Proceedings of the ECMLPKDD 2015
Doctoral Consortium

Jaakko Hollmén, Panagiotis Papapetrou (editors)

Aalto University SCIENCE + CONFERENCE
TECHNOLOGY PROCEEDINGS






Aalto University publication series
SCIENCE + TECHNOLOGY 12/2015

Proceedings of the ECMLPKDD 2015
Doctoral Consortium

Jaakko Hollmén, Panagiotis Papapetrou
(editors)

Aalto University
School of Science



Aalto University publication series
SCIENCE + TECHNOLOGY 12/2015

© 2015 Copyright, by the authors.

ISBN 978-952-60-6443-7 (pdf)

ISSN-L 1799-4896

ISSN 1799-4896 (printed)

ISSN 1799-490X (pdf)
http://urn.fi/URN:ISBN:978-952-60-6443-7

Unigrafia Oy
Helsinki 2015

Finland



Preface

We are proud to present the Proceedings of the ECMLPKDD 2015 Doc-
toral Consortium, which was organized during the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECMLPKDD 2015) in Porto, Portugal during September 7-
11, 2015. The objective of the ECMLPKDD 2015 Doctoral Consortium is
to provide an environment for students to exchange their ideas and expe-
riences with peers in an interactive atmosphere and to get constructive
feedback from senior researchers in machine learning, data mining, and
related areas.

Call for Papers was published and distributed widely to the machine
learning and data mining community. The community responded enthu-
siastically, we received altogether 30 submissions. Each paper was read
and evaluated by three members of the Program Committee. Based on the
reviewer comments, the decisions were made by the chairs of the Program
Committee. We decided to accept 27 contributed papers to be included in
the program of the doctoral consortium. The program consisted of 2 in-
vited talks, 6 contributed talks, and 21 poster presentations.

We thank our invited invited speakers Saso DzZeroski from Jozef Stefan
Institute in Ljubljana, Slovenia and Jefrey Lijffitj from University of Bris-
tol, UK, for their insightful talks. Jefrey Lijffitj’s talk titled So what? A
guide on acing your PhD viewed the PhD journey from a recent graduate’s
point of view. Saso Dzeroski’s presentation titled The art of science: Keep
it simple; Make connections highlighted success criteria behind science
from a more senior point of view. The abstracts of the talks as well as the
biographies of our invited speakers are included in the proceedings.

Organizing the ECMLPKDD 2015 Doctoral Consortium has been a true
team effort. We wish to thank the ECMLPKDD 2015 Organization Com-
mittee for their support and their efforts to distribute the Call for Papers.



Preface

In particular, we wish to thank ECMLPKDD 2015 Conference Chairs Joéo
Gama and Alipio Jorge. We also thank the members of the Program Com-
mittee for their effort to provide insightful and constructive feedback to
the authors. Last, but not least, we thank the previous edition’s organiz-
ers Radim Belohlavek and Bruno Crémilleux for their advice and exper-

tise on the organization of the doctoral consortium.

Helsinki and Stockholm, October 8, 2015,

Jaakko Hollmén and Panagiotis Papapetrou
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The art of science: Keep it simple; Make
connections

Saso Dzeroski

Jozef Stefan Institute, Ljubljana, Slovenia

Abstract

In my research career, I have spent a lot of time trying to identify classes of
models that are of high generality and practical relevance, yet are simple
enough to be learned in a computationally tractable way. I have done this
in the context of different machine learning tasks. I have also been stealing
ideas from some subfields of machine learning and applying them in other.

In the talk, I will describe a few examples of these two successful strategies.

Biography of Saso Dzeroski

Saso Dzeroski is a scientific councillor at the Jozef Stefan Institute and
the Centre of Excellence for Integrated Approaches in Chemistry and
Biology of Proteins, both in Ljubljana, Slovenia. He is also a full pro-
fessor at the Jozef Stefan International Postgraduate School. His re-
search is mainly in the area of machine learning and data mining (in-
cluding structured output prediction and automated modeling of dynamic
systems) and their applications (mainly in environmental sciences, incl.
ecology, and life sciences, incl. systems biology). He has organized many
scientific events, most recently two workshops on Machine Learning in

Systems Biology and the International Conference on Discovery Science.



Saso Dzeroski: The art of science: Keep it simple; Make connections

He is co-author/co-editor of more than ten books/volumes, including In-
ductive Logic Programming, Relational Data Mining, Learning Language
in Logic, Computational Discovery of Scientific Knowledge and Inductive
Databases & Constraint-Based Data Mining. He has participated in many
international research projects (mostly EU-funded) and coordinated two
of them in the past: He is currently the coordinator of the FET XTrack
project MAESTRA (Learning from Massive, Incompletely annotated, and
Structured Data) and one of the principal investigators in the FET Flag-

ship Human Brain Project.
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So what? A guide on acing your PhD

Jefrey Lijffijt

University of Bristol, UK

Abstract

A PhD is always a challenge. You will be put to the test in a variety of
ways; knowledge, skills, inventiveness, perseverance, etc. There are many
guides pointing out the obvious competencies that you have to acquire in
graduate school in order to successfully complete your PhD. In this talk, I
will try to cover less obvious aspects of the most essential problems: how to
motivate yourself, how to be productive, how to get published, and how to

make your PhD research meaningful.

Biography of Jefrey Lijffijt

Jefrey Lijffijt is a Research Associate in Data Science at the University
of Bristol. He obtained his D.Sc. (Tech.) diploma in Information and
Computer Science, graded with distinction, in December 2013 from Aalto
University, Finland. His thesis received the Best Doctoral Thesis of 2013
award from the Aalto University School of Science. He obtained a BSc and
MSc degree in Computer Science at Utrecht University in 2006 and 2008
respectively. He has worked as a research intern at Philips Research,
Eindhoven, and as a consultant in predictive analytics at Crystalloids,
Amsterdam. His research interests include (visual interactive) mining

of interesting/surprising patterns in transactional, sequential, and rela-
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tional data, including graphs, as well as text mining, natural language
processing, statistical significance testing, and maximum entropy mod-

elling.
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Detecting Contextual Anomalies from
Time-Changing Sensor Data Streams

Abdullah-Al-Mamun!, Antonina Kolokolova!, and Dan Brake?

! Memorial University of Newfoundland
2 EMSAT Corporation

Abstract. This work stems from the project with real-time environmen-
tal monitoring company EMSAT Corporation on online anomaly detec-
tion in their time-series data streams. The problem presented several
challenges: near real-time anomaly detection, absence of labeled data,
time-changing data streams. In this project, we have explored paramet-
ric statistical approach using Gaussian-based model as well as the non-
parametric Kernel Density Estimation (KDE). The main contribution of
this work is extending KDE to work for evolving data streams, in partic-
ular in presence of the concept drift. To address that, a framework has
been developed for integrating Adaptive Windowing (ADWIN) change
detection algorithm with the non-parametric method above. We have ini-
tially implemented and tested this approach on several real world data
sets and received positive feedback from our industry collaborator. We
also discuss several research directions for expanding this M.Sc. leading
to PhD work.

Keywords: Data Stream, Anomaly Detection, Change Detection, Con-
cept Drift, KDE, ADWIN

1 Introduction

Large amounts of quickly generated data have shifted the focus in data process-
ing from offline, multiple-access algorithms to online algorithms tailored towards
processing a stream of data in real time. Data streams are temporally ordered,
fast changing and potentially infinite. Wireless sensor network traffic, telecom-
munications, on-line transactions in the financial market or retail industry, web
click streams, video surveillance, and weather or environment monitoring are
some sources of data streams. As these kinds of data can not be stored in a
data repository, effective and efficient management and online analysis of data
streams brings new challenges. Knowledge discovery from data streams is a broad
topic which is covered in several books [4,19], [35, ch. 4], 8, ch. 12], with [21, 5]
focusing specifically on sensor data.

Outlier detection is one of the most interesting areas in data mining and
knowledge discovery. This area is also referred to as anomaly detection, event
detection, novelty detection, deviant discovery, fault detection, intrusion detec-
tion, or misuse detection [23]. Here, we will use the term outlier and anomaly

13
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interchangeably. Some well established definitions of outliers are provided in [22,
25,10]. These seemingly vague definitions covers a broad spectrum for outliers
which provide the opportunity to define outlier differently in various application
domains. As a result, outlier detection is a process to effectively detect outliers
based on the particular definition. It is highly unlikely to find a general pur-
pose outlier detection technique. Moreover, anomalies are mainly divided into
three types: point, contextual and collective [13]. Recently a new type called
contextual collective anomaly has been presented in [31].

The impetus for this work came from EMSAT Corporation, which special-
izes in real-time environment monitoring. With the aggregation and visualization
components of their software already present, they were interested in further pre-
processing and knowledge discovery in these data streams, in particular, incor-
porating advanced real-time quality control techniques and anomaly detection
mechanism. Although some types of noise can be removed with simple rule-based
techniques, much of the more subtle quality control is still done manually; we
were interested in automating as much of this process as possible.

Due to the lack of labelled data in our problem domain, we focused on un-
supervised methods for outlier detection. In general, they can be categorized
into several groups: (i) Statistical methods; (ii) Nearest neighbour methods; (iii)
Classification methods; (iv) Clustering methods; (v) Information theoretic meth-
ods and (vi) Spectral decomposition methods [13,50]. For the types of data we
were seeing, such as time-labeled streams of multivariate environmental and me-
teorological sensor measurements (wind speed, temperature, ocean current, etc),
statistical methods seemed most appropriate.

We first explored parametric-based statistical approach using a Gaussian-
based model. This technique works well if the underlying distribution fits prop-
erly and the distribution is fixed over time. But in case of evolving data stream,
it is often the case is that the distribution in non-Gaussian and the underlying
distribution changes over time due to concept drift. In such cases, the assumption
needed for parametric approach do not apply.

And indeed, parametric approach was not showing good performance on our
datasets. To remedy that, we switched to Kernel-Density Estimation (KDE)
[45], following online outlier detection methods proposed in [39,48]. KDE is
primarily attractive because of four reasons: no prior assumption about the data
distribution, initial data for building the model can be discarded after the model
is built, scale up well for multivariate data and computationally inexpensive [50].

But even though KDE has been shown to handle evolving streams, there is
no explicit mechanism to deal with concept drift. However, to improve detection
of contextual anomalies, it is useful to know when the statistical properties of
the data, context, changes. Even though KDE gradually adapts to the change,
it may misclassify points that are close to the change point. There is a number
of dedicated methods for detecting such changes in evolving data stream [20],
with ADWIN [12] one of the most well-known. ADWIN has been incorporated
into several predictive and clustering methods, but our goal was to integrate it
with statistical approaches such as KDE.
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More specifically, after initial outlier detection, we use ADWIN [12] to de-
tect where the change has occurred, and, providing there is enough data be-
tween change points, retrain KDE on this more homogeneous stretch of the data
stream. Then, some data points can be relabeled more accurately. Although
change detection inevitably introduces a delay in data processing, if the data is
coming fast enough, this is still a viable approach, especially provided that there
is a preliminary labeling done in real time.

In the work in progress, we are working on expanding this idea to the set-
ting of outlier ensembles of [7]. We are exploring a variety of directions, from
manipulating KDE bandwidth in a sequential model-based ensemble approach,
to considering an ensemble of multiple disparate outlier detection and change
detection algorithms. And in the longer term, we are proposing to consider more
complex anomalies such as discords, as well as investigating properties of the
data which can suggest the techniques most applicable to that setting.

2 Related Work

Several extensive surveys for anomaly detection are present in the literature [29,
13, 34]. Some surveys are more focused on particular domain. Outlier detection
methods for wireless sensor networks are covered in [50,36]. In [14], the topics
related to discrete sequences are present. The research issues of outlier detection
for data streams are provided in [42]. For temporal/time-series data, a detail
overview is presented in [18,17,23]. An overview of outlier detection for time-
series data streams is presented in [19, ch. 11] and [6, ch. 8] . Moreover, a separate
comprehensive chapter on outlier detection is presented in [24, ch. 12].

In the context of anomaly detection for environmental sensor data, a variety
of ways to construct predictive models from a sensor data stream is presented in
[28,27]; the authors considered issues specific to the sensor data setting such as
significant amounts of missing data and possible correlation between sensor read-
ings that can help classify a measurement as anomalous. But these are mostly
supervised methods and required a significant amount of training data. A me-
dian based approach has been used in [11]. Moreover, some simple algorithms
are present for peak detection in online setting in [40].

Recently, the research direction of outlier detection is moving towards ” Out-
lier Ensembles” [7]. Moreover, the research issues have been elaborated for out-
lier ensembles with a focus on unsupervised methods [51]. In [37], the authors
have emphasised on using techniques from both supervised and unsupervised
approaches to leverage the idea of outlier ensembles.

Another important task in processing of evolving data streams is change
detection. For temporal data, the task of change detection is closely related
with anomaly detection but different [6, p. 25]. The following different modes of
change have been identified in the literature: concept drift (gradual change) and
concept shift (abrupt change). [19, ch. 3] and [4, ch. 5] are separate chapters to
cover change detection for data streams. Detecting concept drift is more difficult
than concept shift. Extensive overview for detecting concept change is provided

15
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in [44,20]. In contrast with anomaly detection, for concept drift detection, two
distributions are being compared, rather than comparing a given data point
against a model prediction. Here, a sliding window of most recent examples is
usually maintained, which is then compared against the learned hypothesis or
performance indicators, or even just a previous time window. Much of the differ-
ence between the change detection algorithms is in the way the sliding windows
of recent examples are maintained and in the types of statistical tests performed
(except for CVEDT [30]), though some algorithms like ADWIN [12] allow differ-
ent statistical tests to be used. These statistical tests varies from a comparison of
means of old and new data, to order statistics [33], sequential hypothesis testing
[38], velocity density estimation [3], density test method [46], Kullback Leibler
(KL) divergence [16]. Different tests are suitable for different situations; in [15],
a comparison of applicability of several of the above mentioned tests is made.
There has been publicly available implementations of some of them: in particu-
lar, the MOA software environment for online learning of evolving data stream

[2].

One of the most well-known algorithms for change detection is ADWIN
(stands for Adapting Windowing) [12]. We base our experiments on the available
implementation of ADWIN (http://adaptive-mining.sourceforge.net). Al-
ternatively, we also considered using OnePassSampler [43]. Although it seems to
have good performance in terms of false positive/true positive rate, its detection
delay is much higher.

In [48], the proposed outlier detection method can model distribution effec-
tively that changes over time. But it has been mentioned that detecting those
changes in the distribution is difficult. It has been suggested that external change
detector can be used to identify changes in distribution of streaming data. In [9,
41], the authors have proposed a regression learning framework which combines
change detection mechanism with regression models. Three different external
change detection mechanisms have been used and ADWIN is one of them. The
framework presented in [41] detects outliers first and eliminates them. After that,
change detection is done for better prediction. The main motivation of this work
is not outlier detection rather improving the robustness of online prediction. In
[11], the main motivation is cleaning noisy data rather than detecting contextual
anomalies. This work does not consider the issue of change detection. Another
framework on contextual anomaly detection for big sensor data has been pre-
sented recently [26]. The framework has both offline and online components. It
generates k clusters and & Gaussian classifier for each sensor profile. The evalu-
ation of Gaussian classifier is done online. The nature of the problem is closely
related with our problem domain but this work also does not consider the issue
of concept drift.

Unified techniques for change point and outlier detection are presented in
[49,32,47]. Particularly in [49], the unified framework for change and anomaly
detection has been presented. Here, the outlier detection is done in the first step.
Change detection is performed later using the outcome of outlier detection.
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3 Description of the Framework

For simplicity, let us consider univariate time series of environmental sensor data.
There are several user-defined parameters for each stream, including maximum
and minimum acceptable values, minimal sliding window size, and sensitivity
threshold. The minimal sliding window size N will vary according to a particular
data set. Typically it should be large enough to have a decent initial density
estimation. The threshold parameter ¢ is usually between 104 and 1076.

At the start of execution, the sliding window W will contain the initial N
values. ADWIN will run on W, detecting change points. But ADWIN will stop at
change point ¢ where |z1...x.| < Nxl. That is, if we cut W = {x1, 22, 3, ...%¢, .21 }
at point ¢ into to sub-windows then the size of first sub-window W),,..,, must be
less than N * [, where [ is an internal parameter (change point limit). This is
done to ensure that the second sub-window W,,, will contain enough data so
that the KDE can produce a fairly accurate density estimation. Now, data will
be discarded from the beginning up to index ¢ — p where p is the fixed num-
ber of previous data points from last change point. As the change is sometimes
detected with some delay, keeping some previous data from the change point ¢
will not lose any data generated from current distribution. After discarding the
data up to ¢ — p, W is allowed to grow until |IW| = N again. Thus ADWIN
will run on W periodically when it will reach the initial window size. For the
new incoming data point x441, it will be checked first whether it falls within the
predefined acceptable range. If not, it will be flagged as bad data and discarded;
instead, mean value of the current window can be used in calculations. If 2,1 is
within acceptable range, KDE will run on W, with respect to x;41 using the
following equation:

() = I,ZZ,K(T,f) )

Here, K () is the kernel and & is the bandwidth. We have used the following
Gaussian Kernel for our framework:

T —x; 1 @—ap?
K = e 2n? 2
( h ) V2T @

For the Gaussian kernel, the bandwidth parameter h is calculated using the Sil-
verman'’s rule-of-thumb:
405\ 1/°
h= 3
( 3n ) ®)

Now, the returned probability of the z;y; being generated from the same
distribution will be checked against the threshold ¢. If the probability is less
than ¢, then it will be flagged as an anomaly, otherwise as normal. It is observed
that if we decrease the value of h, the sensitivity of anomaly detection will also
decrease. That is the KDE will be more restrictive. To further verify whether x;1

17
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is an anomaly, we can repeat the same steps again by decreasing the bandwidth.
This would provide us with a score of how anomalous the point is.

In general, we use flag values for anomalies described in the Manual for the
Use of Real-Time Oceanographic Data Quality Control Flags by IOOS [1].

4 Experimental Results

We have used a publicly available data set from the SmartAtlantic Alliance
project called SmartBay (http://www.smartatlantic.ca/Home). In Particu-
lar, the data is from a buoy placed at the Placentia Bay, Newfoundland. It
measures several types of data such as Average Wind Speed, Peak Wind Speed,
Wind Direction, Air Temperature, Barometric Pressure, Humidity Dew Point,
Sea Surface Temperature, Maximum Wave Height, Sea Surface Salinity, Signif-
icant Wave Height etc. We have used data from August’18, 2006 - October’16,
2014. The total number of data points is around 120,000. Each measurement is
taken within 20-30 minutes interval.

In all cases we are using the first NV points for our initial density estimation.
Thus these points are excluded for anomaly detection. The internal parameters
for all cases are: ADWIN’s § = 0.03, change point limit [ = 0.83, points since
last change p = 70. We have used Gaussian kernel for the density estimation
and the bandwidth h is calculated using Silverman’s rule-of-thumb as a optimal
choice.

We have used the window size N = 7000 and different threshold value ¢ for
different data types, in particular for air temperature data ¢t = 10~% and for the
dew point data set ¢ = 107°. We have performed all our experiments with the
same parameter setting for general KDE and ADWIN+KDE.

g g
g

AirTemp
AirTemp

-

- \/‘ﬂ \4“ Y *M \\’/\ _'; \/\’\ Wﬂm\ W

2 4 6 8 10 12 0 2 4 6 8 10 12
Sequence of Measurements <5 Sequence of Measurements o

(a) ADWIN+KDE (b) KDE
Fig.1: Comparison of air temperature anomalies detected by ADWIN+KDE
versus only KDE

In case of Air Temperature, the proposed method detects one significant
anomalous region where the the increase of temperature is abrupt. On the other
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hand, it has correctly detected more anomalies than the general KDE.

"'qv%i‘ ’A\“‘w /lwul\w /\\m‘ \ "ﬂfwr"’ﬂ\“'”/lw “/‘\w /\ ” |

DewPoint
DewPoint

10 12 ) 2 10 12

) 2 4 6 8 4 6 8
Sequence of Measurements x10° Sequence of Measurements x10°

(a) ADWIN+KDE (b) KDE

Fig. 2: Comparison of dew point anomalies detected by ADWIN+KDE versus
only KDE

In case of Dew Point data set, the proposed method detects two significant
anomalous regions where the the change of measurement is unusual. Again, the
general purpose KDE fails to detect such events.

It seems that combining KDE with ADWIN does lead to detection of more
anomalies on some data sets. However, we have seen data sets where KDE outlier
detection did not change significantly with introduction of ADWIN.

5 Conclusion and Future work

Motivated by a specific problem coming from a real-world application for EM-
SAT Corp. real-time environmental monitoring, we have explored statistical
techniques and their combination with change detection for unsupervised anomaly
detection in environmental data sets. In general, KDE performed better than pa-
rameterized methods, and combination of ADWIN and KDE was able to detect
possible events of interest that KDE by itself did not catch. EMSAT has found
these results promising, and plans to incorporate these techniques into their
product.

There are many possible directions of research and other applications of this
approach. The framework requires a large-scale sensitivity analysis of its pa-
rameters. In short term, we are interested in creating ensembles of anomaly
detection techniques and change detection, and evaluating their performance on
environmental sensor data. We plan to include both variants of the same tech-
nique with differing parameters (for example, KDE with different kernels and/or
bandwidth), and a range of different techniques. Exploring ways to address chal-
lenges specific to multivariate/high dimensional data is another part of our work
in progress.

19
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Another direction is to incorporate detection of others, more complex types
of anomalies. In addition to better detection of collective anomalies, we would
like to investigate detecting discords, unusual patterns in the data streams. This
would depend crucially on the types of data we would have access to, as we
expect different types of data to have very different structure with respect to
frequent /unusual pattern occurrences.

Overall, for a longer term project, we would like to understand what prop-
erties of data streams and outlier definition make certain techniques or classes
of techniques more applicable. Our current work with statistical techniques and
change detection already shows that outlier detection on some data sets benefits
from adding change detection, while for others KDE by itself detects outliers
just as well. Analysing performance of ensembles may shed more light on such
differences between types of data and outliers.
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Infusing Prior Knowledge into Hidden Markov
Models
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Abstract. Prior knowledge about a system is crucial for accurate mod-
eling. Conveying this knowledge to traditional machine learning tech-
niques can be difficult if it is not represented in the collected data. We
use informative priors to aid in feature selection and parameter estima-
tion on hidden Markov models. Two well known manufacturing problems
are used as case studies. An informative prior method is tested against
a similar method using non-informative priors and methods without pri-
ors. We find that informative priors result in preferable feature subsets
without a significant decrease in accuracy. We outline future work that
includes a methodology for selecting informative priors and assessing
trade-offs when collecting knowledge on a system.

Keywords: informative priors, feature selection, hidden Markov models

1 Introduction

Prior knowledge about a system can come from many sources. The cost of col-
lecting a data stream (financial, computational, or difficulty in acquiring the
feature) is not always easy to convey in a data set. Some systems have physical
restrictions or properties the model must adapt to, and this can also be difficult
to capture in collected data. Using these two types of information, which would
not be included if only collected data were considered, will lead to models that
more closely represent the system.

In Bayesian estimation, non-informative priors (NIPs) are typically used on
model parameters, meaning that it assigns equal weight to all possibilities. Pri-
ors are chosen by the researchers; therefore, the researcher can influence the
estimation by the selection of a prior distribution or the parameters for that
distribution. Bayesians who promote NIPs wish for the data to be the only fac-
tor driving estimation, and prevent any bias or influence being injected into
the estimation by the practitioner. We argue that the use of informative priors
(IPs) when modeling systems is crucial for two reasons. First, knowledge about
a system that is not present in the collected data can be conveyed to the estima-
tion process through prior distributions. Second, good IPs can increase model
accuracy and other notions about model performance.

Most decisions when modeling a data set are based on prior information.
By choosing a class of models that one believes will accurately reflect the data,
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the researcher has begun using prior information and, in a sense, has already
established a prior distribution. For example, by choosing logistic regression over
other classifiers, one has placed a prior with probability 1 on logistic regression
and probability 0 on all other classifiers. Using the notion that IPs encompass
any type of decision when modeling data, we use prior knowledge and IPs for
three tasks: 1) selecting the type of model 2) selecting model structure and 3)
parameter estimation.

We present case studies of two well known manufacturing problems to show-
case the advantages of IPs when modeling systems. In the tool wear case study,
the objective is to predict the wear given data collected from the cutting process.
In the activity recognition case study, the objective is to classify the activity of a
human subject using collected data such as upper-body joint positions. We use
hidden Markov models (HMMSs) [23] to model both systems. We chose HMMs
because of their success in modeling time series data and the ability to train
HMMs using unsupervised learning algorithms, which is desirable due to the
difficulty labeling these types of data sets.

One area of prior knowledge we wish to convey to the model is that input
features are associated with some form of cost. Test costs include the finan-
cial cost of collecting features, the time consumed collecting features and the
difficulty to collect a feature [19]. We wish to construct accurate models with
minimal test cost through feature selection (FS). FS with respect to test cost
has been studied [8, 18]; however, most of these methods compare the trade-off
between misclassification cost and test cost requiring a supervised F'S technique.
In addition to a reduction in test cost, F'S can increase the accuracy of models,
decrease computation time, and improve the ability to interpret models.

In light of this prior knowledge, we propose a feature saliency HMM (FSHMM)
that simultaneously estimates model parameters and selects features using un-
supervised learning. IPs are placed on some model parameters to convey test
cost to the algorithm. We demonstrate, using the case studies, that the IPs pro-
duce models that compare favorably to similar models that use either no priors
or NIPs. The primary contributions of this work are: a study of incorporating
prior knowledge about a system into statistical modeling and the use of IPs as a
mode for incorporating cost into FS using the FSHMM. It should be noted that
the FSHMM outlined in Section 3, as well as some of the numerical results in
Section 5, first appear in a paper under submission by two of the coauthors of
this work [1], but the discussion of IPs, their use in the approach section, and
future research is novel to this work.

2 Background

IPs have been used to overcome numerous modeling issues: zero numerator prob-
lems [27], low sample means and small sample sizes [16], and zero inflated re-
gression problems [10]. Furthermore, IPs have been used with several types of
models and domains: improve forecasting for monthly economic data [11], epi-

demiological studies using hierarchical models [25], classification and regression
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trees [2], parameter estimation of non-linear systems [3], and network inference
[21]. These studies demonstrate that good IPs can improve parameter estima-
tion and predictive ability of models, however there is no well established method
for converting prior knowledge into prior distributions. In [6] and [28], different
methods for constructing IPs are compared but no method clearly dominates
the others.

The research for FS specific to HMMs is lacking. In most applications, do-
main knowledge is used to select features [20]. Several studies use popular di-
mensionality reduction techniques such as principal component analysis (PCA)
[14] or independent component analysis [26]. While these methods reduce the
feature space, all features must be collected to perform the transformation so
test cost is not reduced. Nouza [22] compares sequential forward search (SFS),
discriminative feature analysis (DFA) and PCA. The supervised methods (SFS
and DFA) outperform PCA, the unsupervised method. In [17], FS is performed
using boosting. A single HMM is trained for each feature and class, then the
AdaBoost algorithm is used to learn weights for each feature by increasing the
weight for misclassified observations. This method requires supervised data.

Feature saliency, which recasts FS as a parameter estimation problem, was
first introduced for Gaussian mixture models (GMMSs) [15]. New parameters,
feature saliencies represented by p, are added to the conditional distribution of
the GMM. The emission probability consists of mixture-dependent and mixture-
independent distributions, and p represent the probability that a feature is rele-
vant and belongs to the mixture-dependent distribution. In [15], the expectation-
maximization (EM) algorithm and the minimum message length criterion are
used to estimate model parameters and the number of clusters. Bayesian param-
eter estimation techniques have also been used on the feature saliency GMM [4].
In [30], the authors use a variational Bayesian (VB) technique to jointly estimate
model parameters and select features for HMMs. This method does not require
the number of states to be known a priori.

3 FSHMM

Three FSHMM formulations that assume the number of states is known and use
the EM algorithm to solve for model parameters are outlined in [1]. The max-
imum likelihood (ML) approach does not use priors on the model parameters.
Two maximum a priori (MAP) formulations are given: one uses an exponential
distribution with support on [0,1] as a prior on p and the other uses a beta dis-
tribution. The hyperparameters for these priors can be used to force estimates
for p towards zero. It is through the IP on p that the test cost of a feature is
conveyed to the algorithm. Features with a higher test cost must provide more
relevant information to be included in the selected feature subset.

In [1], the EM models are compared with the VB method in [30]. It is shown
that the EM methods outperform VB in terms of accuracy and feature subset
selection. ML overestimates the relevance of irrelevant features and MAP using
a beta prior underestimates the relevance of relevant features. The authors con-
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clude that MAP with an exponential distribution should be used. In this section,
we give a brief overview of the FSHMM using MAP with an exponential prior
on p described in [1].

Given an HMM with continuous emissions and [ states, let y;; represent the
component of the observed data at time ¢, and let x; represent the hidden
state for t = 0...T. Let a;; = P(xy = j|o,—1 = i), the transition probabilities, and
m; = P(xo = i), the initial probabilities. Let p(y¢| i, o) be the state-dependent
Gaussian distribution with mean p; and variance o2, and q(yi|e;, 72) be the
state-independent Gaussian distribution with mean ¢; and variance 7'12. A is the
set of all model parameters.

The EM algorithm [23] can be used to calculate maximum likelihood es-
timates for the model parameters. Priors can be placed on the parameters to
calculate the MAP estimates [5]. The following two subsections give the E-step
and M-step for the MAP FSHMM from [1].

lth,

3.1 Probabilities for E-step

First use the forward-backward algorithm [23] to calculate the posterior probabil-
ities (i) = P(x¢ = ily, A) and &(¢,j) = P(z¢—1 = i,2¢ = jly, A). Then calcu-
late the following probabilities: e;; = P(yi, 21 = 1@y = i, A) = pyr(yue|par, 03),

hiw = P(yn, 2t = Olzy = i, 4) = (1 — p))q(yueler, 72), g = Plyuley = i, A) =
e + haw, war = Pz = Loy = ily, A) = 225 and vy = Pz = 0,24 =

4 h
ily, A) = T = i — i

3.2 MAP M-step

2

The priors used for MAP estimation are: m ~ Dir(w|3), A; ~ Dir(4;|a;), i
N(walmi, s3), o ~1G(03|Cinu), e ~ N(elb, ), 77 ~ 1G(mi|vi, ), pr ~
%e*k”’l, where Dir is the Dirichlet distribution, A is the Gaussian distribution,
IG is the inverse gamma distribution, A; is row i of the transition matrix, and Z
is the normalizing constant for the truncated exponential. The parameter update
equations are:

o Y0(i) + B — 1 0 — D0 &e(iyg) +aiy — 1
(2 Vi . ’ 1) T ?
S0t (o0(0) + B~ 1) Sl (S &l )+ iy — 1)
it = 2 3o wayu + oimy o2 S e (e — par)® + 20
il — ) il —

L EtT:o Uit + 07 Zf,Tzo wie +2(Gr + 1)
aYr, (ZiI:l Um) Y+ 72b; ) Yo (Zfﬂ 'U'ilt) (g — &) + 24
) =
T 1 T T
012 >0 (Zi:l ”ilt) + 7'12 >0 (Zi:l Uilt) +2(v +1)
T+1+k — \/(T + 1+ k)2 — 4k (Z,,T:O S uilt)
2k;

€ =

pL=

)
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The first case study is a data set used in the 2010 Prognostics and Health Man-
agement (PHM) Society Conference Data Challenge. ! This data set contains
force and vibration measurements for six tools; however, only three of the tools
have corresponding wear measurements. Force and vibration (represented by F
or V) are measured in three directions (represented by X, Y, and Z) and three
features are calculated from each sensor’s direction. The second case study is a
human activity recognition data set of a worker engaged in a painting process in
an in-production manufacturing cell. This data set was collected by researchers
from the University of Virginia [24] and is publicly available. 2 Ten upper body
joints were tracked using a Microsoft Kinect.

HMDMs are widely used for modeling tool wear [13] and activity recognition
data [9], which are both time series data with measured features correlated with
a hidden variable. This prior knowledge leads to the first way we use IPs outlined
in the introduction: the selection of HMMs to model the data.

Tool wear is non-decreasing. This physical attribute can be incorporated
into an HMM by restricting the Markov chain to be left-to-right (LTR). A LTR
Markov chain can only self-transition and transition to the next highest state.
Decisions similar to choosing HMMs or restricting the Markov chain to be LTR
can be considered using IPs to convey knowledge to the model structure. This
is the second way we use IPs: selecting model structure.

In the PHM case study, it is assumed that the force sensor costs twice as
much as the vibration sensor. This assumption was made after reviewing the
price of several commercial sensors, and we believe it adequately reflects the real
world. The features in the Kinect data set have a different notion about cost.
The Kinect collects data every 30" of a second and records three coordinates
for each of the upper-body joints. The size of this data can grow rapidly, thus
we associate cost with a growth in data. Irrelevant features add to computation
time for the model and degrade its accuracy. Each feature is assumed to have
the same collection cost, and the smallest feature subset is desired.

The third way we use IPs is to influence parameter estimates. IPs are used
to convey the two previously outlined notions about cost to the FS algorithm
by penalizing more costly features or larger feature subsets. For the PHM data,
k; = 1200 for force features and k; = 600 for vibration features, which are half
of the assumed cost. When modeling the Kinect data, k; = 15,000, which is
rougly T'/4. These hyperparameters were selected based on intuition and not
formal methodology, which is left to future work and will be discussed in a later
section.

IPs are also used on p(:|-) and ¢(+]-) for the Kinect data set. A supervised
initialization set is used for selecting starting values for EM. We set m to the
mean of this initialization set by assuming that p calculated on a small portion
of the data will be close to the p estimated from the training set. We assume that

! http://www.phmsociety.org/competition/phm/10
% http://people.virginia.edu/ djr7m/incom2015/
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Algorithm 1 Informative Prior Distribution FSHMM Algorithm

1. Select initial values for 7, aij, fri, oar, €1, and py for i = 1..1,5 =1..1,and l = 1...L
2. Select hyperparameters S, cvij, mit, Sit, Cit, it b, e, vi, 4y, and ky for @ = 1..1,5 =
1.I,and [ =1...L

3. Select stopping threshold § and maximum number of iterations M

4. Set absolute percent change in posterior probability between current iteration and
previous iteration AL = oo and number of iterations m = 1

4. while AL > § and m < M do

5. E-step: calculate probabilities Section 3.1

M-step: update parameters Section 3.2

calculate AL

m=m-+1

9. end while

10. Perform FS based on p; and construct reduced models

® N

e will be relatively close to the global mean of the data and set b to the mean of
the training set. For the PHM data, the features are normalized, therefore, b is
set to 0.

A general algorithm for the MAP FSHMM models is given in Algorithm 1.
Leave-one-out cross validation is used for the PHM data: a supervised tool is
removed, a model is trained on the remaining 5 tools, and then tested on the
withheld tool. For the Kinect data, the first two thirds of the noon hour are
used for training and the remaining third is reserved for testing. The first 2000
observations of the training set are used as the supervised initialization set.

In the first set of numerical experiments, we compare two FSHMM formula-
tions: MAP using the exponential prior and the VB formulation in [30]. These
results, along with the results for ML and MAP using a beta prior, are given
in [1]. MAP uses IPs, while VB uses NIPs, but no priors on the feature salien-
cies. Prediction is performed using the Viterbi algorithm [23]. Full models using
the entire feature set and reduced models using the selected feature subsets are
tested. In the second set of experiments, which are novel to this work and not
given in [1], the FSHMM is compared with unsupervised sequential searches.
Both greedy forward and backward selection [12] are used to search the feature
space, AIC and BIC are used as evaluation functions, and two stopping criteria
for the search are tested. These standard F'S techniques do not use priors and
have no notion of test cost.

5 Numerical Experiments and Results

FS is performed on the PHM data in the first set of numerical experiments by
removing the sensor direction with the lowest average p for the three calculated
features. For comparison, models are built assuming 5 and 20 states ([1] also
compares 10 state models). The root mean squared error (RMSE) between the
predicted wear value and the true wear value are calculated. The predicted wear
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value is the median of the predicted wear state. The average RMSE over the
test tools for the MAP algorithm are: full 20 state - 22.92, reduced 20 state -
23.03, full 5 state - 24.07, and reduced 5 state - 26.05. The average RMSE for
VB are: full 20 state - 36.90, reduced 20 state - 39.68, full 5 state - 34.90, and
reduced 5 state - 31.24. The MAP formulation consistently removes FY, which
has a higher cost than a vibration sensor. VB removes VY for the 5 state model,
but the removed sensor varies depending on the training data for the 20 state
model (FY for Tool 1, FX for Tool 4, and VY for Tool 6).

For the Kinect tests, FS is performed by removing features with p below 0.9.
The fraction of correctly classified time steps is calculated and referred to as
the accuracy. The MAP full and reduced models have accuracies of 0.7473 and
0.7606, while the VB full and reduced models are 0.6415 and 0.6561. The MAP
formulation removes 18 features, while VB only removes 5. Effectively, the test
cost for the reduced MAP model is more than three times lower than for the
reduced VB model.

The first criteria stops the sequential search when there is no improvement
to the evaluation function. This does not allow for control over the number of
features in the feature subset. Both evaluation functions and search directions
result in the same model, with VZ as the only sensor. The average RMSE is 24.36.
MAP performs better on two out the three tools, but the sequential methods give
a better average RMSE. For a better comparison to the test performed in the
previous experiment, a second stopping criteria, which removes a single sensor
then stops the search, is tested. The average RMSE for this criteria is 30.24.
MAP with 5 states outperforms two of the three tools and gives a lower average
RMSE. The sensor chosen for removal is dependent upon the training set (Tools
1 and 4 remove FY, while FX is removed for Tool 6). For each training set, a
force sensor is removed. MAP produces a lower cost feature subset.

For the Kinect data, the initialization, training, and testing sets are divided
as in the previous experiments comparing FSHMM formulations, and 6 hidden
states are assumed. For SF'S, both AIC and BIC yield the same final model and
have 16 features. The accuracy for this model is surprisingly low at 0.0549. The
“Unknown” task is predicted for all time steps except the first. SFS includes
several features associated with Y and Z, and excludes features associated with
X. For comparison, the FSHMM removes features in the Y direction and prefers
features associated with X and Z. For SBS, AIC and BIC yield the same feature
subset and both remove 3 features. The reduced model produces an accuracy of
0.5714 on the test set.

6 Discussion and Conclusion

The first set of numerical experiments demonstrate that the MAP method using
IPs outperform the VB method using NIPs. MAP gives a lower RMSE on the
PHM data and a higher accuracy on the Kinect data than VB. MAP also selects
feature subsets that are preferable over those selected by VB. MAP consistently
selects a less expensive feature subset for the PHM experiments and the smaller
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feature subset in the Kinect experiments. Guyon and Elisseeff [7] state that
variance in feature subset selection is an open problem that needs to be addressed
in future research. Therefore, we view a consistent feature subset as a valuable
trait when evaluating FS algorithms. VB, which does not use priors p, select
subsets that vary with the training set on the PHM data. Furthermore, VB
does not allow for the estimation of a LTR model. We know that wear is non-
decreasing and that this should be reflected in the Markov chain. In a broader
sense, the VB formulation does not allow for the use of an IP on the model
structure.

For the sequential searches, AIC and BIC produce the same models, so there
is little difference in these evaluation functions. When the sequential searches are
run with the stopping criteria of no improvement in the evaluation function on
the PHM, a single sensor is left in the reduced set. When the search is restricted
to removing a single sensor, a force sensor is removed. MAP has a lower RMSE
and produces a lower cost feature subset for the PHM data. The sequential
searches perform much worse in terms of accuracy on the Kinect data set. MAP
typically excludes features in the Y direction. This makes sense as joints in the
Y direction should not vary significantly for different tasks. For example, the
position of the head in the Y direction does not change much between painting
and loading. From the experiments on the Kinect data, we see that the sequential
search methods select features that increase the likelihood, not features that help
the model accurately distinguish between states.

In conclusion, we have shown that IPs can be used and improves the modeling
of two manufacturing systems using HMMs. IPs are used in the selection of the
type of model, model structure, and parameter estimation. The IPs improve the
models by reducing the feature set given some notion of cost of features without
significantly reducing or in some cases increasing accuracy.

7 Work in Progress and Future Work

It seems logical that each of these manufacturing case studies would have some
type of duration associated with the state. The explicit duration HMM (EDHMM)
[29] models the residual time in a state as a random variable. There is no work
concerning F'S specifically for EDHMMSs. Due to the significant increase in train-
ing times for these models, sequential methods that train and evaluate several
models at each iteration, are eliminated from consideration. Filters or embedded
techniques, such as the FSHMM, should be preferred. Current work is focused
on developing an FSEDHMM for testing on these two data sets.

We are also studying using prior knowledge when selecting an emission dis-
tribution, because HMMs are not restricted to a Gaussian emission distribution,
which we have assumed in this study. We are investigating GMMs, the expo-
nential and gamma distributions, and discrete distributions such as the Poisson.
GMNMs are a logical choice if there appears to be multiple clusters in each state.
The exponential or gamma distributions can be applied if there are no negative
values in the data set.
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In the current work, hyperparameters are chosen based on intuition. Future
work will develop a methodology for selecting the hyperparameters for all model
parameters, including calculating hyperparameters from prior knowledge, con-
verting expert knowledge into hyperparameters, and the selection of the type
of distribution used for the prior. The beta and exponential distributions are
used to convey the cost of features. Other types of distributions could be used
to convey different information such as physical properties.

Given a limited amount of time to study a system, the allocation of resources
is important. For example, should one focus on learning as much as possible
about the system before modeling, or should they focus on exploring all possible
aspects of modeling. This is a trade-off between better priors and better mod-
els for the likelihood. Non-parametric Bayesian methods could provide better
models for the likelihood. They have an infinite number of parameters which
significantly increases their computation. Bayesian methods in general perform
better when the priors give accurate information about the system. In a Bayesian
setting, we now have two competing objectives: either make the priors as strong
as possible or significantly increase the number of model parameters to better
model the data. Non-parametric Bayesian methods with respect to IPs is an area
of future research.
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Abstract. Financial analysts are evaluated based on the value they
create for those who follow their recommendations and some institutions
use these evaluations to rank the analysts. The prediction of the most
accurate analysts is typically modeled in terms of individual analyst’
characteristics. The disadvantage of this approach is that these data are
hard to collect and often unreliable. In this paper, we follow a different
approach in which we characterize the general behavior of the rankings
of analysts based upon state variables rather than individual analyst’s
characteristics. We extend an existing adaptation of the naive Bayes
algorithm for label ranking with two functions: 1) dealing with numerical
attributes; and 2) dealing with a time series of label ranking data. The
results show that it is possible to accurately model the relation between
the selected attributes and the rankings of analysts. Additionally, we
develop a trading strategy that combines the predicted rankings with the
Black-Litterman model to form optimal portfolios. This strategy applied
to US stocks generates higher returns than the benchmark (S&P500).

1 Introduction

In recent years, some institutions were very successful selling the rankings of
analysts based on their relative performance. For example, Thomson Reuters
publishes the StarMine rankings of the financial analysts on an annual basis iden-
tifying the top. The Institutional Investors magazine and Bloomberg have been
publishing and selling these rankings for decades and these attract investor at-
tention and broad media coverage. Aside from personal acknowledgment among
the peers, it is still arguable if rankings of financial analysts provide valuable
information to market participants and help them in selecting which analysts to
follow.

Following analysts’ recommendations, on average, brings value to investors
[15]. Hence, following the recommendations of the top analysts should result
in a profitable trading strategy. Since analysts do not make recommendations
frequently, at any given moment in time, an investor may only have recommen-
dations from analysts other than the top ones. Given that, identifying the top
analysts ahead of time is beneficial for an investor. In this paper, we propose a
method to predict the rankings of the analysts and use these rankings to develop
a successful trading strategy.
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We address the problem of rankings of analysts as a label ranking (LR)
problem. Many different algorithms have been adapted to deal with LR such as:
naive Bayes [1], decision-trees [5], k-nn [4,5]. However, none of these algorithms is
prepared to deal with time series of rankings, which is an important characteristic
of our problem. It is expected that the ranking of analysts on a given period is
not independent from the ranking in the previous period. Thus, some adaptation
of existing LR algorithms is required to solve this problem.

Once we have predicted rankings, we apply a trading strategy that works
within the framework of the Black-Litterman (BL) model [2]. The model admits
a Bayesian setting and allows to transform stock views into optimal portfolio
weights. We use analysts’ target prices to obtain expected returns. Using the
predicted rankings, we compute analysts’ views for a particular stock. These
views are the input for the BL model. The resulting portfolio maximizes the
Sharpe ratio [12]. We use S&P500 as a proxy for market returns. We show that
1) our LR model outperforms other forecasting models; 2) the resulting trading
strategy generates superior returns.

The contributions of our paper are the following. We are able to adapt the
existing LR algorithm and apply it to a real world problem of predicting the
rankings of financial analysts. Using the predicted rankings as inputs, we design
a profitable trading strategy based on the BL model

The paper is organized as follows: Section 2 reviews the rankings of the
analysts in the finance literature; Section 3 formalizes the label ranking problem
and introduces the adaptation of the algorithm to deal with time series of the
rankings; Section 4 outlines the trading strategy that uses the predicted rankings;
Section 5 describes the datasets used for the experiments; Section 6 analyzes the
results; and Section 7 concludes.

2 Ranking of Financial Analysts

In the finance literature there has been a long debate over whether financial
analysts produce valuable advice. Some argue that following the advice of fi-
nancial analysts, translated as recommendations of buying, holding, or selling
a particular stock, does not yield abnormal returns, i.e., returns that are above
the required return to compensate for risk [8]. If financial markets are efficient
then any information regarding a stock would be reflected in its current price;
hence, it would be impossible to generate abnormal returns based upon publicly
available information. This is the Efficient Market Hypothesis (EMH).

Yet there are information-gathering costs and the information is not imme-
diately reflected on prices [9]. As such, prices could not reflect all the available
information because if that was the case, those who spent resources to collect
and analyze information would not receive a compensation for it.

For market participants, rankings could be useful because they signal the top
analysts. Evidence shows that market response to analysts’ recommendations is
stronger when they are issued by analysts with good forecasting tracking record
[11]. Yet the value of these rankings for investors is arguable as they are ex-post
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and a good analyst in one year does not necessarily make equally good recom-
mendations in the following year [7]. However, if we know the ranking of analysts
ahead of time then it would be possible to create a successful trading strategy
based upon that information. If we can, with reasonable accuracy, predict the
rankings we can follow the recommendations of the analysts that are expected
to be at the top and, in presence of contradictory recommendations, take the

rank of the corresponding analysts into account.

3 Label ranking algorithm

The classical formalization of a label ranking problem is the following [13]. Let
X ={V1,...,Vn} be an instance space of variables, such that V, = {va,1,...,Va,n, }
., Ak} be a set of labels,
and Y = Il be the output space of all possible total orders over £ defined
on the permutation space II. The goal of a label ranking algorithm is to learn
a mapping h : X — ), where h is chosen from a given hypothesis space H,
such that a predefined loss function ¢ : H x Y x )Y — R is minimized. The
algorithm learns / from a training set 7 = {4, ¥itief1,...n} € X X Y of n ex-

is the domain of nominal variable a. Also, let £ = {)\q,..

amples, where x; = {x;1,%;0,...
1 2

JTim ) € X and v = {yi1,¥i2, .-

7yi,k} S y

With time-dependent problem in rankings, we replace the 7 index with ¢; that
is yr = {Yt1,Yr.2,--., Yk} is the ranking of k labels at time ¢ described by
Ty = {41, Te2, ..., Te.m ) ab time ¢

Consider an example of a time-dependent ranking problem presented in Ta-
ble 1. In this example, we have three brokers (k = 3), four independent variables
(m = 4) and a period of 7 quarters. Our goal is to predict the rankings for period
t, given the values of independent variables and rankings known up to period
t — 1; that is, to predict the ranking for time t =7, we use n =6 (t € {1...6})
examples to train the ranking model.

Table 1. Example of label ranking problem

Period Vi V2 Vs Wy

Ranks

Alex Brown Credit

~N O U W N

T1,1 T1,2 T1,3 T1,4
T2,1 T2,2 T2,3 T2,4
x3,1 3,2 T3,3 T3,4
Ta,1 Ta,2 T4,3 T4,4
T5,1 5,2 T5,3 T5,4
Z6,1 6,2 T6,3 T6,4
7,1 T7,2 7,3 T7,4

1

=N WW N

2

N = NN N W

3

W W =W
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3.1 Naive Bayes algorithm for label ranking

The naive Bayes for label ranking (NBLR) will output the ranking with the
higher Prgr(y|z) value [1]:

y = argmax Prr(y|z) = (1)
yelle

m
= argmax Prr(y) H Prr(wily)
yelle i=1

where Ppp(y) is the prior label ranking probability of ranking y € Y based on
the similarity between rankings obtained from the Spearman ranking correlation
Equation (2):

k
6 E]’:l(y - yi,j)z

ply,y:) =1 — T (2) Prr(y) = M

n

3)

Similarity and probability are different concepts; however, a connection as
been established between probabilities and the general Euclidean distance mea-
sure [14]. It states that maximizing the likelihood is equivalent to minimizing
the distance (i.e., maximizing the similarity) in a Euclidean space.

Prr(z;ly) in Equation (1) is the conditional label ranking probability of a
nominal variable z of attribute a, (vg):

Zi:za:va p(y7yt)
[{i:2zq =va}]

Prr(wily) = (4)
The predicted ranking for an example x; is the one that will receive the maximum
posterior label ranking probability Pr,r(y|x;).

Continuous independent variables In its most basic form, the naive Bayes
algorithm cannot deal with continuous attributes. The same happens with its
adaptation for label ranking [1]. However, there are versions of the naive Bayes
algorithm for classification that support continuous variables [3]. The authors
modify the conditional label ranking probability by utilizing the Gaussian dis-
tribution of the independent variables. We apply the same approach in defining
the conditional probability of label rankings:
1 (@—p(z|y))?
Prp(zly) = ——=———e 2°CW» (5)
2no(zly)

where p(z]y) and o?(x|y) weighted mean and weighted variance, defined as fol-
lows:

_ Z?:l p(y7 yz)w

) = S ) (©)
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3.2 Time series of rankings

The time dependent label ranking (TDLR) problem takes the intertemporal
dependence between the rankings into account. That is, rankings that are similar
to the most recent ones are more likely to appear. To capture this, we propose
the weighted TDLR prior probability:

_ i wep(y,y)

Prprr(y) = == 8)

) Z?:1 Wy (

where w = {wy,...,w,} — w is the vector of weights calculated from the
1-{}}

exponential function w = b +- Parameter b € {1...00} sets the degree of

the “memory” for the past rankings, i.e., the larger b, the more weight is given to
the last known ranking (i.e, at ¢t — 1) and the weight diminishes to the rankings
known at t = 1.

As for the conditional label ranking probability, the equation for the weighted

mean (Equation (5)) becomes:

plalu) = Sy oy ye) ©)

and o: N 5
i wip(y, ye) [T — p(@ey)]

o (xt|y) = Z?:l P(Y; yt)

(10)

4 Trading Strategy

4.1 Independent variables

Several studies try to analyze factors that affect the performance of the analysts
[6,10]. However, most of these papers look at the individual characteristics of
analysts such as their job experience, their affiliation, education background,
industry specializations. These variables are very important to characterize the
relative performance of the analysts in general. Yet, our goal is to predict the
rankings of the analysts over a series of quarters. We assume that the variation
in rankings is due to the different ability of the analysts to interpret the infor-
mational environment (e.g., whether the market is bull or bear). We, thus, use
variables that describe this environment. We select variables based on different
levels of information: analyst-specific (analysts’ dispersion; analysts’ information
asymmetry; analysts’ uncertainty), stock-specific (stock return volatility, Book-
to-Market ratio; accruals; Debt-to-Equity ratio), industry-specific (Sector index
volatility) and general economy (interest rate; Gross National Product; inflation
rate; S&P 500 volatility).
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Given the time series of the rankings and independent variables, we also
need to capture the dynamics of independent variables from one time period
to another; that is, to find signals that affect brokers’ forecasts accuracy. We
propose the following methods of dynamics:

— last—no dynamics of &: &y, = T4—1,m;

— difffirst-difference of x: x At = Trm — Te—1,m;

— random—an unobserved component of time series decomposition of z: x At =
T(t) + S(t) + €(t), where T'(t)- trend, S(t) - seasonal part and €(t) - random
part of time series decomposition.

— roll.sd—moving 8 quarters standard deviation of x [16]:

7 7
1 1 2
Hag)m = g D Tigm Ohgym = = > (@igm — Ha(s).m) (11)
=0 =0

Each of these methods produces a different set of attributes. By using the algo-
rithm on each one of them separately, we get different rankings. By evaluating
them, we can get an idea of which one is the most informative.

