of multi-
line systems in 3D. Top: Roughness vs system height H (L=H) for
different values of line density p and for two defect energy distri-
butions (v=1,2); lines have fixed starting points. For comparison
are shown also the roughness for point disorder (labeled as “p.d.”).
Bottom: Scaling plot for the roughness with fixed system widths for
p=0.2 and v=1; the unscaled data are shown in the inset. At this
line density, the difference between the data with fixed and free
starting points is undistinguishable.

Figure 3 shows the correctness of this proposition in 3D.
One can see from Fig. 3(a) that the roughness of many-line
systems grows linearly w~ H with no dependence on the
energy distribution of the defects. According to the data col-
lapse in Fig. 3(b), the saturation roughness and the saturation
height grow linearly with the system width L [cf. Eq. (6)].

In 2D there is a collective regime, where the lines exhibit
random-walk-like behavior as suggested above. Figure 4(a)
shows that the roughness grows asymptotically like
w~ H" for both values of v. The data collapse shown in
Fig. 4(b) gives the random-walk-like scaling also for the
saturation roughness, in agreement with Fig. 4(a). Close to
the system boundaries, the roughness of the lines is sup-
pressed (due to the way the line identification is made in
2D), which shows up in the scaling of small system widths L.

FIG. 4. Double logarithmic plots for the roughness w of multi-
line systems in 2D. Top: Roughness vs. system height H (L=H) for
different values of line density p and for two defect energy distri-
butions (v=1,2); lines have fixed starting points. Bottom: Scaling
plot of the roughness with fixed system widths L and fixed starting
points with line density p=0.1 and v=1.

IV. SEPARABILITY OF THE GROUND STATE

We define that the ground state configuration of N lines is
separable if it can be obtained by adding successively flux
lines to the system without modifying the configurations of
the previous lines. This can be checked from the successive
shortest path algorithm: whenever segments of flux lines are
canceled in the residual graph this implies that adding a line
changed the previous configuration (see Fig. 2). Hence, we
focus on such segments or bonds and calculate the sum of
the energy costs E;=2¢;; of such bonds and use it as a mea-
sure of the separability. When E =0, no flux is canceled due
to possible rearrangements of line configuration. This means
that one has a fully separable ground state.

In the case of (splayed) columnar disorder, it is obvious
that with periodic boundary conditions and the full freedom
of choosing the most favorable starting point the lines pick
up the defects in the order of their total energy cost from the
source to the target. Hence, no rearrangements of flux line
configurations is needed. Introducing the boundaries or any
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FIG. 5. A measure of the separability of the ground state in 2D,
periodic boundaries, fixed starting points, L=50. Top: splay disor-
der, E, saturates as H grows. Bottom: point disorder, E; grows
linearly with H.

other distortions to the pure columnar disorder reduces the
separability of the ground state.

In Fig. 5 we demonstrate the difference between the sepa-
rability of the ground states of splay and point disorder. We
consider L X H systems in two dimensions with periodic
boundary conditions in the direction perpendicular to the z
axis. In the case of splay disorder E; saturates at a particular
system height, because line rearrangements do not take place
at greater z. Thus, E, divided by the system volume goes to
zero with increasing H, implying separability. Compare with
the fact that E; is linear in H in the case of point disorder,
indicating nonseparability. We calculated E, also in three di-
mensions and observed the same behavior as in the 2D case,
as is depicted in Fig. 6.

V. ENTANGLEMENT

In 3D, lines can wind around each other resulting in to-
pologically nontrivial configurations, which we analyze here
by computing the winding angle of all line pairs, as indicated
in Fig. 7 (c.f. Ref. 19). We define two lines to be entangled
when their winding angle becomes larger than 27.> This pro-
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FIG. 6. Same as Fig. 5, now in 3D with L=20 and line density
only up to p=0.5 due to increased computational costs. The data is
smoothened by taking running averages of each ten subsequent data
points.
vides a measure for topological entanglement,? since a to-
pologically entangled pair cannot be separated by any linear
transformation in the basal plane (i.e., the lines almost al-
ways would cut each other, if one were shifted).