4.2 Strategy setup

The Black-Litterman model [2] is a tool for active portfolio management. The
objective of the model is to estimate expected returns and optimally allocate the
stocks in a mean-variance setting, i.e., maximize the Sharpe ratio.

The BL model has established notations for the views part of the model and
we use the same notations in this paper. The views are made of: Q—the expected
stock return; £2-—the confidence of Q. For the market inputs, the model requires
a vector of equilibrium returns.

The trading strategy is applied as follows:

1. For each stock s, at the beginning of quarter ¢, we predict the rankings of
all analysts that we expect to be at the end of the quarter ¢;

2. Based on these predicted rankings and analysts’ price targets, we define Qs
and 2, ;

3. Using market information available at the last day of quarter ¢—1, we obtain
the market inputs;

4. Apply BL model to get optimized portfolio weights and buy/sell stocks ac-
cordingly;

To measure the performance of our portfolio, we compare it to the baseline
which is the market portfolio (S&P500). We compare the relative performance
of our portfolio using the Sharpe ratio:

SR—"r""f (12)
p
where 7, is the portfolio quarterly return and ry is the risk-free rate; o, is the
standard deviation of the portfolio returns.
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5 Data and experimental setup

To implement the trading strategy, we focus on the S&P500 stocks. Given that
we base stock views on the analysts’ price target information, the period of the
strategy experiment runs from the first quarter of 2001 until the last quarter of
2009. We get price target from ThomsonReuters. The list of S&P constituents
and stock daily prices data is from DataStream as well as the market capital-
ization data. The total number of brokers in price target dataset includes 158
brokers covering 448 stocks all of which at some point in time were part of the
S&P 500. Given the fact that analysts issue price targets annually, we assume
that an analyst keeps her price target forecast valid for one calendar year until
it either is revised or expire.

5.1 Target rankings

We build the target rankings of analysts based on the Proportional Mean Abso-
lute Forecast Error (PMAFE) that measures the accuracy of a forecasted price
target &. First, we define the forecast error (A) as an absolute value of the
difference between actual price §s and the price target made by an analyst k&

(€k.s):

At,k,s = |€t,s - ét«,k,s (13)
Then, we calculate the average error across analysts as:
1k

At,s = E Z At,k,s (14)

k=1

Next, PMAFE is given as:

~ A

Bue = G2 (15)

5.2 Information sets to define the views

To proceed with the trading strategy, we need to establish which information
we will be using to build the rankings. These rankings will be the inputs to
compute the weighted return estimates (“smart estimates”). Different analysts’
ranks are obtained if we select different time horizons. If we use only the most
recent information, we will capture the recent performance of the analysts. This,
of course, is more sensitive to unique episodes (e.g., a quarter which has been
surprisingly good or bad). If, alternatively, we opt to incorporate the entire
analyst’s performance, the ranking is less affected by such events, yet it may not
reflect the current analyst’s ability. We use two information sets: the first uses
only the information about the analyst’s performance in period ¢t —1; the second,
uses all the available information for that particular analyst. We call the former
the recent set and the latter the all-time set. We use rankings based on these
information sets as the baseline rankings.
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In addition to these sets, we also create a hypothetical scenario that assumes
we anticipate perfectly the future analyst accuracy performance that would only
be available at the end of ¢. This represents the perfect foresight strategy. The
perfect foresight refers to analysts’ rankings not stock prices. Therefore, it serves
a performance reference point to evaluate the other trading strategies. We call
this the true set.

6 Experimental Results

The results of the trading strategy based on predicted analysts’ rankings are
presented in (Table 2).

Table 2. Trading strategy performance

Strategy ~ Annualized Annualized  Sharpe ratio Average num. Average
cum. return  Std. dev (in stock turnover rate
(in %) %)
Panel A

Market -3.032 16.654 -0.182 499 0.053

Panel B: TP
true 1.785 15.312 0.117 240 0.272
recent 0.634 15.444 0.041 240 0.251
all-time 0.587 15.325 0.038 240 0.238
last 0.513 15.478 0.033 240 0.262
diff 0.779 15.507 0.050 240 0.269
random 0.671 15.474 0.043 240 0.258
roll.sd 0.634 15.464 0.041 240 0.264

Panel A reports the performance of market (passive strategy). This strategy
showed annualized cumulative return of —3.03% and annualized Sharpe ratio
of —0.18. The average number of stocks used per quarter is 499.98 and the
turnover ratio of strategy is 0.05 which demonstrates the ins/outs of the S&P
500 constituents list.

Panel B of Table 2 demonstrates the results of trading with rankings based
on price target. Consistent with our assumption, the true resulted in the max-
imum possible annual cumulative return and the Sharpe ratio (1.78% and 0.12
respectively). This implies that in the settings where analysts’ expected returns
and rankings are based on price targets, an investor can gain a maximum results
from trading strategy. Given the hypothetical assumption of true, it is not feasi-
ble to implement. The next best strategy is diff which is based on our algorithm
of predicting the rankings. This strategy resulted in annual cumulative return of
0.78% and the Sharpe ratio of 0.05. In addition, the average per quarter turnover
ratio of this strategy of 0.27 implies relative low trading costs.
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Figure 1 plots the graphical representation of the cumulative returns for all
methods of trading strategy. We see that the true strategy is always on top of
all the others. We observe that the best outcome was achieved for the strategy

based on the first difference of the independent variables.

Portfolio performance with $100 initial investment

~ true “ recent —+ all-time > last = diff -+ random = roll.sd -+ Market

$100)

Portfolio wealth (initial

™

50-

2000 2002 2004 2006 2008 2010
Quarters

Fig. 1. Performance of the BL model

7 Conclusion

Some institutions, such as StarMine, rank financial analysts based on their ac-
curacy and investment value performance. These rankings are published and are
relevant: stocks favored by top-ranked analysts will probably receive more at-
tention from investors. Therefore, there is a growing interest in understanding
the relative performance of analysts. In this paper we developed an algorithm
that is able to predict the rankings based on state variables that characterize the
information environment of the analysts. Further, we designed and operational-
ized a trading strategy based on the Black-Litterman model with rankings as
inputs. We obtained positive successful results from trading that out-performs
both the market and the baseline ranking prediction.
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Abstract. Multi-label classification is a supervised learning problem that pre-
dicts multiple labels simultaneously. One of the key challenges in such tasks is
modelling the correlations between multiple labels. LaCova is a decision tree
multi-label classifier, that interpolates between two baseline methods: Binary Rel-
evance (BR), which assumes all labels independent; and Label Powerset (LP),
which learns the joint label distribution. In this paper we introduce LaCova-
CLus that clusters labels into several dependent subsets as an additional splitting
criterion. Clusters are obtained locally by identifying the connected components
in the thresholded absolute covariance matrix. The proposed algorithm is eval-
uated and compared to baseline and state-of-the-art approaches. Experimental
results show that our method can improve the label exact-match.

Keywords: Multi-label learning; Decision trees; Covariance matrix; Splitting
criteria; Clustering

1 Introduction

Classification is a learning task in which the goal is to categorise a new instance into
one or more classes using the trained model. Single-label classification (binary and
multiclass) is concerned with classifying a new instance into one and only one class. In
binary classification, each training point can belong to one of two classes, whereas, in
multiclass, the setting is more general, so that each training point can belong to one of
more than two classes.

On the other hand, in multi-label classification, training points are associated with
a set of classes (labels) simultaneously. There is a wide range of applications for multi-
label data, such as text categorisation and image and movie tagging. For example, in a
medical diagnosis, a patient may have multiple diseases at the same time.

Decision trees are one of the most popular algorithms for classification. They are
built recursively by partitioning the training data. They consist of nodes: starting from
the root node, the internal node represents an attribute, and the leaf node represents a
class label or a probability distribution over classes. The internal node splits the training
space into two or more nodes based on the chosen splitting criterion.

Among other advantages, decision trees are intuitive and comprehensible, such that
the structure can be captured by inexpert users easily. Furthermore, they are selective,
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which means they select the most discriminative features from the data to construct the
trees, which usually number much less than the actual number of features. This has the
advantage, especially in a high-dimensional feature space [11].

In fact, with regard to multi-label tasks, there are many strategies to apply the de-
cision trees. On one hand, a single decision tree can be learnt for each label, ignoring
the correlation between different labels. This approach is known as binary relevance
(BR). On the other hand, a single tree can be learnt, which makes predictions for all
labels together. it is known as label powerset (LP). In the work proposed in [1], authors
have developed a tree based multi-label classifier using a label covariance as splitting
criterion called LaCova. The key idea of LaCova is to use the label covariance matrix
at every node of the tree in order to decide to treat labels independently (BR) or keep
them all together (LP) and find a feature to split on.

The aim of this paper is to explore how to mediate between keeping all labels to-
gether or treating them independently, by studying ways in which the covariance matrix
can suggest label clusters. Moreover, we incorporate ensemble models with LaCova-
CLus and compare it with other ensemble algorithms.

The rest of this paper is organised as follows: Section 2 discusses the problem def-
inition and possible approaches to learn multi-label decision trees; the LaCova-CLus
is presented in Section 3; Section 4 gives an overview of existing approaches to intro-
duce decision trees into multi-label classification; experimental results are presented in
Section 5; and Section 6 concludes the paper.

2 Problem Definition

Before giving a formal definition, suppose the learning task is to classify a given movie
into several genres so the task in this case is a multi-label classification problem. To
build a decision tree for this dataset a number of methods can be used.

One of the most common approaches and perhaps the simplest way, is to build
a single decision tree for each label and train it independently from the other labels’
trees. So in this case, we create a tree for each movie genre. In order to do this, we
need to transform the dataset into several subsets where each subset has information
only about one movie category. Given a new movie, in order to predict its categories,
all trees should be tested. The prediction for this movie will be the union of all binary
decision trees. This approach learns number of trees equals to the number of labels,
which can be hundreds or thousands in some domains.

The second approach is to learn one decision tree for all movie genres and predict
all of them once. This method models the joint distributions and learns all the labels
as one set. Although this approach is simple and effective, it might end up with few
instances at a leaf when the number of labels is increased.

In summary, we will justify about our approach based on the advantages and dis-
advantages of each approach. The first method does not exploit dependencies among
the labels, which is one of the main challenges in a multi-label classification [8]. More-
over, the number of learnt trees can be large, particularly in the high-dimensional space,
which can be hundreds or thousands in some domains (it can be up to 174 in our ex-
periment) . Finally, from the knowledge discovery point of view, the resulting trees of
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this approach identify features relevant for one label, rather than identifying features
with overall relevance [14]. In the second approach, over-fitting is an issue because it
might end up with a few instances at a leaf. In addition, the exponential number of label
combinations is a potential issue with this approach.

This paper proposes an algorithm that combines these two baseline approaches and
produces a hybrid tree. LaCova-CLus uses the thresholded absolute covariance matrix
in order to find the connected components among labels locally. These components are
partitioned into clusters. For each cluster, we learn a single decision tree (LP).

3 The LaCova-CLus Algorithm

The area of multi-label classification has attracted many researchers. One of the main
challenges is the large number of labels in real-world applications; importantly, these la-
bels may present some correlation between them. Thus, exploiting dependencies among
the labels without increasing complexity could improve the classifier performance [8,9].
Acknowledging the benefits of decision tree models, we focus our work on decision
trees themselves.

In this paper, we propose LaCova-CLus, which is different from the previous
methods as it clusters labels dynamically during the construction of the decision tree.
It also tests label dependencies while growing the tree, which might change and lead to
change in label clusters.

Standard decision tree algorithms use greedy searches to select splits that maximally
decrease the impurity from a node to its children. There are many ways to measure
the impurity of a set of instances, including entropy and Gini index. We note that the
Gini index p;(1 — p;) for a binary class label j with proportion of positives p; is the
variance of a Bernoulli distribution with success probability pj. With multiple binary
labels we can also consider label covariance, which for two Bernoulli variables j and
k with success probabilities p; and p; and joint probability pj is pjx — p; - px. For a
set of |L| labels we can form an L-by-L covariance matrix with label variances on the
diagonal and pairwise covariances off the diagonal.

LaCova implemented a three-way splitting criterion, which can be summarised as
follows. Firstly, if the trace of this matrix (the sum of the diagonal entries) is small, then
the set of instances is nearly pure in a multi-label sense. Secondly, if the labels are actu-
ally independent, i.e., each pairwise covariance is low in magnitude, then apply BR at
this point. We assessed this by calculating total absolute covariance, where the absolute
value is taken to avoid positive and negative covariances cancelling out. Finally, learn
all labels together and find a feature to split on. The main algorithms are given in [1].

The covariance threshold A is required to decide whether there is a significant de-
pendence between the labels or not. Authors in [1] derived a threshold A that is also
computed dynamically at each node of the tree. For more details on derivation A, see [1].

The first two choices require a threshold on the sum of variances and the sum of
absolute covariances, respectively. In experiments we found that, in combination with
a minimum number of instances in a leaf, a variance threshold of O (i.e., all labels pure)
works well. The covariance threshold requires a second innovation, which is presented
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Algorithm 1 LaCova-CLus (D): Learn a tree-based multi-label classifier from train-
ing data.

Input: Dataset D; Labels set L, Minimum number m of instances to split
Output: Tree-based multi-label classifier
CM=Covariance Matrix
if SumOfVar(CM) =0 or |D| <m then
Return Leaf with relative frequencies of labels
else if SumOfAbsCov(CM) < A then
for cach label jin D do
Tj = Learn a decision tree for single label (BR) j
end for
Return Node with single-label decision tree 7;
else
clusters=CLUST(L,CM)
if |clusters| > 1 then
for each set s in clusters do
T, = Learn a decision tree for set of labels s (LP)
end for
Return Node with LP labels decision tree 7
else
/.{D;} = FindBestSplit(D)
for each child node D; do
T; = LaCova-CLus (D))
end for
Return Node splitting on f with subtrees T;
end if
end if

in the next section. This leads to the main algorithm given in Algorithm 1, which im-
plements the above three-way split.

In this work, we address how to mitigate between two options: learning a sepa-
rate tree for each label or keep all labels together and learn one tree. The basic idea
of LaCova-CLus is to find useful clusters using the thresholded absolute covariance
matrix and decompose the set of labels into several subsets of dependent labels, build
an LP classifier for each subset. It also combines BR for independent labels. In addi-
tion to the above mentioned three-way splitting criterion, LaCova-CLus incorporates
a fourth option as follows (see Algorithm 1).

1. If the sum of variances is low, stop growing the tree.

2. Or, if the sum of absolute covariances is low, apply BR (vertical split).

3. Or, if there are label clusters, apply LP (vertical split) for each cluster (LaCova-
CLus).

4. Or, find a good feature to split on and recurse (horizontal split).

3.1 Clustering

Algorithm 2 identifies label clusters based on the thresholded absolute covariance ma-
trix. The first step is to assume that all labels are independent and in separate clusters.
Then, it determines which pair of labels to merge in one cluster based on tunable param-
eter A. The algorithm continues building the clusters by merging the clusters gradually.
These clusters are generated dynamically within the tree.
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Algorithm 2 CLUST(L,CM): Cluster labels based on the covariance matrix

Input: A set of labels L =1/y,--- I ; Covariance Matrix CM
Output: newClust - The final label clusters
Initialise currClust=null; newClust=null; pairList=null;
/* Build initial clusters by assuming each label is in a separate cluster. */
currClust={1 }, {2 },--- , {lj) }
/* Create a list of label pairs sorted in descending order of the absolute covariance value. */
pairList < sorted list
for each label pair(/;,/;), where i=0---|L| — L and j=i+1---|L| do
if all labels are in the same cluster then
Stop clustering
end if
if AbsCov(CM,1;,1;) > A then
/* Merge [; and [;to a new cluster and update the clusters. */
newClust=currClust U(;, ;)
end if
end for
Return newClust

We use the same threshold to decide if a pair of labels are dependent or not to merge
them in one cluster.

A=0+26

=\ [ i = ) (1= )

u= (}'l*l)ﬂf PjPk Pj Pk
1=-2

6> = r’{pjpk(l —p))(1—p)

where p; and py are the probabilities of two labels j and k. n is the number of instances
reaching a particular tree node.

4 Related Work

Many different directions have been taken in the literature to adapt decision trees for
multi-label problems. We now summarise them into different approaches as follows.

A first approach transforms a multi-label problem into several binary classification
tasks and builds a decision tree for each label separately which is known as BR. To
classify a new instance, it outputs the union of the labels that are positively predicted
by all the trees. Classifier Chains (CC) is similar to the BR concept, however, it con-
siders labels correlation. It learns binary classifier for each label along the chain (labels
ordering). Features of each classifier in the chain is incremented with the predictions of
all previous classifiers along the chain [10]. Ensembles of Classifier Chains (ECC) [10]
use CC as a base classifier by training a number of CC classifiers. Each classifier is
trained with different order of labels in the chain and a random subset of the data.

The second method learns a single tree and predicts all the labels together. Such
example is proposed by authors in [3], they adapted the C4.5 decision tree to deal with
multi-label data, while the basic strategy was to define multi-label entropy over a set
of multi-label examples separately. The modified entropy sums the entropies for each
individual label. Although, this approach is able to identify features that are relevant to
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all labels at once, splitting is not guided by label correlations. Another recent work is
proposed in [6], which also builds a single tree for a multi-label dataset. They proposed
a hybrid decision tree model that utilises support vector machines (SVMs) at its leaves.
It is known as ML-SVMDT and it combines two models: ML-C4.5 and BR. It builds
single decision trees similar to ML-C4.5, where the leaves contain BR classifiers that
give multi-label predictions using SVM.

The final approach exploits the correlation between labels by applying clustering
approaches. Hierarchy of multi-label classifiers (HOMER) organises all labels into a
tree-shaped hierarchy with a smaller set of labels at each node [13]. In the training
phase, a multi-label classifier is trained for each internal node to predict a set of labels
called a meta-label. Then, it proceeds into the successor nodes of the meta-label if they
belong to this set of labels. Leaf nodes construct a binary classifier to predict only
a single label. Another recent work in [2] combines the LP and BR methods and is
called LPBR. Its first step is to explore dependencies between labels and then to cluster
these labels into several independent subsets according to the chi square x> statistic.
Second, a multi-label classifier is learnt: if the set contains only one label, BR is applied;
otherwise, LP is used for a group of dependent labels.

5 Experimental Evaluation

LaCova, LaCova-CLus and ML-C4.5 have been implemented in Java using Meka!.
Meka was used for BR, LP, and CC, whereas Mulan? was used for the LPBR algorithm.
In all these algorithms, the trees are produced by J48 algorithm.

Initially, we performed experiments and compared LaCova-CLus to other baseline
approaches: BR and LP. Then, we evaluated and compared the proposed model and its
ensemble version to other state-of-the-art multi-label algorithms.

LPBR needs parameters configuration such as non-improving counter to stop clus-
tering. The default parameters setting in Mulan were 10 for non-improving counter
and 10-fold cross validation for testing the clustering performance. For large datasets it
takes days to run the experiments and then cause out of memory error. Therefore, these
parameters were set to 5 for both non-improving counter and 5-fold cross validation for
clusters evaluation.

Nevertheless, the largest three datasets in terms of the number of labels: CAL500,
Language log and Enron, LPBR takes hours to execute and then reports out of memory
problem (as shown in Table 1). We report the results on others at least to see how it
performs but we did not include its results in the significant test.

Considering ensemble models, all methods involve bootstrap sampling the training
set. Ensemble iterations are set to 10. The predictions are averaged per label to produce
the classifications confidence values.

We evaluate the algorithms on 9 commonly used benchmarks from the Meka and
Mulan repositories. We used the most common multi-label metrics, namely multi-label

! http://meka.sourceforge.net/
2 http://mulan.sourceforge.net/
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Fig. 1: Critical Difference diagrams using pairwise comparisons for those experiments
where the Friedman test gives significance at 0.05. It considers only single classifier
algorithms.

accuracy (Jaccard index), exact-match (subset accuracy), hamming loss and micro av-
eraged f-measure [5,7,12]. Tables 1 and 2 show the average 10-fold cross validation of
the single classifier and ensembles, respectively.

Table 1 also shows the average rank of each approach. Both LaCova and LaCova-
CLus have the best average rank in terms of the multi-label accuracy. LaCova wins
in five datasets out of nine, whereas LaCova-CLus wins in two datasets out of nine.
In relation to exact-match, LaCova-CLus has the best average rank followed by LP,
which suggests that clustering labels into dependent subsets may improve the exact-
match. CC has the best average rank for both hamming loss and f-measure. LaCova-
CLus and LaCova have the second best average rank for hamming loss and f-measure,
respectively.

We conducted the Friedman test based on the average ranks for all datasets in order
to verify whether the differences between algorithms are statistically significant [4]. For
exact-match, hamming loss, f-measure the Friedman test gave a significant difference
at 5% confidence so we proceed to a post-hoc analysis based on Nemenyi statistics as
shown in Figure 1. Regarding the ensemble models, there is no significant difference
between the algorithms.

120000 B T T A
CALS00 174 502 68
106 75 1460 1004
100000 | Enron 53 1702 1001
. Medical 45 978 1449
] Genebase 27 662 1186
S 80000 | Slashdot 2 3782 1079
& Yeast 14 2417 103
= Flags 7 194 19
2 o0 |_Emotions 6 593 72
E
5 w000
£
=
20,000
o — N e
0000 T — . —
CALSO LG Enron Modical  Genebase  Slashdot Yeast Flags Emotions
==BR =[P ===LPBR ===ML-C45 ===CC ===LaCova “==LaCovaCLus

Fig. 2: Comparison of build time in hundreds of seconds. The table shows statistics of
the datasets used in the experiments. |L| is the number of labels, F is the number of
features and N is the number of examples.
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Table 1: Average 10-fold cross validation on 9 datasets comparing single classifier al-
gorithms. The lower value of hamming loss is the better, and for the other metrics the
higher value is the better.

BR LP LPBR ML-C45 CC LaCova LaCova-CLus
Multi-label Accuracy

CALS500 0.201 0.204 - 0225  0.208 0.226 0.206
LLOG 0245 0.234 - 0.208 0.247 0.100 0.243
Enron 0.296 0.277 - 0.344 0315 0.315 0.294
Medical 0.729 0.724 0.725 0.541  0.728 0.548 0.736
Genebase  0.901 0.980 0.955 0922 0.986 0918 0.982
Slashdot 0.425 0.420 0.376  0.312  0.429 0.444 0.465
Yeast 0.391 0.396 0.411 0.414 0.218 0.431 0.397
Flags 0.536 0.550 0.541 0.527 0.531 0.574 0.565
Emotions ~ 0.402 0.416 0417 0411 0383 0.425 0.405
average rank 4.3 4.1 - 4.1 3 2.6 2.8
exact-match

CALS500 0 0 - 0 0 0 0

LLOG 0.184 0.205 - 0.172 0.203  0.063 0.211
Enron 0.022 0.079 - 0.064 0.076 0.058 0.077
Medical 0.607 0.642 0.655 0.389 0.641 0.393 0.661
Genebase  0.809 0.962 0.937 0.882 0.971 0.844 0.968
Slashdot 0.425 0.368 0.306 0.064 0.356 0.351 0.411
Yeast 0.035 0.134 0.122 0.096 0.118 0.120 0.122
Flags 0.098 0.139 0.145 0.108 0.150 0.160 0.187
Emotions ~ 0.125 0.202 0.165 0.165 0.157 0.219 0.187
average rank 4.7 2.3 - 4.7 32 39 1.9

1 ing loss
CAL500 0.223 0.201 - 0.213  0.189 0.214 0.201
LLOG 0.031 0.026 - 0.033  0.023 0.035 0.025
Enron 0.082 0.078 - 0.084  0.069 0.075 0.076
Medical 0.013 0.014 0.017 0.025 0.011 0.025 0.013
Genebase ~ 0.008 0.002 0.019 0.014 0.001 0.011 0.002
Slashdot 0.055 0.058 0.086 0.084 0.045 0.057 0.054
Yeast 0.296 0.288 0.363 0.297 0.307 0.272 0.285
Flags 0.317 0.297 0.309 0.334 0.295 0.281 0.285
Emotions 0.296 0.304 0.309 0.323 0.305 0.287 0.295
average rank 4.1 3.6 - 5.6 1.7 33 2.3
f-measure

CALS500 0334 0332 - 0363 0.338  0.364 0.334
LLOG 0.175 0.122 - 0.103  0.177 0.121 0.136
Enron 0.428 0.364 - 0426 0.014 0421 0.391
Medical 0.778 0.744 0.773  0.587 0.786 0.618 0.758
Genebase  0.921 0.982 0.853 0.870 0.988 0.896 0.981
Slashdot 0.506 0.429 0381 0.416 0.512 0.476 0.473
Yeast 0.541 0.522 0.531 0.546 0.528  0.560 0.526
Flags 0.686 0.689 0.686 0.674 0.677 0.711 0.707
Emotions ~ 0.539 0.521 0.540 0.523 0.499 0.544 0.527
average rank 2.7 4.5 - 4.6 2.6 2.7 3.6

5.1 Summary

The general conclusion of these experiments, which compare LaCova and LaCova-
CLus with other different algorithms, are summarised in the following points:

— There is no algorithm that performs well in all evaluation measures. Multi-label
classifiers can be selected depending on the dataset and the desired evaluation met-
rics.

— Classifiers that transform multi-label problems into several binary problems are
good for both hamming loss and f-measure. A good example for this is binary
relevance approach.

50



Hollmén, Papapetrou (editors): Proceedings of the ECMLPKDD 2015 Doctoral Consortium

Multi-Label Classification by Label Clustering based on Covariance 9

Table 2: Average 10-fold cross validation on 9 datasets comparing ensemble algorithms

(10 iterations)

Multi-label Accuracy Exact-match
ECC LaCova LaCova-CLus ECC LaCova LaCova-CLus

CAL500 0.282  0.288 0.249 CAL500 0 0 0

LLOG 00.281 0.084 0.084 LLOG 0.199 0.003 0.003
Enron 0.388 0.384 0.372 Enron 0.047 0.029 0.055
Medical 0.773  0.439 0.744 Medical 0.671 0.269 0.635
Genebase 0974 0919 0.972 Genebase 0953 0.844 0.949
Slashdot 0.466  0.446 0.484 Slashdot 0.320 0.341 0.359
Yeast 0.505  0.519 0.496 Yeast 0.124  0.159 0.120
Flags 0.565  0.579 0.587 Flags 0.135 0.129 0.187
Emotions 0.493  0.500 0.466 Emotions ~ 0.226  0.261 0.226
average rank 01.66  2.05 2.27 average rank 1.83  2.27 1.88

hamming loss f-measure
ECC LaCova LaCova-CLus ECC LaCova LaCova-CLus

CALS500 0.209 0.167 0.193 CAL500 0.435  0.442 0.394
LLOG 0.033 0.037 0.037 LLOG 0.219 0.126 0.126
Enron 0.068 0.060 0.071 Enron 0.519 0.529 0.502
Medical 0.011 0.025 0.013 Medical 0.813 0.570 0.772
Genebase ~ 0.002 0.014 0.003 Genebase  0.980 0.873 0.968
Slashdot 0.051 0.061 0.056 Slashdot 0.548 0.523 0.512
Yeast 0.239 0.213 0.245 Yeast 0.634  0.648 0.627
Flags 0.294 0.271 0.263 Flags 0.707 0.719 0.726
Emotions ~ 0.258 0.234 0.254 Emotions  0.610  0.622 0.590
average rank 01.88  1.94 2.16 average rank 1.66  1.83 2.5

— There are

some proposed solutions which combines binary relevance because of its

effectiveness for the above mentioned metrics. To name a few, classifier chain and

LaCova.

We can see from the experiments that these methods have good results

for hamming loss and f-measure.
— Exact-match is a strict measure. Considering correlation between labels can get
higher exact-match. LaCova-CLus and LP achieve better exact-match. CC also

considers

label correlation, however, it depends on the labels order. For that reason,

they propose ensemble of classifier chain thats tries different label orders.
- LaCova and LaCova-CLus have better multi-label accuracy among others.

— In case of
LaCova-
algorithm

high dimensional space in terms of number of labels, features, examples,
CLus is much faster than LaCova. Figure 2 shows the build time for all
s across datasets.

6 Conclusion

In this paper we have presented a novel algorithm for multi-label classification called
LaCova-CLus. The key idea of this algorithm is to compute label covariance matrix
at each node of the tree in order to measure the correlation and cluster labels dynam-
ically. It interpolates between two well-known multi-label classifiers: LP and BR by
introducing four splitting ways that enables local decisions.

To evaluate LaCova-CLus we first compared it to baseline and other state-of-the-
art approaches. Then, we evaluated its ensemble to other ensemble methods. We used

four common

evaluation metrics and nine datasets. Experimental results indicate that it

outperforms these methods for exact-match on the average rank.

51



Hollmén, Papapetrou (editors): Proceedings of the ECMLPKDD 2015 Doctoral Consortium

10 Al-Otaibi et al.

Acknowledgment

Reem is a PhD student who is sponsored by King Abdulaziz University, Saudi Arabia.
This work was partly supported by the REFRAME project granted by the European
Coordinated Research on Long-term Challenges in Information and Communication
Sciences and Technologies ERA-Net (CHISTERA), and funded by the Engineering
and Physical Sciences Research Council in the UK under grant EP/K018728/1.

References

1. Al-Otaibi, R., Kull, M., Flach, P.: Lacova: A tree-based multi-label classifier using label co-
variance as splitting criterion. In: Proceedings of the IEEE 13th International Conference
on Machine Learning and Application ICMLA-2014). pp. 74-79. IEEE, Detroit, USA (De-

cember 2014)

2. Chekina, L., Gutfreund, D., Kontorovich, A., Rokach, L., Shapira, B.: Exploiting label de-
pendencies for improved sample complexity. Machine Learning 91(1), 1-42 (Apr 2013)
3. Clare, A., Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: In:

Lecture Notes in Computer Science. pp. 42-53. Springer (2001)

4. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine

Learning Research 7, 1-30 (Dec 2006)

5. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the
14th ACM international conference on Information and knowledge management. pp. 195-

200. CIKM "05, ACM, New York, NY, USA (2005)

6. Gjorgjevikj, D., Madjarov, G., Dzeroski, S.: Hybrid decision tree architecture utilizing local

svms for efficient multi-label learning. ITIPRAI 27(7) (2013)

7. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Pro-
ceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining. pp.

22-30. Springer (2004)

8. Luaces, O., Diez, J., Barranquero, J., del Coz, J.J., Bahamonde, A.: Binary relevance efficacy

for multilabel classification. Progress in Al 1(4), 303-313 (2012)

9. Read, J., Martino, L., Luengo, D.: Efficient monte carlo optimization for multi-label classi-
fier chains. In: Proceedings of the 38th International Conference on Acoustics, Speech, and

Signal Processing (ICASSP) (2013)

10. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classifi-
cation. In: Proceedings of the European Conference on Machine Learning and Knowledge
Discovery in Databases: Part II. pp. 254-269. ECML PKDD ’09, Springer-Verlag, Berlin,

Heidelberg (2009)

11. Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theory and Applications. World

Scientific Publishing Co., Inc., River Edge, NJ, USA (2008)

12. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions.

In: Machine Learning. pp. 297-336 (1999)

13. Tsoumakas, G., Katakis, 1., Vlahavas, I.P.: Effective and Efficient Multilabel Classification
in Domains with Large Number of Labels. In: ECML/PKDD 2008 Workshop on Mining

Multidimensional Data (2008)

14. Vens, C., Struyf, J., Schietgat, L., DZeroski, S., Blockeel, H.: Decision trees for hierarchical

multi-label classification. Mach. Learn. 73(2), 185-214 (Nov 2008)

52



Yet Another Tool for Time Series Visualization
and Analysis

Tlseyar Alimova

Kazan Federal University, Kazan, Russia,
AlimovaIlseyar@gmail.com
http://kpfu.ru/eng

Abstract. We present a computer software system for time series visu-
alization and analysis. The visualization capabilities allow for plotting
time series and applying various transformations on the plot. The time
series analysis capabilities support several similarity measures such as
Pearson correlation coefficient and a new measure based on moving ap-
proximation transformation. Plots of two time series can be combined
on one graph in such a way that the chosen similarity measure between
them is minimized. The system can be used for processing Google Books
Ngram data.

Keywords: Time series, measures of association

1 Introduction

Significant volume of information in different domains is stored as time series —
for example, prices of stocks of different companies in finance [1] and variation of
temperature in meteorology [2]. Very often, there is a need to identify dependence
between time series in systems in order to make a decision about their operations.
For example, in the gas and oil domain, identifying possible relationships between
wells can help figure out a possible location of new oil and injectors and increase
the oil recovery [3].

Visualization plays an important role in time series analysis. Graphical rep-
resentation of data sometimes allows the identification of relationships before
the calculation of the measures of association, which requires tremendous com-
putational resources when large volume of data comes to the input.

In this article, we describe a system that combines visualization of time se-
ries and methods of numerical analysis of the association measures. The system
represents time series in the form of graphics and includes more advanced tools
for data analysis, such as overlaying graphics on the same coordinate plane and
putting message labels at a certain point of graphic or parallel displacement of
graphic relative to the y-axis. Such transformations contribute to the optimiza-
tion of finding useful relationships between the time series.

In the following section, we represent related work on time series visualization
and motivation to develop our own system. In section 3, the system’s architecture
and main functions are described. Section 4 elaborates preliminary experiments
with Google Books Ngram data. Section 5 gives an outlook for further work.
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2 Background and Related Work

2.1 Association Measures for Time Series Analysis

One of the most popular association measures is the Euclidean distance and
Pearson correlation coefficient. However, time series need to be processing be-
fore this measure is used. The values of time series have to be smooth and
normalized, and all accidental releases of data have to be removed. Moreover,
these measures can define only a linear relationship. In the papers [4-6] was de-
scribed the measure of associations between time series, which is called Moving
Approximation Transform and can work with raw values of time series. In [6],
described the derivation of the formula to calculate this measure. The advantages
of this measure of association were the reason for using it in the system.

2.2 Tools for Visual Analysis of Time Series

There are a lot of programming tools for visualization and analysis of time series.
They represent data in the traditional form of line charts and using alternative
methods. Below is a brief overview of such systems:

— TimeSearcher [7] represents data in the form of line charts and allows users
to analyze time series by creating queries. The queries are formed with time
boxes. The time boxes are rectangles that highlight the regions of interest
to the user. In the second version of this system, developers added the abil-
ity to analyze long time series, and in the next version appeared tools for
the prediction of future behavior. However, this program does not provide
numerical estimates of the degree of similarity.

— KronoMiner (8] represents time series as a line chart and places them on
a circle. The users can highlight the region of interest and get it enlarged
image. If the user overlaps highlighted regions on each other, the program will
change the color of the background depending on the degree of similarity. At
the center of the circle system shows the connection between similar regions.
Kronominer is great for analysis of a small number of time series, but not
useful when it is necessary to analyze a large number of time series.

— One of the alternative methods of representing time series is spiral [9]. Weber
et al. developed a tool, in which each periodic section of time series represents
as a ring of spiral and the values of time are characterized by colors and
thickness of line. The time period is set in advance by the user. In case
the user cannot determine the time period, the program has a tool to help
identify it. This tool animates the spiral by continuously changing the cycle
length, and the user can stop the animation when the period is spotted. This
system is useful for data visualization, with a clearly defined period, but it
is difficult to use without periodical time series.

— The VizTree [10] visualization system represents time series as an augment-
ing suffix tree. It splits the original series on the segments, marks each seg-
ment with a symbol of a given alphabet using the special algorithm and
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builds string suffix tree using that symbols. This suffix tree allows the ex-
tracting of repeated patterns, the calculation of the frequency of occurrence
of interesting pattern and the discovery of anomaly patterns. The program
is suitable for the analysis of long time series, but it is impossible to analyze
several time series and count the measures of association using it.

So the main differences of our system from all these tools lie in using a new
measure of association and integrating with Google Ngram.

3 System Description

The system is a desktop application that can work with data from files on a
computer and with data on a remote server. It aims to automate data conversion
and graphics of time series and provides an interface to make necessary changes
manually.

3.1 System Architecture

The main components of the system include a graphical interface to display data
and a data converter that performs calculations. The modular system architec-
ture makes it scalable and expandable for a variety of input data.

3.2 Interface and Functionality
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Fig. 1. Main program screen

Figure 1 shows the interface of the main program screen. The screen has
three panes. The left pane displays the names of time series and shows to what
category they belong. It is possible to hide a graphic or show it again with
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checkboxes on the left side of a name or remove a chart by pressing minus. The
field on the right side of a name is intended for the coefficient on which the
system multiplies the value of the time series.

The central panel shows graphics and place them in the same order as the
names on the left pane of the screen. The following are basic functions to work
with graphics:

— Comparison charts on the same coordinate plane. It can be done with a
mouse by a sample transfer of the coordinate plane with one chart to another
coordinate plane with a second chart or by selecting one of the options in the
menu on the top of the screen. Graphics can be also combined by categories.
Combining graphs on one coordinate plane allows one to see the degree of
similarity of these graphs and extract intervals of joint increase and decrease.
Attachment of a text event to a point of graphic. In time series analysis,
sometimes it is necessary to identify relationships between the growth of
values or reduction of the values and the events that happened in the world.

For example, a decrease in sales of Samsung devices can be caused by re-

lease of a new device from the Apple company. So, this function helps one

remember such events.

— Parallel shift of a graphic along the y-axis. The values of time series may

not match with each other, but they still depend on each other. This func-

tion puts graphs of time series on each other. It increases the value of the
lower chart by multiplying them on a coefficient. Coefficient may be selected
manually or automatically.

Parallel shift of graphic along the x-axis. Sometimes, after this shift, the

values of a graphic, which is deemed independent, begin to coincide with

each other. The function is useful in cases where events related to the first
graphic affect the second graphic with delay, and the delay time period
repeats over time. Shift interval is selected manually or automatically.

— Average. This function lets down all charts of coordinate plane so that the
x-axis becomes a medium line of charts.

— Marking certain time points in several charts with a line. To apply this
function, the graphics must be placed under each other and the vertical line
needs to be moved on the time point.

— Zoom. The interval that is displayed on a coordinate plane can be changed
using clips under the graphic. The displayed interval can be moved along the
X-axis.

The right pane displays a table that contains the following columns: the name
of the first time series, the name of the second time series, and the association
measure. It is possible to select similarity measures, which will be displayed on
the table using the menu on the top of the screen.

3.3 Data Converter

This component of the system helps the graphic module and calculates values
for data conversion. The main functions are as follows:
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— Calculation of the coefficient for the parallel transfer graphic along the y-
axis. This function takes each value of the coefficient, multiplies time series
values on it, and count the association measure for new values. The associ-
ation measure is selected optionally. Measure counting stops when graphics
values no longer intersect. From the obtained values, the system chooses the
minimum and the coefficient that corresponds to it. This coefficient is used
to overlay the graphics’ values with each other.

— Calculation of the interval for the parallel transfer graphic along the y-axis.
On each iteration, the values of the graphic, which is going ahead, is shifted
by a one-time measure to the right, and after that, the system calculate
the measure of association. These iterations continue until the graphics are
intersected. From the obtained values of the association measures, the system
chooses the minimum and then moves the graphic to the appropriate time
interval.

— The calculation of new values of time series to make x-axis their medium
line is made using the following formula [11]:

— The calculation of the measures of association. This function calculate the
measures of associations by standard formulas such as the moving approxi-
mation transform measure for  and y time series, which is calculated using
the following formula [6]:

AM (y,x K Z cossi(y, x)
IR &
Here cossy(y, x) is the cosine of the angle between vectors of moving approxi-
mation transform of y and . K is the set of all possible windows, K C {2,---n}.

4 Working with Google Books NGram Dataset

The system has additional functionality that can work with Google Ngram data
[12]. Google Ngram Viewer is a service from Google Inc. that provides informa-
tion about how much the word is used in print in a given year. This system has
its own service to visualize data, but it represents all graphics on the same chart.

Working with this module, one could use the following scenario: the user
inputs a word, the system generates the necessary request to a server, and the
server returns as the resulting time series values, showing the frequency of use
of the word for each year. Then these values are displayed as graphics, and after
that, all the functions described in the previous chapter can be used with these
graphics.

Google does not provide any built-in API to work with Ngram dataset; there-
fore, a server that gives necessary functions to system, has been developed. The
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server stores all Russian n-grams and the frequency of each n-gram. The source
files, provided by Google, have the following information: word, year, number
of usages this year, number of pages and number of books. So it was necessary
to calculate the frequency for each word in each year. For this purpose, it was
used a file that contains the total number of processed data words. Thus, the
frequency calculated by the standard formula is the number of occurrences of
words in a given year divided by the total number of words for this year. The
data obtained were stored in the server database. Then requests, which receive
the input words and return the required data, were developed.

5 Conclusion and Future Work

The developed system has a convenient functionality for the display and analysis
of time series and the calculation of measures of association. Now, the system
is configured to work with Google Ngram. In the future, we plan to expand
this functionality to work with data obtained from Google Finance. The Google
Finance service provides access to financial information of many companies. This
information makes it possible to analyze stock prices and exchange rates for a
decision about their sales. The next step is planned for the implementation of the
ability to display three-dimensional graphs in the coordinate plane. This allows
taking into account two time-dependent indicators at once.
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Abstract. Time series classification is an application of particular in-
terest with the increase of data to monitor. Classical techniques for time
series classification rely on point-to-point distances. Recently, Bag-of-
Words approaches have been used in this context. Words are quantized
versions of simple features extracted from sliding windows. The SIFT
framework has proved efficient for image classification. In this paper, we
design a time series classification scheme that builds on the SIFT frame-
work adapted to time series to feed a Bag-of-Words. Experimental results
show competitive performance with respect to classical techniques.

Keywords: time series classification, Bag-of-Words, SIFT, BoTSW

1 Introduction

Classification of time series has received an important amount of interest over
the past years due to many real-life applications, such as environmental mod-
eling, speech recognition. A wide range of algorithms have been proposed to
solve this problem. One simple classifier is the k-nearest-neighbor (kNN), which
is usually combined with Euclidean Distance (ED) or Dynamic Time Warping
(DTW) [11]. Such techniques compute similarity between time series based on
point-to-point comparisons, which is often not appropriate. Classification tech-
niques based on higher level structures are most of the time faster, while being
at least as accurate as DTW-based classifiers. Hence, various works have inves-
tigated the extraction of local and global features in time series. Among these
works, the Bag-of-Words (BoW) approach (also called bag-of-features) has been
considered for time series classification. BoW is a very common technique in
text mining, information retrieval and content-based image retrieval because of
its simplicity and performance. For these reasons, it has been adapted to time
series data in some recent works [1,2,9,12, 14]. Different kinds of features based
on simple statistics have been used to create the words.

In the context of image retrieval and classification, scale-invariant descriptors
have proved their efficiency. Particularly, the Scale-Invariant Feature Transform
(SIFT) framework has led to widely used descriptors [10]. These descriptors
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are scale and rotation invariant while being robust to noise. We build on this
framework to design a BoW approach for time series classification where the
words correspond to the description of local gradients around keypoints, that are
first extracted from the time series. This approach can be seen as an adaptation
of the SIFT framework to time series.

This paper is organized as follows. Section 2 summarizes related work, Sec-
tion 3 describes the proposed Bag-of-Temporal-SIFT-Words (BoTSW) method,
and Section 4 reports experimental results. Finally, Section 5 concludes and
discusses future work.

2 Related work

Our approach for time series classification builds on two well-known methods
in computer vision: local features are extracted from time series using a SIFT-
based approach and a global representation of time series is built using Bag-
of-Words. This section first introduces state-of-the-art methods in time series
classification, then presents standard approaches for extracting features in the
image classification context and finally lists previous works that make use of
such approaches for time series classification.

Data mining community has, for long, investigated the field of time series
classification. Early works focus on the use of dedicated metrics to assess sim-
ilarity between time series. In [11], Ratanamahatana and Keogh compare Dy-
namic Time Warping to Euclidean Distance when used with a simple kNN clas-
sifier. While the former benefits from its robustness to temporal distortions to
achieve high efficiency, ED is known to have much lower computational cost.
Cuturi [4] shows that DTW fails at precisely quantifying dissimilarity between
non-matching sequences. He introduces Global Alignment Kernel that takes into
account all possible alignments to produce a reliable dissimilarity metric to be
used with kernel methods such as Support Vector Machines (SVM). Douzal and
Amblard [5] investigate the use of time series metrics for classification trees.

So as to efficiently classify images, those first have to be described accurately.
Both local and global descriptions have been proposed by the computer vision
community. For long, the most powerful local feature for images was SIFT [10]
that describes detected keypoints in the image using the gradients in the regions
surrounding those points. Building on this, Sivic and Zisserman [13] suggested
to compare video frames using standard text mining approaches in which docu-
ments are represented by word histograms, known as Bag-of-Words (BoW). To
do so, authors map the 128-dimensional space of SIFT features to a codebook
of few thousand words using vector quantization. VLAD (Vector of Locally Ag-
gregated Descriptors) [6] are global features that build upon local ones in the
same spirit as BoW. Instead of storing counts for each word in the dictionary,
VLAD preserves residuals to build a fine-grain global representation.

Inspired by text mining, information retrieval and computer vision commu-
nities, recent works have investigated the use of Bag-of-Words for time series
classification [1,2,9,12,14]. These works are based on two main operations :
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converting time series into Bag-of-Words (a histogram representing the occur-
rence of words), and building a classifier upon this BoW representation. Usually,
classical techniques are used for the classification step: random forests, SVM,
neural networks, kNN. In the following, we focus on explaining how the conver-
sion of time series into BoW is performed in the literature. In [2], local features
such as mean, variance, extremum values are computed on sliding windows.
These features are then quantized into words using a codebook learned by a
class probability estimate distribution. In [14], discrete wavelet coefficients are
extracted on sliding windows and then quantized into words using k-means. In [9,
12], words are constructed using the SAX representation [8] of time series. SAX
symbols are extracted from time series and histograms of n-grams of these sym-
bols are computed. In [1], multivariate time series are transformed into a feature
matrix, whose rows are feature vectors containing a time index, the values and
the gradient of time series at this time index (on all dimensions). Random sam-
ples of this matrix are given to decision trees whose leaves are seen as words. A
histogram of words is output when the different trees are learned. Rather than
computing features on sliding windows, authors of [15] first extract keypoints
from time series. These keypoints are selected using the Differences-of-Gaussians
(DoG) framework, well-known in the image community, that can be adapted to
one-dimensional signals. Keypoints are then described by scale-invariant features
that describe the shapes of the extremum surrounding keypoints. In [3], extrac-
tion and description of time series keypoints in a SIFT-like framework is used
to reduce the complexity of Dynamic Time Warping: features are used to match
anchor points from two different time series and prune the search space when
finding the optimal path in the DTW computation.

In this paper, we design a time series classification technique based on the
extraction and the description of keypoints using a SIFT framework adapted to
time series. The description of keypoints is quantized using a k-means algorithm
to create a codebook of words and classification of time series is performed with
a linear SVM fed with normalized histograms of words.

3 Bag-of-Temporal-SIFT-Words (BoTSW) method

The proposed method is adapted from the SIFT framework [10] widely used for
image classification. It is based on three main steps : (i) detection of keypoints
(scale-space extrema) in time series, (ii) description of these keypoints by gra-
dient magnitude at a specific scale, and (iii) representation of time series by a
BoW, words corresponding to quantized version of the description of keypoints.
These steps are depicted in Fig. 1 and detailed below.

Following the SIFT framework, keypoints in time series correspond to local
extrema both in terms of scale and location. These scale-space extrema are iden-
tified using a DoG function, which establishes a list of scale-invariant keypoints.
Let L(t, o) be the convolution (x) of a Gaussian function G(¢, o) of width o with
a time series S(t):

L(t,o) = G(t,0) * S(t).
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Fig. 1: Approach overview : (a) A time series and its extracted keypoints (the
length of the horizontal lines for each point is proportional to the keypoint
scale), (b) The Difference-of-Gaussians, computed at different scales, on which
the keypoint extraction is built, (¢) Keypoint description is based on the time
series filtered at the scale at which the keypoint is extracted. Descriptors are
quantized into words, and time series are represented by a histogram of words
occurrence. For the sake of readability, neighborhoods are shown here instead of
features. (d) These histograms are given to a classifier (linear SVM here) that
learns boundaries between the different classes. The bigger dot here represents
the description of the time series in (a), whose coordinates are (1,2,1). Best
viewed in color.

DoG is obtained by subtracting two time series filtered at consecutive scales:
D(t,0) = L(t, ksco) — L(t,0),

where kg, controls the scale ratio between two consecutive scales. A keypoint
is detected at time index t and scale j if it corresponds to an extremum of
D(t, ki o) in both time and scale (8 neighbors : 2 at the same scale, and 6 in
adjacent scales) If a point is higher (or lower) than all of its neighbors, it is
considered as an extremum in the scale-space domain and hence a keypoint of
S.

Next step in our process is the description of keypoints. A keypoint at (¢, 7)
is described by gradient magnitudes of L(, kJ,0) around t. n, blocks of size a
are selected around the keypoint. Gradients are computed at each point of each
block and weighted using a Gaussian window of standard deviation “5* so that
points that are farther in time from the detected keypoint have lower influence.
Then, each block is described by storing separately the sums of magnitude of
positive and negative gradients. Resulting feature vector is of dimension 2 x ny,.

Features are then quantized using a k-means algorithm to obtain a codebook
of k words. Words represent different kinds of local behavior in the time series.
For a given time series, each feature vector is assigned to the closest word of the
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codebook. The number of occurrences of each word in a time series is computed.
The BoTSW representation of a time series is the normalized histogram (i.e.
frequency vector) of word occurrences. These histograms are then passed to a
classifier to learn how to discriminate classes from this BoTSW description.

4 Experiments and results

In this section, we investigate the impact of both the number of blocks n;, and the
number of words k in the codebook (defined in Section 3) on classification error
rates. Experiments are conducted on 20 datasets from the UCR repository [7].
We set all parameters of BoTSW but n and k as follows : o = 1.6, kg = 21/3,
a = 8. These values have shown to produce stable results. Parameters n; and
k vary inside the following sets : {2,4,6,8,10,12,14,16} and {2°,V i € {2..10}}
respectively. Codebooks are obtained wia k-means quantization. Two classifiers
are used to classify times series represented as BoTSW : a linear SVM or a INN
classifier. Each dataset is composed of a train and a test set. For our approach,
the best set of (k, ny,) parameters is selected by performing a leave-one-out cross-
validation on the train set. This best set of parameters is then used to build the
classifier on the train set and evaluate it on the test set. Experimental error rates
(ER) are reported in Table 1, together with baseline scores publicly available
at [7].
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Fig. 2: Classification accuracy on dataset Yoga as a function of k& and ny.

BoTSW coupled with a linear SVM is better than both ED and DTW on
11 datasets. It is also better than BoTSW coupled with a 1NN classifier on
13 datasets. We also compared our approach with classical techniques for time
series classification. We varied number of codewords k between 4 and 1024. Not
surprisingly, cross-validation tends to select large codebooks that lead to more
precise representation of time series by BoTSW. Fig. 2 shows undoubtedly that,
for Yoga dataset, (left) the larger the codebook, the better the results and (right)
the choice of the number ny; of blocks is less crucial as a wide range of values
yield competitive classification performance.
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BoTSW + BoTSW + ED + ||[DTW +
Dataset linear SVM INN INN INN
k| np ER k| np ER ER ER
50words 512 | 16 0.363 1024| 16 0.400 0.369 0.310
Adiac 512 | 16 0.614 128 | 16 0.642 0.389 0.396
Beef 128 | 10 0.400 128 | 16 0.300 0.467 0.500
CBF 64 6 0.058 64 14 0.049 0.148 0.003
Coffee 256 | 4 0.000 64 | 12 | 0.000 0.250 0.179
ECG200 256 | 16 | 0.110 64 | 12 0.160 0.120 0.230

Face (all) 1024| 8 0.218 512 | 16 0.239 0.286 0.192
Face (four) 128 | 12 | 0.000 || 128 | 6 0.046 0.216 0.170
Fish 512 | 16 | 0.069 || 512 | 14 0.149 0.217 0.167
Gun-Point 256 | 4 0.080 256 | 10 | 0.067 0.087 0.093
Lightning-2 16 | 16 0.361 512 | 16 0.410 0.246 0.131
Lightning-7 512 | 14 0.384 512 | 14 0.480 0.425 0.274
Olive Oil 256 | 4 0.100 || 512 | 2 0.100 0.133 0.133
OSU Leaf 1024| 10 | 0.182 |[1024| 16 0.248 0.483 0.409
Swedish Leaf |/1024| 16 | 0.152 || 512 | 10 0.229 0.213 0.210
Synthetic Control|| 512 | 14 0.043 64 8 0.093 0.120 0.007

Trace 128 | 10 0.010 64 | 12 | 0.000 0.240 0.000
Two Patterns |/1024| 16 0.002 |/1024| 16 0.009 0.090 0.000
Wafer 512 12 | 0.001 || 512 | 12 | 0.001 0.005 0.020
Yoga 1024| 16 | 0.150 || 512 | 6 0.230 0.170 0.164

Table 1: Classification error rates (best performance is written as bold text).