Sets or bundles of pairwise entangled lines are defined
such that a line belongs to a bundle if it is entangled at least
with one other line in the set. In the case of point disorder
such bundles are spaghetti-like; i.e., topologically compli-
cated and knotted sets of one-dimensional objects that grow
with increasing system height, leading finally to one giant
bundle. In Ref. 3, it was shown that for point disorder there
is a sharp transition from a nonentangled phase without a
giant bundle to an entangled phase: The probability P, for
having an entangled bundle of lines that spans the system in
the transverse direction jumps from O to 1 at a critical height
H, in the infinite system size limit (L— <), and is described
by the following finite size scaling form:

Pperc :p[LI/V(H - H()] (7)

One implication of this scaling form is that the location of
the jump of P from O to 1 for finite size L saturates at
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FIG. 7. (Color online). (a) Definition of the winding angle of two flux lines: For each z coordinate, the vector connecting the two lines
is projected onto that basal plane. z=0 gives the reference line with respect to which the consecutive vectors for increasing z coordinate have
an angle ¢(z). Once ¢(z)> 2, the two lines are said to be entangled. (b) Top: A configuration of six entangled lines with splay disorder.
Bottom: The projection of the line configuration on the basal plane, defining a connected cluster. (¢) Six entangled lines with point disorder.

some value H. in the limit L— o, another that the jump
width decreases with L.

This appears not to be the case for splay disorder. As one
can see from Fig. 8(a), H, does not saturate for the compu-
tationally accessible system sizes (L=< 120). From the inset,
one can also see that the width of the transition does not
decrease.

For a comparison, we use the following model consisting
of random walks embedded into a box of size LXLXH.
Since the lines typically change their direction only in the
vicinity of the boundaries we consider ballistic random
walks. They start from a random point at the basal plane and
evolve towards the top level with a random tilt angle taken
from the same distribution as for the splayed columns. When
the random walk meets the system boundary it is assigned a
new tilt angle. This is repeated until the path hits the top of
the system. This model corresponds to the high density limit
where all defects are occupied; i.e., B=B.

We calculate the mutual winding angles and check for
entanglement as before. By comparing Figs. 8(a) and 8(b),
one observes no qualitative differences in the dependence of
the percolation probability P from the system height H.
No saturation is found for percolation height H, as the sys-
tem width is increased, though the growth is extremely slow.
According to our numerical results the transition height ap-
pears to grow asymptotically as H,~ (log;, L)* with a close
to 0.5 (Fig. 9).

The inset of Fig. 10 shows the relative size of the perco-
lating bundle 7,,./n for the data of Fig. 8(a). It tends to
zero for increasing system size also for H>H,. This is in

contrast to what happens for conventional percolation, where
Npere/ i =0 exactly at the threshold and then increasing as
~(H-H,)P with the critical exponent 8. Figure 10 shows the
distribution P(k) of the number of lines k with which a given
line is entangled (i.e., wind around it by an angle larger than
217). One sees that the probability distribution P(k) is almost
identical in the cases of splay disorder and ballistic random
walks, whereas P(k) for point disorder is much narrower.

We conclude that in the case of splayed columnar disorder
the spanning bundles are formed mostly by few lines which
bounce from the boundaries. Thus, there is no entanglement
percolation transition in the case of splay disorder and no
giant entangled cluster in the thermodynamic limit.

This behavior changes when the splay disorder is per-
turbed with attractive or repulsive point defects. Here we
discuss results for relatively weak attraction. The energy
costs per unit length for a fraction f of the bonds are now set
to u=0.5, whereas the rest of the bonds are as before. Figure
11 shows the behavior of the percolation probability corre-
sponding to f=0.1. It indicates now the presence of an en-
tanglement transition following the conventional percolation
scenario [Eq. (7)]. The transition height H, saturates in the
limit L— o (Fig. 9) and the data obey finite size scaling with
the correlation length exponent v=4/3 of the 2D percolation
problem.

The fraction f tunes the typical length that a given line
stays on one defect. When this length exceeds the one
needed to traverse the system in the lateral direction one
observes the properties of pure splay disorder. Consequently,
as f is decreased one needs increasingly larger system sizes
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FIG. 8. Percolation probability as a function of the height of the
system H: (a) splay disorder and (b) ballistic random walk. Insets:
data shifted with H,.. For both the transition width does not change,
there is only a shift of the jump H.(L).

in order to observe the percolation transition. The strength
and the nature—repulsive or attractive—of the perturbing
point disorder only changes the crossover size of the system
as long as the perturbation is strong enough to induces lines
to change the defects. However, due to computational limi-
tations we did not attempt to find whether there is a threshold
value for strength of point disorder below which the lines
cannot be entangled also in the infinite system size limit.