ED+ | DTW+ SAX-
NN INN | TSBFIZ] | gyt | SMTS[L | BoP[9

BoTSW-tlin. SVM|| 18/0/2 | 11/0/9 | 8/0/12 | 9/2/9 | 7/0/13 | 14/0/6

BoTSW + INN || 13/0/7 | 9/1/10 | 5/0/15 | 4/3/13 | 4/1/15 | 7/1/12
Table 2: Win-Tie-Lose (WTL) scores comparing BoTSW to state-of-the-art
methods. For instance, BoTSW-linear SVM reaches better performance than
ED+1NN on 18 datasets, and worse performance on 2 datasets.

Win-Tie-Lose scores (see Table 2) show that coupling BoTSW with a linear
SVM reaches competitive performance with respect to the literature.

As it can be seen in Table 1, BoTSW is (by far) less efficient than both ED
and DTW for dataset Adiac. As BoW representation maps keypoint descriptions
into words, details are lost during this quantization step. Knowing that only very
few keypoints are detected for these Adiac time series, we believe a more precise
representation would help.

5 Conclusion

BoTSW transforms time series into histograms of quantized local features. Dis-
tinctiveness of the SIF'T keypoints used with Bag-of-Words enables to efficiently
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and accurately classify time series, despite the fact that BoW representation
ignores temporal order. We believe classification performance could be further
improved by taking time information into account and/or reducing the impact
of quantization losses in our representation.
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Abstract. Improvement of bit error rate in optical transmission sys-
tems is a crucial and challenging problem. Whenever the distance trav-
elled by the pulses increases, the difficulty of it being classified correctly
also increases. We apply a linear support vector machine for classifying
Wavelength-Division-Multiplexing Non-Return-to-Zero Dual-Polarization
Quadrature-Phase-Shift-Keying (WDM NRZ DP QPSK) signals with
neighboring information. We demonstrate a bit error rate (BER) im-
provement in comparison with the traditional threshold method.

Key words: Support Vector Machine (SVM), Classification, Machine
Learning, Bit Error Rate (BER), Signal Processing, Optical Data Trans-
mission.

1 Introduction

In optical communication systems, there are many different causes of loss in the
quality of the signal [1|. Increasing the distance travelled by the pulses leads
to an increase in the number of bit errors. As is normally the case the phase is
measured at the mid point of the pulse because that represents the highest power
level. Both linear and nonlinear distortions can be present in the signal. Pulse
linear distortion can be modeled, and therefore factor it out. The same is not
true for non-linear distortion. And so, we are using machine learning technique
to detect and correct such distortions. Metaxas et al. demonstrates that linear
Support Vector Machines (SVM) outperformed other trainable classifiers for
error correction in optical data transmission, such as using neural networks [2].

In this paper, we investigate the most significant samples that can be used
for training the linear SVM classifier to reduce the number of bit errors during
the classification process. In particular, we take into account the neighboring
information from each symbol.
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2 Motivation

There is an on going need to increase global bandwidth. Due to its capacity and
speed at long distances optical links are currently used and probably will also
be used in the foreseeable future. The greater distance signals travel the more
likely noise will corrupt the signal, giving rise to an ever increasing bit error rate
(BER). Errors can be dealt with by adding check bits to the signal, but this
uses bandwidth. In our work, we use an alternative approach in which we train
a machine learning system to automatically detect and correct errors.

3 Background

3.1 Related Work

One technique that can be used to reduce the effect of signal distortion is using
machine learning systems. In earlier works, we demonstrated the possibility of
using simple artificial neural networks to help error correction and detection
accurately at a high speed [3]. Since the system is trainable, it could cope with
the change over the time of a channel’s characteristics. The decoder used a
perceptron which can classify at high speed. In fact, it could be built in hardware
and give real time error correction even at bit rates of over 100 GHz. One problem
of using a perceptron is to regularize the decision boundary to avoid over/under
fitting. [2] demonstrated the efficiency of a trainable classifier at improving the
bit error rate. It is known that a support vector machine (SVM) is a better
classifier than perceptron. In the work reported here, we show how a linear SVM
can be used to perform error detection and correction.

3.2 Computational Model

Fig. 1 shows the link configuration under investigation. In the numerical model
we simulated a typical non-return-to zero (NRZ)-DP-QPSK transmitter which
consisted of a laser, modulated at 30 Gbaud using a 2! pseudorandom binary
sequence (PRBS) and filtered by a 2" order super Gaussian filter with 30 GHz
3 dB bandwidth. The signal channel at 1550 nm was propagated over the fiber
along with 10 50 GHz spaced similar crosstalk channels, with decorrelated PRBS
sequences. In order to model signal propagation over the nonlinear fiber a sys-
tem of coupled nonlinear Schrédinger equations (CNLSE) was used. CNLSE has
been solved using the split-step Fourier method [4]. After each erbium doped fiber
amplifier (EDFA), the signal was noise loaded with the white Gaussian noise,
calculated using a 6 dB amplifier noise figure. At the receiver side the signal was
filtered by a 2" order super Gaussian filter with 30 GHz 3 dB bandwidth. The
chromatic dispersion was fully compensated by multiplying the Fourier trans-
formed optical field with the reverse dispersion function. For phase estimation,
an algorithm based on the 4*"-power Viterbi-Viterbi method has been used.
The effects of signal digitization, polarization rotation and PMD have not been
considered in the simulations.
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Fig. 2: PI/4 QPSK modulation and Gaussian carrier wave.

The data we are analyzing consists of 32,768 symbols. Our data was generated
by a dual-polarization optical communication system, X and Y polarization.
The simulation process was repeated 10 times with different random realizations
of the amplified spontaneous emission (ASE) noise and input PRBS, each run
generates 32,768 symbols. The signal was detected at intervals of 1,000 km to a
maximum distance 10,000 km.

Each pulse was decoded into one of four symbols; see Fig. 2(a), according to
its phase. Each data point has a corresponding two-bit label for each run. Each
run generates one data set. Fig. 2(b) shows a Gaussian carrier wave superimposed
on an sinusoidal light wave. In this paper we focus on X-Polarization data and
use Y-Polarization data for verification of our results. Each pulse is represented
by 64 equally spaced phase samples. Fig. 3 shows the phase of central sample of
one of the data sets at 10,000 km. As we can see from Fig. 3, the phase of some
pulses is different from their actual encodings (provided by labels). This means
these signals were distorted after traveling 10,000 km.
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The phase for Column 33 for XPOL, run1, at 10000 km
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Fig. 3: The phase of the sample 33, XPOL, runl, at 10,000 km.

4 Machine Learning Decoder

In this work, we used a trainable classifier to help decode the received pulses.
Note that the data used in this work is simulated data. Since this decoding must
take place in real time, the classifier must be capable of being hardware based.
To this end, we used a linear support vector machine (SVM) [2]. SVM is a soft
maximum margin classifier, see Fig. 4. It has only one non-learnable parameter,
which is the regularizing cost parameter C [2]. This parameter allows the cost of
misclassification to be specified. The Linear SVM is arguably the most successful
method in machine learning.

In order to have a continuously varying phase value, both the Sine and Co-
sine of the phase were used as input to our decoding (The phase angle has a
discontinuity at 0 / 2x).

We had used a variety of inputs to our decoder as can be seen in Table 1.
From Fig. 5, we see the reason behind using symbols on either side of the symbol
being analyzed. Fig. 5 shows three consecutive symbols at 0 km and at 10,000
km. At 10,000 km the middle symbol was incorrectly decoded (the dotted line)
when using the threshold method. As we can see from Fig.5, the first symbol has
a phase of () whereas the phase of the middle symbol is (0) or (2r). However,
at 10,000 km the central symbol has been degraded. At the distance of 10,000
km, the first symbol tries to pull the second symbol from (2r) to (n), which led
to the prediction of the middle symbol at the middle point as (3n/2). From the
above observation, our hypothesis is that the neighboring symbols can affect the
target symbol, for which we want to predict the label. Therefore, in this work we
investigate the effect of using the symbol either side of the target in an attempt
to reduce the bit error rate. Table 1 shows a description of some experiments
that had done on our data in terms of the samples used and features considered.
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Table 1: A description of the experiment that were implemented on our data.
In the experiment D we used the central sample from the target symbol and
symbol either side. In the experiment E we used the central sample from the
target symbol and two symbols either side. In the experiment F we used the
central sample from the target symbol and two preceding symbols.

Exp.| Method Sample | Feature’s type Symbol

A | Threshold | Central |Phase value ()| One symbol
B |Linear SVM| Central | sin(9),cos(9) | One symbol
C |Linear SVM |64 samples| sin(9),cos(9d) | One symbol
D |Linear SVM| 3 samples | sin(9),cos(¥) |Three symbols
E |Linear SVM| 5 samples | sin(9),cos(9) | Five symbols
F |Linear SVM| 3 samples | sin(9),cos(9) |Three symbols

5 Experiments Setup and Results

In each experiment, we divided each data set into 2/3 training and 1/3 testing.
LIBSVM [6] program was used to classify our data sets linearly. We divided the
data in the training set into 5 parts and used 5-fold cross validation to find a
perfect value for C.

Table 2 shows a comparison between the number of bit errors that obtained
from using the threshold method (column A), and the linear SVM using differ-
ent numbers of samples and symbols (columns B, C, D, E and F, (see Table 1
for details)). Each number in Table 2 from column A to F is the average of the
number of bit errors over 10 data sets; and the best result in each distance has
been shown in bold font. As we can see from Table 2, the best results obtained
so far is from the linear SVM when using 3 samples, the central sample from
the target symbol and symbols either side. And also when using 5 samples, the
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central sample from the target symbol and two symbols either side. Compared
with the result obtained from using the traditional threshold method, the lin-
ear SVM has showed a useful improvement when using more than one sample.
Especially, when those samples were taken from more than one symbol. For ex-
ample, the experiment D correctly classified the middle symbol shown in Fig. 5,
whereas experiment A, B and C, which did not involve neighboring information
misclassified the symbol.

Fig. 6 shows the percentage of the improvement over the threshold method
against the distance for the experiments D in Fig. 6 (a) and E in Fig. 6 (b). As
can be seen using the neighboring information, an improvement can be obtained
from the distance of 2,000 km; with the best improvement was obtained at the
distance 3,000 km.

Table 2: How the number of bit errors varies with distance (Note that each
number in columns A to F is the average of the number of bit errors over 10
data sets).

Distance | A B C D E F

0 km 0 0 0 0 0 0
1,000 km | 0 0 0 0 0 0
2,000 km | 2.3 3 3.2 2 1.7 | 1.8

3,000 km | 16.7 | 16.3 | 16.5 | 10.6 | 11.2 | 12.9
4,000 km | 50.9 | 50.7 | 46.9 | 37.6 | 39.2 | 40.3
5,000 km [103.7|103.3| 98.3 | 89.9 | 88.9 | 92.2
6,000 km |185.5/184.9(172.3| 165.3 |163.3|165.2
7,000 km (284.4|284.7|273.1|260.5| 262.1 |262.3
8,000 km |403.3|403.6|386.6|372.5| 377.9 |378.2
9,000 km |533.5|534.2|517.4| 511.9 |509.3|509.9
10,000 km|666.6/670.2|642.1| 639.8 |632.4| 634
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Fig.6: The improvement over the threshold method (%). (a) Experiment D:
applying linear SVM using 3 samples (the 33"%central sample from the target
symbol and symbol either side). (b) Experiment E: applying linear SVM using
linear SVM with 5 samples (the 33"?central sample from the target symbol and
two symbols either side).

6 Summary and Conclusions

In this work we demonstrated the bit error rate can be reduced using machine-
learning techniques. So far, the best results has been obtained for all distances
using a linear SVM trained on data from the target symbol with either the
symbol either side, or two symbols either side.

We are investigating that how many neighboring symbols should be used as
inputs of our machine learning decoder. At the current stage, the target symbol
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with three, four, five symbols either side respectively are being investigated.
Furthermore, since essentially, the sequence of pulses is time series, we shall
apply embedding dimension [7] as a guide to find out a suitable number of

neighbors.

We expect that our investigations with nonlinear SVM allow us to obtain
further BER improvement along all distances. In addition, features extracted
from the signal wave will be investigated in the future work as well. Moreover,

we will investigate our methods on different kinds of modulation.

References

74

. Bernstein, G., Rajagopalan, B., Saha, D.: Optical network control: architecture,

protocols, and standards. Addison-Wesley Longman Publishing Co., Inc. (2003)

. Metaxas, A., Redyuk, A., Sun, Y., Shafarenko, A., Davey, N., Adams, R.: Lin-

ear support vector machines for error correction in optical data transmission. In:
Adaptive and Natural Computing Algorithms. Springer (2013) 438-445

. Hunt, S., Sun, Y., Shafarenko, A., Adams, R., Davey, N., Slater, B., Bhamber, R.,

Boscolo, S., Turitsyn, S.K.: Adaptive electrical signal post-processing with varying
representations in optical communication systems. In: Engineering Applications of
Neural Networks. Springer (2009) 235-245

. Agrawal, G.: Applications of nonlinear fiber optics. Academic press (2001)
. Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to information retrieval.

Volume 1.

. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. acm transac-

tions on intelligent systems and technology, 2: 27: 1-27: 27, 2011. Software available
at http://www. csie. ntu. edu. tw/cjlin/libsvim (2011)

. Cao, L.: Practical method for determining the minimum embedding dimension of a

scalar time series. Physica D: Nonlinear Phenomena 110(1) (1997) 43-50



Structure Learning with Distributed Parameter
Learning for Probabilistic Ontologies

Giuseppe Cotal, Riccardo Zese', Elena Bellodi', Evelina Lamma', and
Fabrizio Riguzzi?

! Dipartimento di Ingegneria — University of Ferrara
Via Saragat 1, 1-44122, Ferrara, Italy
2 Dipartimento di Matematica e Informatica — University of Ferrara
Via Saragat 1, 1-44122, Ferrara, Italy
[giuseppe.cota,riccardo.zese,elena.bellodi,evelina.la.mma,
fabrizio.riguzzi]@Qunife.it

Abstract. We consider the problem of learning both the structure and
the parameters of Probabilistic Description Logics under DISPONTE.
DISPONTE (“DIstribution Semantics for Probabilistic ONTologiEs”)
adapts the distribution semantics for Probabilistic Logic Programming
to Description Logics. The system LEAP for “LEArning Probabilis-
tic description logics” learns both the structure and the parameters of
DISPONTE knowledge bases (KBs) by exploiting the algorithms CELOE
and EDGE. The former stands for “Class Expression Learning for On-
tology Engineering” and it is used to generate good candidate axioms
to add to the KB, while the latter learns the probabilistic parameters
and evaluates the KB. EDGE for “Em over bDds for description loGics
paramEter learning” is an algorithm for learning the parameters of prob-
abilistic ontologies from data. In order to contain the computational cost,
a distributed version of EDGE called EDGEM® was developed. EDGEM®
exploits the MapReduce (MR) strategy by means of the Message Pass-
ing Interface. In this paper we propose the system LEAPME It is a
re-engineered version of LEAP which is able to use distributed parallel
parameter learning algorithms such as EDGEM®,

Keywords: Probabilistic Description Logics, Structure Learning,
Parameter Learning, MapReduce, Message Passing Interface.

1 Introduction

In real world domains the information is often uncertain, hence it is of fore-
most importance to model uncertainty in representations of the world, including
Description Logics (DLs).

In [11,19,7,12] the authors studied the use of probabilistic DLs and various
approaches for representing uncertainty in DLs.

Moreover, some works have started to appear about learning the probabilistic
parameters or the whole structure of probabilistic ontologies. These are moti-
vated, on one hand, from the fact that specifying the values of the probabilities is
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a difficult task for humans and data is usually available that could be leveraged
for tuning them, and, on the other hand, from the fact that in some domains
there exist poor-structured knowledge bases which could be improved [11, 10].
A knowledge base with a refined structure and instance data coherent with
it permits more powerful reasoning, better consistency checking and improved
querying possibilities.

In Probabilistic Logic Programming (PLP) various proposals for representing
uncertainty have been presented. One of the most successful approaches is the
distribution semantics [17]. In [3, 16, 13] the authors proposed an approach to
represent probabilistic axioms in DLs called DISPONTE (“DIstribution Seman-
tics for Probabilistic ONTologiEs”), which adapts the distribution semantics for
Probabilistic Logic Programming to DLs.

In the field of Probabilistic Inductive Logic Programming the reasoning task
is composed by three main issues: 1) inference: we want to compute the probabil-
ity of a query, 2) parameter learning: we know the structure (the logic formulas)
of the KB but we want to know the parameters (weights) of the logic formulas
and 3) structure learning: we want to learn both the structure and the parame-
ters.

LEAP [15] for “LEArning Probabilistic description logics” is an algorithm
for learning the structure and the parameters of probabilistic DLs following
DISPONTE. It combines the learning system CELOE [9] with EDGE [14]. The
former, CELOE (“Class Expression Learning for Ontology Engineering”), pro-
vides a method to build new (subsumption) axioms that can be added to the KB,
while the latter is used to learn the parameters of these probabilistic axioms.

EDGE stands for “Em over bDds for description loGics paramEter learning”
and learns the parameters of a probabilistic theory starting from examples of in-
stances and non-instances of concepts. EDGE builds Binary Decision Diagrams
(BDDs) for representing the explanations of the examples from the theory. The
parameters are then tuned using an EM algorithm [6] in which the required
expectations are computed directly on the BDDs. This algorithm is rather ex-
pensive from a computational point of view. In order to efficiently manage larger
datasets in the era of Big Data, it is crucial to develop approaches for reduc-
ing the learning time. One solution is to distribute the algorithm using modern
computing infrastructure such as clusters and clouds.

In order to reduce EDGE running time, we developed EDGEME [5]. Tt rep-
resents a distributed implementation of EDGE and uses a simple MapReduce
approach based on the Message Passing Interface (MPI).

In this paper we present an evolution of LEAP called LEAPM® which adapts
the LEAP algorithm to use EDGEME In addition, due to a software re-engineer-
ing effort, it was possible to remove the RMI module used by LEAP. Compared
with LEAP, the quality of the solutions found with LEAPM® does not change,
the difference consists in the running time which is reduced thanks to EDGEM®
and to the removal of the RMI module to a lesser extent. To the best of our knowl-
edge there are no other algorithms that perform distributed structure learning
of probabilistic DLs.
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Implementing learning algorithms able to elaborate data in a distributed way
paves the way to the development of useful tools for Semantic Web and Data
Mining in the context of Big Data.

The paper is structured as follows. Section 2 introduces Description Log-
ics and summarizes DISPONTE. Sections 3 and 4 briefly describe the EDGE
and EDGEM® algorithms. Section 5 presents LEAPMR. Finally, Section 7 draws
conclusions.

2 Description Logics and DISPONTE

Description Logics (DLs) are a family of logic based knowledge representation
formalisms which are of particular interest for representing ontologies and for
the Semantic Web. For an extensive introduction to DLs we refer to [1,2].

While DLs are a fragment of first order logic, they are usually represented
using a syntax based on concepts and roles. A concept corresponds to a set of
individuals while a role corresponds to a set of couples of individuals of the do-
main. For the sake of simplicity we consider and describe ALC, but the proposed
algorithm can work with SROZQ(D) DLs.

We use A, R and I to indicate atomic concepts, atomic roles and individuals,
respectively. A role is an atomic role R € R. Concepts are defined as follows.
Each A € A, 1L and T are concepts. If C, C; and Cy are concepts and R € R,
then (Cy M Cy), (C; U Cy) and =C' are concepts, as well as IR.C' and VR.C.

Let C' and D be concepts, R be a role and a and b be individuals, a TBoz T
is a finite set of concept inclusion axioms C T D, while an ABox A is a finite
set of concept membership azioms a : C and role membership azioms (a,b) : R.
A knowledge base (KB) K = (T, .A) consists of a TBox T and an ABox A.

A KB is usually assigned a semantics using interpretations of the form Z =
(AZ,.1), where AT is a non-empty domain and - is the interpretation function
that assigns an element in AT to each individual a, a subset of AT to each
concept C' and a subset of AT x AT to each role R. The mapping -T is extended
to all concepts as:

TI — AI
(~C)E = AT\ C*
(CLuCy)t =ctuc?
(3R.C)T = {z € AZ|R%(2) N OF # 0}

17 =0
(CinCy)t=ctnc?
(VR.C)T = {z € AZ|R%(z) C CT}

A query over a KB is usually an axiom for which we want to test the entailment
from the KB. The entailment test may be reduced to checking the unsatisfiability
of a concept in the KB, i.e., the emptiness of the concept.

DISPONTE [3] (“DIstribution Semantics for Probabilistic ONTologiEs”) ap-
plies the distribution semantics to probabilistic ontologies [17]. In DISPONTE
a probabilistic knowledge base K is a set of certain and probabilistic axioms.
Certain axioms take the form of regular DL axioms. Probabilistic azioms take
the form p :: E, where p is a real number in [0,1] and E is a DL axiom. A
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DISPONTE KB defines a distribution over DL KBs called worlds assuming that
the axioms are independent. Each world w is obtained by including every certain
axiom plus a subset of chosen probabilistic axioms.

For each probabilistic axiom p :: E, we decide whether or not to include F
in w. The probability of this choice is p if the probabilistic axiom is included in
the world, 1 — p otherwise. A world therefore is a non probabilistic KB that can
be handled in the usual way. By multiplying the probability of the choices made
to obtain a world, we can assign a probability to it. The probability of a query
is then the sum of the probabilities of the worlds where the query is true.

3 Parameter Learning for Probabilistic DLs

EDGE [14] is a parameter learning algorithm which adapts the algorithm EM-
BLEM [4], developed for learning the parameters for probabilistic logic programs,
to the case of probabilistic DLs under DISPONTE. Inspired by [8], it performs
an Expectation-Maximization cycle over Binary Decision Diagrams (BDDs).

EDGE performs supervised parameter learning. It takes as input a DISPON-
TE KB and a number of positive and negative examples that represent the
queries in the form of concept membership axioms, i.e., in the form a : C for
an individual @ and a class C. Positive examples represent information that we
regard as true and for which we would like to get high probability while negative
examples represent information that we regard as false and for which we would
like to get low probability.

First, EDGE generates, for each query, the BDD encoding its explanations
using BUNDLE [16]. For a positive example of the form a : C, EDGE looks for
the explanations of @ : C' and encodes them in a BDD. For a negative example of
the form a : =C'; EDGE first looks for the explanations of a : =C, if one or more
are found it encodes them into a BDD, otherwise it looks for the explanations
of a : C, encodes them in a BDD and negates it with the NOT BDD operator.
Then, EDGE starts the EM cycle in which the steps of Expectation and Max-
imization are iterated until a local maximum of the log-likelihood (LL) of the
examples is reached. The LL of the examples is guaranteed to increase at each
iteration. EDGE stops when the difference between the LL of the current it-
eration and that of the previous one drops below a threshold e or when this
difference is below a fraction ¢ of the previous LL. Finally, EDGE returns the
reached LL and the new probabilities 7; for the probabilistic axioms. EDGE’s
main procedure is illustrated in Alg. 1.

Procedure EXPECTATION takes as input a list of BDDs, one for each example
Q, and computes the expectations P(X; = z|Q) for all the random Boolean
variables X; in the BDD and for € {0,1}. According to DISPONTE, each
variable X; is associated with the probabilistic axioms F; and has value 1 if the
axiom FE; is included in the world, 0 otherwise.

Function MAXIMIZATION computes the parameters’ values for the next EM
iteration by relative frequency.
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Algorithm 1 Procedure EDGE.

function EDGE(K, Pg, Ng, €, §) > Pg, Ng: positive and negative examples
Build BDDs > performed by BUNDLE
LL = —oco
repeat
LLy = LL

LL = EXPECTATION(BDDs)
MAXIMIZATION
until LL — LLo < eV LL — LLy < —LLg -6
return LL, p; for all i > p;: learned probability of the i-th probabilistic axiom
end function

Building BDDs is #P-hard [18]. However, BUNDLE is able to handle do-
mains of significant size. The EM phase, instead, has a linear cost in the number
of nodes since the Expectation requires two traversals of the diagrams.

EDGE is written in Java, hence it is highly portable. For further information
about EDGE please refer to [14].

4 Distributed Parameter Learning for Probabilistic DLs

In this section we briefly describe a parallel version of EDGE that exploits the
MapReduce approach in order to compute the parameters. We called this algo-
rithm EDGEMF [5).

4.1 Architecture and Scheduling

Like most MapReduce frameworks, EDGEM®’s architecture follows a master-
slave model. The communication between the master and the slaves is done by
means of the Message Passing Interface (MPI), specifically we use the OpenMPI?
library which provides a Java interface to the native library.

In a distributed context, the performances depend on the scheduling strategy.
In order to evaluate different methods, we developed two scheduling strategies:
single-step scheduling and dynamic scheduling. These are used during the queries
computation phase.

Single-step Scheduling if N is the number of the slaves, the master divides
the total number of queries into N + 1 chunks, i.e. the number of slaves
plus the master. Then the master begins to compute its queries while, for
the other chunks of queries, the master starts a thread for sending each
chunk to the corresponding slave. After the master has terminated dealing
with its queries, it waits for the results from the slaves. When the slowest
slave returns its results to the master, EDGEM® proceeds to the EM cycle.
Figure 1(a) shows an example of single-step scheduling with two slaves.

Dynamic Scheduling is more flexible and adaptive than single-step schedul-
ing. Handling each query may require a different amount of time. Therefore,
with single-step scheduling, it could happen that a slave takes much more

3 http://www.open-mpi.org/

ot
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time than another slave to deal with its chunk of queries. Hence the master
and some slaves could be idle. Dynamic scheduling mitigates this issue. The
user can establish a chunk dimension, i.e. the number of examples in each
chunk. At first, each machine is assigned a chunk of queries in order. Then,
if the master ends handling its chunk it just takes the next one, instead, if
a slave ends handling its chunk, it asks the master for another one and the
master replies by sending a new chunk of queries to the slave. During this
phase the master runs a thread listener that waits for the slaves’ requests of
new chunks and for each request the listener starts a new thread that sends a
chunk to the slave which has done the request (to improve the performances
this is done through a thread pool). When all the queries are evaluated,
EDGEME gstarts the EM cycle. An example of dynamic scheduling with two
slaves and a chunk dimension of one example is displayed in Fig. 1(b).

chunk; | chunk; || chunks

[9]02[:[Aa[As] - - - [an] []z]as[da]as] - - - [an

a
&

Master Master Master

L

L
i

[ 1 [ 1 | 1

.
( Slave, } [Slavez [ Slave; } [ Slave, J [Slave1 J leaveZ

\ J

(a) Single-step scheduling

EACA AR MERENC [@Jos] -~ - Tan]
@
[ 1 [ ] | 1
[Slavel ‘ Slave, Slave; J [Slavez Slave, } {Slavez }
- - T T T

(b) Dynamic scheduling

Fig. 1. Scheduling techniques of EDGEME,

Experimental results conducted in [5] show that dynamic scheduling has usually

better performances than single-step.

It is obvious that for large sizes of the chunk the dynamic scheduling tends to
have the same behavior of single-step. Nevertheless the use of chunks containing
only one query can introduce a lot of overhead and therefore reduce the speedup.
In order to maximize the speedup it is necessary to find an optimal size of the

query chunk.
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5 Structure Learning with Distributed Parameter
Learning

LEAPM® is an evolution of the LEAP system [15]. While the latter exploits
EDGE, the first was adapted to be able to perform EDGEME, Moreover, after
a process of software re-engineering it was possible to remove the RMI com-
munication module used by LEAP and therefore reduce some communication
overhead.

It performs structure and parameter learning of probabilistic ontologies under
DISPONTE by exploiting: (1) CELOE [9] for the structure, and (2) EDGEMF
(Section 4) for the parameters. Figure 2 shows the architecture of LEAPME,

e — |
|
| CELOE |
_ |
|
.El A} O non-probabilistic
5! = component
| [ e ot
o, ' O probabilistic
© I
oy ' component
i |
I EDGEMR |
I i
| 1 BUNDLE !

Fig. 2. LEAPM® architecture.

CELOE [9] was implemented in Java and belongs to the open-source frame-
work DL-Learner?. Let us consider a knowledge base K and a concept name
Target whose formal description, i.e. class description, we want to learn. It
learns a set of n class expressions C; (1 < i < n) from a set of positive and
negative examples. Let K" = KU {C} where K is the background knowledge, we
say that a concept C' covers an example e if K’ |= e. The class expressions found
are sorted according to a heuristic. Such expressions can be used to generate
candidate axioms of the form C; C Target.

In order to learn an ontology, LEAPM® first searches for good candidate
probabilistic subsumption axioms by means of CELOE, then it performs a greedy
search in the space of theories using EDGEME to evaluate the theories using the
log-likelihood as heuristic.

Algorithm 2 shows LEAPM®’s main procedure: it takes as input the knowl-
edge base K and the configuration settings for CELOE and EDGEMR7 then gen-
erates Num(C' class expressions by exploiting CELOE and the sets of positive and
negative examples which will be the queries (concept membership axioms) for
EDGEME. A first execution of EDGEM® is applied to K to compute the initial
value of the parameters and of the LL. Then LEAPME adds to K one probabilis-
tic subsumption axiom generated from the class expression set at a time. After

4 nttp://dl-learner.org/
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each addition, EDGEMR is performed on the extended KB to compute the LL
of the data and the parameters. If the LL is better than the current best, the
new axiom is kept in the knowledge base and the parameter of the probabilistic
axiom are updated, otherwise the learned axiom is removed from the ontology
and the previous parameters are restored. The final theory is obtained from the
union of the initial ontology and the probabilistic axioms learned.

Algorithm 2 Function LEAPME,
1: function LEAPMR(KC, LPyy,c, NumC, e, §, Schedul)

2 ClassExpressions = up to NumC > generated by CELOE
3 (Pr, N1) = EXTRACTINDIVIDUALS (L Ptype ) > LPyype: specifies how to extract (Pr, Ny)
4: for all ind € Pr do > Pr: set of positive individuals
5: Add ind : Target to Pg > Pg: set of positive examples
6: end for

7 for all ind € N; do > Nyp: set of negative individuals
8: Add ind : Target to Ng > Ng: set of negative examples
9: end for

10: (LLo,K) = EDGEME(K, Pr, Ng, €, 8, Schedul) > Schedul : scheduling strategy
11: for all CE € ClassExpressions do

12: Axziom = p :: CE C Target

13: K' = KU {Aziom}

14: (LL,K') = EDGEMY(K', P, Np, ¢, 8, Schedul)

15: if LL > LLy then

16: K=K

17: LLo=LL

18: end if

19: end for
20: return
21: end function

6 Experiments

In order to test how much the exploitation of EDGEME can improve the perfor-

mances of LEAPM®, we did a preliminary test where we considered the Moral®
KB which qualitatively simulates moral reasoning. It contains 202 individuals
and 4710 axioms (22 axioms are probabilistic).

We performed the experiments on a cluster of 64-bit Linux machines with
8-cores Intel Haswell 2.40 GHz CPUs and 2 GB (max) memory allotted to Java
per node. We allotted 1, 3, 5, 9 and 17 nodes, where the execution with 1 node
corresponds to the execution of LEAP, while for the other configurations we used
the dynamic scheduling with chunks containing 3 queries. For each experiment 2
candidate probabilistic axioms are generated by using CELOE and a maximum
of 3 explanations per query was set for EDGEME, Figure 3 shows the speedup
obtained as a function of the number of machines (nodes). The speedup is the
ratio of the running time of 1 worker to the one of n workers. We can note
that the speedup is significant even if it is sublinear, showing that a certain
amount of overhead (the resources, and thereby the time, spent for the MPI
communications) is present.

® https://archive.ics.uci.edu/ml/datasets/Moral+Reasoner
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9
N. of Nodes

Fig. 3. Speedup of LEAPM® relative to LEAP for Moral KB.

7 Conclusions

The paper presents the algorithm LEAPM® for learning the structure of proba-
bilistic description logics under DISPONTE. LEAPME performs EDGEM® which
is a MapReduce implementation of EDGE, exploiting modern computing infras-
tructures for performing distributed parameter learning.

We are currently working for distributing both the structure and the parame-
ter learning of probabilistic knowledge bases by exploiting EDGEMR also during
the building of the class expressions. We would like to distribute the scoring
function used to evaluate the obtained refinements. In this function EDGEM®
take as input a KB containing only the individuals and the class expression to
test. Finally, the class expressions found are sorted according to the LL returned
by EDGEMR and their initial probability are the probability learned during the
execution of EDGEMR,
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Abstract. Pharmaco-epidemiology is the study of uses and effects of
health products (medical devices and drugs) on population. A new ap-
proach consists in using large administrative databases to perform such
studies on care pathways which contain drugs exposures and medical
problems, like hospitalizations. In this context, knowledge discovery tech-
niques becomes mandatory to support clinicians in formulating new hy-
potheses. Since care-pathways are based on timestamped events and can
be complex, we choose a temporal pattern mining approach. In this pa-
per, we adapt existing chronicle mining algorithms in order to mine care-
pathways. We present our method to extract all the frequent chronicles
and the challenges we encountered. Finally, we present our first experi-
mental results and our perspectives.

Keywords: Sequences mining, temporal data mining, care-pathway

1 Introduction

In classical pharmaco-epidemiology studies, people who share common charac-
teristics are recruited to build a cohort. Then, meaningful data (drug exposures,
diseases, etc.) are collected from people of the cohort within a defined period.
Finally, a statistical analysis highlights the links (or the lack of links) between
drug exposures and adverse effects. The main drawback of cohort studies is the
time required to collect the data. Indeed, in some cases of health safety, health
authorities have to answer quickly to pharmaco-epidemiology questions.

Using medico-administrative databases is an alternative to classical pharma-
co-epidemiology studies. Data is immediately available and it concerns a wide
population. Medico-administrative databases have been build primary to ensure
health reimbursements. They record with some level of details, for all insured,
all drug delivery and all medical procedure. In France, the SNIIRAM national
database contains such data for more than 60 millions of insured within a sliding
period of 3 years.

The challenges of making pharmaco-epidemiology studies from medico-admi-
nistrative databases are 1) to abstract the administrative data into meaningful
information for a specific study, and 2) to support the clinicians in their analysis
of this large amount of data.
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This article is focused on the second challenge and deals more specially with
the extraction of frequent temporal patterns in a database of care-pathways. In a
preliminary step, a dedicated method enables to translate medico-administrative
data into patient care-pathways. A care-pathway is a sequence of drug exposures
and medical procedures. Each element of the sequence is timestamped and each
drug exposure has a time period. We propose to use sequential pattern mining
to extract frequent behaviours in the patient care-pathways.

Among all the temporal patterns, chronicles [3] appear to be interesting
to extract meaningful patterns from timestamped events. A chronicle can be
briefly defined as a set of events linked by constraints indicating the minimum
and maximum time elapsed between to events. A care-pathway contains point-
based events and interval-based events (e.g. drug exposures) and a chronicle can
express a complex temporal behaviour, for instance: “The patient was exposed
to a drug X between 1 and 2 years, he met his doctor between 400 to 600 days
after the beginning of the exposure and, finally, he was hospitalized.”.

In this article, we propose a new algorithm to extract frequent chronicles
from a database of sequences of point-based events and interval-based events in
which events can be repeated.

2 Events, sequences and chronicles

In this section, we introduce some formal definitions of sequential data, chronicle
pattern and of the chronicle mining task.

Definition 1. Let E be a set of event types and T a time domain where T C R,
an event is a pair (e,t) where e € E and ¢ € T. We assume that E is totally
ordered and we denote its order by <g.

An event sequence S is a tuple (SID, {(e1,t1), (e2,t2), ..., (€n,tn))) where
SID is the sequence identifier in the database and ((e1,t1), (e2,t2), ..., (€n,tn))
is a finite sequence of events. For all 7, 5,1 < j = t; < t;. If t; = ¢;, then e; <g e;.

In pharmaco-epidemiology studies, a sequence is the care-pathway of a pa-
tient identified by SID. A care-pathway consists of point-based events and
interval-based events. A point-based event (e,t) represents a medical consul-
tation or a delivery of a drug where e is its event type (consultation or drug
name). For drug exposures, which are commonly represented by interval-based
events, we use two point-based events (es,ts) and (e, ty) where e (resp. ef) is
an event type corresponding to the interval beginning (resp. ending) of an event
e.

Example 1 (Database of sequences, S).

sequence
(As, 1), (B,3), (Ar,4), (C,5), (B,20)
(B71)7 (A5’4)’ (B’ 5)’ (D76)7 (Afvs)» (079)
(C,1), (D,2), (C,2), (B,7)
(B,1), (B,3), (As,7), (Ar,9), (C,11), (D,12)

A
=W N
)
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The database contains four sequences. There are one type of interval-based
event (A) and three types of point-based events (B, C and D).

We will now define the notion of chronicle, which is a pattern of events and
a set of temporal constraints. We begin by defining the latter:

Definition 2. A temporal constraint, denoted e;[t~,t"]es, is a tuple where
(e1,e2) € E, e; <g ey and (t7,t") € T, t~ < t*. A temporal constraint is
satisfied by a pair of events ((e, 1), (¢/,t2)), e <g €’ iff e = €1, ¢/ = €5 and
t~ <ty—t; <tt. Wesay that e1[a,blea C €}[a’,b']eh iff e1 = €] and ea = €} and
la,b] C [@/,V]. Hence C is a partial order on the set of the temporal constraints.

Definition 3. A chronicle is a pair C = (€, 7) such that & = {e1,...,en},
e; € E, where Vi, j, 1 <i < j <n,e; <g e;; and such that 7 is a set of temporal
constraints where there is at most one temporal constraint between two events
of the chronicle, i.e. Ve,e' € &, [{e[a,ble’ | ela,ble’ € T} < 1. € is called a
multiset. It is a set of events allowing repetitions.

Example 2. Figure 1 illustrates the chronicle C = (£,7) where & = {e; = A,
ex=Ap,e3 =B, e, =B, e5 =C} and T = {e1(2,4]ea, e1[—4, 2]es, e2[—8, 1]es,
ea[l,2]es, e3(2,17]es, es[—15,8]es}. (A, Af) can be seen as a pair of events
representing an interval event A that starts with event Ag and that finishes with
event Ag.

We can notice that the graph is not complete. The lack of arc between two
nodes can be interpreted as a [—oo, +00] constraint. But, in most case, a more
restrictive constraint can be deduced from the other constraints. For instance, a
temporal constraint A4[3,6]C' can be deduced from constraints between A, and
Ay, and between Ay and C.

Fig. 1: Chronicle example.

Given two chronicles C; = (£1,71) and Co = (&2, T2), we define the partial
order =< where C; <X Cs if & C &; and there is a strictly increasing function f
where Vi, j, 1 <i < j <&, 1 < f(i) < f(4) < |&1], eivej € &2, efpiy,e5(5) € Ens
eriyla,blepy € Th, eild,Ve; € T, epyla, blepyy C eila’,b]e;. If €y < Cy and

1 # Cy, we say that C; is more specific than Cy or is a child of C5. On the
contrary, Co is more general than C; or is a parent of C;. An extended child

87



Hollmén, Papapetrou (editors): Proceedings of the ECMLPKDD 2015 Doctoral Consortium

88

C’ of a chronicle C = (£,7) is C' = (£ U{e}, T’) where T is the union of 7 and
of a set of temporal constraints between e and ¢; for all ¢; in £. A specialized
child C’ of a chronicle C = (£,7T) is C' = (£, T\{7} U {r'}) where 7/ C 7.

Definition 4. Let s = ((e1,t1), ..., (én,ts)) be a sequence and C = (£ =
{el,...,el,},T) a chronicle. An occurrence of the chronicle C in s is a subse-
quence 5 = ((ef(1),t51))s - (€f(m)»tf(m))) such that there exists a function f
where Vi, 5,1 <i<j<m,1< f(i) <n,1< f(j) <n, f(i) # f(j) such that 1)
e} = ef(i), €5 = epjy and 2) tp(;) — tyq) € [a,b] where e}[a,b]e} € T. C occurs
in s, denoted by C € s, iff there is at least one occurrence of C in s.

Definition 5. The support of a chronicle C in a database of sequences S is
the number of sequences in which C occurs: support(C,S) = [{S | S € S and
C € S}|. Given a minimal threshold o, € N, a chronicle C is said frequent in
S iff support(C,S) > omin.

According to the anti-monotony property, if a chronicle C is frequent then
all chronicles more general than C are frequent. One can easily be convinced of
this by observing that, if a chronicle C’ is more general than a chronicle C, then
C’ has at least the same support as C because any occurrences of C is necessarily
an occurrence of C’. The proof is omitted for space reason.

3 Related works

The first algorithm dedicated to chronicle mining was proposed by Dousson and
Duong [3]. This algorithm was originally designed for chronicle discovery in jour-
nal logs of telecommunication alarms. Recently, several improvements have been
proposed [1,2,4]. All of these approaches are based on the anti-monotonicity
property of frequency on the chronicle set.

Cram [2] proposed the HC'DA algorithm which improves the first algorithm
by mining the complete set of frequent chronicles. Those two approaches start
with the extraction of frequent temporal constraints between pairs of events
and then chronicles are generated by combining these constraints. The method
of Dousson and Duong chooses only a representative of each type of temporal
constraint while HCDA keeps all frequent temporal constraints in a graph of
temporal constraints. These two methods process journal logs, i.e. a single long
sequence. In our mining task, we have a database of sequences and the defini-
tion of the pattern support is based on a number of supported sequences. As a
consequence, we can not apply these algorithms for our task. For this reason, we
propose an adaptation of them.

In CCP-Miner, Huang [4] proposed to use chronicle mining on clinical path-
ways. Their data comes from inpatient electronic health record. Contrary to
journal logs, a set of clinical pathways is a database of sequences. To simplify
the evaluation of the support, CCP-Miner considers that an event type occurs
at most one time in a pathway. Moreover, CC P-Miner is not complete. Chron-
icles are not obtained from the complete set of frequent multisets of event types
but only those containing by frequent closed sequences.



Hollmén, Papapetrou (editors): Proceedings of the ECMLPKDD 2015 Doctoral Consortium

Subias et al. [6] recently proposed an alternative support evaluation which
is the number of sequences in which the number of occurrences of a chronicle in
one sequence is above a given threshold. This support measure is not relevant in
our application.

In parallel to alternative support, several approaches have been proposed to
extract chronicles with simpler temporal constraints. For instance, Alvarez et
al. [1] use a similarity criterion to cluster together different temporal arrange-
ments between events. Quiniou et al. [5] proposed an inductive logic program-
ming approach to mine chronicles with quantified temporal constraints.

To the best of our knowledge, there is no algorithm that can extract a com-
plete set of chronicles from a database in which sequences may contain duplicated
events. The proposed method tackles this specific issue.

4 Complete chronicle mining in a database of sequences

The chronicle mining task is a classical pattern mining task. The search space
is structured by a partial order, <, (see section 2) and the frequency is an anti-
monotonic measure in this space. As a consequence, the classical “generate and
test” strategy can be applied: candidate k-patterns are generated from (k — 1)-
frequent patterns, frequency of candidates is evaluated. Then, the two main
problems to tackle are 1) how to efficiently browse the search space and 2) how
to evaluate the frequency of a pattern.

In this article, we propose an algorithm to extract the frequent chronicles in
a database of sequences. This algorithm combines the approaches of HCDA [2]
and of CCP-Miner [4]. We use the CCP-Miner strategy that first extracts the
multisets of event types and then add temporal constraints over those multisets.
The generation of the temporal constraint is adapted from HCDA in order to
deal with databases of sequences. This two improvements are explained in the
following section but before that, we detail the support evaluation process.

Enumerating sequences of a database that support a chronicle is simpler than
the original chronicle enumeration of HC'DA. In fact, evaluating the number of
occurrences of a chronicle in a single sequence is very combinatorics because of
the repetition of the events. Our support measure corresponds to the number of
sequences where a chronicle occurs. For each sequence, we just have to search
for one occurrence of this chronicle. Moreover, this support definition simplifies
the construction of bases of constraints (see section 4.3).

4.1 A two steps strategy

Our algorithm is illustrated in Algorithm 1. Let S be a set of event sequences and
Omin be the minimal support threshold. Firstly, the extractMultisets function
generates ES, the set of all frequent multisets of event types £ accordingly to
Omin. On the contrary to the CCP-Miner approach, the algorithm does not
generate chronicles from closed sequences. Multisets mining is an easy extension
of itemsets mining and we do not detail with step of the algorithm.
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Algorithm 1 Main algorithm for chronicle mining

1. CS <+ 0

1 BES + extract Multisets(S, omin)

: for each e € ES do

CS < CS U extendChronicles(e, omin)

: return CS

GUo W

Then, multisets are extended in frequent chronicles and their temporal con-
straints are specialized. This step is performed for each multiset by the function
extendChronicles. The set C'S corresponds to the frequent chronicles. We detail
this part of the algorithm in the following sections.

4.2 From multisets to chronicles

This section presents the generation of frequent chronicles from frequent multi-
sets. Given a multiset £, the exploration consists in generating all combinations
of temporal constraints on &, such that corresponding chronicles are frequent.

Temporal constraint bases To ensure the efficiency and the completeness of
candidate generation, we use temporal constraint bases (TCB). A TCB is a
set of graphs of temporal constraints (one per pair of events). Figure 2 illustrates
a graph of temporal constraints.

Definition 6. A graph of temporal constraints G is a directed acyclic graph
in which a node is a temporal constraint, 7, and children of 7 are temporal
constraint included in 7. The root of the graph is called the top-constraint. In
our algorithm, we consider that a temporal constraint 7 = e;[a, bjes has at most
two children, 7.5, = e1a,b]es and 70t = €1]a’, bles where b’ < b and a’ > a.

B[-15,10C

v N

B[-15,8]C  B[-6,10]C

r's N r'e N

B[-15,4]C  B[-6,8]C  B[-5,10]C

N r'd N r'd N

B[-6,4)C  B[-5,8|C B[2,10/C
N r'd N r'd
B[-5,4]C B[2,8]C

Fig.2: A graph of temporal constraints for the pair of events (B, C).

Specialization of multisets Let £ be a multiset. The “top-chronicle” (€,7)
is generated such that for each 7 € T, 7 is a top-constraint. Then, function
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extendChronicles generates the complete set of frequent chronicles from (€, 7T)
by specializing the temporal constraints on the multiset £. The specialization
of a chronicle consists in specializing a temporal constraint 7 according to the
specialization defined in its graph of temporal constraints.

The generation of chronicles is a “generate and test” approach. The special-
ization is done recursively to extract the complete set of frequent chronicles.
Each time a chronicle C is specialized, its frequency in the database is evaluated.
If its support is not above the minimal support, the chronicle is pruned. Accord-
ing to the anti-monotony property, we know that not any chronicle C’, ¢’ < C,
will be frequent.

The enumeration of specialized chronicles is done without redundancy. It is
ensured thanks to the definition of a relation order <¢ amongst all chronicles
sharing the same multiset £. Let C = (£, T = {t1,...,tp}) and C' = (€, T =
{th,...,t,}) be chronicles, ¢’ <¢ C iff Ik, 1 < k < n such that 1) Vi, 1 <i <k,
ti =1, 2) Vj, k < j <n, t; =t; and ¢; is a top-constraint and 3) t; = t;
otherwise t), = ty,, , if I, Tiep =

It can be shown that C’<¢C = C’ < C and that there exists at most one chron-
icle C such that C’<g¢ C. These properties ensure a unique and complete traversal
of the search space. For space reason, we omit the proof of these properties.

right

4.3 Generation of the Base of Temporal Constraints

This section presents the generation of the TCB. The smaller are the TCB, the
more efficient is the multiset specification. On the other hand, these bases must
be complete, i.e. the chronicle mining algorithm of the section 4.1 must extract
the complete set of frequent chronicles.

In these objectives, the algorithm generates the smaller complete TCB from
the sequence database. A first algorithm has been proposed in HCDA. Our
algorithm improves it by considering two specificities of our dataset:

1. the enumeration of chronicle occurrences in a database of sequences
2. the specificities of events that encode the period of an interval event with a
pair of point-based events

Let (e,e’) € E2,e <g €’ be a pair of point-based events. We denote by
Acer C R, the list of pairs (a, SID) for each co-occurrence ((e,t),(¢/,t')) in a
sequence where a is the duration ¢’ —¢ and STD is the identifier of the sequence.
The lists corresponding to all the pairs (e, e’) in E2 can be filled in one pass of
the database by generating all co-occurrences present in each sequence. We can
notice that the duration can be negative if ¢/ occurs before e. After this step,
the lists are sorted by duration in ascending order and the duplicates of couple
are removed. Similar lists are built from start/finish events of intervals.

The temporal constraint graph generation is given in the Algorithm 2. Each
list Aeer corresponds to a graph G... To respect our support measure we check
whether elements of A,/ correspond to at least o, sequences. Otherwise Ge.s
is empty. In the other case, the root of G..s is e[a, ble’ where a is the duration of
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Algorithm 2 Temporal constraint graph generation

1: function ConstructGraph(Acer, omin)
2: T 0

3 if |{SID | (a,SID) € A.c'}| > omin then
4 (a,s) + first(Aeer)

5: (b, t) < last(Aeer)

6: 7 < ela, be’

T Tieft < ConstructGraph(Ace \{(b,t)})
8 Tright < ConstructGraph(Ac.\{(a,s)})
9

return 7

the first element of A.. and b that of the last one. Then we built G../ recursively
by defining the left child of a node as the graph corresponding to A.., without
its last element and right child to A.., without its first element.

Finally, we can notice that our algorithm can take into account some classi-
cal constraints of the sequential pattern mining task. These constraints require
additional parameters given by the expert. For example, it is possible to define
a maximal/minimal size of chronicles, i.e. the number of events in their multi-
set. We can also use a maximal window constraint mwc to constraint events of
chronicles to occurs together in a temporal window of maximal size mwe.

5 Experiments and results

We implemented a first prototype of our algorithm in C++ and we evaluate its
efficiency on a real dataset of care-pathways.

5.1 Rational

The objective of our pharmaco-epidemiological study is to assess whether or
not brand-to-generic antiepileptic drugs substitution is associated with seizure-
related hospitalization. Our data represents 1,810,600 deliveries of 7,693 different
drugs for 8,378 patients treated for epilepsy within a period from 03/02/2007
to 12/29/2011. We collected also 12,347 seizure-related hospitalizations on the
same period concerning 7,754 patients.

In a first step, a naive algorithm abstracts drug deliveries into drug exposures.
The algorithm transforms several point-based events (e, ..., e, ), some drug de-
liveries, in a single interval-based event e, a drug exposure if 1) n > repmin
and 2) two successive events are not spaced with more than gap,,.. time units.
T€Pmin and gapmq, are input parameters. We arbitrary choose to set gap,q. to
30 and rep,in to 2 for our experiments.

To reduce the computing time of the TCB generation, we prefer to test our
prototype on 10% percent of the original dataset corresponding to 839 care-
pathways. In fact, the number of chronicles generated is not disturbed because
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minimal mwc F#frequent CPU
support chronicles time -
(Gmin) )
84 90 463,006 440
84 91 917,952 537 z
84 92 1,506,243 730 20
84 93 1,868,923 808 g
84 94 2,596,401 1,053 2
84 95 3,878,436 1,479
85 90 342,598 231 °
86 90 246,724 209
87 90 173,872 167 B
167 180 1,861,607 958 o o 2 £ o
Number of frequent chronicles x 105

Fig. 3: Execution time results of our prototype. On the left, table of results ; On
the right, CPU time wrt. number of frequent chronicles.

the minimal support constraint is defined as a percentage of the number of care-
pathways. We constraint the generated chronicles to be ended by a specific event
corresponding to an hospitalization for epileptic crisis. We are interested in the
number of frequent chronicles generated (containing more than 2 events) and in
the computing times.

5.2 Results

To distinguish the time to generate TCB and the time to extract frequent chron-
icles, we started to run this generation on our dataset with different couples
of parameters. Parameters of this generation are a minimal support threshold
Omin and a maximal window constraint mwec. We ran 3 generations, one for
Smin = 10% (0min = 84) and mwc = 90 days which generates 76,503 temporal
constraints, an other for f,;, = 20% and mwc = 180 days which generates
236,942 temporal constraints and a last one for f.;, = 20% and mwc = 20
days which generates 0 temporal constraint. The computing time of the three
generations is about 135 seconds. We can conclude that the generation time of
the TCB only depends on the number and on the size of sequences but not on
the parameters of the algorithm.

The Figure 3 illustrates computing times for different settings of our exper-
iment. We can first notice that our algorithm generates millions of chronicles.
Moreover, we precise that, for this dataset, all frequent chronicles have a mul-
tiset of events containing 3 events and that they are mainly specialization of
the same multiset. By setting the minimal support threshold, we notice that the
number of returned patterns is very sensitive to the maximal window constraint
parameter. We next remark that the computing time is linear with the number
of chronicles. If we only look at the settings which extract more than one million
of chronicles, we observe that our algorithm can extract about 2300 chronicles
per second.
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10
6 Conclusion

Chronicles seem to be relevant to represent interesting patterns for pharmaco-
epidemiology studies. Their expressiveness enables to model complex temporal
behaviours of patients in the health care system (e.g. consultation, hospitaliza-
tion and drugs delivery). In this article, we proposed a chronicle mining algo-
rithms to the specificities of our database of sequences: sequences with interval-
based events and sequences with repeated events. Our algorithm extracts the
complete set of chronicles from a database of sequences. It has been implemented
and evaluated on a real dataset of care-pathways. The experiments shown that
our algorithm was able to generate very large numbers of chronicles.

We are now facing a classical pattern mining issue: the deluge of frequent
patterns. Our main perspective is to tackle this issue. Several research directions
can by studied, for instance, a heuristic to explore the search space or a method
to extract a smaller set of chronicles like closed chronicles. Another way to
reduce the number of frequent chronicles could be to consider as similar the
chronicles with same multisets of event types and “similar” temporal constraint
sets. Finally, visualization could help clinicians to define interesting patterns
during the extraction, and the clinician’s feedback could pilot the algorithm to
the patterns he/she considers as more interesting.
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Abstract. In this paper, we present the main research ideas of my doc-
toral studies, which aims to contribute in the field of sequential pattern
mining and sequential patterns-based classification. Among our results,
we propose an algorithm to compute frequent sequences and its extension
to compute sequential patterns-based rules. Additionally, we introduce
some improvements to the Sequential Patterns-based Classifiers.

Keywords: data mining, sequential patterns mining, document classification.

1 Motivation and problem description

Sequential pattern mining is a well-known data mining technique that aims to
compute all frequent (or interesting) sequences from a transactional dataset.
Unlike an itemset, in which an item can occur at most once, in a sequence an
itemset can occur multiple times. Additionally, in itemset mining, (abc) = (cba)
but in sequence mining, ( (ab) ¢) # ( ¢ (ab) ).

In the last decades, some works have used sequential patterns to increase
the accuracy of classifiers. An important part of the Sequential Patterns-based
Classification (SPaC) is the process of mining the set of classification rules,
called SPaRs (Sequential Patterns-based Rules). A SPaR describes an implica-
tive co-occurring relationship between a sequence v and a class c¢. Notice that
the algorithms for SPaRs generation can be easily extended from the sequential
pattern mining algorithms.

Both sequential pattern mining and sequential patterns-based classification
have been used in several application areas, for example in web access analysis [1],
text mining [2], disease treatments [3], document-specific keyphrase extraction
[4], among others.

The main reported algorithms obtain the interesting sequential patterns ei-
ther using a depth first search strategy or generating the sequences of size k by
combining the sequences of size (k — 1) with a common (k — 2)-length prefix. In
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order to reach better performance, we proposed (and published in [5]) a novel
strategy that generates the sequences of size k& by combining the sequences of
size (k — 1) with the sequences of size 2. Also in [5], we introduced a new data
structure to store the interesting sequences and a new pruning strategy to reduce
the number of candidate sequences.

In general, the accuracy of the sequential patterns-based classifiers depends
on four main elements: (1) the quality measure used to generate the SPaRs,
(2) the pruning strategy used to reduce the number of candidate rules, (3) the
rule ordering strategy and (4) the mechanism used for classifying unseen trans-
actions. Therefore, any of the main sequential pattern mining algorithms (GSP
[6], PrefixSpan [7], LAPIN [8] and PRISM [9]) can be adapted to generate the
set of interesting SPaRs.

Currently, all classifiers based on sequential patterns use the Support and
Confidence measures for computing and ordering the set of SPaRs. However,
several authors have pointed out some drawbacks of these measures [10], for
example, Confidence detects neither statistical independence nor negative de-
pendence among items (misleading rules).

On the other hand, many studies [6,11] have indicated the high number
of rules that could be generated using a small Support threshold. To address
this problem, recent works [12] prune the rules search space each time that
a rule satisfies both Support and Confidence thresholds, it means that rules
satisfying both thresholds are not extended anymore. Using this strategy, it is
more frequent the generation of general (short) rules than the generation of
specific (large) rules, some of which could be more interesting.

The existence of these drawbacks have been the main motivation of our
research and, in order to overcome them, we have proposed some general im-
provements to the sequential patterns-based classifiers. The rest of this paper is
organized as follows. In the next subsection a formal definition of both problems
is presented. Related work is described in Section two. Our proposal are pre-
sented in section three. In the fourth section the experimental results and the
work in progress are shown. Finally, the conclusions are given in section five.

1.1 Describing the problem

As it can be see above, we have two main objectives in this research:

— to develop a novel algorithm (heuristic, strategy) to improve the efficiency
of the sequence mining process.
— to propose new improvements to the sequential patterns-based classifiers.

These two objectives are very related because the sequential patterns-based
classifiers need to compute a set of rules (SPaRs) in a first stage and, the al-
gorithms to compute the SPaRs are easily extended from the sequence mining
algorithms. In this subsection, we will offer a formal definition of both problems.

In sequence mining, it is assumed that a set of items I = {iy, 42, ..., i}
and a set of transactions 7" are given, where each transaction ¢t € 7' consists of a
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sequence (a1 g ... @), so that a; C I. The Support of a sequence «, denoted
as Sup(a), is the fraction of transactions in T' containing « (see Eq. 1).

|Ta|
Sup(a) = (1)
IT|
where T, is the set of transactions in T containing « (see Def. 1) and | - | is

the cardinality operator.

Definition 1 Let o = (a1 @z ... a) and B = (b1 Ba ... Bm) be sequences, we will
say that « is contained in [ if there exists integers 1 < j1 < ja < ... < jn < m
such that a1 C B, oo C By, ..., an C By, with (5, € .

Let minSup be a minimum Support threshold previously defined, an algo-
rithm for interesting sequence mining computes all the sequences a such that
Sup(a) > minSup ; when Support is the used measure the interesting sequences
are called frequent sequences.

On the other hand, in sequential patterns-based classification we also have a
set of classes C, and each transaction ¢ € T consists of a sequence (o @ ... @),
so that a; C I, and a class ¢ € C. A SPaR is an implication of the form a = ¢
where a is a sequence and ¢ € C. The size of a SPaR is defined as its cardinality,
a SPaR containing k itemsets (including the class) is called a k-SPaR. The rule
a = cis held in T with certain Support and Confidence (see Eqgs. 2 and 3).

Sup(a = ¢) = Sup(a ® (c)) (2)

where ® is the concatenation operator (see Def. 2).

Sup(a = ¢)

Conf(a=c) = Sup(a) 3)

Definition 2 Let a = (a1 ag ... a,) and B = (81 P2 ... Bm), we will call the
sequence (ay Qo ... Ay B1 Pa ... Bm) the concatenation of o and B, and we will
use the operator @ to indicate it.

In general, a classifier based on this approach usually consists of an ordered
SPaR list I, and a mechanism for classifying new transactions using .

2 Related work

The sequential pattern mining algorithms can be split into two main groups:
(1) apriori-like algorithms (AprioriAll and AprioriSome [13], GSP [6] and (2)
pattern-growth based algorithms (PrefixSpan [7], LAPIN [8], PRISM [9]).

In [6], the authors proposed the GSP algorithm, which includes time con-
strains and taxonomies in the mining process. The PrefixSpan algorithm, pro-
posed in [7], is based on recursively constructing the patterns by growing on
the prefix, and simultaneously, restricting the search to projected datasets and
reducing the search space at each step.
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PRISM, the algorithm introduced by Karam Gouda in [9], uses a vertical
approach for enumeration and support counting, based on the novel notion of
primal block encoding, which is based on prime factorization theory. The LAPIN
(LAst Position INduction) algorithm [8] uses an item-last-position list and a
prefix border position set instead of the tree projection or candidate generate-
and-test techniques introduced so far.

As we mentioned in Section 1, the sequential pattern mining algorithms
can be easily adapted to generate the set of SPaRs. Once the SPaRs
are generated, these are ordered. For this task there are six main strate-
gies reported in the literature: Confidence-Support-Antecedent, Antecedent-
Confidence-Support, Weighted Relative Accuracy, Laplace Expected Error Es-
timate, Chi-Square and L3. In [14], the authors show that the L? rule ordering
strategy obtains the best results of all strategies mentioned above. However, all
these ordering strategies are based on Confidence measure.

Once a SPaR-based classifier has been built, usually presented as a list of
sorted SPaRs, there are three main mechanisms for classifying unseen data [12].

— Best rule: This mechanism assigns the class of the first (“best”) rule in the
order that satisfies the transaction to be classified.

— Best K rules: This mechanism selects the best K rules (for each class) that
satisfy the transaction to be classified and then the class is determined using
these K rules, according to different criteria.

— All rules: This mechanism selects all rules that satisfy the unseen transac-
tion and then these rules are used to determine their class.

Since the “Best K rules” mechanism has been the most widely used for rule-
based classification, reporting the best results, it was used in our experiments.

3 Our proposal

In this section, we present the main contributions of our research. First, in sub-
section 3.1 we introduce the new data structure used to store the frequent se-
quences. Later, the algorithm to compute the frequent sequences and its exten-
sion to compute the set of SPaRs are described in subsections 3.2 and 3.3.

3.1 Storing useful information

Let a be a frequent sequence and T be a transactional dataset, the proposed
data structure stores, for each ¢t € T, a list L; with the occurrence positions of
a in t (see Def. 3). Additionally, a bit-vector of 1’s and 0’s is stored representing
the presence or absence of « in each transaction of T

Definition 3 Let a = (a1 a2 ... a,) and = (B1 B2 ... Bm) be sequences such
that « is contained in B (i.e. exists integers 1 < j1 < jo < ... < jn < m such
that a1 C Bj,, a2 C By, .oy an C B5,. ), we will call occurrence position of « in
B (occP(a, B)) to the least position of all possible B;, in B, if | o |> 2, and the
set of positions of all possible B;, in B, if | a |< 2.
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In Table 1, five transactions and the occurrence positions of three sequences of
different sizes are shown. Notice that when | o [> 2 (e.g. (a f ) in transaction 2)
we could also have several 3, (e.g. (b:4) and (b: 6)) but the proposed strategy
to generate the candidate, only require the least of all.

Table 1. Example of five transactions and the occurrence positions of three sequences
of different sizes.

Tid Sequence (b) (af) (afb)
1 (a b) (b:2
2 (cdaefbcdab) (b:4), (b:6) (f:3) (b:4)
3 (af f) (£:2
4 (af ef bf) (b:3) (£:2), (£:3) (b:3)
5 (b) (b:1)

3.2 Algorithm for mining the frequent sequences

In this subsection we describe a novel algorithm, called SPaMi-FTS and pub-
lished by us in [5], to compute the set of frequent sequences. In a first step,
SPaMi-FTS computes all frequent 1-sequences storing for each frequent sequence
« (of any size) and for each transaction ¢ € T', a list with the occurrence po-
sitions of «v in ¢ (see Def. 3 in Section 3.1). Also a bit-vector representing the
presence or absence in each transaction is stored.

In a second step, SPaMi-F'T'S computes the frequent 2-sequences; for this, it
first generates the candidate 2-sequences by combining the frequent 1-sequences
obtained in the first step and later, it applies a pruning strategy to reduce the
number of Support counting. This pruning strategy intersects, using AND oper-
ations, the bit-vectors of two sequences obtaining the highest possible Support,
which is used to decide if it is required (or not) to compute the real Support.

The pseudo code of SPaMi-FTS is shown in Algorithm 1, where the method
pruningMethod((i), (j)) work as follows: the bit-vectors of (i) and (j) are
intersected to compute the highest possible Support value of (i j), named
highPosSup. If highPosSup < minSup then the sequence (i j) is pruning.

Finally, in a third stage, the procedure used to compute the frequent 2-
sequences is extended to compute the frequent k-sequences (k > 2). For this, the
candidate k-sequences are obtained by combining each frequent (k— 1)-sequence
a = (a1 as ... ag) with all frequent 2-sequences of the form 5 = (ay, 51).

3.3 Algorithm for mining the interesting SPaRs

As we mentioned in Section 1, all classifiers based on sequential patterns use
the Support and Confidence measures for computing the set of SPaRs. However,
several authors have pointed out some drawbacks of these measures that could
lead us to discover many more rules than it should [10]. In particular, items with
high Support can lead us to obtain misleading rules (see Ex. 1) because they
appear in many transactions and they could be predicted by any itemset.
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Algorithm 1: Pseudo code to compute the frequent k-sequences.

Input: Transactional dataset T', set of frequent (k — 1)-sequences kFreq, set of frequent
2-sequences twoFreq and Support threshold minSup.
Output: Set of frequent k-sequences.
Li+ 0
foreach a : (a1 as ... a) € kFreq do
foreach 3 : (ay, B1) € twoFreq do
prune  pruningMethod(c, 3)
if not prune then
Sup < 0
foreach t € T' do
if occPos(B,t) > occPos(a,t) then
| Sup <+ Sup+1
end
end
if Sup > minSup then
| Li+ Liu{a®pB}
end
end

end
end
return L,

Example 1 Without loss of generality, let us assume that Sup(X) = 0.4,
Sup(Y) = 0.8 and Sup(X = Y) = 0.3, therefore Sup(—-X) =1 - Sup(X) = 0.6
and Sup(—=X =Y) = Sup(Y) - Sup(X =Y) =0.5. If we compute Conf(X =
Y) we obtain 0.75 (a high Confidence value) but' Y occurs in 80 % of the trans-
actions, therefore the rule X =Y does worse than just randomly guessing. In
this case, X =Y is a misleading rule.

On the other hand, in [15] the authors proposed a measure, called Netconf
(see Eq. 4), to estimate the strength of a rule. In general, this measure solves
the main drawbacks of the Confidence measure, reported in other works [10].

Sup(X = Y) — Sup(X)Sup(Y)

Netconf(X =Y) = Sup(X)(1 — Sup(X)) Y

The Netconf has among its main advantages that it detects the misleading
rules obtained by the Confidence. For the Ex. 1, Netconf(X = Y) = —0.083
showing a negative dependence between the antecedent and the consequent.
Therefore, in this research we propose to use the Netconf measure instead of
Support and Confidence for computing and ordering the set of SPaRs.

Most of the algorithms in SPaR-based classification [6] prune the SPaRs
search space each time a SPaR satisfying the defined thresholds is found, it pro-
duces general (small) rules reducing the possibility of obtain specific (large) rules,
some of which could be more interesting. Besides, since the defined threshold(s)
must be satisfied, many branches of the rules search space could be explored in
vain.

In our proposal, instead of pruning the SPaR search space when a SPaR
satisfies the Netconf threshold, we propose the following pruning strategy:
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— If a SPaR r does not satisfy the Netconf threshold minNF (r.NF <
minNF) we do not extend it anymore avoiding to explore this part of the
SPaR search space in vain.

— Let 11 : @ = cand ry : = ¢ be SPaRs, if the SPaR 7 : (a ® ) = ¢
satisfies the Netconf threshold but r.NF < r{.NF and r.NF < ro.NF then
we prune 7 avoiding to generate SPaRs with less quality than their parents.

The intuitive idea (or hypothesis) behind this pruning strategy is that specific
rules with high Netconf values are better to classify than general rules with high
Netconf values. Taking into account the advantages of the Netconf measure and
the novel pruning strategy, we extend the SPaMi-FTS algorithm to generate
the set of SPaRs. This extension, called SPaR-NF, does not apply the pruning
strategy used by SPaMi-FTS because the Netconf measure is used inside of
Support measure. Since the pseudo code of SPaR-NF is similar to the pseudo
code of SPaMi-FTS, and considering the space limitations, we do not describe
in this paper.

Once the set of SPaRs has been generated, using the SPaR-NF algorithm,
the SPaR list is sorted. For this purpose, we propose sorting the set of SPaRs in
a descending order according to their sizes (the largest first) and in case of tie,
we sort the tied SPaRs in a descending order according to their Netconf (the
highest values first). For classifying unseen transactions, we decided to follow the
“Best K rules” mechanism, because, as it was explained above, the “Best rule”
mechanism could suffer biased classification or overfitting since the classification
is based on only one rule; and the “All rules” mechanism takes into account rules
with low ranking, which affects the accuracy of the classifier.

4 Experimental results

In this section, we present some experimental results in order to evaluate the ef-
ficiency of the SPaMi-FTS algorithm and the accuracy of the proposed classifier,
called SPaC-NF, which uses the SPaR-NF algorithm to compute the SPaRs.
In case of SPaMi-FTS, we show the result of the comparison between it and
the main sequence mining algorithms reported in the literature: GSP [6], Pre-
fixSpan [7], LAPIN [8], PRISM [9]. All codes (implemented in ANST C standard)
were provided by their authors. Our experiments were done over seven datasets,
built with a synthetic dataset generator developed by the Data Mining Research
Group at the Department of Computer Science, University of Illinois. Several
experiments were conducted to evaluate the performance of the algorithms when
these parameters change. In the first experiment we used the parameter values
most employed in the literature (see their parameter values in the Fig. 1(a)). As
it can see in Fig. 1(a), SPaMi-FTS obtains the best result, followed by PRISM.
To the second experiment, we simultaneously increased D (from 10000 to
20000) and C' (from 20 to 40). As result, GSP and PrefixSpan were the most
affected algorithms, in both cases the runtime were over 250 seconds (see Fig.
1(b)). In the third and fourth experiments, we increased N (from 20 to 50)
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Fig. 1. Runtime comparison using DSy, DS2, DS3 and DS, datasets.

keeping C' set to 40 and varying D from 5000 in Fig. 1(c) to 10000 in Fig.
1(d). In both figures, we show the runtime of all evaluated algorithms with the
exception of LAPIN algorithm because of it crashed with support thresholds
under 10 %. In general, the SPaMi-FTS algorithm has the best performance of
all tested algorithms both in scalability and in runtime.

In case of SPaC-NF classifier, we use three document collections, and we
compare it against other classifiers as NaiveBayes, PART [16], J48 [17], Sup-
port Vector Machines [18] and against a classifier (SPaC-MR) built with the
Main Results obtained in SPaR-based classification. All these classifiers, with
the exception of SPaC-NF and SPaC-MR, were evaluated using Weka. The ex-
periments were done using ten-fold cross-validation, reporting the average over
the ten folds. Similar to other works, experiments were conducted using sev-
eral document collections, three in our case: AFP (http://trec.nist.gov), TDT
(http:/www.nist.gov) and Reuter (http://kdd.ics.uci.edu).

In the same way as in other works [13], for all used datasets, sentences are
distinguished and ordered in each document. This means that the document is
considered as being an ordered list of sentences. Each sentence is considered as
being an unordered set of words. Therefore, we represented the document as a
sequence of itemsets where each one corresponds with the set of words of each
sentence.
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In Table 2, the results show that SPaC-NF yields an average accuracy higher
than the other evaluated classifiers, having in average a difference in accuracy
of 3.2 % with respect to the classifier in the second place (SVM classifier).

Table 2. Comparison against other Sequential-patterns based Classifiers.

Dataset SVM J48 NaiveBayes PART SPaC-MR SPaC-NF

AFP 88.7 81.5 83.6 78.3 89.5 93.8
TDT 89.6 86.2 80.8 75.4 87.1 91.9
Reuter 82.5 79.3 78.2 75.7 80.3 84.7
Average 86.9 82.3 80.8 76.4 85.6 90.1

In Table 3, we show the impact of our improvements. For this, we compare
our approach (SPaC-NF) that uses the Netconf measure and obtains large rules
against a SPaR-based classifier (SPaC-MR) that uses the Confidence measure
and obtains short rules. Additionally, for both classifiers, we evaluate the best
rule ordering strategy reported (L?) and the strategy proposed by us, based on
their rule sizes (largest first) and Netconf values.

Table 3. Impact of the different improvements in a general SPaC-based classifier.

SPaC-MR SPaC-NF

Dataset r? Size & NF L® Size & NF
AFP 89.5 90.9 92.4 93.8
TDT 87.1 88.6 90.3 91.9
Reuter 80.3 81.8 83.5 84.7
Average 85.6 87.1 88.7 90.1

5 Work in progress

As we mentioned in Section 2, the “Best K rules” mechanism has been the most
widely used for rule-based classification. However, using this mechanism could
affect the classification accuracy. Ever more when most of the best K rules were
obtained extending the same item (or itemset), or when there is an imbalance
among the numbers of SPaRs with high quality measure values, per each class,
that cover the new transaction.

Taking into account these limitations, we are working in the development
of a new satisfaction mechanism that selects the value of K in a dynamic way.
Additionally, we are evaluating the use of different quality measures in the SPaRs
generation process.

In case of SPaMi-FTS algorithm, we are testing its scalability with respect to
the number of transactions and number of itemsets per transaction. Furthermore,
we plan to improve our pruning strategy to make the SPaMi-FT'S algorithm even
more efficient. In order to make the algorithms suitable for real life applications
(e.g. Web access patterns, customer purchase behavior) we will consider some
constrains like time-windows and gaps among elements.
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Abstract. A new generation of astronomical surveys will produce petabytes
of data requiring new automated methods to categorise galaxies. We pro-
pose a novel unsupervised learning approach to categorise galaxies within
multi-wavelength Hubble Space Telescope images. We demonstrate the
efficient categorisation of galaxy structure into star-forming and pas-
sive regions and present the key steps required to produce catalogues of
galaxies.

Keywords: unsupervised learning, growing neural gas, astronomical im-
age data, image processing

1 Introduction

Astronomers seek to understand how galaxies form and evolve over time, from
galaxies with very high star formation rates in the early universe, to passive
galaxies producing few if any new stars today. As an initial step astronomical
objects need to be identified in images, this is typically done using software such
as SExtractor [1] to produce a catalogue of objects including their positions in
the sky. These objects are next identified as stars or galaxies and then further
categorised as different types of galaxies, e.g. star-forming or passive.

There are many existing approaches to identifying and categorising galaxies.
However, the introduction of a new generation of telescopes, that will generate
vast amounts of data, requires a new automated approach. Machine learning
is a possible solution to this problem. Machine learning techniques are already
applied to astronomical images, however these predominantly use supervised
learning. Recent examples are the use of multiple layers of convolutional neural
networks to classify galaxies [2] (Galaxy Zoo) and random forests used on images
from the Pan-STARRS telescope to identify temporary or transient features [3].
Both of these approaches require preprocessed and labelled images. In the case
of Galaxy Zoo input data consisted of 67,000 galaxy images classified by citizen
scientists over a period of years.

However, in order to cope with orders of magnitude more data from next
generation surveys, we need to adopt an unsupervised approach which removes
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the human element from the categorisation process by identifying the natural
structure within data. There is little published research on the application of
unsupervised machine learning techniques to astronomical data, however, one
recent example [4] uses computer vision techniques to identify galaxy types. This
research still requires a pre-created catalogue of galaxy images, where each image
contains a single, centred galaxy. In our work we apply unsupervised algorithms
directly to large survey images containing thousands of galaxies, thus avoiding
the need for preprocessed single galaxy images.

This paper is organised as follows, in Section 2 we introduce the Hubble Space
Telescope survey image data. In Section 3 we introduce our methodology which
includes the use of digitisation for partitioning feature data, the Growing Neural
Gas algorithm, and agglomerative clustering. In Sections 4 and 5 we present and
discuss our initial results. In Section 6 we describe our plans for future work and
finally in Section 7 we present our conclusions.

2 Data

We used Hubble Space Telescope (HST) data from the Frontier Fields initiative
[5]. These observations are deep exposures of distant clusters of galaxies. They
are freely available for download from the Hubble Frontier Fields section of the
Space Telescope Science Institute website.!

2.1 Hubble Space Telescope Frontier Fields Images

The Frontier Fields (FF) initiative uses the HST to image six strong lensing
galaxy clusters. Massive clusters of galaxies act as strong gravitational lenses,
magnifying and distorting the images of more distant galaxies along the same line
of sight. Often these distortions result in characteristic ‘arcs’ around the cluster.
Lensing provides astronomers with the opportunity to study the properties of
very distant galaxies in far greater detail than would otherwise be possible.

The FF images contain many types of galaxies including passive ellipticals,
star-forming spiral and bar galaxies and lensed galaxies. The wavelength of light
we detect from a galaxy will depend on a number of physical processes. For
example, star-forming galaxies emit lots of ultraviolet and blue optical light from
young massive stars. Passive galaxies on the other hand emit the bulk of their
stellar light at longer optical and near-infrared wavelengths. In the FF images we
typically see blue star-forming spiral galaxies and red passive elliptical galaxies in
the galaxy cluster, as well as the more distant blue lensed galaxies. However, this
is an over simplification as the spiral galaxies also contain red, passive regions
from their central bulge. Fig 1. shows a false colour composite image that was
produced using three HST image files of galaxy cluster MACSJ0416. Three major
types of galaxy are annotated on the image.

The HST takes multiple images of each region of the sky using seven filters.
Each filter allows only a particular section of the electromagnetic spectrum to

! http://www.stsci.edu/hst/campaigns/frontier-fields/
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be imaged. Our work uses images taken using the Advanced Camera for Surveys
(ACS) and the following three filters:!

— F435W, central wavelength of 4317.4 angstroms, range of 8780 angstroms;
— F606W, central wavelength of 5917.7 angstroms, range of 2570 angstroms;
— F814W, central wavelength of 8059.8 angstroms, range of 2870 angstroms.

Each image file contains the light detected using one filter. The HST images
range in size from 10000 x 10000 pixels to 12300 x 8300 pixels.

Fig.1: This is a section of a false colour composite image of the MACS0416
strong lensing galaxy cluster. The larger objects have been annotated to identify
their type. Galaxies annotated with the letter a are passive ellipticals, those
annotated with the letter b are spiral galaxies, with active star-forming regions,
and galaxies annotated with the letter ¢ are lensed galaxies, also with active
star-forming regions. In contrast to the elliptical and spiral galaxies many of the
lensed galaxies have unusual morphology, appearing as lines and streaks. This
is due to the galaxy cluster gravitational potential distorting space-time and
altering the paths of light rays from distant galaxies. The lensed galaxy positions
were identified using data from Jauzac et al [11]. This image was created using
the HST image files for the F435W, F606W and the F814W filters.

! http://etc.stsci.edu/etcstatic/users_guide/appendix_b_acs.html
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3 Methodology

3.1 Preprocessing

The preprocessing of the HST image data involved the creation and normalisa-
tion of the feature matrix. Details of the preprocessing are given below.

1. Background removal We removed the background from the three images

to simplify the data and concentrate on the foreground objects (these are
referred to in this paper as thresholded images). This was achieved by iden-
tifying a fixed threshold value, 5% of the root mean square of all pixel values
in the image, and setting the pixel values below this threshold to zero.

. Feature extraction The feature matrix was created by extracting 218,872

random sub images of a fixed size (8 x 8 pixels) from the red image and ex-
tracting corresponding sub images with the same location and size from the
blue and green images. The Fast Fourier Transform (FFT)[6] was applied
to each sub image. We then obtained the power spectrum by multiplying
each complex number in the FFT output by its conjugate. The power spec-
trum encodes information about the distribution of power on different spatial
scales. We then calculated the radial average of the pixel values by using five
radial bins. This produced five values for each sub image. The feature sam-
ple was then created by concatenating the five radial average values from
each sub image to form a single sample of fifteen values. Thus each sample
contains features from all three images.

. Data normalisation We found extreme outliers in the data, which we iden-

tified as the sub images at the centres of elliptical galaxies. These regions
of the image are extremely bright relative to all other regions. On produc-
tion of histograms of each feature it was clear that the features had a log
normal distribution which characteristically contains extreme values. In or-
der to convert each feature to a normal distribution, thus creating a better
clustering outcome, the natural log function was applied to all values in the
feature matrix. Each feature within the feature matrix was then normalised
by subtracting the mean and dividing by the unit of standard deviation.

. Digitisation/Binning We created a histogram of the feature matrix using

twelve bins. Each value in the feature matrix was replaced with its nearest
left bin edge value. This effectively ‘digitised’ the data. In Section 5 we
discuss the Growing Neural Gas algorithm and the reason for processing the
data in this way.

3.2 Model Creation Using Unsupervised Learning

The Growing Neural Gas (GNG) algorithm [7] is considered to be a good un-
supervised algorithm for finding natural structure within data that does not
require a preset number of clusters.! Initially, a graph of two nodes is created.
Each of the two nodes is initialised with the values of a random sample taken

! http://www.demogng.de/
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from the feature matrix. Nodes are added as the input data is processed. During
this process the nodes move to map the topology of the data and the graph splits
to form disconnected sub graphs, each of which represents a cluster within the
feature matrix. The process continues until a stopping criteria has been met,
such as the number of nodes within the graphs, or the number of the times the
input data has been processed.

Applying the GNG algorithm resulted in over 7,000 clusters, making it dif-
ficult to understand the underlying structure. We therefore used agglomerative
clustering [8] to merge the clusters into a more manageable number. This pro-
duced a tree structure that represents a hierarchy of merged clusters. Each node
in the tree structure represents a new cluster consisting of the two hierarchical
clusters with the greatest similarity. Cluster similarity was measured using av-
erage linkage and the Pearson correlation distance with an additional penalty.
The Pearson correlation distance measures the similarity between the centroids
of two GNG clusters. If the centroids are equivalent over the majority of the
fifteen sample values then the distance is small. However, analysis of merging
errors revealed that specific features were more important than others in cre-
ating meaningful clusters. Therefore clusters were only merged if the Pearson
correlation distance was small and the difference in the normalised values of the
first, sixth and eleventh features were less than +0.2.

The recursive clustering process was continued until all clusters had merged.
A top down search was performed on the tree structure to identify the hierar-
chical clusters with a similarity greater than a threshold value. This resulted in
253 clusters with the largest 40 clusters representing over 97% of the samples.

3.3 Post Processing

In order to analyse the clusters we started with a blank image and added patches
of colour (a different colour corresponding to each cluster) at the original posi-
tions of the samples. This image was then compared to a false colour RGB image,
which was created by combining the original F814W, F606W and F435W HST
thresholded images. This confirmed that the clusters identified by the machine
learning process correspond to the distinct star-forming and passive areas in the
RGB image, as illustrated in Fig 2.

4 Results

The model created by applying the unsupervised learning steps in Section 3.2
to Abell2744 was tested for its ability to generalise to other galaxy clusters,
using MACSJ0416 as an example. Preprocessing steps 1 and 2 (see Section 3.1)
were applied to the MACSJ0416 images as before, but in steps 3 and 4 the
mean, standard deviation and bins derived from Abell2744 were used, instead of
recalculating these values for MACSJ0416. The model created in Section 3.2 was
then applied to the new feature matrix by using a nearest neighbour calculation
with the Euclidean distance metric to identify the nearest cluster to each sample.
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Fig.2: A sub section of the image representing the model (left) and the thresh-
olded HST image (right) of the galaxy cluster Abell2744. Blue colours in the
processed image highlight the unsupervised clusters that represent star-forming
regions in the spiral and lensed galaxies. Yellow colours correspond to the unsu-
pervised clusters that represent passive elliptical galaxies and the central passive
regions of spiral galaxies.
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The results were used to create a processed image of clusters for the MACSJ0416
galaxy cluster using the same process as in Section 3.3. Fig 3. displays the results.
The processed image was accurate and correctly categorised each sub image with
the same colour (or cluster) that appeared in the processed image for Abell2744.
Each star-forming and passive region in the processed image shows the identified
clusters representing the star-forming and passive regions in the HST image.

5 Discussion

Initially our preprocessing steps did not include thresholding the HST images,
converting the feature matrix from log normal to a normal distribution, or the
binning of the feature matrix. Without these three steps the clusters identified
by the GNG algorithm were limited to one large cluster representing over 95% of
the samples and a large number of very small clusters representing the remaining
samples. Upon investigation we discovered that this was the result of the features
having a log normal distribution, combined with the use of z-score normalisation.
We applied the natural log function to the feature matrix which resulted in
an improved distribution of values, however, the GNG algorithm continued to
produce a similar clustering output.

Further investigation, using Principle Component Analysis to project the
data to a three dimensional space, showed that the data were distributed with-
out any clear, spatially separated clusters. To make the data more discrete and
thus help the GNG algorithm find separate clusters, the spectral values were
binned into twelve bins. This effectively digitised the feature matrix into small,
spatially separated clusters of samples, thus effectively partitioning the data. We
found that the optimum number of bins, producing the most even distribution
of clusters, was twelve. The final result, after applying the natural log function
and adding the binning process, enabled GNG to effectively cluster the feature
matrix, but resulted in a very large number of clusters (this was addressed us-
ing agglomerative clustering as described in Section 3.2). The application of the
binning process appears to remove data by homogenising values in the feature
matrix that are similar. The impact of doing this is not clear and will be inves-
tigated in future work.

We originally used average linkage and the Euclidean distance metric in our
agglomerative clustering. However, we found that many of the GNG clusters were
incorrectly merged and we therefore adopted the Pearson correlation distance
with a penalty, as discussed in Section 3.2.

We experimented with a range of sub image sizes. When using the larger sizes
GNG was not able to distinguish between small galaxies and the background.
We found that using smaller sub images solved this problem, however if they
were too small the number of samples became unmanageable. Sub images of
8 x 8 pixels provided the optimum solution.
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(b) HST composite RGB image of the MACSJ0416 galaxy cluster.

Fig.3: The processed image at the top displays the result of applying the model
to HST images of galaxy cluster MACS0416. The bottom image shows the equiv-
alent RGB image for comparison.
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6 Future Work

We have successfully identified clusters of sub images that are meaningful. For
example, we find that the centres of elliptical galaxies and the extended stellar
halos of elliptical galaxies are represented by different clusters and therefore
the clusters represent components of galaxies. However, we have not been able
to identify individual clusters that exclusively represent lensed galaxies. The
clusters that form lensed galaxies also form parts of spiral and small star-forming
galaxies. This is not unexpected as these are all star-forming regions. Future work
will add features based on galaxy shape to assist the identification of clusters
that form lensed galaxies.

In this preliminary study we have not fully evaluated the effects of varying
parameter values. In future work we will perform a more thorough evaluation
of parameter values to identify how robust the model is to parameter changes.
Additional future work will also involve combining sub images to achieve object
detection and galaxy categorisation. To achieve this we will use a connected
component labelling technique [10] adapted to use the cluster data generated in
Section 4. This approach uses the sample positions from Section 3.1 to identify
groups of overlapping sub images. Each group is given a unique label. For some
types of galaxies this process is straightforward as they consist predominantly
of a unique combination of clusters. For example, elliptical galaxies consist of
a brighter, passive central region and a fainter, passive outer region. However,
where there are overlapping galaxies, they will be separated by using the modified
connected component labelling algorithm a second time, applying it to selected
clusters within these galaxies. We will then be able to produce a catalogue of the
galaxies in the HST images, including type, shape and position. Such catalogues
are an important tool for astronomers.

We aim to apply our method to additional astronomical data sets, in partic-
ular test data from the next generation Large Synoptic Sky Telescope (LSST).
This telescope will image the entire sky every few nights producing petabytes of
multi-wavelength image data over the course of its lifetime [9] and so requires
an automated process for classifying galaxies.

7 Conclusion

We have successfully used unsupervised machine learning to create a model
that identifies star-forming and passive areas in HST Frontier Field images. We
have also successfully validated the model’s ability to generalise to one other
HST image. Further work is required to combine the identified clusters to detect
galaxies and catalogue their positions and to perform a more thorough evaluation
of parameter values to identify how robust the model is to parameter changes.
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Abstract. User behavior on the Web is subject to regular patterns on various
levels of granularity and periods of time, which means that it can be to some
scale predicted. Most current approaches focus on predicting the user long-term
behavior, which is quite stable and essentially not a subject to the short-term
perceptions. In some tasks, however we are primarily interested in the user’s
short-term behavior, which requires considering different characteristics as in
standard long-term tasks. An example of such a task is the prediction of attrition
rate in a user browsing session. In our work we focus on online prediction with
considering the behavior change in short time. We aim at predicting the user
session end. In our actual work we proposed a classification approach that con-
siders various user behavioral characteristics. The classifier is based on person-
alized prediction models trained individually for every user. We evaluated pro-
posed approach in the e-learning domain, which is characteristic with short to
middle-time browsing sessions. We present three open problems, which further
work up our proposed classifier. We aim to reduce the cold start problem or
more specifically to focus on prediction of browsing session end for occasional
users and also experiment in different domains.

Keywords: user behavior prediction, short-term behavior, browsing session,
attrition rate, cold start problem

1. Introduction and Related Work

User behavior on the Web is more than a random browsing between sites and their
pages. As a user acts to fulfill his information needs subject to his actual context (e.g.,
knowledge, habits), his future behavior is in some scale predicable. This provides a
great opportunity to improve a Web site and user browsing experience for example by
personalization of the site.

The user behavior on the Web is typically mined from his actions and feedback,
while it can be extracted on various levels according to its future usage. There are two
levels of user behavior recognized — the long- and the short-term. The long-term be-
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havior represents user stabile interests, preferences or regular behavior patterns,
which are typically stored in user models [1]. As the long-term behavior changes in
time only gradually it is nowadays widely used for the personalization.

In the opposite, the short-term behavior represents the user’s actual interest, subject
to actual task, context etc. As these factors are very difficult to describe, the short-
term behavior is only hardly predictable, which makes the prediction task challeng-
ing. Short-term user’s behavior changes quite dynamically so it is obviously handled
on the level of raw user actions (e.g. Web page visits).

The long-term behavior is often used for the personalization in tasks such as per-
sonalized recommendation [2] (sometimes combined with short-term behavior [3]) or
user attrition rate [4]. Except these task, often it is suitable to primarily use the short-
term behavior (e.g., the chance that the user will end the session in next few actions or
will buy premium content after hitting the paywall).

Our aim is to predict the user browsing session end, we formulated the hypothesis
as ‘User browsing session end can be predicted on time’. This can be considered as
the short-term behavior prediction task. For such tasks methods of supervised ma-
chine learning are typically used (e.g., classification, decision trees or neural net-
works) [5]. As there is often a need for processing of large data volumes, it is suitable
to process them as a data stream [6]. Nowadays there can be seen a trend of usage of
machine learning approaches processing data streams [7].

More specifically, in our research we focus on the task of prediction whether a user
will end the browsing session within the next few actions [8]. Similarly — an attrition
[9] or a churn rate [4] are typically predicted for the long-term user activities (e.g.
customer loss, course dropout) in domains such as telecommunication [10], retail
banking [9] or e-learning [11].

In our research, we deal with short time user activities - the browsing session.
Browsing session is defined as a set of user actions (e.g. page visits) which he per-
forms to reach one concrete task on the Web (e.g., find some information) [12]. The
actions relate together, they are accomplished in similar circumstances and context.
Such session meets the conditions to be a short-term behavior. To our best knowledge,
there are no works on the scale of short-time behavior prediction.

2.  User Browsing Session End Prediction Approach

To be able to predict the session end it is necessary to consider also domain character-
istics. Our first proposal is within e-learning domain [8]. Whenever an e-learning sys-
tem enrolls large number of students, there is needed to process a high volume of data
that come in the form of data stream, which specifies the task to the sequential data
processing.

The data stream is represented by users’ visits of the Web pages, while these ac-
tions were described by various attributes (directly logged and also derived by us). An
examples of such attributes are Web page details (e.g., course, type, difficulty), time-
stamp (e.g., day in week, hour in day), attributes describing the session (e.g., order of
visited page in session, time spent in session before visit of current page), attributes
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describing user habits (e.g., average session length) or attributes describing anomalies
(e.g., flag if is current session longer than average, information how much is session
longer or shorter than average).

As the user’s preferences and behavior change in time (course beginning, before/
after the exam), it is important to be able to continuously react to these changes [13].
In the case of binary classification task (leave the site in next action vs. stay on the
site), often a problem of unbalanced classes occurs [14], while the most often used
techniques to reduce it are the oversampling of a rarer class, undersampling a majority
class and assigning the different importance to observations [15].

To reduce these problems, we proposed a classification approach using polynomial
classifier with stochastic gradient descent algorithm (as a representative of learning
algorithms) to learn the attributes importance (Fig. 1).

Log stream . N Predictions
Prediction classifier

A 4

Attributes weights for specific user Weigths learning

Prediction model

Fig. 1. Principle of used polynomial classifier [8]

The input of the classifier is a stream of logs represented by user actions (visits of
Web pages/learning objects) described by 12 attributes as a visit timestamp, learning
object (page) type, course, difficulty etc. In addition, we derived another 76 attributes
as a session describing attributes (e.g., order of visit in session, time spent), advanced
time attributes (e.g., week or weekend, hour, flag if is semester or exams time) and
behavior describing attributes (e.g., user’s average session length, flag if is current
session longer than average, number of learning objects visited in last week, month).
For every attribute there are considered also its squared and cubic powers, which
makes 264 attributes in total.

The predictions are realized by a polynomial stochastic prediction classifier, which
for every user action decides if it is the last one in user browsing session or not. The
classifier processes data as a stream in one iteration, which enables an online process-
ing of large data volumes. The classification process bases on attributes describing
user actions. For the prediction we consider these attributes each supplemented with
its weight (expressing its importance). In case of a positive result, the user action is
classified as an end of the session, otherwise as continuous browsing.

The attributes weights are persisted in the prediction model. For a new user, they
are initialized to zero and they are adjusted every time the classifier makes an incor-
rect prediction. This process of weights learning is controlled by a stochastic gradient
descent algorithm, which allows to response to possible changes in the data character-
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istics in time and keeps the attributes weights in the prediction model always up-to-
date.

The data are composed of unbalanced amount of observations in individual classes
(leave the session in next action vs. stay on the Web site). In our e-learning system the
users in average visit 14 Web pages in a session, which gives the ratio around 13 ob-
servations of session continue to 1 session leave action. To balance this inequality we
assigned the different importance for user actions based on their class (leave vs. stay)
in the process of attributes weights learning.

The process output is for every user action a prediction if the user will leave the
session in his next action or if he will stay and go to another learning object (Web
page).

Evaluation of proposed approach was realized in e-learning system ALEF [16] on
dataset consisting of 452,000 user actions from 882 users (average of 512 actions per
user) captured in 5 courses for 3 years. In the first step proposed approach did not
overcame the random classification significantly due to an extensive heterogeneity in
users’ behavior. After identification of this fact we have extended the original model
storing classifier attributes weights globally by the multiple models considering
weights individually for every user. It showed up that for the different users the dif-
ferent attributes are important, what was the reason why global variant did not worked
very well. After this personalizing step it was possible to predict the user session end
more precise (prediction precision = 66.5%).

The last action before the leave can be however too late for offering some changes
for the user. For this reason we explored also possibilities for the prediction of leaving
the session within few steps in advance. At first, we experimented with the time as-
pect in the mean of predicting if the user will leave the session within next 5, 10, 15
or 30 seconds. This increased the precision (precision = 78.3% for 30 seconds win-
dow), but as we did not have an information about pages content and we do not know
how much time will the user spend on individual pages, we were not able to use all
potential of the time aspect. For this reason we focused on “Last-N” user actions re-
maining until the session end. This showed as the promising way, we reached the pre-
cision = 83.4% for prediction that the user will end the session within next two ac-
tions and even 93.5% for next three actions.

The information that the user will leave the Web site within few next steps is more
useful than the information about the leave in the nearest step. It gives us the chance
to offer the user reasons why to stay on the site longer or to return in near future (in e-
learning system it can be offering of the learning materials user did not read yet, in e-
shop the discount coupon or interesting goods to buy).

3.  Open problems

In our actual work [8] we proposed the approach of Web user session end prediction,
which we evaluated in domain of e-learning. We showed that the end of the user
browsing session can be predicted with reasonable accuracy. There however occurs a
problem that users do not perform sufficient amount of actions on the Web site [17].
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The reason is that a majority of Web site users are occasional or new ones, while both
these types are characteristic by insufficient amount of actions made. Both of these
user types are common in domains such as news domain where we plan to evaluate
the approach next.

3.1. User Session End Prediction — occasional and new users

For occasional and also for new users it is difficult to predict their future behavior,
because a classifier typically needs to process some amount of actions to train the
prediction model used by the classifier for the user and to be able to predict his behav-
ior satisfactorily.

The reason why focus on the occasional and new users and not only the active
ones, is that they represent a great potential for the site and its visit traffic. The users
who already visit the site often will not start to visit it rapidly more regardless to the
site improvements. In the opposite, attracting occasional and new users (e.g., by per-
sonalized recommendation offered in a moment of the predicted session end) can per-
suade them to stay on site or visit it in the near future again.

Our idea is to train the classifier model for these users based on actions of similar
users, who made sufficient amount of actions or based on external data source. Find-
ing the similar users is for occasional and new users possible sooner than the training
of the classifier models, because it requires the lower amount of actions. The training
using external data sources is based on an assumption that if users (occasional and
active one with sufficient amount of activities) behave similarly on some other Web
site, their behavior can be similar also on the Web site where we actually predict.

To be able to evaluate this idea of comparing the user similarity based on data from
external sources, we plan to use the dataset describing the behavior of e-learning sys-
tem students on the wide Web [19]. As this data contain the behavior of the same
users as we used in previous evaluations (users of e-learning system ALEF [16]), the
results will be appropriate to compare with our actual results described in [8]. To gen-
eralize the results there is available another dataset from system BrUmo describing
user behavior on the Web [20]. We plan to use it for comparison of user behavior sim-
ilarity across multiple Web sites.

3.2. Classifier Model Training — The Cold Start Problem Overcome

An estimation of number of actions required for new user to overcome the cold start
problem is subject to the two contradictory requirements. The first one is that it is
useful to collect as much of the user’s activity as possible. The second one is that if
the user has to make too many actions before he get some benefit in return (e.g., well-
tailored recommendation) it is likely that we will lose him, while the chance of losing
the user grows with every next action made. For this reason it is important to reward
the user as soon as possible.

To find out a balance between these two aspects, we explored the information val-
ue gain caused by users’ activity increase [18]. The gain was quantified as the per-
centage of users, who were assigned, after some amount of their actions considered,
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into the same cluster of similar users as after all their actions (available in the Movie-
Lens dataset!). As we found out on the datasets from various domains (movies, short
texts?), the very first actions bring an exponential growth of information gain, but
after several actions considered it slows down to the linear growth. We consider this
point, for the moment of cold start overcame (Fig. 2).

16
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assigned users
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Fig. 2. An example of information gain (percentage of correctly assigned users) reached from
first user actions - Movielens dataset [ 18]

3.3. Classifier Model Training — External Source User Similarity

User behavior on the Web site is highly influenced by the site structure [21]. This
means that we suppose that the reason for similar behavior of two users on a Web site
can be caused by the fact they have only limited possibilities of how to perform some
activities, not by their similar preferences. For this reason it is suitable to include ex-
ternal data sources and compare users’ behavior on the multiple Web sites for better
similar users search. This kind of information can help for a new and for an occasion-
al user. As the new user will come on Web site where the classifier predicts his behav-
ior in sessions, its model can be immediately trained as to the user who behaves simi-
larly on the external Web site.

The situation is in case of occasional users similar with an only exception that the
model would not be initially trained but only updated. As the user reach the Web site
only occasionally and the data characteristics change in time, his classifier model
weights can become outdated. For this reason we propose to update user’s classifica-
tion model as over the time updated models of his similar users.

! ttp://grouplens.org/datasets/movielens/

2 http://www.ieor.berkeley.edu/ goldberg/jester-data/
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4. Conclusions

In our research in the area of user short-term behavior analysis we focus on the pre-
diction of user session end. We aim at prediction of user browsing session end within
the next few actions (the attrition rate for the Web sessions). Our proposed approach
considers various user behavioral characteristics. Due to the extensive heterogeneity
identified in user behavior we proposed the classifier based on personalized predic-
tion models trained individually for every user.

We evaluated our proposed approach in the e-learning domain, where it was able to
predict browsing session, especially within the next 3 actions (precision = 93.5%). To
be able to generalize and validate proposed approach results to multiple different Web
sites (e.g., with majority of occasional users), there is need of considering the multiple
characteristics as for example the prediction model training (cold start problem for
new users) or the prediction model update (problem of occasional users). We plan to
evaluate our idea of comparing the user similarity based on data from external
sources, on the dataset of e-learning system students’ (same users as in [8]) behavior
on the wide Web [19]. Similarly we plan to evaluate this idea on dataset from system
BrUmo describing user behavior on the several Web sites [20].

Next we plan to train the proposed approach also for other short-term behavioral
prediction tasks. We currently work on analysis of news portal data. Within this
dataset we plan to use proposed approach for the task of the customer conversion rate
(estimation if user will buy the premium content after hitting the paywall in the
browsing session, which lock all the content on site for him if he did not paid for
premium content yet, e.g., on the news portal). This data indicate similar characteris-
tics (extensive streams of actions, imbalanced ratio between numbers of users who
bought the premium content and who does not, changing data characteristic according
to marketing campaigns etc.).

Acknowledgement. This work is partially supported by grants No. KEGA
009STU-4/2014 — Virtual Learning Software Lab for Collaborative Task Solving and
grant No. VG 1/0646/15 — Adaptation of access to information and knowledge arti-
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Abstract. Learning programs in the Event Calculus with Inductive
Logic Programming is a challenging task that requires proper handling
of negation and unobserved predicates. Learners that are able to handle
such issues, typically utilize abduction to account for unobserved super-
vision, and learn by generalizing all examples simultaneously to ensure
soundness, at the cost of an often intractable search space. In this work,
we propose an alternative approach, where a semi-supervised framework
is used to obtain the unobserved supervision, and then a hypothesis is
constructed by a divide-and-conquer search. We evaluate of our approach
on a real-life, activity recognition application.

Keywords: Event Calculus, Inductive Logic Programming, Semi-Supervised
Learning

1 Introduction

The Event Calculus [10] is a temporal logic for reasoning about events and
their effects. Over the past few years, it has been used as a reasoning engine
in large-scale applications, motivating research related to scalable inference [1],
uncertainty handling [17] and learning [9].

Learning Event Calculus programs with Inductive Logic Programming (ILP)
[5] has two major difficulties: First, it is a non-Observational Predicate Learning
(non-OPL) [12] task, meaning that target predicates differ from the ones used to
record the examples. Second, it requires handling of Negation as Failure (NaF)
during learning, which the Event Calculus uses to model persistence of properties
over time. Recently, a number of ILP systems, such as XHAIL [15] and TAL-
RASPAL [2] have been introduced, that are able to address these problems
by combining ILP with Abductive Logic Programming (ALP) [6]. ALP allows
hypothesizing with unobserved knowledge, thus solving non-OPL, and has a
non-monotonic semantics, allowing reasoning under NaF. The above-mentioned
systems generalize all available examples simultaneously, aiming for soundness,
which, in the presence of NaF, is not ensured by set-cover approaches [15]. The
price is that with a sufficient amount of data, the complexity of theory-level
search results in an intractable search space.
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In practice, the requirement for soundness is often relaxed to account for noise
in the data. In this case, the expensive theory-level search is no longer necessary.
In contrast, a set-cover search could be adopted, to scale-up learning. However,
mainstream set-cover systems, like Progol [12] and Aleph? cannot adequately
address non-OPL, especially in the presence of NaF [14]. A plausible workaround
would be to use ALP to solve the non-OPL problem, by abductively acquiring
supervision in terms of target predicates, and then pass this supervision to a set-
cover learner. A problem with this approach is that the supervision acquired via
ALP is often too few to learn something meaningful in a set-cover fashion. This is
because ALP systems are typically biased towards finding the smallest /simplest
explanation of the observations, resulting in a very small number of positive
target predicate instances.

To address the problem, we propose a semi-supervised learning setting. A
small amount of unobserved supervision is acquired via ALP. The input examples
serve as unlabelled (w.r.t. the target predicates) instances, and a k-NN classifier
is used to label them. We use Aleph for learning, and compare this approach to
the XHAIL system on an activity recognition application. Our results indicate
comparable hypotheses.

The rest of this paper is structured as follows. In Section 2 we present the
basics of Event Calculus, ILP and ALP. In Section 3 we discuss in more detail
the problem addressed in this work, while in Section 4 we present our approach.
In Section 5 we present the experimental evaluation, while in Sections 6 and 7
we discuss related work and draw our main conclusions.