VI. SUMMARY AND DISCUSSION

The ground state of a multiline system with splay disorder
has four different phases as a function of the system height
H. For small values, there is first a crossover from trivial
behavior to the single-line ground state roughening as lines
start to jump between columnar defects. For intermediate H,
one observes the collective regime where { depends on di-
mension but not on the splay energy distribution. This arises
when the line’s transverse wandering becomes of the same
order of magnitude as the average line distance. Finally,
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FIG. 9. A log-log plot of estimated critical system heights H,. vs
logarithm of the system width L. From top: flux lines (FL) with free
and fixed (fix) starting points in splay disorder; flux lines in splay
disorder with fragmentation (fragm.) and in point disorder; ballistic
random walks (RW), solid line is a fit to few last data points.

there is the crossover to saturation for finite L. The exponent
values are a random-walk-like {,p=1/2 and a ballistic-like
{3p=1. The crossover between the collective and single-line
scalings is visible in our 2D data. In 3D, this is not possible
for numerical restrictions. Note the fact that the 3D single-
line exponent (which varies with the energy distribution) is
smaller than the collective one.
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FIG. 10. A plot with logarithmic y axis of distribution of the
degree of lines’ entanglement P(k). k is defined as the number of
lines with which a given line is entangled. The following data sets
are shown: flux lines in splay disorder with L=100, H=115 (ovals);
ballistic random walks with L=100, H=39 (squares); flux lines in
point disorder with L=100, H=48 (triangles up); flux lines in splay
disorder with fragmentation L=100, H=70 (triangles down). The
system heights are chosen so that the system is in the vicinity of the
entanglement transition. Inset: strength of the percolating cluster of
flux lines in splay disorder is plotted in a linear scale vs system
height H for different system widths, L=30 (ovals)---110 (filled
ovals).
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FIG. 11. Percolation probability as a function of the height of
the system H for splay disorder with fragmentation. Inset: corre-
sponding scaling plots [Eq. (7)]. Fragmentation causes the sharpen-
ing of the transition width with growing L and data scales with the
2D percolation correlation length exponent v=4/3.

We have also considered the separability and entangle-
ment, to look at the other aspects of these systems as H is
varied. The former measures the collective aspects of the line
configuration, which are most pronounced for small z. In
contrast to the 3D point disorder case, the winding of lines
around each other is suppressed, leading to the absence of
entanglement in the thermodynamic limit. In the context of
our current model, this means that for low line densities
(B<B,) the enhanced pinning expressed by increased criti-
cal current, is not a collective effect.

The results for the splay disorder are not expected to
change qualitatively when the flux lines are allowed to enter
the homogeneous bulk between the defects. As discussed at
the end of Sec. II, in this case there will be a fraction of lines
staying in the bulk throughout the sample. Since these lines
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have no transverse fluctuations, they reduce the average
roughness by a constant factor.

Our numerical results suggest that inserting point-like de-
fects into splay disorder may even further enhance the flux
line pinning as the entanglement transition of flux lines
is recovered. For large line densities (B>B ¢)—Where
experiments® imply entanglement—one could study the role
of additional point disorder. This brings new complications,
already for single lines. In the case of one attractive colum-
nar defect competing with point disorder in 2D one finds
only a localized line, whereas in 3D there a localization-
delocalization transition.?! Another study has found for a
mixture of many columnar defects and point disorder subbal-
listic behavior.??

Lidmar et al. found by mixing in point disorder that in
2D, splay disorder always dominates on the long length
scales, whereas in 3D it seems that strong enough fragmen-
tation leads to point disorder behavior.! Here we briefly
present a few possible scenarios associated with tuning the
strength of point disorder with fixed strength of splay disor-
der. (i) At large enough system sizes point disorder will al-
ways dominate. (ii) There is a crossover from pure splay
disorder behavior (no entanglement) to point disorder behav-
ior. (iii) There is a third regime wherein lines take an advan-
tage of both splay and point disorder, leading possibly to
more efficient entanglement than in the case of pure point
disorder. This would be due to the large displacements along
splayed defects. One can expect that the response of the sys-
tem to point disorder perturbations depends on the line den-
sity. It would be interesting to find the full phase diagram
including the optimal parameters from the point of view of
entanglement.
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