2 Background

Event Calculus. The ontology of the Event Calculus comprises time points
represented by integers; fluents, i.e. properties which have certain values in time;
and events, i.e. occurrences in time that may affect fluents. The axioms of the
formalism incorporate the common sense law of inertia, according to which flu-
ents persist over time, unless they are affected by an event. In this work we
use a simplified version of the Event Calculus, which we henceforth denote by
EC. The axioms of The EC are presented below. Following Prolog’s convention,
predicates and ground terms in logical formulae start with a lower case letter,
while variable terms start with a capital letter. Also not denotes Negation as
Failure.

holdsAt(F, T + 1) + (1) holdsAt(F, T + 1) +
initiated At(F,T). holdsAt(F,T), (2)
not terminatedAt(F,T).

Axiom (1) states that a fluent F holds at time 7 if it has been initiated at the
previous time point, while Axiom (2) states that F' continues to hold unless it
is terminated.

4 http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
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Example Time 1: Example Time 2:
happensAt(walking(id; ), 1), happensAt(walking(id;), 2),
happensAt(walking(ids), 1), happensAt(walking(idz), 2),
coords(id;, 201,454, 1), coords(idy, 201, 454, 2),
coords(ids, 230, 440, 1), coords(ids, 227, 440, 2),
direction(id;, 270, 1), direction(id;, 275, 2)
direction(ids, 270, 1), direction(ids, 278, 2)

not_holdsAt(moving(ids,idz),1) holdsAt(moving(idi,ids),?2)

Table 1. Two examples from the domain of activity recognition.

Inductive Logic Programming. An ILP algorithm assumes a set of positive
(ET) and negative (E~) examples and some background knowledge B. From
that, it constructs a clausal theory H (inductive hypothesis) that along with B
logically entails (covers) the examples, i.e. BUH F E*T and BUH ¥ E™.
Abductive Logic Programming. An ALP algorithm assumes a set of ob-
servations F, a background theory B and a set of abducible predicates A. From
that, it derives a set A (abductive explanation) of ground atoms, such that
BUAE E and each predicate in A appears in A.

The learning setting. We use an example from an activity recognition ap-
plication, as defined in the CAVIAR® project, to illustrate our learning setting.
The CAVIAR dataset consists of videos of a public space, where actors perform
some activities. These videos have been manually annotated by the CAVIAR
team to provide the ground truth for two types of activity. The first type corre-
sponds to a person’s activities at a certain time point (short-term activities), for
instance walking, running and so on. The second type corresponds to activities
that involve more than one person (long-term activities), for instance two people
moving together, fighting, meeting and so on.

Table 1 presents two training examples for the moving together long-term
activity, for time points 1 and 2 respectively. Each example is a “snapshot” of
the domain, and consists of the annotation and the narrative. The annotation,
shown in bold in Table 1, specifies whether moving together between two persons
holds at the particular time point. The narrative consists of a person’s short-
term activity, in addition to other spatial knowledge, such as (z,y) coordinates
and direction. Based on the annotation, an example is negative (example at
time 1, Table 1), or positive (example at time 2, Table 1). Negative annotation
is generated via the Closed World Assumption.

From such training instances, and using the EC as background knowledge,
the goal is to derive conditions under which long-term activities are initiated or
terminated. We thus wish to learn rules with initiatedAt/2 and terminatedAt/2
in the head, making our problem non-OPL, since the annotation is given in
holdsAt/2 predicates.

Non-OPL handling. Hybrid learners that combine ILP & ALP can naturally
handle non-OPL, thanks to the ability of the underlying abductive proof pro-
cedure, to hypothesize with non-observed predicates. The XHAIL system [15]

® http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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(a)
to ty tm t
= = time

—— not holdsAt moving *’1‘; holdsAt moving —»; «—— not holdsAt moving —

initiatedAt moving terminatedAt moving

(b)

target concept/time  [to, t,) ty (tn, tm) tm (tm, t]

initiatedAt-moving negatives positive unlabelled negative negatives
terminatedAt-moving unlabelled negative negatives positive unlabelled

Fig. 1. (a) Schematic representation of moving being initiated and terminated in time.
(b) Labels of examples for the time interval presented in (a) for two target classes:
initiatedAt-moving and terminatedAt-moving.

is a hybrid learner that first explains abductively the input data in terms of
target predicates, and then uses the abduced atoms to generate a hypothesis.
As an example, given the data in Table 1 and A = {initiatedAt/2} as the set
of abducible predicates, an abductive explanation (w.r.t. the EC) of the fact
that moving(id;, idg) holds at time 2, is that it is initiated at time 1. Hence
XHAIL derives the atom initiatedAt(moving(idy, idg), 1), which along with EC
entails the examples in Table 1. Subsequently, each abduced atom in an abduc-
tive explanation of the input supervision is used to generate a bottom clause [12].
Collectively, these bottom clauses form the Kernel Set [15], as a lower bound for
the hypothesis space. A hypothesis is found by searching the space of theories
that #-subsume the Kernel Set.

3 Defining the Problem

XHAIL scales poorly because it tries to cover all the examples simultaneously in
order to ensure soundness [15]. However, in applications with large amounts of
noisy data, the target is a less-than-perfect theory. A more practical approach
to scale-up learning in such cases, would be to utilize efficient, off-the-self ILP
learners, like Aleph, which constructs hypotheses one clause at a time, in a
set-cover loop. However, although Aleph supports abduction, its abductive ca-
pabilities are limited and cannot be used for abduction with EC programs [14, 9].
A workaround would be to use an ALP system to acquire the missing supervision
and then use this supervision with Aleph.

A problem with this idea is that the indeterminacy of abduction may result
in supervision of poor quality. To illustrate the issue, assume that we are given
a stream of examples, where the annotation dictates that moving(id;, idg) holds
in a time interval I = [t,,...,t,] (see Figure 1 (a)), and we wish to learn
the conditions under which it is initiated. There is a multitude of alternative
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initiatedAt/2 explanations of the holdsAt/2 observations. One extreme is to
assume that moving(id; , idy) is initiated at t—1, for each ¢ € I. This would give a
sufficient amount of initiatedAt /2 supervision (as much as the original holdsAt/2
one), but a large amount of it may be wrong®. The other extreme is to assume
that moving(idy, idg) is initiated at ¢,,_;. Note that this assumption suffices to
explain all observations in the interval I, since once initiated, moving(idy, idz)
persists, by the axioms of the EC, until it is terminated. This is the simplest
(and the only necessary) abductive explanation. However, this results in too few
initiatedAt/2 supervision.

‘We propose a semi-supervised approach to enrich the abductively acquired
supervision. In the proposed setting, a minimal (simplest) abductive explanation
serves as the initial positive supervision for the target concepts. For instance, in
Figure 1 (b), the example at time ¢,, (resp. t,,) is (abductively-acquired) positive
supervision for the initiation (resp. termination) of moving. All examples in
[tn,tm) (resp. [to,tn) U [tm,tk]) are unlabelled examples for the initiation (resp.
termination) of mowving, that may be taken into account to improve the quality
of the outcome. We next describe our approach in detail.

4 Semi-Supervised Learning

A semi-supervised learning algorithm [18] tries to use both labelled and unla-
belled data to learn a predictor that predicts future instances better than a
predictor learned from the labelled data alone.

A simple and widely-used approach to SSL, which we also adopt in this
work, is k-Nearest Neighbor (k-NN) classification [4]. In a k-NN setting, the
class of an unlabelled example is “approximated” by the class that results by
voting between its k nearest, or most-similar labelled examples, according to
some distance/similarity measure. Formally, if e is an unlabelled example, then
using k-NN, its label is approximated by:

fle) = argmax > d(e,€)-5(c, f(e) (3)
c=1,..., N
7T e’ €Nk (e)
where f is a function that assigns labels to examples, ¢ = 1,..., N is the set

of available class labels, d(z,y) is a distance metric, Ni(e) is the set of the k
labelled examples, nearest to e according to d and (z,y) = 1, if z =y, else 0.

Distance measures used with attribute-value representations are based mostly
on the euclidean distance and its generalizations. Such measures are not appro-
priate for logical settings, where objects are structured. In order to allow for
techniques from distance-based learning to be used in a logical setting, a lot of
work has been done on defining distance/similarity measures for relational data
[3,7,16,13,8,11]. In this work, we base our k-NN approach on the Hausfor(f
metric, as introduced in [13].

S Examples of such cases are fluents that are strongly initiated/terminated. Consider
for instance a fluent representing a ball rolling. Kicking the ball may have initiated
this fluent, but the initiation condition does not hold while the fluent holds.
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4.1 The Hausdorff Metric for Relational Data

A metric space (X,d) is called bounded if d(z,y) < n for all z,y € X and some
n. The Haussdorff Metric is defined on the set of closed subsets of a bounded
metric space as follows:

Definition 1 (The Haussdorff Metric). Let (X,d) be a bounded metric
space and C(X) the set of all closed subsets of X'. Assume the following functions:

o(z,Y) = minyeyd(z,y) for non-empty ¥ C X and z € X.

p(Y,Z) = mazyeyd(z, Z) for non-empty Y, Z C C(X).

WY, Z)=maz(p(Y,Z),p(Z,Y)) for non-empty Y, Z C C(X) with h(0,0) =0
and h(D,Z) = 1.

(C(X), h) is a metric space [13] called the Haussdorff Metric induced by d.

The set of expressions of a first-order language, can be equipped with the Hauss-
dorff Metric by defining an appropriate distance function as follows:

Definition 2 (Distance function on the expressions X of a language).
Let d: X x X — R such as

1. d(z,z)=0forall z € X
2. If p # q then d(p(z1, ..., 24),q(Y1,- - Ym)) = 1
3. d(p($17 .. aI7L)7p(y1a .. 7y7L)) = % Zizl d(xzvyz)

It can be shown [13] that d is a metric and the resulting metric space is bounded
by 1. Moreover, each subset of this space is both open and closed, hence the set
of its closed subsets coincides with the set of all its subsets. Therefore we can
define the distance between subsets of expressions by means of the Haussdorff
distance. In what follows, we use the Haussdorff distance to measure the distance
between two examples in the form of Herbrand Interpretations, as in Table 1.

4.2 Labelling Data

As in many ILP approaches, we assume that some language bias is provided,
specifying the structure of literals and clauses. In this work we use mode dec-
larations [12]. Head mode declarations represent classes in our semi-supervised
setting. Ground instances of head mode atoms represent instances of the partic-
ular class. For example the atom initiatedAt(moving(idy, idg), 10) is an instance
of the corresponding class initiatedAt-moving. Such an atom is a positive example
for the particular class, while negative examples are generated via the Closed
World Assumption. Labelling an input holdsAt/2 example e amounts to gener-
ating from e a ground instance of an initiatedAt/2 or terminatedAt/2 class (thus
generating a positive example), or inferring the absence thereof, (thus implying
a negative example).

A minimal abductive explanation of the input holdsAt/2 observations serves
as a small amount of initial positive supervision, as discussed in previous sec-
tions. Based on these labelled positives, and using also the labelled negatives, we
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(a) Labelled positive: (b) Unlabelled example: (c) Labelled Negative:
Start from the Use constants from the Generate all groundings
abduced annotation atom: holdsAt/2 annotation: of the target class:
initiatedAt(moving (id; , id2), 10) holdsAt(moving(idy, id;), 10) initiatedAt(moving(idy, idy), 10)
10)

Generate a bottom clause:

initiatedAt(moving(idy, id>), 10) <
happensAt(walking (id;), 10),
happensAt(walking(id>), 10),
holdsAtAt(close(id, id2), 10).

Variabilize:

initiatedAt(moving (X, T)

To generate an instance
of the target class:

initiatedAt(moving (idy, id,), 10)

Proceed as in (a)
(generate bottom clause
and variabilize)

initiatedAt(moving(idy, ids),

For each grounding,
proceed as in (a)
(generate bottom clause
from grounding

and variabilize)

Y),
happensAt(WaIk/ng(X) T),
happensAt(walking(Y), T),
holdsAt(close(X, Y), T).

Fig. 2. Extracting structure from positive, unlabelled and negative examples in the
form of bottom clauses.

produce labels for the unlabelled input examples. To do so, for each unlabelled
example e, two values are computed, hd~ (e, ) and hd* (e,), where the former is
the minimum Haussdorf distance of e, from all negatives and the latter is the
minimum Haussdorf distance of e, from all positives. If hd*(e,) > hd ™ (e,,) then
e, is labelled as a positive example and a proper instance of a target class (i.e.
a ground initiatedAt/2 or terminatedAt/2 atom) is generated as annotation. In
the opposite case, e, is labelled as a negative example.

To calculate Haussdorf distances, clausal structure is extracted from the ex-
amples, in the form of bottom clauses [12]. Figure 2 illustrates the process for
the three cases of (a) labelled positives, (b) unlabelled examples and (c) labelled
negatives. In all cases, generated ground instances of the target class are used as
heads for bottom clauses, thus extracting related structure (as indicated by body
mode declarations) from within the Herbrand interpretation that represents the
example. Haussdorf distances between examples are then computed between
these bottom clauses. The Hausdorff distance between two bottom clauses is
calculated on the corresponding Herbrant Interpretations that result by joining
the head and the body of each clause. Since what needs to be compared for
similarity is “lifted” clausal structure that may be generated from the examples,
rather than specific ground instantiations, the bottom clauses are variabilized,
i.e. ground terms are replaced by variables as indicated by the mode declarations
(see Figure 2).

5 Experimental Evaluation

We implemented our approach using Aleph and the answer set solver Clingo” as
the ALP component. We conducted a preliminary experimental evaluation on

" nttp://potassco.sourceforge.net/
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Aleph-+SSL XHAIL
Training Time (sec) 81.32 (£ 19.02) 480.50 (+ 94.78)
Hypothesis size 12.26 (+6.32) 7.50 (+4.34)
Precision 60.318 (+0.438) 67.145 (+ 0.652)
Recall 89.545 (£ 0.648)  82.254 (£0.505)
Fi-score 72.448 (+ 0.367) 73.935 (+0.687)

Table 2. Comparison of Aleph with semi-supervised learning and XHAIL.

the CAVIAR dataset. As a baseline to compare with we used the XHAIL system,
which, like Aleph, uses the data to guide its search in a bottom-up manner.
Experimental Setting. We used ALP to acquire the initial initiatedAt/2
and terminatedAt/2 supervision, from all CAVIAR videos. Note that for all
videos, this supervision was too few for Aleph to learn something: Aleph returned
a simple enumeration of the supervision, since given the number of positives,
the gain of generalizing them, in terms of compression, was negligible. After
labelling the unlabelled examples, we used Aleph to learn a theory From each
video separately, for the long-term activities of moving, meeting and fighting.
We also used XHAIL to learn a theory from each video, using only the original
data (i.e. without enhancing the supervision). Each theory constructed from
each system was evaluated against all other CAVIAR videos. Table 2 presents
the results.

Results. Training times for XHAIL are significantly higher, as compared to
those of Aleph’s, due to the combinatorial complexity of XHAIL’s theory level
search. On the other hand, this search is responsible for the fact that XHAIL
learned more compressed programs. The lower precision scores for Aleph are at-
tributed to the fact that Aleph frequently produced over-fitted terminatedAt/2
rules, which on unseen data, failed to capture the termination of fluents, result-
ing in a large number of false positives. However, some low-scale experiments
on CAVIAR indicate that these scores may be improved by learning from more
than one video at a time. Concerning recall, Aleph outscores XHAIL. In general,
Aleph learned from a richer supervision, and produced theories that were able
to better fit unseen instances, resulting in a fewer number of false negatives, as
compared to XHAIL. In contrast, XHAIL learned from small (minimal) abduc-
tive explanations from each video, which resulted in missing interesting patterns,
subsequently producing a larger number of false negatives on unseen data, and
thus, a lower recall.

6 Related Work

A substantial amount of work on distance-based methods for relational data
exists in the literature. KGB [3] uses a similarity measure, based on the compar-
ison of structural components of logical entities, to perform generalization via
clustering. RIBL [7] is a k-NN classifier that extents KGB’s structural similar-
ity measure, by taking into account the values of attributes in logical objects,
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in addition to other objects that they are related to. Propagating similarity in
this way, results in “indeterminacy of associations” [8], a problem with increased
computational complexity. This issue is addressed by the similarity measure in-
troduced in [8], which uses a stratification framework for level-wise comparison
of objects. A drawback of all these approaches is that they assume function-free
Horn logic as the representation language, and thus cannot be applied to nested
representations required by EC programs. In addition, these measures are not
metrics, hence they lack the desirable mathematical properties of the Hausdorff
distance, used in this work.

In addition to the above-mentioned, purely syntactic similarity frameworks,
semantic frameworks have also been proposed for logical distance base-learning.
[16] presents a k-NN classifier that first generates a user-specified number of
alternative hypotheses, and then classifies an example by voting between the
hypotheses that entail the examples and those that do not. k-FOIL [3] relies on
the FOIL ILP system to generate a set of rules, which are then used to define
a kernel function for the example space, based on the coverage of the examples
by the rules. It then tries to refine these rules, evaluating each refinement via
a support vector machine trained on the current kernel. A difference of such
approaches from the work presented here, is that they use the logical learning
framework to construct a classifier, while we use a simple k-NN classifier to
facilitate the learning framework.

7 Conclusions and Future Work

We presented a semi-supervised framework for learning Event Calculus theories.
The main problem we address is to use the input, observed predicates, to acquire
sufficient supervision, in terms of hidden, target predicates. To this end we use
abduction to obtain a small set of target predicate instances, which serve as the
initial set of positive labelled examples, and then use a k-NN classifier based on
the Hausdorff distance, to obtain new instances, thus enriching the supervision.
We presented a preliminary evaluation on an activity recognition application,
with promising results concerning training time speed-ups and hypothesis qual-
ity, as compared to the baseline of the ILP-ALP system XHAIL. Future work
involves further experimentation and assessment of more sophisticated distance
measures and different semi-supervised learning settings. We also plan to com-
bine our approach with existing techniques for learning Event Calculus programs

[9].
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Deep Bayesian Tensor for Recommender System

Wei Lu and Fu-lai Chung

Department of Computing, Hong Kong Polytechnic University
Kowloon, Hong Kong

Abstract. How to efficiently learn user behavior features is a key for recommen-
dation. Tensor factorization offers a useful approach for complex multi-relational
data learning and missing element completion. Targeting the volatile and sparse
issue of online video recommendation, we propose a deep probabilistic tensor
decomposition model for item recommendation. Extended from the Canonical
PARAFAC (CP) decomposition, this method provides a fully conjugate Bayesian
treatment for parameter learning. Through incorporating multi-layer factoriza-
tion, a richer feature representation facilitates a better and comprehensive under-
standing of user behaviors and hence gives more helpful recommendations. The
new algorithm, called Deep Canonical PARAFAC Factorization (DCPF), is eval-
uated on both synthetic and large-scale real world problems. Empirical results
demonstrate the superiority of the proposed method and indicate that it can better
capture latent patterns of interaction relationships.

1 Introduction

Relational data based personalized recommendation plays an essential role in today’s
e-commerce operations. While those emerging web sites provide services of millions
of TV shows, movies, music and news clips, they are also a main source of capturing
browsing or operational data for a huge amount of users. To increase user stickiness
and to enhance the overall satisfaction, services working on finding the most relevant
contents to users are highly desired. There are two traditional and widely applied ap-
proaches to this kind of tasks, i.e., Content-Based Filtering (CBF) and Collaborative
Filtering (CF). CBF compares new information with the historical profile to predict its
relevance to certain users [1]. CF recommends items based on the common preferences
of a user group, without using the item attributes. Although both of them have per-
formed superiorly well on many systems, they have drawbacks facing the challenges
aroused by the increasing availability of large-scale digitized data.

Taking the online video recommender system as an example, in view of the fact
that most large-scale digitized data nowadays can be regarded as multi-relational data,
one may construct a three-way tensor (User x Video x Tag), which stores both user-
item and item-feature (tag) interaction. Assuming that the historical behaviors of users
are sound sources for preference estimation, the high-level semantic topics of video
tags can be regarded as a comprehensive representation of user features. Moreover,
since the tags are manually labeled, error, incompleteness and abundance exist. How
to overcome these deficiencies and explore a better representation of user preference
features is also an important concern of model construction. Regarding the interaction
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of information, a tensor format is hence a natural and sound approach. In the proposed
recommender system, we could obtain the click records of each individual active user,
and add multiple categories of tags to each video in the database. So the tensor can be
constructed flexibly either in a real-valued way using the number of clicks, or a binary
way using the action user takes on the video.

Traditional multi-way factor models suffer from the drawback of failing to capture
coupled and nonlinear interactions between entities [14]. Also, they are not robust to
datasets containing noisy and missing values. Through proper generative models, non-
parametric Bayesian multi-way analysis algorithms (like [S] [14] [10]) are especially
appealing, since they provide efficient ways to deal with distinct data types as well
as data with missing values and noises. Meanwhile, deep networks have been proved
great empirical success in various domains [2]. With their capability in providing more
compact nonlinear representations for feature learning, it would be interesting to adopt
deep learning in one or more of the tensor modes and assess its effectiveness on tensor
completion.

Motivated by the aforementioned considerations, this paper presents a fully con-
jugate deep probabilistic approach for tensor decomposition. Based on the Canonical
PARAFAC (CP) decomposition, the proposed model is capable of clustering the three-
way data along each direction simultaneously. To find a more compact representation
in the latent space of each mode, a multi-layer factorization is imposed on the mode
factor matrix to incorporate nonlinear mapping. As a fully conjugate Bayesian model,
efficient Gibbs sampling inference is facilitated, with automatic determination of core
tensor rank.

The rest of the paper is organized as follows. Related work and CP decomposition
are reviewed in Section 2. A new hierarchical recommendation framework, i.e., DCPF,
is introduced in Section 3 and its deep factorization is elaborated. The detailed inference
mechanism using fully conjugate Gibbs sampling is also presented. Then, experiments
on both synthetic and real-world scenarios are described. Performance comparison be-
tween single layer and 2-layer implementations are presented for video recommenda-
tion and tag completion. Finally, we conclude this work in Section 5.

2 Related Work

2.1 Canonical PARAFAC (CP) Decomposition

The core of our proposed model is the Canonical PARAFAC (CP) decomposition [6].
CP, as a special case of Tucker decomposition, decomposes a tensor into a sum of rank-1
components [7], as illustrated in Fig. 1. A K-mode tensor X € R™ *"2X X"k where
ny denotes the dimension of each mode, can be expressed by:

R
X=3" A ulou® . oulld)
r=1

Here, we adopt the notations from [7]. The column vectors {u*}1 | € R™*! denote
the latent factors for each mode, combining which forms the factor matrices U ). Ris
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Fig. 1. CP decomposition: a three mode user- Fig. 2. Graphic model: The observed X is de-

video-tag relational dataset example. composed into a diagonal core tensor A and
K-mode matrices. Each factor matrix U®) is
further constructed through a L layer deep
network .

a positive integer indicating the rank of the core tensor. A, is the weight associated with
the 7t rank component and o denotes vector outer product. In an element-wise way,
the tensor element x; with subscript i = i1, ..., ix denoting the K-dimensional index of
the 7" entry in the observed tensor can be concisely expressed as:

R
XZ)\

r=1

ull) M

ur

u',:]k

2.2 Multi-task Learning, Transfer Learning and Deep Learning

Learning multi-relational features can be linked with two other state-of-art machine
learning methods, i.e. multi-task learning and transfer learning. Multi-task learning tries
to learn multiple tasks simultaneously through uncovering the common latent features
[9], while transfer learning is distinguished by removing the assumption that the training
and test data are drawn from the same feature space and the same distribution. Since
the essence of creative learning is to infer the unexplored feature space, both learning
paradigms might be helpful for solving approach design.

Significant recent research on deep models has proved its effect on data represen-
tation. The form of the proposed multi-layer implementation is most related to [4] and
[8]. The main idea is that an unsupervised deep model can be viewed as a hierarchy
of factor-analysis [15], with the factor decomposition from lower layer serving as the
input of deeper layer.

3 Deep CP Decomposition

3.1 Model Description

Let Y denote an incomplete K-order tensor. For different types of observation Y, we
assume that there exists a latent real-valued tensor X, from which the observations
are sampled from. Y and X are related element-wisely through a noise function f
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[13], depending on the data type being modeled, e.g. Gaussian for real valued data,
or Bernoulli-logistic for binary valued data. The goal is to infer the parameters of CP
decomposition, A and {U™}_ | based on sparse observation Y. Assuming that the
elements y;’s of the observations are i.i.d, for continuous observations with Gaussian
noise, the joint likelihood distribution of Y can be written as:

p(Y[X) = [[Nwilws, 77" @)

where 7, is the precision of the noise, and i = 41, ...7g, ...i k.

The problem is how to reduce the size of tensor rank so as to make a rich feature-
based and scalable user representation during model construction. Our low-rank con-
struction is adopted from [3] and [10] using the multiplicative gamma process (MGP).
Putting the prior on the super-diagonal elements of the core tensor X, the number of
diagonal elements will increasingly shrink to zero. When it stabilizes, the number of
the remaining elements can be inferred as the appropriate rank for dimensionality re-
duction.

3.2 Multi-layer Sparse Factorization

To enhance the feature representation, factor matrix U*) for mode & can be further con-
structed through an unsupervised deep model in terms of a hierarchy of factor analysis.
Assuming that the hierarchical tensor factorization model is performed for L layers,
the original data Y is represented in terms of n; x R tensor factor matrix U*) as in
equation (1). U*) can be further divided as Wl(k)DW + EYC). For the deeper layers,
the input for each layer is the previous layer’s factor loading matrix (as shown in Fig.
2). The discarding of residue between layers acts as noise filtering. Hence, each factor
matrix is further represented by a lower rank factor loading component wk e R, o X M
and factor score D*) € R/ g, where M indicates the number of factors for this layer.
The matrix £ captures the idiosyncratic noise. [ = 1,2, ..., L specifies how deep the
network wishes to go to.

The inference of the factor number for each layer is realized through a Beta-Bernoulli
process [11] as W*) = B®) @ V() 1In practice, the number of layers is initialized
large, thus the element {bg,ﬁ%}lg,,,g,,,kylgmgM € {0,1} of B®) can indicate whether
the m*" factor has been used or not. To go to the next layer, we denote M as the num-
ber of factors that has nonzero indicator B%® for at least one sample, and use these
factor loadings as the entry of the next layer. Model fitting at the deeper layers are sim-
ilar to the first layer. With the gradual deduction of factor numbers, the computational
complexity decreases with layer getting deeper.

3.3 Probabilistic Hierarchical Tensor Model

We now propose a hierarchical generative framework for a three-way tensor data where-
by the aforementioned tensor construction and deep model fitting can be performed. The
graphic model of DCPF model is shown in Fig. 2. The multiplicative gamma process
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prior is constructed as 7, = H;Zl 0, 0t ~ Gammal(a,,1) a, > 1, and is placed on
the precision of the Gaussian distribution for A, as A, ~ A/(0,7,71).

Since exact inference is intractable, we implement the posterior computation using
Markov Chain Monte Carlo (MCMC). In the proposed model, all conditional distri-
butions are analytic. The choices for prior hyper-parameters are relatively standard in
Bayesian analysis, hence no particular tuning is required. Updating equations for the
latent parameters are provided in detail as follows.

o Update mode factor matrix U¥)
For1l <r < R,1 <k < K, at the (r, k) tuple, all the other entities are regarded as
non-variables, so x; can be rewritten as:

K

=0 [ wF)ul+ 3 A Huﬁfl/ 3)

K Ak, k'=1 rEr k=1

(k ) and the second part be q( Z With Gaussian

Tk

Let the first parentheses part equal to p;
noise precision 7., the prior of u*) is N (,u(’“), Te ), where p(¥) equals to (B(k) O]
V(k))D("'). Thus the conjugate posterior can be inferred as:
k k
ul) o /\/( (k) E,k) “

with the posterior expectation and covariance as

Z p(k)2 + 7.

)
ﬂi? = Z;kl (TE}L + 7o Z Yi — qgf) PE?)

e Update binary indicator matrix B, ) and factor loading matrix Vl(k)
For each entity b*) of B(k) we have

ipm

(), = 11-) = ) ©6)

ipm igm

o ()

T 2 T T
where i = g crpl— 5 (off), i di) — 2000, U di))]

igmn
Ul 7ZL here equals to u®) — >~ (bi’:zn ® VE)DE) and bffzn is the most recent

sample [4].

Taking the advantage of conjugate property, the posterior mean and covariance for

(k)

the factor loading element v; . can be derived as:

QR
=10 (ry + .d®a® " p") ) )
) 5, o @, 4 dB ) ®
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® and © are the element-wise product and division operator respectively. For multi-
layer implementation, after sampling v, it is used as the input to the next layer. Thus,
there is a residue filtering between each layer.

The sampling for factor score matrix D) is similar to V*), Note that since for
each layer of the deep network, the basic model is the same, the layer superscripts are
omitted for clarity.

4 Experiments

We perform experiments on both synthetic toy data and large-scale real-word dataset
to verify the performance of the DCPF model on expressing high-level semantic fea-
tures of user behavior, and the effect of deep structure exploration for recommendation
through multi-layer tensor construction.

4.1 Toy Example

The first example we considered is a toy problem, in which 3-D and 4-D cases are
tested to verify the tensor completion performance of DCPF. The 3-D synthetic data
is of size 15 x 14 x 13 with 50% non-zero values. The 4-D synthetic data is of size
20 x 20 x 20 x 20 with 1000 non-zero values. Table 1 compares the results using
a baseline method Bayesian CP (BCP), i.e. a fully Bayesian version of the standard
probabilistic CP decomposition [12]. The inferred rank using our method is 8 and 10
for the two synthetic datasets. Since BCP has to specify the rank, it was run with ranks
ranging from 3 — 10, and the rank that generates smallest mean squared error (MSE)
is chosen for comparison. We compare the reconstruction errors (MSE) in Table 1. For
both cases, one layer and 2-layer DCPF provides competitive performances comparing
to the state-of-art BCP.

Table 1. Synthetic data MSE comparison

3-D data (R=8) 4-D data (R=10)

Bayesian CP [0.2431 + 0.0247 (R=11)|0.0922 £+ 0.0207 (R=10)
DCPF 0.2502 £ 0.0055 0.0459 + 0.0014
2-layer DCPF 0.2490 £ 0.0006 0.0412 £ 0.0011

We also construct a three-way 100 x 100 x 100 tensor, with sparseness control
(missing percentage) of 50% — 90% (Table 2). From varying the percentage of miss-
ing values, we can infer that a multi-layer filtering of the factor matrix will prevent
the degrading of the reconstruction performance especially when the data has higher
sparseness percentage.

The scalability is tested with tensor size 100 x 100 x 100. Specifically, with 100, 000
entries of observations and a fixed core tensor rank at 50, based on MATLAB imple-
mentation, the averaged time for 50 iterations is 3, 542 seconds.
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Table 2. Reconstruction error comparison of different data sparse percentages (lower the better)

90% | 80% | 70% | 60% | 50%

Bayesian CP |0.4137|0.4123|0.4120|0.4093|0.3993
DCPF 0.4104|0.4100]0.3989|0.3959|0.3957

2-layer DCPF|0.3951(0.3865|0.3811|0.3697|0.3542

4.2 Video Recommendation

For real-world application, we use records in three consecutive weeks (August 1 - Au-
gust 21, 2014) at the same time slot from Tencent QQ browser, a one-stop browser used
by millions of users. The database stores historical viewing records of active users ex-
tracted from the Hadoop distributed file system, with each record referring to one video
clicked. Besides the time slot, user id, video id, number of clicks by this particular user
and the total number of clicks in history, there are four categories of information provid-
ed as video word tag (in Chinese): (1) type (e.g. action, mystery); (2) region (e.g. US,
main land China); (3) director; and (4) actor. Based on these information, a three-way
tagx user x video tensor was constructed. There are 4,071, 811 samples in total with
137,465 unique users, and 9, 393 unique videos they clicked. We focus on warm-start
test for the current application, which requires both active users and candidate videos
occurred before. So the training and testing subsets are generated as follows.

We select a subset of users who have over 10 historical records and adopt a 5-fold
cross-validation for evaluation. To guarantee that all the users and items have already
appeared in the training sets, for records that have been viewed by each user for over five
times, we distribute at least one of them into each fold. For records that have appeared
less than five times (246, 642 in total), we always put them into the training fold. The
dimensionality of the testing tensor is 1421 x 4013 x 231.

Since the generated factor matrices discover the latent groups of associations among
tags, users and videos, we can utilize them to construct score matrices for recommen-
dation [16]. For example, the i*" row of user factor matrix U(?) provides an additive
combination of cluster components for user ¢. The higher weight it is, the more relevant
user i is related to the topic, and similarly for the 5" row of video factor matrix U ).
Thus, groups can be recommended according to the linear add-up of their corresponding
factor weights. The score matrix S for user-video pairs can be defined as:

R
S = Z APy O)

r=1

Usually for the browser interface, 5 — 10 videos are listed as a guessing of user in-
terest. The values for precision@n, recall@n and averaged hit rate are illustrated in Fig.
3. The increase of pool number will enhance the probability to recommend the favored
video. Thus, the three metrics have the trend of gradually growing. Single layer and
2-layer DCPF have similar precision for prediction, but a multi-layer implementation
allows an obvious higher hit rate, which indicates that it can pick the correct choice of
users at an earlier stage of recommendation.
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Fig. 3. Video recommendation performance comparison for single layer and 2-layer DCPF with
varying candidates number n ranging from 1-10.

4.3 Performance Evaluation

To visualize how the multi-layer implementation of DCPF actually influences the fea-
ture representation, we present four sample factors of tags discovered using both single
layer and 2-layer DCPF in this section. We examine U and U®), which represent
the latent factors of tags and videos respectively. The rank is 78, with 64 factors out
of 70 are used in the next layer. Four top weighted factors from each factor matrix are
selected with eight highest score items each for concise visualization of topics.

1-Layer DCPF

director name g7k director name £%E Korean ZETERE actor name S5 R
Gt actor name  #k%)I| actor names ZHFE anime directorfA )| Bk
Actor BEEK History Fi 58 ZRAEM actor nameFFAE
names TT Actor | FREDE director name #r Kt anime director BIil
ES. S names BFHH £ horror Z:Afi
Reality show ELA TS RIS Korean | sy singer nameifi 44k
Parent-child3&F A5 actor names. u; pg 2 thriller TR
 actorname i E . reality TN | A Animation F38
‘xﬁ ‘ ::§ gﬁ
5 sﬁ ‘g i
4 4 M 3
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2 s H— i
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\dol soap fB1£JRI comedy - fil singer name K 2EHE dancer B i
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Fig. 4. Four top weighted factors learned from single layer and 2-layer DCPFE. Each block shows
two aggregated statistics of the factor: the eight most representative tags and a histogram of the
distribution of 20 top weighted tags from 4 categories. The Columns in each of the histogram
correspond to type, region, director and actor from left to right.
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As shown in Fig. 4, semantic topics using single layer DCPF are primarily consisted
of tags from the actor category. This phenomena illustrates that on one hand, certain
types of users indeed choose their watching list according to the favor of particular
actors, on the other hand, this could be also due to the high occurrences of actors and
reduplicative annotation. When going deeper, a 2-layer factorization filters out noises
and abundances. Thus, factor weights for the other three categories of tags are better
explored. This observation also provides a possible explanation for the better hit rate
performance of 2-layer DCPF shown in Fig.3. Since the user preferences are naturally
and comprehensively mixed, although the group of tags for each factor seems more
irregular on the surface, they actually better interpret the semantic level topics of user
tastes.

5 CONCLUSION

With the exponential growth in large-scale relational data, effective feature learning
techniques are greatly desired. In recommender systems, volatile user and sparse video
tags present challenges to traditional collaborative filtering systems. Tensor factoriza-
tion provides an effective way for joint analysis of user and video features. Through
a scalable framework for tensor completion, we are able to recommend personalized
items flexibly. Deep learning is also leveraged to explore richer item representation of
user preferences. Our model can perform fully conjugate Bayesian inference via Gibbs
sampling and can assess recommendation performance quantitatively.

Although the data we use in this paper are only real valued ones, the framework can
also be extended to handle counting or binary ones. We aim to incorporate various types
of information to enhance user behavior representation in the future. Also currently the
novelty is evaluated based on generating new combination of existent items. Creative
construction for data from previously unexplored domain based on current knowledge
are also appealing for future targets.
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Abstract. We address the problem of Bayesian variable selection for
high-dimensional linear regression. We consider a generative model that
uses a spike-and-slab-like prior distribution obtained by multiplying a
deterministic binary vector, which traduces the sparsity of the problem,
with a random Gaussian parameter vector. The originality of the work
is to consider inference through relaxing the model and using a type-II
log-likelihood maximization based on an EM algorithm. Model selec-
tion is performed afterwards relying on Occam’s razor and on a path
of models found by the EM algorithm. Numerical comparisons between
our method, called spinyReg, and state-of-the-art high-dimensional vari-
able selection algorithms (such as lasso, adaptive lasso, stability selec-
tion or spike-and-slab procedures) are reported. Competitive variable
selection results and predictive performances are achieved on both simu-
lated and real benchmark data sets. An R package implementing the
spinyReg method is currently under development and is available at
https://r-forge.r-project.org/projects/spinyreg.

1 Introduction

Over the past decades, parsimony has emerged as a very natural way to deal
with high-dimensional data spaces [3]. In the context of linear regression, finding
a parsimonious parameter vector can both prevent overfitting, make an ill-posed
problem (such as a “large p, small n” situation) tractable, and allow to interpret
easily the data by finding which predictors are relevant. The problem of finding
such predictors is referred to as sparse regression or variable selection and has
mainly been considered either by likelihood penalization of the data, or by using
Bayesian models.

Penalized likelihood. The most natural sparsity-inducing penalty, the £p-pseudonorm,
unfortunately leads to an NP-hard optimization problem [16] that is intractable
as soon as the number of predictors exceeds a few dozens. To overcome this
restriction, convex relaxation of the fy-pseudonorm, that is, ¢;-regularization,
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have become a basic tool in modern statistics. The most spread formulation of
the ¢1-penalized linear regression was introduced by [21] as the “least absolute
shrinkage and selection operator” (lasso). Several algorithms allow fast compu-
tations of the lasso, even when the number of predictors largely exceeds the
number of observations. However, the crude lasso is not model-consistent unless
some cumbersome conditions on the design matrix [25]. Moreover, it can be sen-
sitive to highly correlated predictors [27] and its distributional properties can be
surprisingly complex [18].

Bayesian modelling. Bayesian models have also been widely studied in a variable
selection context [17]. The most efficient techniques essentially rest on spike-and-
slab procedures. Spike-and-slab models, first introduced by [15], use mixtures
of two distributions as priors for the regression coefficients: a thin one, corre-
sponding to irrelevant predictors (the spike, typically a Dirac law or a Gaussian
distribution with small variance) and a thick one, corresponding to the relevant
variables (the slab, typically a uniform or Gaussian distribution of large vari-
ance). Markov chain Monte Carlo (MCMC) methods have been usually chosen
to select models with the highest posterior distributions. MCMC techniques have
an important computational cost and may suffer from poor mixing properties
in the case of spike-and-slab-like priors [17]. A few deterministic methods have
also recently been proposed to tackle this issue [19, 24].

Our approach. As an alternative, our approach uses spike-and-slab-like priors
induced by a binary vector which segregates the relevant from the irrelevant pre-
dictors. Such vectors, introduced by [6] have been widely used in the Bayesian
literature, but have always been considered as random parameters. In most
Bayesian contexts, such a binary vector would be classically endowed with a
product of Bernoulli prior distributions. In our work, the originality is to con-
sider a deterministic binary vector, and to relax it in order to rely on an EM
algorithm. This relaxed procedure allows us to find a family of p models, ordered
by sparsity. Model selection is performed afterwards by maximizing the marginal
likelihood over this family of models.

Notation. For two matrices A and B of M,, ;,, we define their Hadamard product
as A ® B = (aijbij)i<n,j<p Where a;; and b;; respectively denote the (7,7)-th
coordinate of A and B. The identity matrix of dimension n is denoted by I,,.
Given a binary vector z € {0, 1}?, we denote z the binary vector of {0, 1}” whose
support is exactly the complement of Supp(z). Given a binary vector z € {0, 1}?
and a matrix A € M, ,, we denote A, the extracted matrix of A where only
the columns corresponding to the nonzero indexes of z have been kept.

2 A sparse generative model

Let us consider the following regression model
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where Y € R" is the set of n observed responses, X € M, ,(R) is the de-
sign matrix with p input variables. The vector € is a noise term with p(e|y) =
N(e;0,1,,/7). A prior distribution p(w|a) = N(w;0,I,/a) with an isotropic co-
variance matrix is further assumed. Moreover, we denote by z € {0, 1}” a binary
deterministic parameter vector, whose nonzero entries correspond to the active
variables of the regression model. It is worth noticing that such modeling induces
a spike-and-slab-like prior distribution for 3:

p(Blz, ) = [ [ p(Bslzs ) = ] do(B)' = N (B5:0,1/). (2)

Contrary to standard spike-and-slab models [15] which assume a Bernoulli prior
distribution over z, we see z here as a deterministic parameter to be inferred from
the data. As we shall see in Section 3, this allows us to work with a marginal
log-likelihood which involves an Occam’s razor term, allowing model selection
afterwards. In the same spirit, we do not put any prior distribution on ~ nor
«. From now on, to simplify notations, the dependency on X in conditional
distributions will be omitted.

Proposition 1 The posterior distribution of w given the data is given by
p(W|Y,Z,a,7) = N(w;m,8S), 3)
where S = (YZXTXZ + oI,)~! and m = ySZXTY.

The vector m is the maximum a posteriori (MAP) estimate of 3. Next proposi-
tion assures that it recovers the support of the parameter vector. Moreover, its
nonzero coefficients correspond to ridge estimates with regularization parameter
a/~ of the model where only the ¢ predictors corresponding to the support of z
have been kept.

Proposition 2 We have Supp(m) = Supp(z) almost surely and

1
m, = (XZTXZ + 91,,) X7y, (4)
ol

3 Inference

This section now focuses on inferring the model proposed above. To this end, w is
seen as a latent variable while Z = diag(z), «, 7 are parameters to be estimated
from the data (X,Y) using an empirical Bayes framework. The estimators of z,
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a and v will be the ones that maximize the evidence (or type-II likelihood) of
the data:

p(Y[X,2z,0,7) = /Rp p(Y[X,w,z,a,y)p(w|a)dw. (5)
Seing w as a latent variable, a natural optimization procedure is the expectation-
maximization (EM) algorithm introduced by [4]. However, the maximization
of (5) would be problematic for two reasons. First, because the optimization
problem in z is combinatorial and 2P values of z are possible. Then, because in
this case, the parameter space is partly discrete and all theoretical convergence
properties of the EM algorithm require a continuous parameter space [23,13].
To overcome these issues, we propose to use a simple relaxation by replacing
the model parameter by a vector z™®*d in [0,1]?. This relaxation allows us
to efficiently maximize the new, relaxed version of (5) using an EM approach.
Interestingly, this relaxed model is somehow related to the automatic relevance
determination (ARD) [11,22]. However, our method avoids several drawbacks of
this technique, for more details, see the extended working paper [12]. From now
on, and until the end of this section, we will only consider the relaxed model with
zrelaxed € [0 1]P. Tn order to simplify notations, we denote Z = diag(z"'>*¢?).

E-step. At the E-step of the relaxed EM algorithm, one has to compute the
expectation of the complete data log-likelihood Ey (logp(Y,w,|Z,a,v)) with
respect to the posterior distribution p(w|Y,Z, «, 7). Consequently, the parame-
ters S and m of the Gaussian posterior (3) have to be computed at each step.

M-step. At the M-step, the expectation of the complete data log-likelihood
Ew(logp(Y,wW|Z, o, 7)) with respect to p(w|Y, Z, o, v), is maximized over Z, a, .
This leads to the following M-step updates.

Proposition 3 The values of v, a, 2" mazimizing By, (log p(Y,w|Z, a,7))
are
2 —1 1 T relaxed T’ T relaxed relaxed T’ T
5 :f{Y Ytz (XTX © ¥)z ~ 92 (mo (X Y))}
n
(6)
. p
= 7
1
grelaxed — gromax {—ﬁuT(XTX oX)u+u’(mo (XTY))} (8)
uel0,1]p

Notice that it can be shown (see the extended verson [12]) that the zre!axed
update (8) is a quadratic program (QP) which is strictly concave if, and only
if X has no null column. Since it is always the case in practice, fast convex
optimization techniques can be used to solve (8) efficiently.
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Computational cost. At each iteration, the most expensive step is the inversion
of the p x p matrix S during the E-step. It would imply a O(p®) complexity, not
allowing us to deal with high-dimentional data. However, using the Woodbury
identity, one can write when p > n,

1 1 1 1 -
S=21,+— (zZX") | =1, + =XZ?X" X7Z).
S+ 5 (ZX7) ( Sty (XZ)

Thus, the final computational cost has therefore a O(p? min(n,p)) complexity,
which is more suitable for high-dimensional problems. For more details and a
comparison with the complexity of state-of-the art Bayesian and frequentist
methods see the extended working paper [12].

4 Model selection

In practice, the vector z**'?*¢d has to be binarized in order to select the relevant
input variables. A common choice would consist in relying on a threshold 7 such
that z; is set to 1 if z; > 7, and to 0 otherwise. However, numerical experiments
showed that such a procedure would lead to poor estimates of z. In order to
perform an efficient variable selection, we will use the outputs of the relaxed
EM algorithm to create a path of models and, relying on Occam’s razor, we
will afterward maximize the type-II likelihood over this path to finally select the
relevant variables.

4.1 Occam’s Razor
One of the key advantages of the approach proposed is that it maximizes a

marginal log-likelihood, which automatically penalizes the model complexity by
adding a term to the sum of squared errors.

Proposition 4 Up to unnecessary additive constants, the negative type-II log-
likelihood can be written as

—logp(Y|z,a,7) = —log p(Y|m, z,7) + pen(z, a, )

9)
= 2IIY = Xym, 3 + pen(z, @, 7)
where
1
pen(z, o, v) = —log p(m|a) — 5 log det S (10)
«a log o 1
=5 [[ml|? — — |ml|, — §logdet('szTXz +ol,) as  (11)

is the Occam factor.
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The sparse generative model therefore automatically adds a £p-f5 penalty to the
likelihood of the model at the MAP value of w. This is somehow similar to the
“clastic net” penalty of [27], combined with a penalty linked to the volume of the
gaussian posterior A'(w;m,S). Notice that, when « is small, the Occam factor
will be extremely sparsity-inducing but the coefficients will have a large variance.
When « is close to 1, this penalty will lead to moderately sparse but notably
shrinked solution. Moreover, if we write A = (a—log «)/2 and k = /(e —log ),
we obtain almost surely the expression

1
pen(z,0,7) = A (1= #) [mlly + x Jm|}) - 5 logdet((XI X, +al,),

involving a convex combination of the £y and /5 penalties in an elastic net fashion.
The elastic net can therefore be seen as some kind of strictly convex approxima-
tion of Occam’s automatic penalty. Interestingly, the term pen(z, o, y) exactly
corresponds to Occam’s razor described by [10] and detailed by [1, chap. 4]. Such
a term has been widely used for model selection purposes and is linked to the
Bayesian information criterion and to Bayesian hypothesis testing [9] .

4.2 Path of Models

We rely on z''#x¢d to find a path of models which are likely to have a high
evidence. We build a path by assuming that the larger the coefficients of zelaxed
are, the more likely they are to correspond to relevant variables.

We define the set of vectors (2(")),<, as the binary vectors such that, for
each k, the k top coefficients of 2'*'#*¢d are set to 1 and the others to 0. For
example, z() contains only zeros and a single 1 at the position of the highest
coefficient of 2124, The set of vectors (2(")),<, defines a path of models to
look at for model selection. Note that this path allows us to deal with a family
of p models (ordered by sparsity) instead of 27, allowing our approach to deal
with a large number of input variables. Thus, the evidence is evaluated for all
2" and the number § of relevant variables is chosen such that the evidence is
maximized:

4 = argmax; <,.<,p(Y[2¥),4,4) and z =29, (12)

We called our algorithm, which successively runs the relaxed and performs model
selection over the path of models using (12), spinyReg. Several details about its
implementation can be found in the working paper [12]

5 Numerical comparisons

Stmulation setup. In order to consider a wide range of scenarios, we use three
different simulation scenarios: “uniform”, “Toeplitz” and “blockwise”. The sim-
ulation of the parameter w and of the noise € is common for the three schemes:
w ~ N(0,I,/a) and € ~ N(0,I,/7). The design matrix X is simulated ac-
cording to a Gaussian distribution with zero mean and a covariance matrix R
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depending on the chosen scheme. The correlation structure of R = (ri;); j=1,...p
is as follows:

— “uniform”: ry; =1 foralli=1,..pand rj; = pfori,j=1,...,pand i # j,

— “Toeplitz”: ry; = 1 for all i = 1,...p and r;; = pli=il for i,j =1,...,p and
i #J,

— “blockwise”: R = diag(Ry, ..., R4) is a 4-blocks diagonal matrix where Ry is
such that ry; = 1 and ry; = p fori,j =1,...,p/4 and i # j.

Then, Z is simulated by randomly picking ¢ active variables among p. The pre-
dictive vector Y is finally computed according to Equation (1).

5.1 Benchmark study on simulated data

We now compare the performance of spinyReg with three of the most recent
and popular variable selection methods based on ¢; regularization: the lasso
[21], the adaptive lasso [26] and the stability selection [14]. We also added two
recent spike-and-slab approaches: the multi-slab framework of CLERE [24] and
the EP procedure of [7]. To this end, we simulated 100 data sets for each of the
three simulations schemes (uniform, Toeplitz and blockwise), for three data set
sizes (n = p/2, n = p, n = 2p) and two values for the correlation parameter
(p = 0.25 and p = 0.75). The other simulation parameters were p = 100, ¢ = 40,
o = 1 and v = 1. The measures used to evaluate the method performances
are the prediction mean square error on test data (MSE, hereafter), the F-score
(the harmonic mean of precision and recall, which provides a good summary of
variable selection performances) and the estimated value of ¢ (number of relevant
predictors). Details about the implementation of all the algorithms we compared
are provided in the extended working paper[12]. We present on Fig. 1 the results
for one simulation setup: the blockwise case with p = 0.75. All the other results
are in the extended working paper[12]. Note that similar conclusions can be
drawn on these other scenarios.

We can see that spinyReg and SSEP outperform other methods and have
close variable selection performances. SpinyReg appears to be at his best in the
“n = p/2” case on these runs. Most of the methods perform well in MSE ex-
cept stability selection and CLERE when n < p. In particular, spinyReg has
the best prediction performance for n = p/2 with the highly correlated block-
wise case. The lasso has a clear tendency to overestimate the number of active
variables, particularly when n becomes large. Conversely, stability selection has
the opposite behavior and underestimates ¢. Its very conservative behavior has
the advantage that it avoids false-positives. It turns out that spinyReg provides
consistently a good estimate of the actual value of g.

5.2 Study on classical regression data sets

We now consider four real-world data sets: the classical prostate data set used
for example by [21], the eyedata data set of [20], the 0zoneI data set included
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Fig. 1. Scenario “blockwise” with p = 0.75.

in the spikeslab package [8] and which uses the ozone data set of [2] with some
additional interactions and the DiabetesI data set which is also available in
the spikeslab package and uses the diabetes data set of [5] with some addi-
tional interactions. Applying the same methods as before, we trained our data
randomly using 80% of the observations and computed the test error on the re-
maining data. Repeating this procedure 100 times, we computed the mean and
the standard deviation of the test error and of the number of variables selected.
Results are reported in Table 1. We did not compute the test error for methods
which did not succeed in selecting variables. We can see that spinyReg obtains
competitive predictive results on all data sets. Moreover, we can note that it is
less conservative than most other algorithms. On the challenging eyedata data
set for example, while the two other Bayesian methods fail to select at least one
variable, spinyReg selects three quarters of the predictors and has the lowest
MSE. The three ¢; based methods select only a few variables and have higher
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Prostate (n = 77, p = 8)

Eyedata (n = 96, p = 200)

MSE X100 Selected variables MSEx100 Selected variables

Lasso 63.6 + 21.8 3.33 £ 0.877 1.26 £ 0.964 16.7 £ 5.56
Adalasso 58.44+15.9 4.42 +1.57 1.50 £ 1.248 2.4 4+0.700
Stability Selection 61.6 4= 14.4 1.944+0.239  1.58 £0.850 1.74+0.823
Clere 59.8 £19.7 2.87 £0.825 - -
SSEP 56.6 £ 15.0 2.76 £ 0.474 - -
SpinyReg 58.3 £ 15.4 3.34 £0.607  1.25 4 0.920 143 £9
Ozonel (n =162, p = 134) DiabetesI (n = 353, p = 64)
MSE Selected variables MSE/1000 Selected variables
Lasso 18.9 +4.96 10.3 £2.27 3.22 £ 0.407 7.43 £2.41
Adalasso 16.84 £ 4.48 8.32+3.16 3.02 £ 0.395 9.31 £2.25
Stability Selection 17.9 + 5.25 9.68 +1.10 2.97 + 0.387 7.77 £ 0.423
Clere 19.6 £ 5.48 5.43 +2.55 3.15+0.384 2.33 +£0.587
SSEP 29.6 £10.2 74.8 £5.45 3.70 £0.647 62.0 £1.36
SpinyReg 18.9 4+ 5.46 10.794+2.69  3.13 £0.376 8.5+ 1.45

Table 1. Results on real-world data sets

MSE. Let us finally highlight that the medium prediction rank of spinyReg is

the second best, behind the adaptive lasso.

6 Conclusion

We considered the problem of Bayesian variable selection for high-dimensional
linear regression through a sparse generative model. The sparsity is induced
by a deterministic binary vector which multiplies with the Gaussian regressor
vector. The originality of the work was to consider its inference through relaxing
the model and using a type-II log-likelihood maximization based on an EM
algorithm. Model selection can be performed relying on Occam’s razor and on a
path of models found by the EM algorithm. Numerical experiments on simulated
data have shown that spinyReg performs well compared to the most recent
competitors both in terms of prediction and of selection, especially in moderately
sparse cases and with highly correlated predictors. An extended working paper
[12] also contains an application to a new high-dimensional regression data set
(n = 316, p = 1158) involving the prediction of the number of visitors of the
Orsay museum in Paris using bike-sharing system data.
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Abstract. The growth of multimedia content on the web raise diverse
challenges. Over the last decades various approaches are designed to sup-
port search, recommendations, analytics and advertising majorly based
on the textual content. Now, due to the overwhelming availability of
media (images and videos) require advancements in the existing tech-
nologies to leverage multimedia information. Recent progress made in
machine learning to foster continuous representations of the text and
effectual object detection in videos and images provide new opportuni-
ties. In this aspect, my research work aims to leverage data generated
from multimedia to support various applications by finding cross-modal
semantic similarity. In particular, it aims to compare semantically sim-
ilar content generated across different channels by jointly modeling two
different modalities. Modeling one or more modalities together can be
helpful to generate missing modalities and retrieve cross-modal content.
My research also extends textual information in multiple languages to
support the growth of polylingual content on the web.

1 Introduction & Motivation

The web contains different modalities. A modality represents information from
multimedia items like image, video and text. Most of the time, one or more
modalities are represented together to provide a multi-view experience.

Solving challenges posed by multimedia content provide different applica-
tions. Most of the earlier research considered multimedia items separately and
designed approaches for the tasks like image and video retrieval [1, 2], image an-
notation [3], image segmentation [4], face detection [5], person identification and
tracking [6] etc. In the recent years, multimedia and computer vision communi-
ties published considerable research in bridging the gap between modalities to
facilitate cross-modal applications [7]. Their research aims to address the prob-
lems of automatic image tagging with class labels [3], usage of image queries for
text retrieval [8], automatic generation of image and video descriptions [9-11].
Some of these approaches leverage more than one modality by jointly modeling
them together. I divide these multimodal learning approaches into three different
categories. The first set of approaches generate annotations or tags for images or
videos. The second set of approaches provide descriptions (captions) to images
and videos with larger phrases or sentences. While, the third set of approaches
identifies images and text belonging to same semantic category with cross-modal
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retrieval [12,13]. But, most of the work pertaining to text along with images or
videos is limited to English.

Natural language processing (NLP) and information retrieval (IR) commu-
nities have been working on different multilingual [14] and cross-lingual appli-
cations [15] over the past decades. While they only concentrate on text and
diminish the importance of other modalities present in multimodal documents.

Given these limitations of earlier research conducted in natural language
processing and computer vision communities supporting different applications.
My research work focus on leveraging multilingual and cross-lingual approaches
by using more than one modality. Also, it aims to extend multimodal learning
to multiple languages. In particular, it aims to find similarities between text
present in multiple languages and images or videos by jointly modeling them.
Some of the challenges and issues in this research are itemized below.

— How to jointly model different multimedia items like images and videos along
with text.

How to handle variations of text present in different forms like keywords,
phrases, noisy data (e.g. tweets, comments) and paragraphs.

How to design language independent multimodal learning approaches.

How to extract features which are scalable to multiple data-sets and are not
domain dependent.

The remainder of this proposal is organized into the following sections. Back-
ground and related work are mentioned in section 2. The section 3 presents
limitations of state of the art and provide novelty of my research. Approach
along with datasets and evaluation metrics are mentioned in section 4. The sec-
tion 5 details the work done and the work in progress. Conclusion is discussed
in section 6.

2 Background & Related Work

My research work identifies its background from other learning approaches like
multi-view and multi-task learning, structured prediction etc., below I list four
closely related categories based on tasks.

2.1 Cross-lingual Semantic Similarity (Text only)

Matching semantically similar documents or words belonging to two different lan-
guages had been important task to support applications like cross-language infor-
mation retrieval, machine translation and cross-language classification. In gen-
eral, cross-language similar documents are retrieved using query translation [16],
CL-LSI [17] or CL-KCCA [18]. Other approaches found relatedness with lexi-
cons and semantic knowledge bases [19]. Fuzzy and rough set approaches [20]
are also proposed to find cross-language semantic similarity. But lately, more
interest is developed to learn latent spaces of two different languages in-order
to predict word translations. Latent topics considered as concepts was used for
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semantic word similarity tasks in monolingual [21] and multilingual [22, 23] set-
tings. Cross-language latent topics concentrate on extracting concepts based on
global co-occurrence of words in a training corpus with and without considering
contextual information.

2.2 Cross-modal Semantic Category Similarity

Bridging different modalities is sometimes seen as a task of matching modalities
to same semantic class or categories. There are several approaches proposed using
joint dimensionality reduction approaches [12,13] or formulating an optimiza-
tion problem [24] where correlation between modalities is found by separating
the classes in their respective feature spaces. Other approaches aim in learning
heterogeneous features implicitly without any external representation. Joint rep-
resentation of multiple media used by Zhai et al., [25] focus on learning which
incorporates sparse and graph regularization.

2.3 Cross-modal Description with Text

Lately, considerable interest has been shown to automatically generate descrip-
tions or captions for images and videos. These descriptions can be either belong
to annotations or variable length phrases. Srivastava et al. [26] had learned a joint
model of images and their textual annotations with deep boltzmann machines
to generate one from other. Vincente et al., [27] automatically created a dataset
containing 1 million images with associated visually relevant descriptions from
Flickr! by performing queries and filtering. Other approaches [9, 10] generated
image descriptions with a constraint on text neural language model and images
or used fixed templates. Some approaches extended the idea from still images
to videos with deep recurrent neural networks [11] and unified frameworks [28].
Other approaches [29] mapped complex textual queries to retrieve videos by
understanding visual concepts and semantic graph generated from sentential de-
scriptions. Anna et al. [30] pursued a different use-case by creating a descriptive
video service to help visually impaired users to follow a movie.

2.4 Cross-modal Description with Knowledge Bases

Multimedia search understands and organize images and videos in a better man-
ner. Combining visual and semantic resources to analyze the image annotations
can provide some world knowledge to visual information. Imagenet [31] is a hier-
archal image database structured on lexical database Wordnet. Other approaches
combined image tags from Flickr with a commonsense reasoning engine Concept-
Net [32] to understand the general tagging behavior. Qi et al., [33] propagates
semantic knowledge from text corpus to provide annotations to web images. Vi-
sual knowledge bases like NEIL [34] help to continuously build common sense
relationships and labels instances of the given visual categories from Internet.

! https:/ /www.flickr.com/
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Language and context information leveraged from structured knowledge bases
was used by Alexander et al., [35] to suggest basic-level concept names depending
on the context in which visual object occurs.

3 Limitations with State of the art

The main motivation of my research is to find semantic similarity between con-
tent generated across modalities. Though some of the approaches mentioned in
the section 2 achieve this in various ways, there are still some limitations which
need to be addressed. In this aspect, my research extends or improves multi-
modal learning for existing and newly created tasks. Below, I divide these tasks
originating from two different perspectives.

3.1 Vision for Language

Most of the research conducted earlier is used to compare content across lan-
guages for various tasks like cross-language retrieval, cross-language semantic
similarity or cross-language classification and mostly focused on only textual
information. But due to growth of multimodal content, different language doc-
uments are frequently accompanied by images or videos. In my research, I aim
to bridge languages with visual clues present in these multimodal documents.
This approach creates less dependency on language specific tools and can be
scalable to languages which lack resources or tools. Siberalla et al. [36] made a
similar attempt to identify semantically similar words with the help of visual
information. Though it was only limited to English vocabulary.

3.2 Language for Vision

As mentioned in section 2, there are many ways to link text with images or
videos. Text can be generated as annotations, descriptions or labels of semantic
categories. Approaches that annotate objects in an image or videos are either
limited by domain or leverage information from visual knowledge bases. Most of
the keywords which are used to annotate objects are present in English and are
depending on word translations to extend them to other languages. Similarly,
approaches that are developed for automatic image and video captioning with
variable length descriptions are also limited to English. Possible explanation
for this limitation is due to approaches that use predefined templates or de-
pend on generation of grammar. Similar issue is been observed with approaches
which considered cross-modal retrieval based on same semantic category labels
of images and text. Most of the knowledge bases (KB) like DBpedia etc are
cross-lingual, though approaches which leverage KB still work with annotations
in English.

Observing the possibilities and to support the multilingual web, my research
aim to extend multimodal learning beyond English language. This can trigger
various applications that can improve multimedia search or cross-modal recom-
mendations.
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4 Approach

Variation in discrete and continuous representations of information like text
and images or videos respectively require composite approaches to find semantic
similarity. In this aspect, my research aims to learn correlations between media
and textual content by learning joint space representation. As discussed earlier
in the section 1, learning correlations between two different modalities can be
divided based on tasks that support cross-modal retrieval and generation. Below,
I formulate the problem for each of these tasks and explore possible approaches.

4.1 Polylingual Cross-Modal Semantic Category Retrieval

Multimodal documents are found on web in the form of pair-wise modalities.
Sometimes, there can be multiple instances of modalities present in the doc-
uments. To reduce the complexity, I assume a multimodal document D; =
(Text, Media) to contain a single media item (image or video) embedded with
a textual description. A collection C; = {D1, D5...D;...D,} of these documents
in different languages L = {L¢,, Lc,-.-Lc;---Lc,, } are spread across web. For-
mally, my research question is to find a cross-modal semantically similar doc-
ument across language collections L¢, using unsupervised similarity measures
on low-dimension correlation space representation. To achieve it, I propose fol-
lowing approach which learns correlated space between modalities in different
languages for cross-modal retrieval.

Correlated Centroid Space Unsupervised Retrieval (C2SUR) [37] In
this approach, I find correlated low-dimension space of each text and media (Im-
age) with kernel canonical correlation analysis (kCCA) modified with k-means
clustering.

Let mpr = {mr,...m7,} and m; = {my,...my,} denote the initial k& centroids
for the correlated text and image space respectively obtained with kCCA. Iter-
ating over the samples of the training data, I perform assignment and update
steps to obtain the final & centroids. The assignment step assigns each observed
sample to its closest mean, while the update step calculates the new means that
will be a centroid.

Correlated low-dimension space of text and image samples of the training
data is given by CSp,,. and CSr,, respectively. Choice of k is dependent on
number of classes in the training data, while p represents the total training
samples. Séﬂ) and S} ) denote new samples of text and image modalities assigned
to its closest mean. Algorlthm 1 lists the procedure. Now the modified feature
space is used for cross-modal retrieval with distance metrics like cosine etc.

Experimental Data and Evaluation To evaluate the approach in a polylin-
gual scenario, I use the wiki dataset? containing 2866 English texts and images

2 http://www.svcl.ucsd.edu/projects/crossmodal /
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Algorithm 1 Correlated Centroid Space

Require: CSrrp. = 27, ...71,, CST7r; = 71, ... 71,

Ensure: p > 0 {Output: Final K-Centroids}
Assignment Step:
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S}f) =1, ||z, —my|| < ||z, —mr.|[ViT = 1.k
Update Step:
(+) o

P
(t41) _ @myESy

>z (1) T

i (t+1) I’Jebgi) ’
mr, Ean =

T1,

e s
;

created using Wikipedia’s featured articles is expanded to German and Span-
ish 3 while keeping the original images for every language. Thus, the expanded
dataset consists of text and image pairs in three different languages. Evaluation
for cross-modal retrieval will be done with mean average precision (MAP) [12, 13]
and mean reciprocal rank (MRR) scores. Experiments are 10 fold cross-validated
to reduce selection bias.

4.2 Polylingual Cross-Modal Description

Description of a given video or an image depends on the generation of text. To
achieve it several approaches are designed with dependency on predefined textual
templates and image annotations. Objects identified in an image is used to fill
predefined templates to generate descriptions. Though these kind of approaches
imposes limits, may still have the advantage that results are more likely to be
syntactically correct. Also, it limits its generalization to many languages.

Few other approaches overcame these limitations by generating grammar,
though they pose similar issues as earlier in a polylingual scenario. In this as-
pect, I find my research question of language independent multimodal learn-
ing approaches. Recently, for image descriptions two different approaches pro-
posed using multimodal log-bilinear model(MLBL) [9] and recurrent neural net-
work(mRNN) [10] which does not use language specific information and can
show impressive results if applied to different languages. mRNN is feed with
image and textual features generated with region convolution neural networks
(RCCN) and continuous word representations respectively. Now to generate de-
scriptions, an idea similar to Long Short-Term Memory (LSTM) [38] is used for
a sequence model. LSTM is helpful to decode the vector into a natural language
string. Similar approaches were extended to videos [11].

In this aspect, my research aims to learn multilingual space for textual fea-
tures along with image or videos to support polylingual multimodal learning.
Multilingual space will help to produce descriptions for the languages that are
represented in the space. Considerable research has been done in learning mul-
tilingual space in NLP community to support cross-language applications. Re-

3 http:/ /people.aifb.kit.edu/amo/data/ Text-Ger-Spa.zip
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cently, multilingual models are developed for compositional distributional se-
mantics [39)].

My research aims to use multilingual space of continuous word representa-
tions combined with CNN as an input to modified mRNN to support polylin-
gual cross-modal description. Generated descriptions are further verified for its
correctness and readability with Knowledge bases(KB) concepts, entities and
common sense facts.

Experimental Data and Evaluation There are several data sets available
for English text and images or videos. Flickr8K, Flickr30K and COCO* datasets
contain images and descriptions, while ImageCLEF ® in subtask-2 provide images
with annotations to generate descriptions. Though there are few datasets for
textual descriptions in multiple languages, IAPR TC-12 benchmark ¢ provide
each image with an associated text caption in three different languages (English,
German and Spanish). For evaluation, The BLEU scores [40] are used to evaluate
generated sentence by measuring the fraction of n-grams that appear in the
ground truth.

5 Results and Work in Progress(WIP)

Below, I present the initial results obtained for polylingual cross-modal semantic
category retrieval and discuss the work in progress (WIP) for polylingual cross-
modal description.

5.1 Polylingual Cross-modal Semantic Category Retrieval (Results)

Table 1 shows the initial results obtained on text and image queries for En-
glish, German and Spanish on the Wiki dataset. I used polylingual topic mod-
els(PTM) [22] to extract textual features as a distribution of topics in multiple
languages, while each image is represented as 128-dimension SIFT descriptor
histogram. MAP scores for C2SUR for German and Spanish with different topic
variations. For example, C2SUR-10 represents 10-topics. Please note, that the
related work can only be applied to English text.

5.2 Polylingual Cross-Modal Description (WIP)

For polylingual cross-modal descriptions, significant contribution comes from
building multilingual space of languages. Currently, I am working on building
multilingual space of word embeddings for one or more languages using class
aligned document corpora and sentence aligned parallel corpora. This is achieved
using noise contrastive large-margin updates which ensure non-aligned parallel
sentences and non-aligned classes documents observe a certain margin from each
other.

* http://mscoco.cloudapp.net/
5 http://www.imageclef.org/2015 /annotation
S http://www.imageclef.org/photodata
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(Language)System  |Image Query| Text Query [Average (MAP)

English |SM [12] 0.225 0.223 0.224
Mean-CCA [13]| 0.246 £ 0.005 | 0.194 £ 0.005 | 0.220 £ 0.005
SCDL [41] 0.252 0.198 0.225
SLM? [42] 0.255 0.202 0.229
GMLDA [24] 0.272 0.232 0.252
C2SUR-10 0.273 + 0.002/0.262 £+ 0.003| 0.268 + 0.003

German|C?SUR-10 0.284 + 0.002/0.263 £+ 0.003| 0.276 + 0.003
C?SUR-100 0.236 £ 0.004 | 0.250 £ 0.008 | 0.243 £ 0.006
C?SUR-200 0.278 £ 0.002 | 0.253 £ 0.002 0.266 + 0.002

Spanish|CZSUR-10 0.250 £ 0.001 |0.268 £+ 0.002| 0.259 + 0.002
C?SUR-100 0.258 £ 0.008 | 0.243 £+ 0.004 | 0.251 + 0.006
C?SUR-200 0.267 + 0.003| 0.244 £ 0.002 0.256 + 0.003

Table 1. Text and Image Query Comparison (Wiki)

6 Conclusion

In this proposal, I presented my research on jointly learning heterogeneous fea-
tures generated from two different modalities mainly polylingual text and image
or videos. I aim to do this by segregating the approach to two different tasks.
In the first task, textual information and media (image or video) is mapped to
the same category with cross-modal retrieval. While in the second task, more
sophisticated approaches are used to generate one modality from another. Inher-
ently, these tasks provide better support to search, recommendations, analytics
and advertising based multimedia applications.
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Abstract. The exponential growth of available information to end-users
poses many questions and challenges to researchers. This research orig-
inates from the issues raised by the high demand both in quality and
quickness by the end-user concerning news recommender systems. The
objective of this research is to combine real-time official and social rec-
ommendations of news articles incorporating an approach capable of ad-
dressing the issues related to news recency, through the prediction of
news importance, but also, to handle the discrepancies between the of-
ficial media and social recommendations. This research is threefold. On
the first hand, the issue of obtaining the information necessary for this
endeavour. On the second hand, the prediction of future importance for
a given news article and its real-time adjustment taking into considera-
tion the evolution of the respective attributed importance. And finally,
the interflow of official media and social rankings.

Keywords: predictive models, resampling strategies, recommender sys-
tems, social and official media

1 Introduction

The possibility of each user publicly making available any information, may
it be an individual person or organization, provoked an explosion of available
information and a growing demand concerning the computation capability to
analyse, interpret and act upon this referred information. This is most visible
concerning the users demand for information.

This demand is clear when the evolution in both information retrieval (e.g.
search engines) and filtering (e.g. recommender systems) are considered. These
systems, factoring or not the influence of a given social network or other medi-
ums, provide a ranked recommendation of resources containing what has been
classified by itself as most relevant to a given query or profile. Therefore, these
suggestions are based on data that ranges from a given point in the past to the
present. This opens the issue dealt with this research.

Time consists of past, present and future. The suggestions provided by search
engines and recommender systems are in most cases based on the analysis, com-
putation and production of rankings given past data although some of them
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provide a recommendation of resources that are very active in the present, such
as Digg, by incorporating information provided by its own users in real-time.
This process may also be done using social networks such as Twitter which pro-
vides a dynamic, multi-topic, real-time medium to determine the popularity or
importance of the news articles through their respective number of publications.
These publications are limited to 140 characters and are called tweets.

News recommendation systems are a good example to explain the advantages
of social networks data. When a given news article is published there is no
available social networks data concerning that publication. Therefore, we have
a latency problem related to its recency and the most recent articles will take a
certain period of time until they are considered. In the case of Digg, real-time
social data is factored to shorten the latency in helping the determination of
its importance or interest. It should be noted that the concrete process of rank
production of these systems is not public although there are some clues available.

A second point relating to the use of data from social networks is also im-
portant: the difference between the recommendation made by these systems and
the importance attributed by the public. This is approached in DeChoudhury
et al. [4] where relevance to the end user is addressed concluding that the most
popular algorithms (HITS and PageRank) would probably not point out the
most relevant information comparing with that recovered from Twitter.

Therefore, although it is possible to provide a recommendation with fair ac-
ceptance given the past and present data, as the referred systems do, the possi-
bilities when considered the prediction of future data are scarce. The importance
of this prediction is to minimize the referred latency and enable the treatment
of recent news without a waiting period.

Additionally, it is known that the distribution of news articles in Twitter
and their number of tweets are described by a power-law distribution. This
shows that only a small portion of cases are in fact highly shared, and therefore
important to the public. Our interest is to predict these cases in order to favour
them concerning the social recommendation of news articles.

This research intends to address two issues referred in this section. First,
the problem of latency regarding news articles recency. Second, the discrepancy
between the recommendations made by the official media and the public. There-
fore, the objective of this research is to combine real-time official and social
recommendations of news articles incorporating an approach capable of address-
ing the issues regarding latency, through the prediction of news importance.
This research is threefold. On the first hand, the issue of obtaining the informa-
tion necessary for this endeavour. On the second hand, the prediction of future
importance for a given news article and its real-time adjustment taking into
consideration the evolution of the respective attributed importance. And finally,
combining official media and social rankings.
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Combining Social and Official Media in News Recommender Systems 3
2 Background

This section provides an overview of two main areas in which this research is
based. The first area is Information Filtering, with a specific emphasis on Rec-
ommender Systems. The second is Prediction Models, specifically, on the subject
of predicting the future importance of news. To be concrete, when referring to
importance, this is translated as the importance given by the public to a given
news article, measured by the respective number of tweets.

2.1 Recommender Systems

Concerning recommender systems, they provide the ability to assist the users
by suggesting what the best choices should be in a given scope. The following
paragraphs depict examples of those possibilities related to news recommender
systems, the focus of our research.

Phelan et al. [10] describe an approach which includes harnessing real-time
information from Twitter in order to promote news stories. For this endeavor,
the authors achieve a basis for story recommendation by mining Twitter data,
identifying emerging topics of interest and matching them with recent news
coverage from RSS feeds. This work is extended by Phelan et al. [9] through the
increase in comprehension and robustness of the recommendation framework,
using different sources of recommendation knowledge and strategies. Hannon et
al. [6] applies and evaluates several profiling and recommendation strategies in
order to recommend followers and/or followees, using Twitter data as a basis
for both processes. Abrol and Khan [1] proposes TWinner, a tool capable of
combining social media to improve quality of web search and predicting whether
the user is looking for news or not using a query expansion approach.

The application ”Hotstream” is proposed by Phuvipadawat and Murata [11].
This application uses a method designed to collect, group, rank and track break-
ing news in Twitter. The ranking process uses popularity and reliability factors.
Reliability reports to the numbers of followers from posting users. The authors
established that popularity is determined from the numbers of retweets.

The referred approaches are similar to the one proposed in this research. The
main difference is that in every case, the issue of latency is not addressed any
further. Nevertheless, the work referred presents various options for discussion
regarding the combination of official media and social recommendations. The
main difference that this work provides is related to the following section.

2.2 Importance Prediction

Determining the importance of a given news is a very interesting variable when
referring to news-based recommender systems. The ability to describe documents
as being more or less important to the public is a crucial variable to consider.
This has been pursued by combining documents from legacy media sources (e.g.
newspapers), and the produced content in social media by their users.
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A considerable portion of research concerning prediction models using Twit-
ter data (e.g. [13], [19]) has been focused on the retweet function of the platform
(i.e. the ability to re-publish a given tweet). The dynamics of the retweeting
function are thoroughly discussed in the work of Rudat et al. [12].

In the work of Bandari et. al [2] classification and regression algorithms are
examined in order to predict popularity of articles in Twitter. The distinguishing
factor of this work from others that attempt to predict popularity of events (e.g.
[14], [15]), is that it attempts to do this prior to the publication of the item.
To this purpose, the authors used four features: source of the article, category,
subjectivity in the language and named entities mentioned.

Dilrukshi et al. [5] uses machine learning techniques, namely SVM (Support
Vector Machine), to classify tweets according to 12 distinct groups. The purpose
of the authors research is to enable the identification of the most popular news
group for a given country, within a given time frame.

The referenced work provides an overview of the state of art regarding our
scope in this research. Concerning the prediction of importance, as it was referred
previously, we are not attempting to predict only the number of tweets a given
news will obtain, but also the prediction of whether it is a rare case or not. And
although the referenced work obtains enthusiastic results they are not focused on
these rare cases. As such, given that we are dealing with a power-law distribution,
where the rare cases of highly tweeted news represent a very small part, our
interest is to identify them correctly and not the great majority of the cases that
present a very low number of publications.

3 Contribution

The goal behind our proposal is to prove that by combining official media and
social recommendations it is possible to lessen the discrepancies between them,
but also, to tackle the latency problem related to news articles recency. To this
endeavour, it is necessary to collect information in order to obtain the news ar-
ticles on one hand, and on the other, the real-time importance, attributed by
the public. Upon detection, information concerning the news articles is used to
predict their importance after a certain period of time. Then, in combination
with the evolution of the importance attributed by the public, the predictions
are continuously updated in order to factor the public reaction. The final out-
put is a recommendation on which news articles concerning a given topic are
or will be, after a certain period of time, considered to be highly important.
The operationalization of our proposal is done through a three-step pipeline: (i)
information retrieval, (ii) recency rank adaptor and (iii) rank aggregator.

3.1 Information Retrieval

Concerning the first step, and recalling the objectives set out by this research, it
requires information from two types of sources: official media and social recom-
mendations. In order to collect that information it is necessary to find sources
which enable a stable process of retrieval.
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At this point, we collect information from two sources: Google News and
Twitter. Google News is a news recommender system (official media recom-
mendations) and Twitter is a micro-blogging platform (social media recommen-
dations). Both sources enable the extraction of information through organized
parsing, in the case of the former, and a public API, in the case of the latter.

The first provides a real-time collection of published news, with information
such as the title, subtitle, media source, publish date, direct link and the on-time
rank according to the Google News. This will be referred as the Media Rank.
One of our objectives is to include official media recommendations from multiple
sources (e.g. Yahoo News).

The second enables users to post information onto the web in real-time and
interact with others. In our case, Twitter is used to judge the public attributed
importance to each of the news in the documents set provided by Google News.
By using the Twitter API, it is possible to continuously retrieve the number
of tweets associated to each news item in a given set of topics. We decided to
establish a two day limit concerning the timespan of retrieval of information
from Twitter for each given news, based on the work of Yang and Leskovec [18]
which suggests that after a few days the news stop being tweeted. Despite the
results of the referred authors research which indicates that this period could
achieve four days, some initial tests on our data sets have shown that after a
period of two days the number of tweets is residual, and therefore we chose this
time interval.

3.2 Recency Rank Adaptor

The second step encompasses two processes concerning the prediction of the
future importance a given news will obtain. These processes are separated due
to the approach embedded in each of them. The first is an a priori approach,
and the second, an a posteriori approach.

This step deals with two connected issues reporting to the recency issues
described formerly. The first is the fact that there is no available information
concerning the public opinion on a given news item upon its publication. In this
case we need prediction models which are capable of determining the number
of tweets of news items with special focus on the rare cases, having no related
available data (a priori). The second issue is that even after its publication (a
posteriori), we have different levels of information portraying the news items. As
such, we need a prediction approach which is capable of tackling this unbalance
and accurately predict rare cases of news items with a high number of tweets
having scarce data (i.e. in the moments after the publication of a given news
item the amount of related information is small).

Concerning the a priori models and the skewed distribution of the number
of tweets, previous work [16, 17] has shown that standard regression tools fail
on tasks where the goal is accuracy at the rare extreme values of the target
variable. Several methodologies have been proposed for addressing this type of
tasks and resampling methods are among the simplest and most effective. We
experimented with two of the most successful resampling strategies: SMOTE (3]
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and under-sampling [7]. On our models we use the extension for regression tasks
of SMOTE (SMOTEr) and under-sampling proposed by Torgo and Ribeiro [17].

As for the a posteriori models, we are developing four algorithms which
represent the combination of two selection and two prediction approaches. In
this situation, we have information concerning the real-time number of tweets a
given news obtains. Therefore, concerning the selection approaches, we tested the
use of interquartile range (IQR) on the target variable, with and without prior
probability distribution. As for prediction, we tested the use of a weighted and
a scalar approach. The weighted approach uses distance within the IQR range
as a weight variable. Therefore, for each case in the train set that for a given
timeslice (periods of 20 minutes since the publication time) the target value is
within the IQR range, the distance to the value of the test case is normalized in
a [0,1] scale and multiplied by its respective final number of tweets. Finally, the
sum of all these cases is divided by the overall sum of weights. As for the scalar
approach, it is based on the calculation of the average slope of train cases within
the IQR range of a given test case, concerning the present timeslice and the final
timeslice. This is multiplied by the number of timeslices remaining (considering
the referred two days limit for obtaining information regarding a given news
item) and added to the present number of tweets the test case has obtained.

The resulting predictions from these models are then combined and produce
the Public Opinion Ranking. This procedure takes into account the alive-time of
each given news item. The logic is simple: as time evolves and more information
regarding each given news item is available, the predictions based on real-time
data are more reliable than those of the a priori prediction. Therefore, the
combination of both the prediction tasks, a priori and a posteriori, is executed
with the decay and increase of their respective weight in the final predicted value.
One of the key elements of this combination is the discovery of the tipping point,
or the moment when this shift in terms of predictive reliability occurs.

3.3 Rank Aggregator

So far, two distinct ranks have been mentioned. The rank provided by Google
News which is referred as Media Rank, and the Public Opinion Rank described
in the former section. This step holds the objective of producing a final sugges-
tion based on both of them which is continuously updated. Therefore, this step
aggregates these two ranks taking into consideration their respective weights.

The Media Rank provides an insight to the past and present, and the Public
Media Rank on the predicted future importance and therefore, rank. We have not
developed any research concerning the combination of both ranks yet, but given
the results from the previous sections, it is possible that the evolution in terms
of weights should be depicted in the form of a power-law distribution (convex
and concave), and this will be the research focus concerning this component.

This component provides the final output of the proposal, a ranked sug-
gestion of news articles that combines the present and the prediction of future
importance for each of the articles.
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4 Experiments and Results

This section reports to the experiments and results which were obtained so far.
These refer to the prediction models described in Section 3.2.

The experiments are based on news concerning four specific topics: economy,
microsoft, obama and palestine. These topics were chosen due to two factors: its
actual use and because they report to different types of entities.

Concerning the a priori approach, for each of the topics we constructed a
dataset with news mentioned in Google News between 2014-May-01 and 2014-
Sep-03, with queries of the top 100 news every 15 minutes. For each item the
following information was collected: title, headline, publication date and its posi-
tion in the ranking. These datasets were built using the Twitter API to check the
number of times the news were tweeted in the two days following its publication,
which represents our target variable value. As stated, the distribution of the val-
ues of the target variable is highly skewed. Therefore, we applied the previously
described re-sampling strategies SMOTEr and under-sampling. The evaluation
of the models is based on the utility-based regression framework proposed in
the work of Torgo and Ribeiro [16]. The metrics proposed assume that the user
is able to specify the most relevant sub-range of target variable values. This is
done by specifying a relevance function that maps the target variable into a [0, 1]
scale of relevance. Using this mapping and a user-provided relevance threshold
the authors defined a series of metrics that focus the evaluation of models on
the cases that matter for the user. These experiments are described in detail
in Moniz and Torgo [8]. The evaluation of the prediction models is presented
in Table 1, using three metrics: precision, recall and the F1 measure. From the
perspective of our application, we focus on the F1 measure, because it penalises
false positives (i.e. predicting a very high number of tweets for a news that is
not highly tweeted). The evaluation of the rankings produced using the results
of the former are presented in Table 2, using three metrics: mean reciprocal rank
and the normalized discounted cumulative gain with £ = 10 and £ = 50. For
each regression algorithm the best estimated scores are denoted in italics, whilst
the best overall score is in bold.

Table 1. Precision, Recall and F1-Score estimated scores for all topics, for the a priori
approach.

economy microsoft obama palestine
prec rec Fl|prec rec Fl|prec rec FIl|prec rec F1
Im 0.23 0.05 0.08]0.09 0.03 0.04]0.15 0.00 0.00| 0.18 0.09 0.12

Im_SMOTE |0.64 0.26 0.37|0.49 0.23 0.31|0.53 0.39 0.45|0.54 0.14 0.22
Im_UNDER |0.64 0.23 0.34]0.50 0.20 0.29]|0.55 0.38 0.45|0.55 0.09 0.15
svm 0.46 0.00 0.01] 0.00 0.00 0.00]0.00 0.00 0.00]0.04 0.00 0.01
svm_SMOTE | 0.67 0.52 0.58/0.66 0.59 0.62|0.68 0.71 0.69|0.83 0.54 0.65
svm_UNDER |0.70 0.55 0.62| 0.64 0.59 0.62| 0.65 0.70 0.68]| 0.80 0.54 0.65
mars 0.18 0.02 0.04| 0.05 0.01 0.02]0.31 0.01 0.01] 0.16 0.07 0.10
mars_SMOTE| 0.67 0.39 0.49| 0.51 0.34 0.41| 0.54 0.50 0.52| 0.53 0.23 0.32
mars_UNDER|0.76 0.52 0.61|0.67 0.47 0.55|0.62 0.61 0.62|0.75 0.41 0.52
rf 0.28 0.03 0.06| 0.13 0.02 0.03] 0.31 0.01 0.02] 0.09 0.03 0.04
rf SMOTE 0.67 0.51 0.58| 0.50 0.48 0.49]0.53 0.61 0.57| 0.62 0.43 0.51
rf_ UNDER 0.73 0.46 0.57]0.64 0.51 0.56|0.63 0.65 0.64|0.76 0.43 0.54
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Table 2. MRR, NDCG@50 and NDCG@10 scores for all topics, for the a priori ap-
proach.

cconomy microsoft
MRR NDCG50 NDCG10[MRR NDCG50 NDCG10

svmSMOTE | 0.61  0.71 0.75 0.59 0.73 0.74
svmUNDER | 0.63 0.71 0.76 0.59 0.73 0.74
marsSMOTE| 0.23 0.49 0.49 0.27 0.52 0.53
marsUNDER | 0.26 0.52 0.56 0.28 0.55 0.59
rfSMOTE 0.23 0.49 0.50 0.26 0.52 0.52
rfUNDER 0.22 0.49 0.50 0.25 0.52 0.53

obama palestine
svmSMOTE | 0.29  0.53 0.52 [0.46 0.69 0.69
svmUNDER |0.30 0.53 0.52 |0.46 0.69 0.69
marsSMOTE| 0.18 0.43 0.42 0.38 0.64 0.65
marsUNDER | 0.18 0.43 0.42 0.38 0.64 0.66
rfSMOTE 0.22 0.45 0.45 0.31 0.62 0.63
rfUNDER 0.19 0.43 0.43 0.32 0.62 0.63

Concerning the a posteriori approach, the dataset was constructed with data
on news items that appeared in Google News over a timespan of one month. The
items collected for this dataset were obtained through queries of the previously
referred topics where each top 100 news were retrieved. The queries were made
every 20 minutes during the referred timespan. The information collected for
each of the items is the same as the previously stated. An auxiliary dataset was
built in order to enable the analysis of the evolution in number of tweets of all
news items. To obtain this data, the Twitter API was also used, in 20 minute
intervals, since the first moment the news was recommended by Google News
until two days past from its original publication date. The evaluation of this
research is also based on the utility-based regression previously referenced and
is presented in Table 3. The evaluation of the rankings produced using the results
of the former and the comparison to the Google News evaluation are presented
in Table 4 using four metrics: mean average precision, mean r-precision, mean
reciprocal rank and normalized discounted cumulative gain with & = 10. The
best scores in each metric are denoted in bold.

Table 3. Precision, Recall and F1-Score estimated scores for all topics, for the a
posteriori approach.

Scalar+Prior

0.657 0.785 0.711

0.520 0.902 0.654

0.607 0.859 0.708

economy microsoft obama palestine
Approach prec rec F1| prec rec F1| prec rec F1| prec rec F1
Weighted 0.657 0.801 0.718] 0.518 0.908 0.654| 0.607 0.871 0.712|0.537 0.943 0.683
Weighted+Prior| 0.656 0.790 0.712| 0.518 0.902 0.652| 0.605 0.864 0.708| 0.536 0.937 0.680
Scalar 0.658 0.796 0.715|0.520 0.908 0.656|0.608 0.867 0.711| 0.536 0.940 0.681

0.536 0.936 0.680

5 Future Work

So far our research has been focused on the study of modeling techniques that
are able to accurately forecast the rare cases of highly tweeted news items, with
the objective of enabling their prompt recommendation. These news are rare
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Table 4. MAP, MRP, MRR and NDCG estimated scores for all topics, for the a
posteriori approach.

economy microsoft
Approach MAP MRP MRR NDCG| MAP MRP MRR NDCG
Google 0.161 0.170 0.333 0.611| 0.231 0.204 0.409 0.626
Weighted 0.715 0.795 0.799 0.871|0.798 0.845 0.905 0.912
Weighted+Prior| 0.659 0.757 0.762 0.842| 0.780 0.831 0.891 0.902
Scalar 0.713 0.794 0.799 0.870|0.798 0.845 0.905 0.912
Scalar4-Prior 0.657 0.757 0.761 0.841]| 0.779 0.832 0.891 0.902

obama palestine
Approach MAP MRP MRR NDCG| MAP MRP MRR NDCG
Google 0.175 0.156 0.398 0.596| 0.148 0.175 0.315 0.568
Weighted 0.893 0.891 0.899 0.954|0.929 0.933 0.952 0.970
Weighted+Prior| 0.858 0.875 0.878 0.937| 0.921 0.924 0.950 0.967
Scalar 0.893 0.898 0.899 0.953| 0.928 0.932 0.952 0.970
Scalar+Prior 0.859 0.878 0.878 0.937| 0.920 0.922 0.950 0.967

and this poses difficult challenges to existing prediction models. We evaluated
proposed methods for addressing these problems in our particular task and con-
firmed the hypothesis that resampling methods are an effective and simple way
of addressing the task of predicting when a news item will be highly tweeted
upon its publication. Also, we approach this problem in a a posteriori context,
with a stream of real-time data on the popularity of news items with different
alive-time and different levels of available information for each of the news items.
The evaluation of the prediction models and the rankings produced based on the
four algorithms proposed show that they are capable of achieving good results,
with a small overall advantage to the combination of the non-prior probability
distribution selection algorithm and the weighted prediction algorithm.

Concerning future work, the recency rank adaptor requires further research.
Although the evaluation of the a priori approach has been consolidated with an
extended dataset, that is not true for the a posteriori approach. As such, this
is the next step in our research. Thereon, it is necessary to study and develop
an approach capable of dynamically combining both predictions, through the
incorporation of the tipping point, previously described.

The output of the recency rank adaptor, the Public Opinion Rank, is to be
combined with Media Rank. This step is still an open research question which will
be addressed. Nonetheless, the focus of the research should be the dynamics of
the weights of both ranks (Public Opinion and Media) along the time dimension.

Finally, the objective is to build a prototype which encompasses the research
developed in order to enable the real-time evaluation of the general proposal in
comparison to the well-known news recommender systems such as Google News.
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Abstract. Recommenders assist users to find items of their interest in
large datasets. Effective recommenders enhance users satisfaction and
improve customers loyalty. Current recommenders concentrate on the
immediate recommendations’ value and are appraised as such but it is
not adequate for long term goals. In this study, we propose long term
goal recommenders that satisfy current needs of users while conducting
them toward a predefined long term goal either defined by platform man-
ager or by users. A goal is long term if it is going to be obtained after
a sequence of steps. This is of interest to recommend learning objects
in order to learn a target concept, and also when a company intends to
lead customers to purchase a particular product or guide them to a dif-
ferent customer segment. Therefore, we believe it is beneficial and useful
to develop a recommender algorithm that promotes goals either defined
by users or platform managers. In addition, we also envisage methodolo-
gies to evaluate the recommender and demonstrate the long term goal
recommender in different domains.

Keywords: Recommender System, Course generation, Course se-
quence, Persuasive Recommender System, Learning Design, Pattern
recognition, Long Term Recommender System.

1 Introduction

Current recommenders focus on the immediate needs of users. This is insufficient
to obtain long term goals. Therefore, we propose Long Term Recommender Sys-
tems (LTRS) that besides satisfying immediate needs of users, conduct them
toward a predefined long term goal by generating a set of relevant recommenda-
tions step by step [12]. A goal is long term if there are intermediate goals or if
there is a sequence of recommendations to attain the long term goal. This goal
is domain dependent and can be defined by the owner of the system or by users.
Goal can be purchasing an item, learning a course, following a specific genre or
singer, etc.

LTRS can be applied in different domains. For instance, in E-learning domain,
LTRS aid users (e.g. teachers and learners) to have more productive activities
(teaching and learning) meanwhile consuming less time. In this case, a long term
goal can be defined by a teacher as doing a relevant assignment or passing an
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exam after getting the long sequence of recommendations. Another example is
in music domain. For example, a music company has a contract with a singer
and due to some reasons the company expects to lose that singer and so it will
lose a part of its music market. As a result, the company looks for solutions to
retain its market and keep the same level of selling after losing that singer. One
of the solutions can be diversifying the customers’ taste (following other singers
or other music genre) which can be done by generating a set of recommendations
that influence users taste through time. Also, in the case of music, a company
may use LTRS to guide the users from a preferred music genre to a target genre
in order to enhance its profit on selected products. In this case, LTRS gradually
influence users’ interests through time.

The main research question of this study is: how can we produce recommen-
dation sequences that successfully conduct the user to a target area in the item
space, while satisfying immediate user needs? A goal can be defined as a pre-
determined area (in case of music, area can be a specific genre of music) in the
item space of interest to both the user and the platform manager. To attain a
long term goal, a recommendation algorithm must act strategically and not sim-
ply tactically. Subsequently, our main objective is to design a recommendation
strategy that is able to attain strategic goals of users and platform managers.

In this study, we plan to adopt Learning Design (LD) principles and methods
(such as course sequence, course generation, pattern sequence recognition) in or-
der to build our recommender. LD is an activity to build an effective learning
path by finding suitable learning objects [4]. The main advantage of LD rec-
ommenders is recommending a learning path not only based on the similarity
among learning objects or among learners. It makes the generated recommenda-
tions more accurate. In addition, persuasive systems are also useful to generate
our proposal. These systems were proposed by Fogg [5] in order to influence
users’ thoughts and behaviors, and are focused on psychological aspects of rec-
ommendations. The persuasiveness principles describes how the recommenda-
tions can be generated and represented in order to have more influence on the
users [19]. Due to the fact that LTRS recommendations must be convincing for
the users otherwise they do not follow the recommendations and the goal can
not be obtained, therefore we believe persuasiveness principles can enhance the
effectiveness of our recommendations.

The quality of a LTRS should be measured on how it can influence users’
decisions and conduct the users towards a predefined target area. Although there
are some techniques in order to assess the accuracy of RS such as Precision,
Recall or MSE, these are not sufficient to evaluate the strategic capabilities of
a LTRS. We then argue that complementary means of evaluation will be needed
for LTRS.

In this paper, we propose the idea of Long Term Recommender Systems that
guide users toward a predefined goal by generating relevant recommendations.
LTRS will be supported by LDRS and persuasiveness principles. In addition, we
plan to design a general evaluation framework in order to assess the results of
LTRS and demonstrate our system in different domains.
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The remainder of this paper is structured as follows. Section 2 surveys the
related work methods and algorithms that are usable for a LTRS. The research
methodology is detailed in Section 3 and then we conclude the paper with con-
clusion part.

2 Related work

2.1 Learning Design

In the area of e-learning, Learning Design is an activity to generate an effective
learning path by an appropriate sequence of learning objects [4]. Learning ob-
ject is any reusable digital resource which supports the learning process [4, 18].
Researchers have utilized LD principles in recommenders area in order to recom-
mend a learning path (a set of connected learning objects) to users. According
to our survey, all LD recommenders studies can be classified into three main
categories: course generation, course sequence and pattern sequence recognition
method.

2.1.1 Course generation This method is the most frequently used by re-
searchers and it generates a well-ordered sequence of Learning Objects (LO)
that is customized for a learner. In this approach, a user is evaluated before
receiving a recommendation (diagnostic evaluation). The learning path is gen-
erated based on the diagnostic evaluation result and user profile information,
including personal information along with extra information such as preferred
language and media, etc. In course generation, the entire learning path is gen-
erated and recommended to a user in a single recommendation [16]. If a user
was not able to follow the path to attain the final goal, the system recommends
another path.

Several researchers have applied this method along with other techniques and
algorithms. For example, Vassileva and Deters [17] applied decision rules in a
tool that generates individual courses. This tool exploits on previous knowledge
of a user and user’s goals. This tool can be updated dynamically with respect
to user progress. Markov decision [3]|, and fuzzy petri nets [8] are also other
techniques that are used in the course generation approach in order to generate
and recommend a learning path.

Although this method is fast due to generating and storing all the possible
learning path for each user, it ignores a learner changes and performance during
following a recommended path by a learner.

2.1.2 Course sequence In comparison with course generation that recom-
mends the whole path in a single recommendation, course sequence recommends
LOs one by one based on the user’s progress [1]. Initially, as in course genera-
tion, this method recommends the first LO based on user profile and diagnostic
evaluation result. Unlike in course generation, course sequence recommends LOs
one by one and a user evaluation happens after recommending each LO.
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Some studies such as [9,10] utilized course sequence along with different
algorithms and techniques to propose their methods. Karampiperis and Sampson
[10] proposed their idea by utilizing Adaptive Educational Hypermedia Systems
(AEHS). In their method, first all possible learning paths that obtain the goal
are generated and then, the desired one (the shortest path) is selected adaptively
according to a decision model. Also Idris et al. applied Artificial Neural Network
in order to present an adaptive course sequencing method [9].

Although course sequence considers user changes and progress, which was
one of the main issues in course generation, it still has several problems such as
lacking of an effective automated method to update the user profile and also to
determine what information in the user profile needs to be updated after each
evaluation.

2.1.3 Pattern sequence recognition It is similar to the course genera-
tion method since both methods recommend a sequence of well-ordered learning
objects to a learner. This method extracts a sequence of LOs (path) from the
available data that was successful to guide a user toward a goal and recommends
it to a user with a similar goal |11, 6].

One of the studies that used this method is conducted by Klasnja-Milicevic
et al. [11]. In their system, they first cluster the learners w.r.t their learning
style. Then they used AprioriAll algorithm [14] in order to mine the behavioral
patterns of any learner. Finally, a recommendation list is generated based on the
rates that is provided for frequent sequences.

Appriori is one of algorithms which is applied by researchers such as [11]
in order to find patterns. Researchers who utilize pattern recognition method
usually face two issues. Firstly, current pattern recognition methods are slow
and secondly, they find frequent patterns and rare cases will be ignored.

In general, All LDRS methods have some problems such as (1) lack of a
general framework to evaluate the result and compare different approaches, (2)
researchers usually could not address the scalability (handle and work with big
set of users and LOs), (3) lack of efficient user profile adaption method and
(4) Time which is also a significant factor that is ignored by many researchers.
A few studies addressed time in course modeling phase which is not efficient
since user ability and background is ignored [2]|. Course modeling is a process of
finding essential knowledge units of a course and find their relations in order to
build a course model.

2.2 Persuasive Recommendation System

The recommendations generated by LTRS should be convincing and persuade
users to follow them otherwise the main goal of LTRS which is guiding the users
toward a final goal could not be attained. Therefore, we need a technology to
assist us to generate more convincing recommendations for users. Persuasive
technology is initiated by Fogg in 2002 [5], applies computers to influence users’
thoughts and actions. After Fogg several researchers utilized this technology in
recommenders domain.
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Persuasive RS are based on two theories: Media equation theory [15] and
Communication persuasion paradigm [13|. According to the communication per-
suasion paradigm, a person can be affected by others in four different scopes (1)
form and content, (2) source, (3) the receiver characteristics, (4) contextual fac-
tor [13]. In our case, if we see the recommender as a person that we communicate
with (media equation theory), the system can be seen as a source, the user as
a receiver and recommendations as messages. The whole process of recommend-
ing is set in a specific context. Recommendations persuade receivers whether
to continue using the system or not [19]. In RS field, this technology focuses
on psychological aspect of recommendations and clarifies how recommendations
can be represented to have more effect on users.

CONTEXT FACTORS: Product type, RS provider reputation
SOURCE: MESSAGE: RECEIVER:
Recommender System Recommendation Users
® RS type j * Content M o Knowledge
e Input e Format M o Ivolvement
® Process & Familiarity
* Embodied agents * Demographic cues

EFFECT
Recommendation Acceptance or Rejection, Deferred judgment,
Counter-argumentation, Dismissal, Reuse

Fig. 1. Conceptual framework of persuasive RS [19].

3 Research methodology

In our proposal, we argue for the usefulness of LTRS to guide the users to a pre-
defined goal in item space. The users are conducted toward a goal by generating
a sequence of relevant recommendations in successive moments. We intend to
design and develop a strategy that generates recommendations that guide the
users toward a goal and also a framework in order to evaluate the success of
our strategy. The proposed strategy is applicable in different domains such as
E-learning, music, etc.

Figure 2 shows a conceptual view of our proposal. It shows an item space (a
set of objects with different characteristics) that contains the type of objects in
which the user is interested (gray highlighted area). Our strategy conducts the
user towards the goal (green highlighted area) step by step, while dynamically
calculates how far the target user is from the target area (i.e. assess the distance
between the current position of the target user and target area after each recom-
mendation). The purpose of each recommendation is to enlarge the interesting
area (in case of E-learning it can be knowledge area) of the user’s target until
he reaches the items in the target area.
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Fig. 2. Conceptual view of LTRS.

3.1 Task 1: Literature Survey and concepts definition

We already started by broadening our knowledge of the area of sequential recom-
mender systems (e.g. learning design recommenders). Work on recommendation
of structured objects in general are also of interest (sequences are a particular
type of structures). User behavior studies related to recommenders such as per-
suasive recommender systems are also significant. In addition, in this phase, we
are also interested in distance based approaches which are relevant to charac-
terize the user trajectories in the item space and user transitions from region to
region. Finally we will review existing evaluation methodologies and measures
for such structured recommendation problems and specially evaluation method-
ologies for live environments with real users.

Furthermore, in order to design a framework for the LTRS, a few concepts
should be defined: item space, target region in the item space, user location,
distance between current location of user and an item and also distance between
user current location and target region.

3.2 Task 2: Data feed set-up

To learn about long term interaction between users and recommenders, we are
currently analyzing the log data of a music recommender that we have previ-
ously developed in the context of Palco3.0 QREN project. The recommender
service is running for the Palco Principal website. We intend to understand how
recommendations influence the evolution of users, how users react to the recom-
mendations, their current activities and interests, etc. We collect activity data
from the recommender service such as the generated recommendations and the
followed recommendations.

We also look for a second application set up in the area of E-learning. We are
in contact with a publishing company working in the area and also have access
to programming languages tutoring environments that can be adapted to use
recommendation algorithms.
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3.3 Task 3: Long term user behavior and trajectory characterization

The data feed defined in Section 3.2 will be utilized in a continuous streaming
fashion to identify user behavior through time and to examine the predictability
of the trajectory of a user in the item space. The obtained knowledge from this
phase will be significant in order to develop our strategic recommender algorithm.
It will also be of interest to other researchers who are interested and work on
user behavior and characterization.

3.4 Task 4: Defining a long term recommendation strategy

This phase is the main step of the study. In this phase, we plan to define a strat-
egy that learns from user activities and generates a series of recommendations
taking into account well defined long term goals and user satisfaction. Learn-
ing design recommender principles will be applied in order to generate more
effective recommendations to conduct users. Furthermore, we intend to utilize
distance based reasoning to make sense of the space of items and represent user’s
trajectories and goal in that space. Other data will also apply in order to en-
hance recommendations such as item features and user-item interaction ratings
(preference rating or test results in the case of e-learning).

3.5 Task 5: Design an evaluation framework

Researchers evaluate their recommenders using Information Retrieval ap-
proaches (Precision, Recall, etc), Machine Learning approaches (RSME,
MAE, etc) and Decision Support System (DSS) approaches (such as customer
satisfaction and user loyalty). Although many recommenders are evaluated by
IR and ML measures [19], we need to continually measure users interaction with
system and DSS evaluation approaches provide more appropriate evaluation for
LTRS.

Moreover, in this step, we also plan to design appropriate evaluation measures
and methodologies to evaluate the success of the proposal. Due to the fact that
evaluation must be performed with live recommendations on real cases (since we
need to monitor how users respond to the recommendations), we see this task as
a challenging one. We will determine goals to test users and evaluate the success
of the methodology in guiding users toward the goals. The evaluation of results
will be compared with a control group of users. In particular, we need to:

Specify the evaluation criteria

— Define evaluation methodology

— Specify online evaluation protocols
— Perform experiments

Statistically validate results

Furthermore, offline and user study are other methods which are applicable
in order to evaluate the result of LTRS. In addition to systematic empirical
evaluation of the proposed method, we also intend to demonstrate our idea on
one or two real cases. Our plan is to have one e-learning case and one music
recommendation case.
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4 Conclusion

In this paper we propose long term goal recommender systems (LTRS) that be-
sides satisfying immediate needs of users, conduct users towards a predefined
goal. In such a scenario, user guidance would be achieved by generating a se-
quence of relevant recommendations through time. This strategy is applicable in
different domains such as E-learning, movie, music, etc. Generating a strategy
for long term goals is of interest in recommending learning resources to learn a
concept, and also when a company attempts to convince users to buy certain
products.

Several methods and technologies will be utilized to build LTRS. The prin-
ciples of learning design activity can be useful in order to have more effective
recommendations. Another technology which is useful for this purpose is persua-
sive technology. Persuasive technology concentrates on the psychological aspect
of recommendations and explains how recommendations can be represented in
order to have more effect on users.

To evaluate LTRS we will require appropriate methods to assess the success
of strategic recommendations, since current measures such as Precision, and
Recall are not sufficient. In any case, offline and online evaluation should be
complemented with user studies.
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Abstract. Ensemble methods have been receiving an increasing amount
of attention, especially because of their successful application to prob-
lems with high visibility (e.g., the NetFlix prize, Kaggle competitions,
etc). An important challenge in ensemble learning (EL) is the manage-
ment of a set of models in order to ensure accuracy and computational
efficiency, particularly with a large number of models in highly dynamic
environments. We plan to use metalearning (MtL) to improve the per-
formance of one of the most important EL algorithms: bagging. MtL
uses data from past experiments to build models that relate the char-
acteristics of learning problems with the behaviour of algorithms. Our
approach consists in using MtL techniques that act at the level of 1) en-
semble pruning and 2) ensemble integration to improve the performance
of the original bagging algorithm. On the one hand, we present results
of a technique that allows to prune bagging ensembles before actually
generating the individual models with a performance equal to the orig-
inal algorithm. On the other hand, we expose how we plan to extend
the work done in 1) to include a dynamic approach. Our final goal is
to achieve a MtL method that is able to select the most suitable subset
of models according to the characteristics of the instance that is being
predicted.

Keywords: Metalearning, Ensemble Learning, Bagging, Pruning

1 Introduction

We present an overview of the ongoing research regarding the application of met-
alearning (MtL) techniques in order to improve the performance of the bagging
algorithm, particularly at the level of ensemble pruning and integration.

Bagging is an ensemble learning technique that allows to generate multiple
predictive models and aggregate their output to provide a final prediction. Typ-
ically, the aggregation function is the mean (if the outcome is a quantitative
variable) or the mode (if the outcome is a qualitative variable). The models are
built by applying a learning algorithm to bootstrap replicates of the learning
set [1].
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MtL is the study of principled methods that exploit metaknowledge to obtain
efficient models and solutions by adapting machine learning and data mining
processes [2]. We plan to use MtL to prune and dynamically integrate bagging
ensembles. Our goal is to develop such a method that is able to prune bagging
ensembles according to the characteristics of the bootstrap samples and then
dynamically integrate the final models according to the characteristics of those
models and the test instances.

In this PhD spotlight paper, we present some promising preliminary results
regarding the ensemble pruning component of our method and we expose the
approach that we plan to follow in our research.

This paper is organized as follows. In Section 2, we present the methodology
that we plan to follow in our research line. Section 3 presents preliminary results
regarding a MtL pruning technique applied to bagging ensembles of decision
trees on 53 classification datasets. Finally, Section 4 concludes the paper.

2 Methodology

The approach is summarized in Figure 1. Our method initializes by extracting
data characteristics (or metafeatures) from each bootstrap sample by, ..., b, of
the training data. These metafeatures are stored in a meta-dataset together
with the relative importance of each bootstrap on a sample of all possible model
combinations, 2" — 1. A study of the effectiveness of this sample procedure
together with an exploratory analysis of the meta-data was published in [3].

Regarding the pruning component of our method, our initial approach was
to characterize each bootstrap sample individually (Zst phase). We published
a paper reporting those experiments [4] (which are also discussed in Section 3
of this paper). However, we acknowledge that this type of characterization can
dismiss one of the most important concepts of EL: diversity. It is well known in
the EL literature that complementary classifiers can improve the accuracy over
individual models. One can say that two classifiers are complementary if they
make errors in different regions of the input space and therefore their predictions
are diverse [5].

We plan now to enrich the characterization of the bootstrap samples by de-
veloping metafeatures that compare each bootstrap to the rest of them and,
therefore, include the concept of diversity in the design of the metafeatures (2nd
phase). Hopefully, this characterization would allow to measure the complemen-
tarity between the respective models of the bootstrap samples. If we succeed,
this should improve the efficiency of the pruning method that we propose.

Next, in the 3rd phase, we plan to extend our pruning method in such a
way that its decision on to prune or not to prune a model is not made on a
individual level. We want it to take into account the decisions made before (the
models that were not pruned) in order to seek the model complementarity that
we mentioned before.
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Finally, in the 4th phase of this thesis project, we plan to extend the pruning
method to consider a dynamic approach. That is, the the selection and combi-
nation of the best subset of model(s) for each test instance.

Project Phases

Metadata Leaming
1st Phase

2nd Phase
3rd Phase
th Phase
Metafeatures
Extraction

- Learning
\ Algorithm

ENSEMBLE [ Ensemble Integration

>; w x Ji(x)

Eoolslrap

-/
Training
Data |\

@
@ wy X Jul@)
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Dataset

Test Set (z) / Pr:(;?:lliol‘l

Fig. 1. Project phases. Phase 1: pruning and characterization of bootstrap samples
is done on individual level. Phase 2: pruning is individual but characterization of
bootstrap samples is done by comparing several bootstrap samples. Phase 3: pruning
and characterization of bootstrap samples is done by comparing several bootstrap
samples. Phase 4: dynamic integration of subset of models.

3 Preliminary Results

In this section we present preliminary results on the pruning method developed
using the approach described in Figure 1. We followed an approach as described
in the st phase of this thesis project. More details on this work can be found
in [4].

We use three different learning algorithms in our MtL framework: Random
Forests (Meta.RF), M5’ (Meta.M5’) and Support Vector Machine (Meta.SVM).
We compare our method with 4 benchmarks: 1) Metatarget - in this approach
we use the groundtruth of our metatarget to execute the pruning at the base-
level. This allows to benchmark how good our method could be if we were able
to generate a perfect meta-model; 2) Bagging - the same algorithm proposed
by Breiman [1], without any sort of pruning; 3) Margin Distance Minimization
(MDSQ) [6] - this algorithm belongs to the family of pruning methods based on
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modifying the order in which classifiers are aggregated in a bagging ensemble.
The main feature of these kind of methods is to exploit the complementariness
of the individual classifiers and find a subset with good performance; 4) Random
pruning - baseline approach in which the selection of models to be pruned is
random. This is repeated 30 times for robust results.

Results are presented in Figure 2. We can see that Meta.RF has a perfor-
mance very similar to bagging and this is achieved with a pruning rate of 75
% before actually generating the final models. We consider these results very
promising. However, the CD diagram also shows that the method is not statis-
tically different from MDSQ, the Metatarget and Random. We plan to improve
these results following the research plan that we present in Section 2.

CD
—_—
7 6 5 4 3 2 1
, v + T i I'T + 1
Random —J
MDSQ

Meta.SVM —J Bagging
Meta.M5' Meta.RF

Fig. 2. Critical Difference diagrams (o = 0.05) of the performance of the metamodels
in comparison with the benchmark pruning methods.

4 Final Remarks and Future Work

This paper describes the ongoing research of a MtL method to prune and dy-
namically integrate bagging ensembles. A brief overview of the research plan
was presented and some preliminary results were analyzed. We plan to follow
the research plan in order to achieve the goals that were previously set.
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Abstract. This paper presents a PhD project related to the use of multi-sensor
data fusion techniques, applied to the sensors embedded in mobile devices, as a
mean to identify user’s daily activities. It introduces some basic concepts, such
as the definition of activities of daily living, mobile platforms/sensors, multi-
sensor technologies, data fusion, and data imputation. These techniques have al-
ready been applied to fuse the data acquired with different sensors, but due to
memory constraints, battery life and processing power of these devices, not all
the techniques are suited to be used in these environments. This paper explains
an overview about the state of the research in this topic, explaining the method-
ology to create a best effort method to recognize a large number of activities of
daily living using a mobile device.

Keywords. Sensors; data fusion; multi-sensor; mobile platforms; activities of
daily living

1 Introduction

The identification of Activities of Daily Living (ADL) focuses on the recognition
of a well-known set of everyday tasks that people usually learn in early childhood.
These activities include feeding, bathing, dressing, grooming, moving without danger,
and other simple tasks related to personal care and hygiene. On the context of Ambi-
ent Assisted Living (AAL), some individuals need particular assistance, either be-
cause the user has some sort of disability, or because the user is elder, or simply be-
cause the user needs/wants to monitor and train his/her lifestyle.

The aim of this PhD research consists in the definition of a set of ADLs that may
be reliably identified with mobile devices. This includes the activities related to ac-
quire data and recognize a set of tasks and identify which tasks are accurately recog-
nized.
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The joint selection of the set of valid sensors and the identifiable set of tasks will
then allow the development of a tool that, considering multi-sensor data fusion tech-
nologies and context awareness, in coordination with other information available from
the user context, such as their agenda and the time of the day, will allow to establish a
profile of the tasks that the user performs in a regular activity day.

The accuracy of the identification of ADLs using a mobile device depends on the
environment where the data is acquired, the methods used in data pro-
cessing/imputation/fusion, and the mobile devices used. Several pattern recognition
and machine learning techniques have already been used for the identification of
ADLs. Besides, data collected can have noise, and statistical methods should be ap-
plied to minimize it. Hence, the algorithms for the detection of ADLs can be im-
proved to increase the set of activities that can be accurately detected using mobile
devices.

As a result of this PhD a new method to recognize a large set of ADLs with mobile
devices will be developed and implemented.

This paper is organized as follows. Section 2 presents a review of the state of the
art, focusing in the main concepts of this topic. Section 3 introduces the proposed
solution to be developed during this PhD work. Section 4 presents the discussion and
conclusion.

2 Related Work

This research topic involves many different areas of research: activities of daily
living, multi-sensor, data fusion and data imputation. This section reviews previous
works in these areas but constrained to the use of mobile devices.

2.1  Identification of activities of daily living

Activities of daily living (ADL) are activities that require more than just the neces-
sary cognitive and physical abilities but a sense of personal identity and awareness
response of others. These activities involve a desire to achieve a degree of physical
comfort, self-care, and autonomy, which promotes feelings of independence and per-
sonal control [1]. Common activities of daily life are related to personal appearance
and hygiene, domestic skills, household management, family and child care, family
planning and sexual matters, budgeting and personal administration, conversational
and social skills, mobility transfers, and leisure, education, training and work activi-
ties [1]. The detection of health problems, using the analysis of ADLs, is carried out
by the analysis of the accuracy of the patient when performing these activities. In [2]
is shown that detection of ADLs may assess how life’s quality of people with demen-
tia is affected. The evaluations of ADLs involve some psychological or medical de-
terminations to understand people’s ability to care for themselves on a day-to-day
basis [3].

A variety of sensors have been used to recognize ADLs. Accelerometer, door,
item, temperature, light, wearable, gravity, ECG, vital sign and RFID sensors, GPS
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receivers, microphones, cameras, and other sensors, are used to detect when a person
is having/preparing a meal, washing up, bathing, waking up, sleeping, standing, sit-
ting, watching TV, using the phone, doing the chores, cycling, jogging or perform
other activities [4-20].

2.2 Mobile Platforms

Mobile devices are used in the vast majority of people’s daily activities [21]. These
devices are embedded with a large variety of sensors [22], such as GPS receiver, ac-
celerometer sensor, gyroscope sensor, proximity sensor, light sensor, communication
sensors, acoustic sensors, digital camera and other over-the-air sensors.

The mobile platforms available in the market in 2014 [23] are Android, i0OS, Win-
dows Phone, BlackBerry, Samsung Bada, Samsung Tizen, Symbian, MeeGo, Asha,
Firefox OS, and Ubuntu Touch. The two platforms responsible for the largest market
share are Android and i0S operating systems [24].

2.3  Multi-Sensor

The use of multiple sensors may increase the reliability of the system. The most
important stage in multi-sensor systems is signal classification with pattern recogni-
tion or machine learning methods [25].

Multiple sensors can be used in the detection of ADLs or monitor rehabilitation ac-
tivities. In [26] a system, which combines different sensors, was created for data pro-
cessing and logging. In [27] a human-aided multi-sensor fusion system was created. It
involves the integration of the Probabilistic Argumentation System and the Structural
Evidential Argumentation System, which both are variants of the Dempster-Shafer
belief function theory. Detection of ADLs are carried out in [28] by using a platform
composed of a base station and a number of sensor nodes, recognizing human activity
with the minimum body sensor usage through the use of dynamic sensor collabora-
tion. In [29] a wearable multi-sensor ensemble classifier for physical activity pattern
recognition was developed, which combines multiple classifiers based on different
sensor feature sets to improve the accuracy of physical activity type identification and
recognizing 6 different physical activities. In [30] wearable inertial sensors and fiber
sensors attached to different human body parts are used to capture kinetic data.
Recognition is achieved by combining it neural networks and hidden Markov models.

In [31] a wireless wearable multi-sensor system was created for locomotion mode
recognition, with three inertial measurement units (IMUs) and eight force sensors,
measuring both kinematic and dynamic signals of human gait, using a linear discrimi-
nant analysis (LDA) classifier.

2.4  Data Fusion

Data fusion consists in the integration of data and knowledge from several sources
[32]. According to [33, 34], data fusion methods belong to three categories. These are:
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e Probabilistic methods (Bayesian analysis of sensor values, Evidence Theory,
Robust Statistics, and Recursive Operators);

e  Probabilistic approaches (Least square-based estimation methods such as
Kalman Filtering, Optimal Theory, Regularization, and Uncertainty Ellip-
soids and Bayesian approach with Bayesian network and state-space models,
maximum likelihood methods, possibility theory, evidential reasoning and
more specifically evidence theory);

e Artificial Intelligence (Intelligent aggregation methods such as Neural Net-
works, Genetics Algorithms, and Fuzzy Logic).

Multiple techniques related to sensor fusion are presented in [32, 34-36], using
several sensors and techniques, such as Kalman filter and their variants, neural net-
works and other statistical methods.

2.5  Data Imputation

During acquisition time data collection can fail in some instants. These failures
may be due to various reasons. Missing data failures can be classified as [37, 38]:

e Missing completely at random (MCAR) happens when missing values are
randomly distributed across all observations;

e  Missing at random (MAR) is the condition that exists when missing values
are randomly distributed within one or more subsamples instead of the
whole data set like MCAR;

e  Missing not at random (MNAR) is the type of missingness that arises when
missing values are not randomly distributed across observations.

However, various methods exist for the estimation of missing values in what is
called Data Imputation.

Several methods related to data imputation are presented in [39]. The main meth-
ods are K-nearest neighbors and other statistical methods [39-41]. For the recognition
of ADLs, some methods can be applied in pattern recognition and health state detec-
tion [39, 42, 43]. During this PhD other statistical algorithms will also be studied.

3 Proposed Solution

The proposed solution to solve the problem presented in section 2 consists in the
design and development of different methods/algorithms for the automatic identifica-
tion of a suitable set of ADLs using sensors embedded in off-the-shelf mobile devic-
es. Identification will be supported with other contextual data, e.g. the agenda of the
user.

The solution proposed in this PhD work for the identification of ADLs is com-
posed of different modules/stages (figure 1):

e Sensors data acquisition;
e  Sensors data processing;
e  Sensors data fusion;

e  Sensors data imputation;
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e Data Mining/Pattern Recognition/Machine Learning techniques.
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Fig. 1. Process for the identification of Activities of Daily Living using mobile
sensors

The first stage 1 includes the research to determine the sensors that the system
should use in order to identify accurately a large set of ADLs. Sensors that are availa-
ble in mobile devices differ depending on the mobile platform used and hardware, but
they are commonly those mentioned in Section 2.1.

Data acquisition process, which it is the second stage of the proposed solution,
should be adapted to the environment and positioning, related to the user’s body, of
the mobile device. Data collected is used in the Data Processing stage. This stage
must use methods to minimize the effects of environmental noise in the data collected
by all the available sensors and convert these data to homogeneous units. In the PhD
thesis, a new method to commute the algorithm with the number of sensors available
should be created.

Due to the different number of sensors available in mobile devices, a process is
needed to analyze which are the sensors available in the used mobile device and de-
termine the maximum number of sensors that should be used during data acquisition
and data processing in order to increase the accuracy of the identification.

After data acquisition and data processing stages, data fusion deals with merging
appropriately the data coming from all those sensors. Although this can be done with
different methods, Kalman filter and their variants are the most commonly used with
low processing techniques or with server side processing. The capacities of the mobile
devices are the most important criteria for choosing one method for data fusion tech-
niques. During this PhD project, a new method to carry out efficiently sensor data
fusion with a mobile device will be developed. The main objective is that this data
fusion stage occurs in real-time without large local processing, because the mobile
devices have low processing capacities and memory.

Sometimes data acquisition can fail due to the unavailability of sensors, unknown
errors occurred in real-time collection. This can affect the global performance of the
system to recognize ADLs. Hence, the existence of a module for data imputation is
very important. Data imputation techniques can be applied before or after sensor data
fusion using different statistical methods. Missing data can be generated using several
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algorithms (e.g. K-nearest neighbor (KNN) schemes, likelihood-based schemes,
Bayesian-based schemes and multiple imputation (MI) schemes) or other methods,
such as MLE in multivariate normal data, GMM estimation, Predictive mean match-
ing (PMM), Multiple imputation via MCMC and Multivariate imputation by Chained
Equations. In this PhD project, the reliability of the existent methods will be verified
and a new method for data imputation will be developed (if needed).

Next, pattern recognition or machine learning methods will be created for the iden-
tification of activities of daily living. They must be validated with a gold standard (i.e.
inquiring a user about the activities performed or watching the user).

Finally, all these algorithms/methods will be implemented as a mobile application.
The mobile application should be developed for a major mobile operating system in
order to automatically detect the activities of daily living of a subject, with a comfort-
able degree of accuracy in different environments.

4 Discussion and Conclusion

Until now this PhD project has reviewed the state of the art of the different topics
related to the identification of ADLs using a mobile. These are:
e Activities of daily living;
e  Multi-sensor techniques;
e  Sensors data fusion technologies;
e  Sensors data imputation techniques;
e  Mobile platforms;
e  Context aware applications.

Currently, mobile devices, such as smartphones, tablets, among others are widely
used. Mobile devices incorporate various sensors, depending on the platform used,
which allow capturing a variety of data.

These sensors are able to detect different parameters about people’s health, activi-
ties of daily living and other purposes. Sensors available in mobile devices are quite
diverse, such as accelerometry sensors (e.g. gyroscope, accelerometer and magnetom-
eter), acoustic sensors (e.g. microphone), location sensors (e.g. GPS receiver), digital
camera and other over-the-air sensors (e.g. heart rate monitors).

This PhD project will use those sensors to identify activities of daily living. The
study about the identification of activities of daily living is very complex and it is
divided in some subtopics, such as multi-sensor, data fusion, mobile platforms, identi-
fication of activities of daily living and data imputation.

At this stage, a state of the art has been finalized in order to obtain the global
knowledge to design and develop new methods for each one of those stages. Finally,
all these methods will be embedded in a mobile application that will allow the valida-
tion with users under real conditions.
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Abstract. Machine learning has proven to be a powerful tool in diverse
fields, and is getting more and more widely used by non-experts. One of
the foremost difficulties they encounter lies in the choice and calibration
of the machine learning algorithm to use. Our objective is thus to pro-
vide assistance in the matter, using a meta-learning approach based on
an evolutionary heuristic. We expand here previous work presenting the
intended workflow of a modeling assistant by describing the characteri-
zation of learning instances we intend to use.

Keywords: Meta-Learning, Modeling, Prediction, Evolutionary Heuris-
tics, Algorithm selection

1 Motivation

Over the last decades was produced an important variety of techniques and
algorithms labeled as machine learning. But the performance of such techniques
can vary a lot from a dataset to another, and the ”"no free lunch” theorems
[21] showed that no algorithm could outperform all others on every possible
problem. This led to many studies of algorithm’s inner bias adequateness to
diverse learning problem, such as [1] and [4] who used rule-generation machine
learning techniques on the problem, describing the conditions under which the
significant performance difference between algorithms holds. These applications
of machine learning to the study of itself bore great significance over how this
Meta-Learning problem would be addressed. Despite promising applications of
such approaches over a limited range of learning tasks, like pairwise algorithm
comparison [6], or recursion of adaptive learners [20], the Meta-Learning problem
still carries many open perspectives. Another approach would be to address
directly the question : ” Which learning algorithm will perform best on a given
learning problem 27, without having to comply to the limitation of the classic
machine learning techniques employed at the meta-level.
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2 Characterization and Comparison of Learning Instances

Our own perspective view on the matter is that the meta-knowledge can
be viewed as a population of meta-level learning instances (or meta-instances),
each describing the evaluated application of a learning task to a given dataset,
and that a good solution to a given meta-learning task can be obtained via the
evolutionary exploration of this population. Such approach is giving interesting
results among other classes of problems such as Boolean satisfiability (SAT)
[22] or Instance selection [12], but, to our knowledge, has not yet been explored
regarding Meta-Learning.

Our objective is to provide modeling assistance through an evolutionary
algorithm-selection approach, which intended workflow is illustrated by figure
1 and was presented more thoroughly in [15].

Data treatment : Model construction : Model treatment :
Cleaning. processing, feature Classification, regression, Error estimation, prediction
selection or generation... exploration... explanation...

Treatment-meta-features

Data-meta-features : Evaluation-meta-features :

[

sta-instance

Topology of the data and
properties of the features

Predictive accuracy, information
score, complexity...

Meta-data
as a population of meta-instances

Data
&
Objectives

Evolutionary exploration of the
meta-data population to find a good
solution to the given problem

User

Model exploitation

Fig. 1. Modeling assistant

One of the foremost issues we must address in order to complete our frame-
work, and the main topic of this paper, will be the characterisation of the meta-
instances. This problem can be viewed as an extended form of the dataset char-
acterization problem faced by most meta-learning approaches, which consists in
the definition of a subset of dataset properties (meta-level features of the dataset)
that should allow a fine grain characterisation of datasets, while still complying
to the requirements of the meta-level learner employed. It is typically solved
through some kind of meta-level features selection [7], but to fit most learners
requirements, dataset properties have to be aggregated into fixed-length fea-
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ture vectors, which results into a important loss in information as stated in [6].
We intend to overcome this issue through the use of an evolutionary heuristic,
whose fitness would rely on dissimilarity between meta-instances. Such approach
would indeed allow the use of all available information to characterize the meta-
instances. Relating in that way to the ”anti-essentialist” representations such as
discussed in [3], we believe that limitations in the representations of datasets
are among the main obstacles to well performing algorithm selection, and are
focusing our efforts toward the definition of such representation.

2 Characterising Learning Instances

We will here address the definition of the features that will describe our meta-
instances, hence called meta-feature. Those sets of meta-features should be large
enough to characterize well any modeling task, but a balance must be found to
avoid the abundance of indecisive features and limit computational complexity.
Furthermore, in order to discriminate between meta-features or meta-instances
according to the user’s need, the comparison of meta-features of a particular
meta-instance - or of a given meta-feature over several meta-instances - should
be possible and make sense.

As a meta-instance describes the evaluated application of a learning task
to a given dataset, we can intuitively split those meta-features along three di-
mensions. First, meta-features describing the data (Fig.1 Data-meta-features),
then, meta-features describing the applied treatments (Fig.1 Treatment-meta-
features), and finally, meta-features evaluating the resulting model (Fig.1 Eval-
uation-meta-features).

2.1 Data Meta-features

The dataset characterization problem has been addressed along two main direc-
tions :

e In the first one, the dataset is described through a set of statistical or infor-
mation theoretic measures. This approach, notably appearing in the STAT-
LOG project [10], and in most studies afterwards [8, 20, 12], allows the use of
many expressive measures, but its performance depends heavily on the ad-
equateness of bias between the meta-level learner and the chosen measures.
Experiments have been done with meta-level features selection [19] in order
to understand the importance of different measures, but the elicited opti-
mal sets of meta-feature to perform algorithm selection over two different
pools of algorithms can be very different, revealing no significant tendencies
among the measures themselves. This led [20] to the intuition that adapting
the meta-learning process to specific tasks is in fact a meta-meta-learning
problem, and so on, requiring an infinite recursion of adaptive learners to be
properly solved.



Hollmén, Papapetrou (editors): Proceedings of the ECMLPKDD 2015 Doctoral Consortium

4 Characterization and Comparison of Learning Instances

e The second direction of approach to dataset characterization focuses, not
on computed properties of the dataset, but on the performance of simple
learners over the dataset. It was introduced as landmarking in [14], where
the accuracies of a set of very simple learners are used as meta-features
to feed a more complex meta-level learner. There again, the performance
of the method relies heavily on the adequate choice of both the base and
meta-level learner, with no absolute best combination. Further development
introduced more complex measures than predictive accuracy over the mod-
els generated by the simple learners. For instance, [11] claims that using as
meta-features different structural properties of a decision tree induced over
the dataset by simple decision-tree learners can also result in well performing
algorithm selection. [13] experiments with those approaches to algorithm se-
lection, showing that all can result in good performance, but that no overall
dominance between those methods or over the approaches relying on statis-
tical measures can be found.

The dataset characterization problem has thus already received quite some
attention in previous meta-learning studies, but, as stated before, the aggrega-
tion of meta-features into fixed-length vectors processable through the meta-level
learner were source of an important information loss, even though it was par-
tially limited in [8] with the use of histograms describing the distribution of
meta-feature values. However, the paradigm shift between literal meta-learning
and our approach will shift the issue to another : we are free to use varying-
length meta-feature vectors, but have to design a sound way to compare them.
This mostly comes as an issue when comparing meta-features computed over
individual features of the dataset, as illustrated in the following example.

Example We consider two datasets, A and B depicted in Fig.2. A describes
12 features of 100 individuals, and B, 10 features of 200 individuals. Let us say
we want to compare the results of a set of 5 statistical or information theoretic
measures over each individual feature, like mean, variance, standard deviation,
entropy, and kurtosis (as illustrated over the second feature of A in Fig.2). The
complete information we want to compare is then a 60-value vector for A, and
a 50-values vector for B.

Our stance on the matter is to compare those features by most similar pairs,
while comparing A’s two extra features with empty features (features with no
value at all). The assumption taken here is that a feature with absolutely no
value is equivalent to no feature at all. To get back to our example, we end
up comparing the 5 measures taken on the two closest (according to these very
measures) features in A and B, then of the second closest, and so on, to finish
on comparing the measures taken over the two extra features of A with measures
taken over an artificial empty feature. These different comparisons sum up to
an accurate description of how different A and B are, according to our set of
measures. These pairwise comparisons would allow to ignore the presentation
order of the features (which holds no meaningful information), focusing on the
actual topology of the dataset.

201



Hollmén, Papapetrou (editors): Proceedings of the ECMLPKDD 2015 Doctoral Consortium

202

Characterization of Learning Instances for Evolutionary Meta-Learning 5

Features 1. 12 Features 1..10

002~ L sienpivipu)

001 L s[enpiupu)

mesan, variance, stdev,

Setof 5 measures :
entropy, kurtosis

Z aumeaq

L saunseap
L saunseap

]
-
]

60 values <::> W

Compare with 7

Fig. 2. Measures over individual features

Assuming that a very expressive comparison will result in a better performing
fitness, this only emphasizes the need for an extensive set of meta-features. We
intend to use most of the classic statistical and information theoretic measures,
from the number of instances to features entropy, considering also measures of
feature correlation. As the various landmarking approaches showed interesting
results, we additionally consider using such measures as meta-features, but fur-
ther studies might be required to limit overlapping information between the two
kinds of measures.

2.2 Evaluation and Treatment Meta-features

The meta-features describing the evaluation of the resulting model should con-
sider a wide range of criteria and allow some flexibility in its comparison to the
user’s need. Among many usual criteria, we are giving a particular attention
to meaningful information-based criteria such as described in [9]. We also wish
to investigate the definition of some explainability criteria following [17] predic-
tion explanations, as the ability of the model to explain its predictions has been
shown to be a very important factor in allowing non-experts to understand and
accept them [18].

The meta-features describing the modeling treatments should consider all
potential treatments producing a model of the given dataset. The characteri-
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zation of treatments has notably been addressed by the algorithm profiles pre-
sented in [5], where sets of algorithm properties are learned from modeling tasks
on arbitrary chosen datasets. We intend to describe a modeling algorithm not
from a-priori learned properties, but from aggregated properties of the meta-
instances of our population presenting the use of this particular algorithm. For
instance, the current predictive accuracy property of a given algorithm could be
defined as the mean of the predictive accuracy evaluation-meta-feature among
the meta-instances in our current base featuring that particular algorithm. We
also consider relative aggregations, such as rank over known algorithms, as no
absolute value is required for comparison.

3 Conclusion and perspectives

The set of all meta-features presented above should allow fine grain description
of evaluated modeling experiments, and will thus define the structure of the
meta-instances over which the evolutionary heuristic will be applied. In other
terms, those meta-features will be the genome of the meta-instances, along which
evolution will take place, to find a modeling treatment answering the user’s need.

However, in order to complete and thus evaluate this framework, several
important tasks are yet to be addressed. First, a representation of the user’s
modeling need that would allow its automatic or semi-automatic elicitation will
be required. Indeed, as the target user is a non-expert, he should be walked
through the definition of his modeling need, that will define the goal of the
evolution. Also, such representation could allow to lessen the computational
complexity of the heuristic, by considering only instances that could answer the
user’s need.

Then, meta-instances comparison metrics shall be formalized in order to
define the evolutionary fitness as a similarity with the evolution goal that was
elicited from the user’s need.

Finally two of the important challenges to address will be the definition and
calibration of the evolutionary heuristic employed, and the creation of predatory
mechanisms limiting the population of meta-instances. We intend to use the
framework of genetic algorithms [2] and memetic algorithms [16], which present
desirable properties such as unconstrained individuals and native parallelism,
the later being required to deal with the important computational complexity
of the intended workflow.
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Abstract. Real-life datasets that occur in domains such as industrial
process control, medical diagnosis, marketing, risk management, often
contain missing values. This poses a challenge for many classification
and regression algorithms which require complete training sets. In this
paper we present a new approach for “repairing” such incomplete datasets
by constructing a sequence of regression models that iteratively replace
all missing values. Additionally, our approach uses the target attribute
to estimate the values of missing data. The accuracy of our method,
Incremental Attribute Regression Imputation, TARI, is compared with
the accuracy of several popular and state of the art imputation methods,
by applying them to five publicly available benchmark datasets. The
results demonstrate the superiority of our approach.

Keywords: Missing data, Imputation, Regression, Classification, Ran-
dom Forest

1 Introduction

In industrial processes and many other real-world applications, data is collected
to gain insight into the process and to make important decisions. Understand-
ing and making predictions for these processes are vital for their optimization.
Missing values in the collected data cause additional problems in building pre-
dictive models and applying them to fresh data. Unfortunately, missing values
are very common and occur in many processes, for example, sensors that collect
data from a production lines may fail; a physician that examines a patient might
skip some tests; questionnaires used in market surveys often contain unanswered
questions, etc. This problem leads to the following questions:

1. How to build high quality models for classification and regression, when some
values in the training set are missing?
2. How to apply trained models to records with missing values?

In this paper we address only the first question, leaving the answers to the
second one for further research.
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There are several methods developed for tackling this problem, see e.g., [4, 5,
11,14, 16]. The most common method, imputation, reconstructs the missing val-
ues with help of various estimates such as means, medians, or simple regression
models which predict the missing values. In this paper we present a more sophis-
ticated approach, Incremental Attribute Regression Imputation, IARI, which
prioritizes all attributes with missing values and then iteratively “repairs” each
of them, one by one, using values of all attributes that have no missing values or
are already repaired, as predictors. Additionally, the target variable is also used
as a predictor in the repair process. Repairing an attribute is achieved by con-
structing a regression model and applying it for estimation of missing values. We
use here the Random Forest algorithm, [3], [6], due to its accuracy, robustness,
and versatility: it can be used to model both numerical and categorical variables.
Obviously, after repairing all attributes with missing values a final model for the
original target variable is trained on the repaired training set.

We tested our algorithm on five datasets: Digits, Page Blocks,Concrete, and
CoverType from the UCI Machine Learning Repository, [2], and Housing 16H
from mldata.org [1], first removing some values at random, then reconstructing
them with help of TARI and several common imputation algorithms, and finally
comparing the accuracy of regression or classification models trained on recon-
structed datasets. The results demonstrate that in most cases, no matter how
many attributes were spoiled and by how much, the IARI outperformed other
imputation methods both in terms of the accuracy of the final models and the ac-
curacy of imputation. On the other hand, the IARI algorithm is computationally
very demanding—it builds as many Random Forests as the number of attributes
that should be repaired. Fortunately, due to the parallel nature of the Random
Forest algorithm, the runtime of the TARI algorithm can be dramatically reduced
by running it on a system with multiple cores or CPUs.

The paper is organized as follows. After introducing various types of missing
data and providing an overview of the relevant research on imputation meth-
ods we will present the TARI algorithm. Next, we describe in more detail an
experimental framework and results of our experiments. Finally, we draw some
conclusions and make recommendations for further research.

1.1 Missing Data Types

There are three categories of missing data [13,11, 10,6, 8|: Missing Completely
at Random (MCAR), Missing at Random (MAR), and Missing Not at Random
(MNAR). In many cases, data is MNAR, meaning that the probability that a
value of a variable is missing somehow depends on the actual (observed or not)
values of this or other variables. A value of a variable is MAR if the probability
of being missing does not depend on the (unobserved) value of this variable.
And a value of a variable is MCAR if the probability of being missing does not
depend on (observed or unobserved) values of this or other variables. In real
world scenarios one often cannot determine if the missing data is MCAR, MAR
or MNAR because the mechanism behind missingness is not known. In such
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situations domain expertise is of vital importance and it can guide the choice of

a strategy for handling missing values.

2 Relevant Research

There are many ways of dealing with missing data when building a regression

or classification model. Some of the most popular methods are:

Complete Case Analysis (CCA): This method simply ignores all records

208

that have missing values and selects only records with no missing values
[7,5]. When the percentage of complete records is relatively high and the
data is missing at random or completely at random, this method does not
affect model accuracy. However, if the amount of missing data is large the
prediction accuracy will be low (not enough complete cases) and when the
data is missing not at random then this method generates bias.

Missing Indicator Variable (MIV): This method uses a dummy variable as

an indicator for missing values [7]. For every variable that might be missing,
a dummy variable is introduced, where the value of this dummy variable
is 1 when the input variable is missing and 0 when the input variable is
not missing. While this method is more efficient than the Complete Case
Analysis, it can also create bias in the final model.

Predictive Value Imputation (PVI): PVI replaces missing values by some

estimates of their values [9]. In many cases the unconditional mean is used
(the mean value of all non-missing values of the attribute) or a conditional
mean (the mean of a specific group of records where the record with a miss-
ing value belongs to). The problem with this method is that the predictive
values are always derived from the complete cases and that might introduce
some bias. However, some additional mechanisms can be added to PVI which
lower this bias. For example, PVI might use the conditional mean over the
K nearest neighbors of a record with a missing value, and then the bias
can be limited by first imputing the dataset with unconditional mean and
then using the K nearest neighbors on the completed dataset to predict the
values of the originally missing data. By counting the number of missing
data in the neighbors, one can create a weighted average that incorporates
the uncertainty of the measurements. There are several other methods to
do single-value predictive imputation like hot-deck imputation, cold-deck im-
putation and last observation carried forward, where the dataset is sorted
on specific variables and when a missing value is encountered, the value is
replaced by the value of its predecessor.

Regression Imputation (RI): Regression Imputation [9] is a PVI variant

where we use regression models (Support Vector Machines, Random Forests,
etc.) to estimate the imputed value. One way is to build the models to es-
timate the missing values using the complete cases. However, it is usually
better to also incorporate the non-complete cases by first imputing the miss-
ing values with a more simple imputation method (like the unconditional
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mean). In the first case (using only complete cases), there might be too few
complete cases to generate good models, in the latter case there is a danger
of bias by training the model with imputed (wrong) data.

Multiple Imputation (MI): This is a general imputation framework by Ru-
bin et al. [4,13-15]. The idea is to generate multiple versions of imputed
(completed) datasets, which result in multiple models. Each model is then
combined into a final predictor. The framework uses a single value imputa-
tion algorithm of choice and a random component that represents the uncer-
tainty of the imputation. By creating multiple imputed datasets, the distri-
bution of the imputed values will reflect the distribution of the already known
values and therefore reduce bias. This method allows any non-deterministic
imputation algorithm to be used. After imputing the dataset several times,
creating several copies, a model is being built for each complete dataset. The
results of each model are combined using Rubin’s Rules [4]. The combined
result leads to less biased and more accurate predictions. One of the major
advantages of MI is that it can be used with almost any imputation algo-
rithm. Because of this, we do not add MI in our comparison because each of
the imputation algorithms can be wrapped with Multiple Imputation.

Most of the above methods can also be used for handling missing data at
prediction time. The CCA method is here an obvious exception, but imputation
or using dummy variables are valid ways to deal with missing values at prediction
time. It should also be mentioned that in addition to the classical “off-line”
scenario, where the training set is fixed and is not changing over time, some
researchers were considering an “on-line” scenario, where the model continuously
updated while processing a stream of data, [18].

In this paper we propose a novel strategy that uses regression models in an
attribute wise algorithm to impute missing values in the training stage using the
target attribute as one of the predictors. We compare our model strategy with
commonly used imputation methods and an imputation method that also uses
regression models: Regression Imputation.

3 IARI: Incremental Attribute Regression Imputation

There are two ideas behind our method for incremental repair of training sets.
First, attributes with missing values are repaired one by one, according to the
priority of the attribute. The attribute with the highest priority is repaired first,
the attribute with the lowest priority is repaired last. Second, the data used for
repairing an attribute include all attributes that are already repaired and ad-
ditionally the target attribute of the original dataset. The choice of the repair
algorithm is arbitrary, in principle any regression algorithm can be used here. In
our experiments we used Random Forest [3], due to its superior accuracy, speed
and robustness. Random Forest requires little to no tuning, which is very im-
portant when numerous models have to be developed without human assistance.
Additionally, the Random Forest algorithm provides a heuristic for ranking at-
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tributes according to their importance. The TARI algorithm uses this heuristic
for ordering the attributes.

It might seem counter-intuitive to include the target attribute in the set of
predictors to impute an input attribute-it resembles a circular process. However,
our goal is to repair a training set with help of any data we have. When the train-
ing set is fixed, a final model is trained and it can be applied to fresh data that
were not used in the training process, so there is no circularity here. Moreover,
results of our experiments demonstrate that including the target variable in the
imputation process substantially increases the accuracy of the final model which
is validated on data that were not used in the imputation process.

The IARI algorithm consists of two steps: initialization and main loop. Dur-
ing the initialization all attributes are split into two groups: those that contain
no missing values (REPAIRED), and all others (TO BE REPAIRED). We as-
sume here that the target attribute, y, contains no missing values so it falls into
the REPAIRED group. Additionally, the set of attributes with missing values
is ordered according to their importance. This is achieved in three steps. First,
the training set is repaired with help of a simple imputation method which re-
places missing values of continuous attributes by their mean values and missing
values of discrete variables are replaced by their most frequent values. Second, a
Random Forest model is built on the repaired training set to predict values of y.
Finally, the model is applied to randomized out-of-bag samples to measure the
importance of all attributes, as described in [6].

When the initialization step is finished, the algorithm enters the main loop
which repairs attributes with missing values, one by one, in the order of their im-
portance (from most to least important). To repair an attribute =, TARI creates
a temporary training set which contains all attributes that are already repaired
(including y) as predictors and z as the target. All records where the value of x
is missing are removed from this training set and, depending on the type of z,
a classification or regression variant of the Random Forest algorithm is used to
model z. Finally, the model is used to impute all missing values of z and z is
moved from the TO BE REPAIRED to the REPAIRED set.

The pseudo-code of a generic version of the JARI algorithm is provided below.

4 Experimental Setup

To compare the existing algorithms with our approach we used five, very differ-
ent, datasets from various Machine Learning Repositories: Digits, Cover Type,
House 16H, Page Blocks, and Concrete Compressive Strength. For a complete
overview of these datasets, see the public IARI repository, [17].

In our experiments we used a popular implementation of the Random For-
est algorithm that comes with the Scikit-learn Python package, [12]. The key
learning parameter, the number of estimators, was set to 100, and the remaining
parameters had default values.

For each dataset we run several experiments with 75% of the attributes con-
taining missing values and 25% of the attributes (randomly chosen) containing
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Algorithm 1 Incremental Attribute Regression Imputation
Given: A training set X with input attributes z1, ..., z,, a target attribute y, and a
classification or regression algorithm ALG

Initialization:
for all attributes z; € X do

Nmissing[i]| = Count _missing(z;)

Importance[i] = ImportanceMeasure( X, ;, y)
end for
REPAIRED =y U {All attributes ; where Nmissing[i] = 0}
TO BE REPAIRED = {All attributes x; where Nmissing[i] > 0}
while TO _BE REPAIRED ! = () do

Repair__ Attribute = SELECT _X;(TO _BE _REPAIRED, Importance)

Repair _Target = Delete_ Missing _ Values(Repair _ Attribute)

Model = ALG .train(REPAIRED, Repair _Target)

for all records Aj € Repair__ Attribute do

if is_missing(A;) then
A; = ALG predict(REPAIREDYj])
end if

end for

REPAIRED = REPAIRED U Repair _ Attribute

TO_ BE_REPAIRED = TO_BE _REPAIRED \ Repair _Attribute
end while
return REPAIRED

no missing values. The amount of missing values in the attributes with missing
data, was set to 10, 20, 30,40, 50, 60 percent and for each setup we run 20 exper-
iments using different random seeds. In each experiment, the complete dataset
was split in a training (80%) and a test set (20%). The deletion of values, repair-
ing the training set and final modeling was performed on the training set. The
test set was used to estimate the accuracy of the final model. When removing
values from the training set we used two strategies: “missing at random”, MAR,
where values were removed uniformly at random, and “missing not at random”,
MNAR, where only values bigger than the median value of the attribute, were
removed uniformly at random.

4.1 Performance Indicators

We measured two aspects of the quality of the imputation. First, we estimated,
with help of cross-validation, the accuracy of the final model that was trained on
the repaired dataset. The accuracy was measured either by the ratio of correctly
classified cases (in case of classification) or by the coefficient of determination,
R2, (in case of regression):

2 i wi)?
D W )2

where y; denotes the target value and p; the predicted value.
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This score indicates how well the model fits the test data. The maximal
value of R? is 1, meaning the perfect fit; values smaller than 1 reflect the error.
Furthermore, the R? and accuracy scores of each dataset are measured on final
models that were developed with three algorithms: Random Forests, Support
Vector Machines and Gradient Boosted Decision Trees. This is to demonstrate
that the value of R? (or the accuracy score) depends on the regressor or classifier
that is being used in the final modeling, and that it not always reflects the quality
of the imputation itself.

Second, we measured the quality of the approximation of the imputed values.
As all the imputed variables were numeric, we used the Root Mean Squared Error,
RMSE, to measure the difference between the observed and imputed values:

2
RMSE = Z (vobscrvcd - vlﬂlputcd)
n

To make the comparison of results over various datasets meaningful, we stan-
dardized attributes of all training sets by centering them around 0 and dividing
by their standard deviations. As the last indicator of algorithm’s performance
we measured the execution time. For bigger datasets the cpu time might be an
issue to consider.

5 Results

For each dataset, we performed 12 experiments: one for each of the percentage
levels of missing values (from 10 to 60) combined with the type of missingness
(MAR or MNAR). Each experiment was repeated 20 times (with different ran-
dom seeds) and the results were averaged. Additionally, for each reconstructed
training set, we run three algorithms, Random Forests, Support Vector Machines
and Gradient Boosted Decision Trees, to build the final models.

The results of our experiments, the accuracy of the final model (R? or the
ratio of correctly classified cases) and the accuracy of imputation (RMSE),
are presented in the following subsection. Each row contains averaged results
of 20 runs of the same experiment with different random seeds. The amount of
missing values and the type of missing values (MAR or MNAR) are shown as
well. For the sake of space we report only results for the percentage of missing
values 20%, 40%, and 60% for the MAR model, and various percentages for the
MNAR model where we used the missing percentages 20%, 40%, and 60% as
upper bounds for the percentage of missing values per attribute, but were not
always able to delete that many values of the attribute due to the restriction of
deleting only values bigger than the median. Let us note, that it may happen
that the fraction of records with a value of an attribute bigger than its median
might be arbitrarily small, e.g., when an attribute is almost constant. Moreover,
in the results presented below, we show the average number of missing values
taken over all attributes with missing values.

For the first dataset (Cover Type) we show the results from the Random
Forest final model; for the remaining data sets and final model options we do
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not show the results due to space limitations. A complete overview of the results,
together with software and data used in our experiments, can be found in the
public TARI repository, [17].

Each table contains several columns. The first two columns contain informa-
tion about the percentage of missing values and the type of missingness. The
next column, Ref, contains the accuracy of the model trained on the original
complete dataset: either R? for regression problems or classification accuracy
for classification problems. The following columns contain results of various im-
putation methods: Imputation by Mean, Imputation by Median, Imputation by
Most Frequent, Predictive Value Imputation using 2-Nearest Neighbour over a
dataset imputed by the Mean, Regression Imputation using Random Forests and
last but not least, our own algorithm: IARI. Entries in boldface are significantly
better than all other entries with the same settings. The significance is tested
using the t-test, with significance level p = 0.05. The absence of a bold entry in
the row means that none of the results were significantly better than the others.

5.1 Cover Type Dataset Results

In Table 1 and 2 the accuracy of the model (Accuracy Score) and the qual-
ity of imputation (RMSFE) are shown for the imputation algorithms on 40.000
instances of the Cover Type dataset.

Table 1. Model Accuracy Score on the Cover Type Dataset with 40000 instances using
Random Forests

Miss.% Type Ref. Mean Median Freq. PVINN RI  TARI

6 MNAR 0911 0.871 0.864 0.860 0.868 0.868 0.881
10 MNAR 0.911 0.815 0.809 0.803 0.806 0.805 0.839
12 MNAR 0.911 0.670 0.678 0.656 0.657 0.663 0.693

20 MAR 0911 0.874 0.887 0.886 0.883 0.880 0.899
40 MAR 0911 0.834 0.859 0.858 0.845 0.845 0.878
60 MAR 0911 0.776 0.824 0.822 0.787 0.799 0.847

Table 2. Imputation Quality (RMSE) of each Imputation Algorithm on the CoverType
dataset with 40000 instances

Miss.% Type Mean Median Freq. PVI NN RI TARI

6 MNAR 0.786 0.795 0.813 0.786 0.776 0.760
10 MNAR 0.848 0.852 0.867 0.847 0.838 0.791
12 MNAR 0.894 0.884 0.889 0.894 0.894 0.877

20 MAR 0.380 0.389 0.414 0.370 0.330 0.266
40 MAR 0.540 0.552 0.588 0.533 0.496 0.422
60 MAR 0.661 0.676 0.718 0.658 0.630 0.564
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Table 3. Execution time of Imputation Algorithms on the Cover Type Dataset with
values 50% MAR in seconds.

Mean Median Freq. PVINN RI IARI
0.03 0.11 048 61.47 381.75119.12

From our test results we can observe that the maximum average amount
of MNAR values we can delete from each attribute is around the 12%. Which
implies that approximately 88% of the dataset is filled with values below or equal
the median of each attribute (probably 0). In Table 3 the execution time for each
algorithm is shown for the case of 50% values MAR, which is representative for
all the tests on this dataset. Our approach is not the fastest, Replace by Median,
Replace by Mean and Replace by Most Frequent are almost instant while PVI,
RI and IARI are more complex and take some time. The execution time is mostly
dependent on the size of the dataset and mainly on the amount of attributes,
and not so much on the amount of missing values.

6 Conclusion

We presented a novel algorithm, IARI, for imputing missing values into training
sets. IARI can handle both regression and classification problems. The key ad-
vantage of IARI over other imputation methods is the superior accuracy of the
final models which are trained on the repaired training sets, and more accurate
reconstruction of missing values. On the other hand, IARI requires much more
computing resources than its alternatives: 2-3 orders of magnitude. Fortunately,
the main algorithm behind IARI, Random Forest, can be efficiently distributed
along multiple nodes, significantly reducing the real (wall clock) computation
time.

In principle, IARI is a generic algorithm which can be configured in various
ways by changing the measure of importance of attributes, ordering of attributes,
and the base algorithm used for imputation. Also the initialization step, where
only attributes with no missing values are used as a starting set of predictors,
can be modified: sometimes adding to this set several attributes with just a few
missing values and removing incomplete records from it, lead to better results.

During our experiments with IARI, we noticed that sometimes a simple im-
putation method may lead to better results than those obtained with TARI.
This happens in case of the Digits dataset, where values were removed “not at
random”, see the TARI repository [17]. As expected, the quality of IARI approxi-
mations of missing values was always significantly better than those obtained by
imputing means, but surprisingly, the opposite holds for the quality of the corre-
sponding final models. This is probably caused by the nature of the classification
problem and the fact that the Random Forest is not suitable for image classifica-
tion. Almost in all other cases the IARI algorithm outperforms other imputation
methods: both in terms of the accuracy of imputation and the accuracy of the
final model.
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In most real world cases it is difficult to determine how well a certain im-

putation algorithm will work. The quality of imputation depends a lot on the
dataset and the reason of why values are missing. However, when we know little
about a dataset, the IARI algorithm is probably the best choice.
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Abstract. Merging decision trees models has been, so far, motivated as
a way to avoid both transporting data sets on distributed locations or
training very large data sets. This paper presents a novel rationale which
is the need to generalize knowledge by grouping models consumed across
different decision levels in a non-distributed environment and propose a
methodology for this goal. The approach is evaluated using data from
the University of Porto, in the context of predicting the success/failure of
students in courses. The experiments focus mainly on the impact of the
order of models on the overall performance of merged models. Directions
of unexplored issues for future research are also discussed.

Keywords: decision tree merging, C5.0, prediction of failure

1 Introduction

Decision trees have the characteristic of not requiring previous domain knowl-
edge or heavy parameter tuning making them appropriate for both prediction,
exploratory data analysis. They are also quite good in terms of human interop-
erability. In this paper, we propose an approach to merge decision tree models
based on previous research [1] by turning the focus to studying the impact of
different ways of ordering models during the merging process. There are also
improvements in the experimental set-up and measures of merged models evalu-
ation. Therefore, this papers presents work in progress and identifies issues still
open for research and future work.

The case study used for empirical evaluation uses data from the academic
management information system of the University of Porto (U.Porto), Portugal.
Due to limitations of space, this paper focuses on the process of merging trees.
Therefore, some decisions which were based on domain-specific knowledge and
preliminary experiments (e.g. variable selection, parameter setting) as well as
some aspects of the results have not been discussed in depth.

The remainder of this paper is structured as follows. Section 2 presents related
work of merging decision trees models. Section 3 describes the system architec-
ture and methodology. Section 4 details results and discussion of applying the
methodology in the case study. Finally, Section 5 presents the conclusions.
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2 Related Work

The motivation to combine prediction models has its origins as a strategy to deal
with building models from distributed data. Distribution can occur naturally if
the data is initially collected in different locations. Every location produces its
own data called, in such context, a local data set. An example is a company
with multiple branches in which each holds its own data. Thus, each branch
can have its own model to predict a specific variable of interest. Distribution
can also occur when data, even if not geographically spread, is collected into
different data sets to create models relating to business entities. An example is
a centralized academic database in which student enrollments are grouped by
courses (business entity) to allow the possibility of creating a model for each
course separately. In this case, although data is initially centralized, it becomes
artificially distributed to fulfill a business goal.

To build a global model encompassing all available data, each data set has
to be transported to a single location and assembled to form a monolithic data
set'. This may be unfeasible, either by security reasons (unsafe connections)
or because transportation may be costly. Bursteinas and Long [2] address the
problem of data being generated on distributed distant machines connected by
“low transparency connections”. Even if it is possible to gather all data sets into
a monolithic data set, it may still be impossible to train a global model if the
number of examples is too large for the available resources (or at least a very slow
task). An example is given by Andrzejak, Langner and Zabala [3] which present
distribution as a strategy to deal with data sets with “exceeding RAM sizes”.
Therefore, artificially distributed data appears as a strategy to avoid having very
large data sets, as long as there is a way to build a global model from distributed
data.

Fig. 1 shows n local data sets being transported over a channel to a specific
location and assembled into a monolithic data set M D. In this centralized loca-
tion, a model M is trained using all available data. This set-up highlights two
problems: if, on one hand it is desired to avoid transporting data (#1), even
if that is possible, chances are, that the resulting data set would end up being
a very large one (#2). Model merging can be used as a technique to address
both problems. To avoid transporting data sets, a local model is trained in each
distributed location and then transported over a channel to a centralized loca-
tion where they are merged to form a global model. This alternative set-up has
the advantage of enforcing the need to create local models, while at the same
time, reduces the amount of transported information (the models can be rep-
resented as a set of lines of text). Another application of model merging is to
avoid training a model from a very large data set. The data is artificially splitted
into different data sets according to some business criteria and then a model is
trained for each. After all models are created they are merged together yielding
a single model.

! a monolithic data set is a non-distributed data set situated in a single and specific
known location
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CHANNEL

Fig. 1. Training a single model from distributed data

There have been different approaches to merge models, which can be be
divided into two main categories: mathematical [4,5], in which a function is
used to aggregate models, and analytical [6-8,2,3,1] in which the models are
broken down into parts, combined and re-assembled to form a new model. While
the former has been used scarcely, probably due to its complexity, the latter has
been more explored. The basic idea is to convert decision trees from two models
into decision rules by combining the rules into new rules, reducing their number
and finally growing a decision tree of the merged model. The basic fundamentals
of the process were first presented in the doctoral thesis of Williams [9]. Over
the years, other researchers have contributed by proposing different ways of
carrying out intermediate tasks. Table 1 summarizes research examples of this
specific approach, specifying the problem (or motivation) and data sets used.

Table 1. Research examples of combination of rules approaches to merge models

Research Problem/motivation Data sets
Hall, Chawla and Bowyer (8] Train model in a very large data set Iris, Pima
Indians Diabetes

Bursteinas and Long [2] Mining data distributed UCI Machine

on distant machines Learning Repository
Andrzejak, Langner and Zabala (3] Train models for distributed data UCI Machine

sets and exceeding RAM sizes Learning Repository
Strecht, Mendes-Moreira and Soares [1] Generalize knowledge in course Academic data from

models at university level University of Porto

The results of each approach are not easy to evaluate, largely due to the fact
that there is not yet a specified standard set-up to assess the quality of merged
models. Hall, Chawla and Bowyer [8, 10] evaluated the accuracy of their merged
models against a baseline model trained with all examples. A slight improve-
ment of 1% was observed by using the merged model. Andrzejak, Langner and
Zabala [3] use the same baseline case and then compare its accuracy by increasing
the number of groups. Sixteen groups is the limit where the quality of predictions
of the merged model still provides a good approximation to the baseline case.
Bursteinas and Long [2] compare accuracy of the test set for the combined tree
claiming it to be similar to the accuracy generated with the tree induced on the
monolithic data set. Strecht, Mendes-Moreira and Soares [1] defined AF'1 as the
possible gain in the predictive performance by using the group model instead of
the individual models. A global improvement of 3% was observed under specific
circumstances. A merging score measure is also introduced.
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3 Methodology to Merge Models

3.1 Experimental set-up

The system architecture for merging models, presented in Fig. 2, encompasses
four main processes. The data is spread (either naturally or artificially) over n
data sets (Dq, ..., D). These are assumed to have been created by some data
extraction process which is not part of the methodology.

MAE;,MS,

z_§::o

(o (-F:1 Y
and

Group
and Merge
order models

models

Evaluate
merged
models

evaluate
models

g

[rreereen]
MAEMS;

S

Fig. 2. System architecture of the combination of rules approach to merge models

The first process creates and evaluates n individual decision tree models (M,
..., M,) for each data set and the corresponding generic evaluation measure
(n(My), ..., n(M,)). The second process organizes the models into k groups
(Gi, ..., Gi) according to some specific criteria. Models order within each group
can be random or set by some specific algorithm. The third process merges all
models in each group and creates the corresponding merged model. Therefore,
for each group (Gi, ..., Gi) there is a corresponding merged model ({21, ...,
£2;;). Finally, the fourth process evaluates each merged model using parts of the
data sets (Dy, ..., D,,) that were not used to create the individual models. This
results in two performance measures for each merged model, the mean absolute
error (MAE), and the merging score (MS). It is mandatory that the evaluation
measure are the same as the ones used to evaluate the individual models, to
allow performance comparison between them.

3.2 Create and evaluate models

In the first process, a decision tree model M; is created for each data set D;.
Although there are several algorithms to create decision trees, the most popular
are CART [11] (Classification and Regression Trees) and C5.0 [12]). For decision
tree merging, although recommended, it is not mandatory that all models are
trained using the same algorithm. Nonetheless, it is essential to have access to
the models themselves, which is a characteristic of decision trees. The result
of evaluation correspond to a generic evaluation measure 7 (e.g., accuracy or
F1 [13]), therefore, each model has its own value (n(My), ..., n(M,)).
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3.3 Group and order models

In the second process, the models are gathered into groups and then ordered
within each group. Although models can be grouped by any criterion, it is worth-
while to establish a distinction between two major cases: domain-knowledge in
which models are grouped together according to the data sets meta-information,
and model-driven in which models are grouped together according the character-
istics of the models themselves, i.e., models meta-information. While the former
involves business rules criteria, and may imply human judgment to create groups,
the latter concerns model similarity, therefore clustering techniques can be used
to automatically create groups. The order of models within each group is the
main issue being explored in this paper as it is expected to affect the results
of the merging process. One possibility under consideration is using the order
provided by hierarchical clustering [13] within each group as it orders models
according to some distance measure.

3.4 Merge models

In the third process, the models in each group are merged together yielding
the group model, according to the experimental set-up presented in Fig. 3. A
requirement for this process is that each model must be represented as a set of
decision rules. This takes the form of a decision table, in which each row is a
decision rule. Therefore, the first (M;) and second (Mz) models are converted to
decision tables and merged, yielding the w; model, also in decision table form.
Then, the third model (Mj3) is also converted to a decision table and is merged
with model w; yielding the model ws. This process is replicated to all models in
the group. The last merged model w,,_; is converted to decision tree form and
renamed (2 (referring to the group model).

A
decision table
M,

Convert to
.. Merge models
decision table i
M,

Convert to Convert to

S Merge models i

decision table decision tree

M, M, Wy Q

Fig. 3. Experimental set-up to merge all models in a group

In the first subprocess, a decision tree is transformed to a set of rules. Each
path from the root to the leaves creates a rule with a set of possible values for



Hollmén, Papapetrou (editors): Proceedings of the ECMLPKDD 2015 Doctoral Consortium

variables and a class. The set of values (nominal or numerical) is the domain of
each dimension and each rule defines a region. It is worthwhile observing that
all rules lead to non-overlapping regions that together cover the entire multi-
dimensional space. Decision rules are represented in a decision table which is a
linearization of a decision tree. Two special cases have to be considered. The
first is when a variable has not appeared yet in a decision. This means that it
can take any value without affecting the prediction, and is assigned the limits of
0 and +o0. The second relates to the case of an “empty” model, i.e., one with a
single decision region covering the whole space. Although an empty model does
not have any rules to be tested, it does have a predicted class.

In the second subprocess, a pair of models (M; and Ms) is merged into one
(w) and encompasses four sequential tasks, as presented in Fig. 4. The result of
each task is an intermediate model. Intersection combines both models yielding
model a. This is submitted to filtering to remove disjoint regions yielding model
S. Disjoint regions corresponds to all pairs of regions in the original models
which intersection yields an empty set. In the absence of disjoint regions, [ is
a copy of a. A possible outcome of this task is that all the regions of a end up
being disjoint. In such case, the models are regarded as unmergeable. Otherwise,
the process moves on to conflict resolution. In this task, regions of My and M,
originally sharing the same space but with different assigned classes have to
agree on which class to assign in the merged model. In the literature this issue
has been referred to as “class conflict”. Several heuristics have been proposed to
address it, however, none have been considered flawless. Consequently it remains
an issue still open for further research. The resulting model v is devoided of class
conflicts. Finally, the reduction task attempts a simpler model w by identifying
adjacent regions that can be joined together (if none is found, then w equals ).

i

otherwise

-

Conflict
resolution

mergeable
models

Intersection Filtering Reduction

all regions are disjoint unmergeable

models

Fig. 4. Subprocess of merging two models

In the third subprocess, the last merged model of the group (wy—1), in de-
cision table form, is converted to the decision tree representation. Usually, the
process of converting a decision tree from a decision table is lossless, meaning
that it can be reversed. In other words, it is possible to derive a decision tree
by inspection of the corresponding decision table (each region in the table maps
into a branch in the tree). However, considering that the decision table to be
converted arises from the merging of several models it is no longer guaranteed
that all regions of multidimensional space are covered. This is a consequence
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of removing regions during the merging process and leads up to the inability
to derive a decision tree directly from a decision table. This problem, that we
name as “lack of full space coverage”, can be addressed by generating a data set
representative of the decision table. The idea is to infer the examples that could
have yield the decision table, had it been obtained by decision tree induction and
subsequent conversion. These are used as learning examples by the same algo-
rithm used to create the initial individual models. The algorithm then induces a
model that covers the whole multidimensional space. However, other approaches
could be explored, making this an issue still open for further research.

3.5 Evaluate merged models

The purpose of the fourth process is to assess the quality of the merged models
and the merging process overall. The merged model is evaluated for each data set,
using one tenth of data of the data set (unused to train the original model). Then,
we calculate the error made by predicting with the merged model relative to the
original model for each data set (eq. 1). We evaluate the global performance of a
merged model k by calculating the mean absolute error (MAE) [14] for all data
sets corresponding to the models in the group (eq.2).

As described previously, one possible outcome of the merging process is the
inability to merge two models, due to the lack of common regions. As the merge
order is not commutative, is plays a significant role in the ability to merge
models, particularly the number of models that is possible to merge within a
group. For that purpose, we define the merging score (MS) of a merged model
as the number of models that is possible to merge (m) divided by the number
of pairs of models in the group (n — 1) (eq. 3).

1 & m
An = n(2) —n(M;) (1) MAEz=—3% Ap () MSi=— (3)
i=1

4 Case Study and Results

4.1 Motivation

Interpretable models for predicting the failure of students in university courses
are important to support both course and programme managers. By identifying
the students in danger of failure beforehand, suitable strategies can be devised
to prevent it. Moreover, those models can give clues about the reasons that
lead to student attrition, a topic widely studied in educational data mining [15].
Recently, in the University of Porto (UPorto) set as one of its goals to understand
the reasons of this phenomena. The starting point has been to create models to
predict if a student is going to pass or fail a course. This meant that a very
large number of models was created, which raises problems on how to generalize
knowledge in order to have a global view across the university instead of only a
single course. Therefore, merging models appears in this context as a technique
to address the need to have models at different decision levels.
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4.2 Merge models application

The data sets were extracted from the academic databases of UPorto. These
store a large amount of data on students, program syllabuses, courses, academic
acts and assorted data related to a variety of subprocesses of the pedagogical
process. The analysis done focuses on the academic year 2012/2013 with the
extraction of 5779 course data sets (from 391 programmes). As a result, there
is a data set for each course with student’s enrollments described by a set of
socio-demographic variables and approval (target variable).

The models trained are decision tree classifiers generated by C5.0 algorithm
[12] and students are classified as having passed or failed a course. Experimental
setup for evaluation uses k-fold cross-validation [16] with stratified sampling [17].
Failure is the positive class in this problem, i.e. it is the most important class,
and thus, we use a suitable evaluation measure F1 [18].

Training, analysis and evaluation of models is replicated for each course in
the data set, however, models were created only for courses with a minimum
of 100 students enrolled. This resulted in creating 730 models (12% of the 5779
courses). The variables used in the models are age, marital status, nationality,
type of admission, type of student, status of student, years of enrollment, and
delayed courses. Delayed courses (41%) is the variable most often used, followed
by age (16%) and years of enrollment (16%). The quality of the models varies
significantly with only a quarter having F1 above 0.60.

Models were grouped in four different ways: scientific area (#1), number
of variables (#2), variable importance (#3), and a baseline group containing
all models (#4). The C5.0 algorithm measures the importance of variable I,
by determining the percentage of examples tested in a node by that variable in
relation to all examples. For creating groups according to variable importance we
used the k-means clustering algorithm [13], which created four groups (clusters)
using only three of the most important variables, namely age, years of enrollment,
and delayed courses.

4.3 Results and discussion

The methodology was applied several times combining different ways to perform
the intermediate steps, as described in our previous research [1]. For this study,
we used the combination that yielded the best results and explored the effects of
ordering in both the mean absolute error and merging score on each of the four
arrangements of grouping. For that purpose, we carried out four experiments
ordering models by different criteria: random, number of variables, number of
examples, and euclidean distance considering variables age, years of enrollment
and delayed courses. All three cases were carried out by getting the order of
applying hierarchical clustering in each group. For group set evaluation, we nor-
malized MAE and MS of all groups by the number of models in each group, and
to allow experiments comparison, we averaged MAE and MS of all group sets.
The results are presented in Table 4.3 and are somewhat surprising. Contrary
to what one would expect, the order of models have a minimal effect on the
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Table 2. Model merge order criterion comparison results

Order criterion MAE MS
Random 0.1927 0.7347
# variables 0.1877 0.7350
# examples 0.1299 0.7349

Age, years of enrollment, and delayed courses 0.1817 0.7347

overall values of MAE and MS. The average MAE across groups sets for using
the merged models instead of the original models does not exceed 20%. It is
observed that the order of the models does not have a expressive impact on this
result. The MS is always 73%, showing again that the merge order does not
influence results whatsoever. Given the fact that the merging operation is not
commutative, one would expect that the results would present large variations.
This suggests that further study is needed to understand the reasons for this
lack of variation. In addition, the best results were obtained when no ordering is
performed, which in this case is the order in which the data sets were captured
in the database. As these results relate to work in progress, additional research
will carry on to explore the models order issue and its impact on results.

5 Conclusions

The approach of merging models by combining decision rules is the most often
found in the literature. This paper suggests a systematic methodology that can
be used both for naturally distributed data or artificially distributed data.

The most suitable representation to merge models is working with decision
tables, the combination of decision rules algorithm (the core of the whole process)
is where the major differences are found. The main problem to deal with is
class conflict in overlapping rules which has no consensual approach. Efforts to
simplify the resulting merged model are always included mainly by attempting to
reduce the number of decision rules. The final sub-process of growing a decision
tree representation of the merged model also presents challenges and should be
further explored in future research.

The case study explores the merge order of models and presents unexpected
results. Although the merging operation is not commutative, variations in the
order of models during merging did not affect the overall performance results of
the process. The reasons for this will be explored in further research.
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Abstract. Recent years have seen the emergence of graph-based Knowl-
edge Bases build upon Semantic Web technologies, known as Knowledge
Graphs (KG). Popular examples are DBpedia and GeoNames. The for-
mal system underlying these KGs provides inherent support for deduc-
tive reasoning. Growing popularity has exposed several limitations of this
ability, amongst which are scalability and uncertainty issues, as well as
coping with heterogeneous, noisy, and inconsistent data. By supplement-
ing this form of reasoning with Machine Learning algorithms, these hur-
dles are much more easily overcome. Of the existing research in this area,
only a handful have been considering a Deep Neural Network. Moreover,
only one of these studies has addressed the problem of hyper-parameter
optimization, albeit under specific conditions. To contribute to this area
of research, we propose a research design that will investigate a Deep
Neural Network with optimized hyper-parameters for its effectiveness to
perform link prediction on real-world KGs.

Keywords: Knowledge Graphs-Semantic Web-Relational Data-Machine
Learning:Deep Learning-Neural Networks-Hyper-Parameters

1 Introduction

In 2001, Tim Berners-Lee introduced the world to his vision of a Semantic Web
(SW) [1]; a network of semantically annotated and interconnected information,
which are interpretable by both man and machine. At the time of writing, this vi-
sion has become a reality, with a tremendous amount of information having been
made available as such. This information is structured as a graph, called a Knowl-
edge Graph (KG), in which factual information is encoded as relations (edges)
between entities (vertices). Well-known examples are DBpedia' and GeoNames?,

the first of which holds information extracted from Wikipedia®, and the second

* Special thanks go to my supervisors Frank van Harmelen and Henk Scholten, as well
as to my daily supervisors Victor de Boer, Niels van Manen, and Maurice de Kleijn.

! See DBpedia.org

2 See GeoNames.org

3 See Wikipedia.org
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of which holds basic geographical information on most of the world’s places. To
ensure a correct interpretation of the facts encoded within such KGs, both their
relations and entities are assigned semantic labels. In addition, the definitions of
these labels are firmly fixed by shared ontological background knowledge.

Reasoning engines for KGs typically make use of their inherent deductive
abilities. This form of reasoning is completely dependent on axiomatic prior
knowledge. Hence, it is solely able to derive information that was already im-
plicitly present in the data [2,3]. By supplementing deductive reasoning with
methods from Machine Learning (ML), which reasoning inductively, it becomes
possible to truly gain additional information [4,5]. Moreover, unlike deduction,
these methods are generally able to cope with uncertainty, inconsistency, and
noise, all of which are abundant in real-world data. In addition, they tend to
suffer less from scalability issues.

Methods that learn from relation data fall under the fairly recent field of
Statistical Relational Learning (SRL) [3], [6]. Of all research within SRL, only
a small part involves learning from KGs. Currently-popular approaches are In-
ductive Logic Programming, logic and graph-based kernels [7,8], and matrix and
tensor factorization [2], [9,10]. In contrast, despite having several potentially-
useful characteristics, only limited attention appears to be have been given to
Neural Networks (NN).

A typical NN consists of one or more hidden layers which, when trained, rep-
resent one or more latent features within a data set [11]. Latent-feature models
are a sensible choice to learn from real-world data, due to their robustness to-
wards noise and inconsistencies, as well their ability to cope with large-scale and
high-dimensional data sets. Furthermore, NNs are universal function approxima-
tors, which allows them to model any arbitrary relational structure, given enough
model complexity. Moreover, recent breakthroughs have made it possible to ef-
fectively learn deep NNs, which radically improves their ability to solve complex
learning problems [12]. Together, these characteristics make for an interesting
alternative to the currently-popular approaches mentioned above. Nevertheless,
deep NNs have only been applied a handful of times to the learning problems we
are considering in this paper, and even fewer have taken on the challenge of ex-
ploiting (ontological) graph features for improved predictive performance, even
though this has been proven useful [13,14]. Moreover, to the best of our knowl-
edge, only one of these studies has yet addressed the optimization of its model’s
hyper-parameters, despite the positive influence thereof on the performance.

In this paper, we propose a research design for investigating the effectiveness
of a hybrid latent and graph-feature model capable of performing link prediction
on real-world KGs. To this end, we intent to develop a deep feedforward NN with
the ability to learn from complex relational data. For optimization purposes, we
will additionally investigate the effectiveness of learning a set of (near) optimal
hyper-parameters through Bayesian optimization. To this end, we will first look
at relevant background knowledge in Sect. 2, followed by a discussion of our pro-
posed research design and evaluation method in Sect. 3. Section 4 will continue
that discussion by looking at the domain within which our experiments will take
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place. This is followed by relating our design choices to state-of-the-art research
and development in Sect. 5. Finally, Sect. 6 will end this proposal with several
last remarks.

2 Background

For the purpose of this paper, we define a KG as a semantic graph G = (€, R),
with & = {eq,...,en, fand R = {r1, ..., rn } being the finite set of semantically-
enriched entities and relations, respectively. In addition, each fact in G consti-
tutes a triple t;;, = (e;, 7k, €;), which reflect a binary relation between two
entities. Furthermore, we let 7 denote the set of all existing triples in G.

An example of a small KG is depicted in Fig. 1. There, vertices represent
different entities from the domains of people, universities, and operating systems.
These entities are related to each other through the graph’s edges, with their
labels reflecting the relationship they represent. For instance, we can observe
that Andrew S. Tanenbaum worked at the VU University Amsterdam and that
he is the creator of Minix. However, as a typical KG is subject to the Open World
Assumption (OWA), the converse is not necessarily true. Hence, while there is
no edge between Andrew S. Tanenbaum and the University of Helsinki, we
cannot simply assume that he never had any affiliation with that institute; it is
just unknown to us. However, through simple deduction, we do know his rival

did.
Andrew S. Tanenbaum rival O[ Linus Torvalds
nval of
me
worked at creator of creator of studied at
based up()n bdsed upon
O(— originated at AC{ bf originated at —)O
VU University Amsterdam Minix Linux University of Helsinki

Fig. 1. Example of a small KG on software kernels. Entities and relations are rep-
resented by vertices and edges, respectively. Note that any ontological background
knowledge has been omitted for reasons of clarity.

For the purpose of clarity, semantic properties of both entities and relations
have been omitted from Fig. 1. Nevertheless, a possible ontology might specify
that both the VU University Amsterdam and the University of Helsinki
are of the class university. Moreover, the university class is likely to be a
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subclass of yet-another class, e.g, educational institute. Through transitiv-
ity, we can thus infer that the VU University Amsterdam is an educational
institute as well, despite it not being explicitly stated. Similarly, the rela-
tions worked at and studied at might both be associated with the broader-
defined relation affiliated with, hence allowing us to infer that Andrew S.
Tanenbaum is affiliated with an educational institute. Moreover, this
broader relation might be subject to any number of constraints, e.g. requiring
that its source and target entities are instances of the people and organization
class, respectively.

Apart from their complex relational structure, KGs typically posses several
other characteristics that make learning from them challenging [5], [9], [15,16].
Firstly, their data are often highly heterogeneous, ranging from textual and nu-
merical to shapes or other abstract data types. Secondly, R generally holds only
positive relations, which may limit the effectiveness of many learning methods.
Moreover, as mentioned above, the framework underlying a KG is subject to the
OWA, making it is incorrect to simply assume omitted relations as being false?.
Together, these characteristics typically result in a rather low-density graph or,
equivalently, a rather sparse data set.

2.1 Hyper-Parameter Optimization

Selecting suitable values for a set of hyper-parameters may considerably improve
the performance of an learning algorithm [17]. Several hyper-learning algorithms
exist by which this set of values can be optimized. These range from simple
but naive algorithms, such as grid and random search, to the more-advanced
algorithms which guide the search towards an optimum. A well-known example
of the latter is Bayesian optimization.

Bayesian optimization is a global optimization methodology for noisy and
expensive black-box models [18,19]. For this purpose, it relies on the construction
of a relatively cheap probabilistic model that represents a distribution over loss
functions for a given set of hyper-parameter values. The added value of this
distribution is that it serves as a prior. As a result, finding (near) optimal values
generally requires less iterations than alternative optimization methods.

Different models can be used for Bayesian optimization. An often-used model
is the Gaussian process, which is simple and flexible. It is known, however, to
scale cubicly, which renders it infeasible for optimizing the parameters of complex
models. A well-established alternative is to use trees or, better still, random
forests, which scale linearly [18]. Another model that scales linearly is a deep
NN, which has shown to achieve state-of-the-art performance [19].

3 Research Design

Our high-level goal is to develop a predictive model to aid in a knowledge dis-
covery (KD) process. Resulting predictions will be used for data enrichment,

4 While generally true, there are examples of KGs that hold a Local OWA.
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as well as for the generation of potential hypotheses. In addition, they can be
used for data validation. For this purpose, we propose the use of a hybrid latent
and graph-feature model, represented as a deep feedforward NN. The intended
learning task involves link prediction, which constitutes estimating the possible
existence of unknown relations between existing entities in KGs. To this end,
we intent to use state-of-the-art theories and techniques from the field of ML,
thereby placing emphasis on deep learning and Bayesian optimization. More-
over, in order to improve predictive performance, we plan to investigate the

integration of ontological background knowledge.

3.1 Research Hypothesis

We define the following high-level research hypothesis:

230

Knowledge discovery by learning from large-scale KGs containing real-
world data through means of a state-of-the-art deep feedforward NN pro-
vides significant advantage over comparable methods.

The above hypothesis can broken apart into the following research questions:

. Can a suitable propositionalization function be defined, such that it can

translate an arbitrary KG to a NN, whereby the relational information that
is lost, if any, is less or equal than that of comparable methods?

. Do the following additions improve predictive performance, and is this im-

provement significant enough to justify the expected increase in the required
computational and temporal resources?

(a) The preprocessing of graph data prior to learning using various tech-
niques, amongst which are partial and full materialization, as well as
the generation of negative instances and ignoring very-frequent relations
with a low-explanatory score.

(b) The incorporation of state-of-the-art advances from the field of ML,

thereby emphasizing deep learning for training purposes and Bayesian

optimization for learning (near) optimal hyper-parameters.

The ability to, in addition to latent features, exploit (ontological) graph

features from either or both the instance data and their corresponding

ontological background knowledge.

—~
o
~

. How well are deep NNs able to cope with commonly-existing facets of real-

world data, amongst which are heterogeneity, uncertainty, inconsistency, and
noise, as well as often-seen issues of learning from KGs, amongst which
are scalability problems, integrity constraints, and the imbalance between
positive and negative examples in the corresponding data sets?

. Are the resulting predictions relevant enough (i.e. non-trivial) to domain

experts for them to be considered mew’ or 'useful knowledge’, as well as
accurate-enough to be considered trustworthy for usage in scientific research?
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3.2 Methodology

Our projected research will consist of several phases which will gradually build
up to the final model. To this end, we have begun the development of a deep
NN and its corresponding learning method. Following extensive testing, we will
extend this learning method to learn the network’s (near) optimal set of hyper-
parameters using Bayesian optimization. Upon completion, we will iteratively
add additional layers of complexity to the model, with each one extending its
ability to exploit (ontological) graph features.

The exploitation of various graph feature will be explored for their beneficial
effect on the overall predictive performance. The algorithms that will extract
these features will be developed by us during the course of this research, as
well as adopted from recent literature. Examples within that literature are path
and authority-ranking algorithms, as well as algorithms to determine various
semantic associations between entities. Other examples are the exploitation of
class hierarchies and integrity constraints, which are available as ontological
background knowledge.

Model Description. Consider a fully-connected feedforward NN, with input
vector & and output vector y. Here, vector & will be constructed through a
concatenation of two vectors xns and x.,s. These vectors describe the local
neighbourhood of the left-hand and right-hand side entity from a given triple,
respectively. The rationale behind this decision is that we believe such a descrip-
tion to better reflect the relational context of an entity than merely that entity
itself. Output vector y will hold the certainties of all possible relations in R.
More specific, y(k) will represent the certainty that the corresponding relation
ri € R exists between the entities ej,s and e, as provided by the input vector.
During the learning phase, we will draw training instances from 7. Hence, the
target relation is known to us, allowing y to be regarded as a one-hot vector
with real-numbered values. In contrast, during the testing phase, the certainty
values in y will be estimated.

To allow for both single-label and multi-label prediction, we will introduce
a certainty threshold 7, which defines a cut-off point under which predictions
will be deemed untrustworthy. When 7 = max(y), a single-label prediction
scheme will be maintained, whereas any other value will result in a multi-label
prediction scheme. When 7 — 1.0, this threshold can additionally be used as
a means to guard the validity of subsequent predictions. During evaluation, we
will iteratively refine the value of 7 with the help of domain experts.

Learning Method. At first, the network’s weights will be pre-trained layer-
wise using a greedy unsupervised algorithm. To this end, each input layer will
be treated as a restricted Boltzmann machine, as is the current de facto means
for deep learning [12]. This is followed by training or, more accurately, fine
tuning the weights using supervised back-propagation. For this purpose, we will
employ an online-learning scheme, due to its effectiveness in solving large-scale
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and difficult classification problems [11]. Furthermore, to guard validity, a k-fold
cross-validation scheme will be utilized.

For learning the set of (near) optimal hyper-parameters, we intent to use
Bayesian optimization. For this purpose, we will employ random forests, due to
their low computational complexity [18]. Hyper-parameters specific to the two
learning algorithms will be learned separately, with those of the unsupervised
algorithm being kept static during optimization of the hyper-parameters of the
supervised algorithm. To compensate for the increase in computational resources,
we intent to parallelize this process.

3.3 Evaluation

Our evaluation of the method’s effectiveness will make use of both quantitative
and qualitative measures. To determine the former, we will calculate the area
under the precision-recall curve (AUC-PR). We motivate our choice for this mea-
sure over the often-used area under the receiver-operating-characteristic curve,
due to its better handling of imbalanced distributions [14]. The set of learning
methods that will take part in the quantitative evaluation process will be com-
posed of the final and intermediate models developed during the course of this
research, as well as of comparable models from recent literature.

Qualitative measures will involve interviews and questionnaires, with which
we intend to evaluate our model for its usefulness towards domain experts. For
this purpose, we will organize workshops at regular intervals during which mem-
bers from relevant communities will be asked to evaluate predictions made by
our model on data relevant to their research. Their input will additionally be
used to refine threshold parameter 7. At a later stage, we intent to integrate our
method into a web-based service for analysing KGs. This will allow us to access
a much larger audience.

4 Domain and Data

The effectiveness of our proposed method will be evaluated on several data sets
within the domain of digital humanities. With the transition from traditional to
digital means, a large number of data sets are becoming available. A number of
these sets have since been converted to KGs, e.g. those of the Louvre® and the
Rijksmuseum®. Researchers who are interested in studying those data are still
hampered by the lack of effective KD tools.

Our decision to narrow the scope to digital humanities is motivated by the
following aspects :

1. Methods underlying KD tools are in high demand within digital humanities,
particularly those effective on KGs given the lack thereof.

e .
2 See louvre.fr
5 See rijksmuseum.nl
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2. Few studies have yet examined the effectiveness of such methods on KGs
from digital humanities, as well as the relevance of their outcome to domain
experts.

3. Evaluating predictions in cooperation with domain experts will provide a
valuable measure of our method’s predictive performance.

We will hold several general assumptions about KGs on which we will be
evaluating our proposed method. These assumptions are based on interviews
with various domain experts, as well as on a preliminary studies of literature and
data. Firstly, we assume the KGs to contain real-world data, a large portion of
which is uncurated. As a result, these data are assumed to be of a heterogeneous
nature, as well as containing noise and inconsistencies. Moreover, we assume
geospatial data to be well-represented within these KGs.

4.1 ARIADNE

A major use case in our research is European Union’s Seventh Framework Pro-
gramme ARIADNE?; a four-year project which aims at providing semantically-
enriched archaeological information on an European level. For the most part,
this involves the process of converting multilingual field reports, either on pa-
per or stored digitally, to KGs. These reports consist of various types of data,
including text, tables, figures, and photographs.

Another aspect of the research within ARTADNE involves the investigation
of methods capable of performing KD on the created archaeological KGs. The
research described in this proposal is a part of that study. As a consequence,
we have direct access to the project’s data, as well as to the archaeological
community involved with the project.

5 Related Work

Learning a deep network for KGs has been investigated in several recent studies
[20,21,22,23]. Common in all is the use of embedding structures, which utilize
a dedicated mapping function that translates an entity or its label into a high-
dimensional input vector, or an abstraction thereof. This was shown to work
quite well in Natural Language Processing. An extension was proposed by [21],
who included additional information on an entity into the embeddings, such as
its local neighbourhood, its description, and its class. This is an approach similar
to the descriptive vectors which we are proposing to use.

To allow the use of bilinear functions, instead of the conventional sigmoidal
non-linearities as we are proposing to use in our model, [20] and [22] substituted
one or more hidden layers by third-order tensors. However, this approach re-
quired a large number of hyper-parameters to be set, four of which were learned
through an unspecified optimization method. Nevertheless, the sheer size of their

7 Advanced Research Infrastructure for Archaeological Dataset Networking in Europe
(ARIADNE). See ariadne-infrastructure.eu
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solution space makes this approach virtually intractable when scaled up [13], [24].
This was partial solved by [23], who devised a method to translate third-order
tensors into sigmoidal functions.

To the best of our knowledge, none of the deep networks for learning from
KGs have explored the exploitation of graph features. In contrast, [13] has shown
their usefulness with conventional NNs. For this purpose, they developed a stack-
ing model, in which results from a path-ranking algorithm were fed to a single-
layer feedforward NN. This was shown to improve performance. The same result
was found with other latent-feature models [14].

6 Final Remarks

We have proposed a research design for investigating the effectiveness of a deep
NN for link prediction on real-world KGs. Our study of recent literature indicated
that only a handful of studies have been focussing on this topic, and even less
have been considering the exploitation of graph features to improve predictive
performance. Furthermore, to the best of our knowledge, only one of these studies
has yet addressed the problem of hyper-parameter optimization, and only under
specific conditions. Given these observations, we strongly believe that this area
is in need of additional research.

Acknowledgements. This research is partially funded by the ARIADNE project
through the European Commission under the Community’s Seventh Framework
Programme, contract no. FP7-INFRASTRUCTURES-2012-1-313193.
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Abstract. In this paper, we present our preliminary results toward im-
proving the classification accuracy in naive Bayes classifiers using ensem-
ble techniques. We show that using predictions of a naive Bayes classifier
as input to another naive Bayes classifier trained on the same dataset will
improve the accuracy of classification. We consider two variations of this
approach, single-link chaining and multi-link chaining. Both variations
include predictions of a trained naive Bayes classifier in the construc-
tion and training of a new one and then store these predictions for later
inclusion. In both variations, the construction process continues until ac-
ceptable error reduction is achieved. The effectiveness of our proposed
approach is demonstrated through a series of empirical experiments and
discussions on real and synthesis datasets. But we leave the theoretical
analysis of the approach as our future work.

Keywords: Machine learning, Naive Bayes classifier, Ensemble tech-
niques

1 Introduction

Classification is one of the most important pattern-recognition tasks in machine
learning and is a process to assign known class label(s) to an unknown object [2].
Essentially, an object is a collection of numerical and/or categorical features.
In mathematical terms, the object’s class is the output of a linear or nonlinear
function of its features. Classification is an example of supervised learning where
a machine learner would learn from a training set of correctly classified objects
to be able to infer the classes of new ones.

Many algorithmic techniques have been developed over the past decades to
automate the classification process. Naive Bayes Classifier (NBC for short) is
amongst the best techniques used for classification [16]. NBC is a simple prob-
abilistic classifier based on applying Bayes’ Theorem with naive or strong inde-
pendence assumptions among the features in a particular problem domain. In
practice, such naive independence assumptions exist to a certain degree in many
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problem domains, thus making NBC an effective classification approach to them.
Examples include textual information retrieval, medical analysis, etc. Other clas-
sification techniques include Logistic regression [6], Support vector machine [5],
Neural Networks [15], etc.

Since naive Bayes classifier is a simple probabilistic classifier which assumes
conditional independence amongst all the observed variables, it is very scalable.
However, due to NBC’s simplicity, it is more understandable that other more
sophisticated approaches, such as support vector machine, neural networks, and
Bayesian networks, dwarfed NBC’s predictive performance. Therefore there still
remains natural interests in further increasing an NBC'’s classification power.

In our work, we focus on an ensemble of NBCs. The intuition behind our
approach is concerned with combining the outputs of trained NBC on the same
dataset or a subset of the dataset through some technique. Since NBCs will
probably make errors on different areas of the input space of a problem domain,
a good combination technique will yield an ensemble that is less likely to be at
fault and is more error tolerant [9].

The paper is organized into the following structure. Section 2 discusses the
related previous work along the same direction we are working. In Section 3, we
mainly discuss our proposed ensemble approach aiming at improving the clas-
sification accuracy of NBC by grouping a set of NBCs in a novel way. For our
experiments in Section 4, we present the datasets and the related preprocess-
ing techniques. We also introduce some evaluation measures on classification.
Section 5 is for our discussions on the performance of our proposed ensemble ap-
proach, where we attempt to discuss it from different perspectives. We conclude
our presentation in Section 6, with remarks on our future work.

2 Previous work

In essence, improving the classification accuracy of a classifier can be achieved
through various means. For instance, given a classification task, we could re-
duce the feature space or perform some preprocessing tasks to clean input data.
Another approach that gains wide attractions is to utilize the outputs of a clas-
sification in an intelligent manner. Output utilization and boosting are the ma-
nipulations of the results of a classification algorithm such that the output is
enhanced. The latter technique is generally known as ensemble.

Ensemble refers to the techniques of combining the outputs of a number of
diverse classifier(s), through some gating function, in order to arrive at better
classification of any individual member of the ensemble. [7] describes an ensem-
ble of classifiers as the set of classifiers whose individual decisions are combined in
some way (typically by weighted or unweighted voting) to classify new objects.
It is conjectured that ensembles overcome limitations of individual classifiers.
Given the inherent diversity of ensembles they are more robust towards local
optima problem and more tolerant to small training set sizes than the individual
ensemble members.
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Bagging [3] and Boosting [17] are popular examples of ensemble combining
mechanisms. Bagging, or Bootstrap aggregating, is carried out by training vari-
ous classifiers on different subsets of a dataset and combining their collective vote
on a new object through averaging. Boosting refers to the process of incremental
construction of the ensemble by training new classifiers on instances that were
misclassified by preceding ensemble members and presenting the final output of
the ensemble as the weighted sum of all ensemble members. Other examples of
ensemble combining techniques are plurality, where the correct classification is
the one that was agreed upon by the largest number of ensemble members. An
example is majority voting, where the correct classification is the one voted on
by more than half of the ensemble members, etc. [9].

Some combining mechanisms, such as Bagging, have been shown to consis-
tently reduce error. Others, such as Boosting, have been shown to significantly
reduce error but inconsistently, and suffer from overfitting in the presence of
random noise [13].

3 Ouwur Proposed Approach

|
: ‘ —(NBC

(a) (b)

Fig. 1. (a) Single-Link Chaining. (b) Multi-Link Chaining.

In our work, we consider a novel ensemble approach using naive Bayes clas-
sifiers. We call our approach Chaining Ensemble of Naive Bayes Classification
(CENBC for short). It aims to improve an NBC’s predictions by including the
predictions of the previously trained NBC(s) into its current training process,
forming a chain-like ensemble. This approach has two variations, single-link
chaining (SLC for short) and multi-link chaining (MLC for short). SLC, as shown
in Figure 1 (a), trains a naive Bayes classifier on a dataset and then uses its pre-
dictions as input to another classifier along with the given dataset. The chaining
process continues forming a chain of classifiers, i.e. chain links, until an accept-
able error is achieved. Each classifier in the “chain” is trained on the original
dataset and on the predictions of the classifier that immediately precedes it. This
approach increases the number of features in the original dataset by only one,
keeping computational cost of creating a new classifier feasible. MLC, as shown
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in Figure 1 (b), is similar to the SLC variation. It differs in that each naive Bayes
classifier in MLC is trained on the original dataset and on the predictions of all
classifiers that precede it. This causes the creation of new classifier to become
computationally expensive. It is easy to see that both variations undergo the
same chain links generation process but differ in the way they use these links.

In general, the intuition behind both variations is that an NBC’s predictions
can be used to correct the predictions of the upcoming NBCs. This is because
these predictions are resulted from the features that are indicative of the target
classes of a given classification task. Therefore, the predictions are highly cor-
related with the target classes. Using these predictions is therefore expected to
further improve the predictability of the classification process by NBC.

In particular, the intuition behind SLC is that an NBC in the chain may not
need the predictions of all preceding NBCs in order to correct its classification.
An NBC trained on the predictions of a previous NBC produces predictions
influenced by that knowledge. Therefore, it seems reasonable that the predictions
of the new NBC should replace that of the previous NBC in the dataset, thus,
avoiding an unnecessary increase in calculations. The intuition behind MLC is
that it may be necessary for an NBC to have access to all the predictions of
previous NBCs. This way, it is left up to the training procedure to learn what
it finds beneficial.

One critical issue arises in the SLC and MLC variations regarding the gener-
ations of the chain links, i.e., in determining the number of chain links required
to reduce the overall error of the NBC(s) to the minimal. While we believe that
it is difficult to conduct a formal analysis on these problems, we will definitely
attempt to tackle them in our future investigations.

Actually the current proposed approach is part of our framework that at-
tempts to introduce ensemble techniques into machine learning algorithms. We
have done some work [19] on the same the ensemble technique but using neural
networks (NN for short) instead of NBC. While the ensemble shows promising
improvements over NN itself alone, the complex structure of NN, the uncertainty
of many parameters in NN, the complexity of the learning algorithms in NN,
etc., pose great difficulty for us to conduct formal theoretical analysis of our ap-
proach. At the moment, we are still working on the problem. But we hope that
our work with the current ensemble using NBC(s), thanks to NBC’s simplicity,
would shed light on attempt on the problem.

4 Empirical Experiments

4.1 Setup and Datasets

Preprocessing refers to performing some work on the raw data in order to extract
specific features to improve classification accuracy [18]. In our work, we make use
of three preprocessing methods, namely, Principal Component Analysis (PCA),
Correlation-based Feature Selection (CFS), and ReliefF. PCA is a multivariate
analysis technique that takes as input a dataset of inter-correlated attributes and
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produces a new smaller dataset of independent (i.e. orthogonal) attributes (i.e.
principal components) that retain most of the original dataset properties [1]. CFS
is a feature filtering algorithm. It selects a subset of attributes such that they are
highly correlated with the class attributes while being the least correlated with
each other [8]. ReliefF is another feature filtering algorithm that ranks attributes
based on their relevance to class attributes. A selected attribute would contain
values that distinguish for different classes and are similar for the same class [10,
11].

Four datasets are used to validate our proposed approach, namely Car-
diotocography (CDO for short), Steel Plates Fault (SPF for short), Chronic
Disease Survey (CDS for short), and Spambase Dataset (SDB for short). Their
summaries are shown in Table 1.

Table 1. Summary of datasets

Dataset Name|# Attributes|# Instances|Class Type (#)‘Data Characteristics

Dcpo 23 2126 Categorical (10) Integer
Dspr 27 1941 Categorical(7) Continuous
Dcps 8 2200 Categorical(6) | Integer-Continuous
Dspp 57 4601 Categorical(2) Numeric

Dcpo is obtained from the UCI machine learning repository [12]. It is a
dataset for classification with the goal of predicting the magnitude of fatal heart
rate. Dgpp is also obtained from [4]. It records various aspects of steel plates,
such as type of steel, thickness, luminosity, etc., which allow predicting various
faults in steel plates. Dgpp is a dataset in which the attributes encode different
characteristics indicative of spam or non-spam emails [12]. Dopg is a real-life
dataset obtained from the government of Canada data portal [14] as part of
the open data initiative adopted by the Canadian government. It contains data
sources from every Canadian province and territory to estimate the incidence
and prevalence of chronic conditions, as well as related risk factors, use of health
services and health outcomes. Dgpp is a collection of spam emails came from
postmasters and individuals that file spams. Classification is conducted to assign
whether an email is a spam or not.

4.2 Evaluation Measures

Three evaluation measures are considered to evaluate the performance of the
proposed approach: precision, recall and FI-measure [16]. Precision shows the
fraction between the number of the objects whose predicted class labels matched
with the target class compared to the total number of objects who are predicted
as target class by a classifier. Recall presents the fraction between the number of
the objects whose predicted class labels matched with the target class compared
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to the total number of objects who are of the target class. In other words,
precision is the fraction of retrieved objects that are of the target class, while
recall is the fraction of the objects with the target class that are retrieved. F1-
measure is to consider the precision and recall measures of a classifier on a given
task together, presenting a harmonic mean of the two.

5 Results and Discussions

All the experiment are conducted using 10-fold cross validation. In Figures 2, 3, 4,
and 5, MAE stands for the standard Mean Absolute Error, the legend ALL means
that all the features are used in the training and testing process, and others, such
as CFS, express that the features used are obtained through the corresponding
feature reduction techniques.

The results from our empirical experiments are encouraging, as shown in
Table 2, where we summarize the performance of our proposed approach in
Depo, Dspr, and Deps. One observation shows that for real dataset Deopg,
our proposed CENBC sees the most significant reductions of errors, for both
SLC and MLC, with an average error reduction of 72%. Their corresponding
Precision, Recall and F1 measures are also promising, as in the table. Within a
couple of links, we already see the reductions of errors.

Table 2. 10-fold cross validation Mean Absolute Error - MAE (third column) obtained
by a typical NB classifier for each dataset (first column) along with the lowest MAE
(fifth column) achieved by different chaining mechanisms (second column) and the
percentage of error reduction achieved (sixth column) in the given number of chains
(fourth column). We also provide the precision, recall, and F1 measures.

Datasets NB - MAE Chain# MAE % Reduction Precision Recall F1

SLC 0.0739 2 0.0732 1.00% 0.725 0.637 0.651

MLC ALL 0.0739 3 0.0732 1.02% 0.726 0.636 0.650

CDO MLC CFS 0.0738 30.0713 3.53% 0.758 0.666 0.684
MLC PCA 0.1021 3 0.0991 3.07% 0.639 0.540 0.546

MLC RELIEF 0.0739 3 0.0732 1.02% 0.726 0.636 0.650

SLC 0.1548 4 0.1524 1.59% 0.820 0.467 0.556

MLC ALL 0.1548 11 0.1489 3.97% 0.826 0.489 0.578

SPF MLC CFS 0.1437 90.1381 4.06% 0.827 0.530 0.606
MLC PCA 0.1516 4 0.1441 5.19% 0.824 0.515 0.622

MLC RELIEF 0.1549 11 0.1480 4.67% 0.827 0.494 0.585

SLC 0.2112 2 0.1605 31.60% 0.956 0.544 0.633

MLC ALL 0.2112 200 0.0971 117.46% 0.954 0.706 0.802

CDS MLC CFS 0.2338 6 0.1200 94.75% 0.846 0.642 0.707
MLC PCA 0.2383 42 0.1848 28.93% 0.781 0.436 0.493

MLC RELIEF 0.2121 36 0.1132 87.32% 0.952 0.657 0.759
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The other two UCI datasets, namely Dgpr and Dcopo also exhibit some
reductions of errors, though not as much as the one in Dgpg, within a couple
of links.

The next observation is that classification using only NBC never outper-
forms our proposed ensembles, as shown in the second column titled NB-MAE
in Table 2. It is desirable to see this and it shows the potential of our approach.

In terms of the number of links in the final trained CENBC, for D¢cpg, we
also observe that it takes more links to achieve greater reduction of errors, as
shown in Figure 4, while for the other datasets, it take less number of links. So
far, it appears that there is no rule of thumb as what the number of link for a
dataset is in order to achieve a better classification accuracy of our ensemble.
We believe that this number is highly problem-specific and we keep it in our
future investigation.

In Figure 5 which is about the performance of our approach on Dgpp, we do
not see the similar error reductions as in other datasets (therefore not included
in Table 2). Further, we see that for the situation where MLC is in conjunction
with CFS, there is an increase in MAE, and that for others (except MLC in
conjunction with PCA), there is little error reduction. We need to investigate as
to why Dgpp has this observation. We believe that it is probably more related to
the dataset itself, where more characteristics of the dataset should be explored.

There are also some interesting observations. In Figures 3 and 4, for the
variation SLC, we see some oscillations in its MAE. We have not found a plausible
reason to explain this situation. On the other hand, we do not see any increase
or decrease in MAE in Figures 2 and 5. It appears that the variation SLC require
more investigation in our future work to understand why this behavior occurs.

6 Conclusion

In this paper, we present our on-going work on an ensemble of naive Bayes classi-
fiers. Empirical experiments show the effectiveness of our approach. We observe
significant error reductions on many datasets in our experiments. Furthermore,
the number of links we need in our ensemble seems reasonable, making our ap-
proach practical with real-life tasks.

Our future plan is to include more real-life datasets in our experiments.
More importantly, we need to conduct formal investigations to explore as why
our proposed ensemble achieves such significant error reductions and, due to
the simplicity of NBC, we hope to provide some performance guarantee of our
ensemble through theoretical analysis. In addition to this, we observe that our
ensemble runs extremely fast, usually with seconds or minutes. We also desire
to conduct formal time complexity analysis on our approach.
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Abstract. The problem of selecting the best algorithm arises in a wide
variety of situations. Organizations are more interested in having a spe-
cific model for distinct part of data instead of a single model for all data.
From the business perspective, data can be divided naturally in differ-
ent dimensions. This problem is getting worse when besides selecting the
suitable algorithm, the selection of the best level of granularity is also
involved. We propose a metalearning framework which recommends the
best level of granularity in which, by applying a recommended algorithm
by the framework, high performance is expected with high probability.
The proposed framework is evaluated using two different datasets. The
experiments show that the framework is very well suited for different
problems including classification and regression problems.

1 Introduction

Traditionally, DM algorithms were applied at the global level and a single model
is created for all data. For example, a single model is generated to predict the
trip duration or to make sales predictions for all products. However, as more
data is collected and the data characterizes objects at a finer level, there is a
growing interest in more specific models, that represent groups or individual
entities [11].

The first arisen question is how to split the data. We believe that Business
Intelligence (BI) can be used for that purpose because a lot of effort has been
invested into identifying the data dimensions that are relevant for the business
(i.e. implemented as the data cubes). The second question is the granularity of
the split. In BI the values of a dimension are organized hierarchically. The best
models for a given subset of the data may be obtained by training with data
from other, related subsets (e.g. if the amount of the data available for a given
product is small, a more reliable model may be obtained by training with data
from other products in the same category) [6].

In addition, a data hierarchy has been carefully designed by experts. The
corresponding subsets are meaningful from a business perspective. Therefore,
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subsets defined by Data Warehouse (DW) dimensions are generally expected
to represent partitions of the data which may be useful to improve learning
processes. However, since there are multiple levels, finding the best subset for
learning a model by DM is a crucial task.

One solution can be metalearning [14]. It models the relationship between
the characteristics of the data with the performance of the algorithms. It is often
used to select the best algorithm for a specific problem, such as classification or
regression. In this paper we address the problem of selecting the right level of
granularity, as defined by DW dimensions, to model a DM problem. We use a
metalearning approach, in which the characteristics of the data are mapped to
the performance of the learning algorithms at different levels of granularity.

2 Background

In this section, we introduce the case studies and then we summarize the met-
alearning approaches.

2.1 Error Detection in Foreign Trade Statistics

Foreign trade statistics are important to describe the state of the economy of
countries [9]. They are usually estimated by the different national statistics in-
stitutes based on data provided by companies. However, this data often contains
errors because companies do not always appreciate the importance of provid-
ing accurate information. If undetected, these errors may, in some cases, have
a significant impact on the value of the statistics. Therefore, national statistics
institutes, such as the Portuguese Institute of Statistics (Instituto Nacional de
Estatistica — INE), apply a combination of automatic and manual procedures
to identify and correct those errors. Their goal is to detect as many errors as
possible — to maximize the quality of the statistics — with as little manual effort
as possible — to minimize the cost.

Some of the previous work on error detection have used outlier detection,
classification and clustering approaches (e.g., [9,6]). In general, satisfactory re-
sults have been obtained as some approaches were able to detect most of the
erroneous transactions by choosing a small subset of suspicious transactions for
manual inspection. However, this was not true for all products. This is partly
due to the fact that some products have very few transactions. Given that each
product is analyzed individually, the decision can be based on a very small set
of data.

In [6], investigation of improvement of previous results by aggregating the
data from different products based on the product taxonomy was done. The
INE data contains the transactions for months 1, 2, 3, 5, 6, 8, 9, 10 in 1998
and months 1, 2 in 1999. The products are organized in a 4-levels taxonomy.
An example of such a taxonomy can be: Food (Level 4), Bread (Level 3), Sliced
bread (Level 2), Pack of 16 slices (Level 1). Each product is presented with a
unique 8-digits product code (Level 1). Grouping the transactions at a higher
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level of the product taxonomy may help obtaining better results when compared
to an analysis at the product level (Level 1) itself, especially in the cases where
the amount of data at this level is too small. According to previous work, the
best results are obtained at different levels of the taxonomy for different products
(Figure 1). For example, the best results for the products on the right leaf are
obtained at the third level of product taxonomy while for the products at the
middle leaf, the best results are obtained at the second level (black models in
Figure 1). In spite of the fact that their results show that the aggregation is
generally useful, they also show that the best results for different products are
obtained at different levels of granularity.

Level 4
|
- Level 3
o —
. o I
....-I
- -
e = — Level2
- -
[ s | Level 1

Fig. 1. Tllustration of a hierarchy in datasets: for each category the best performance
(black model) is obtained at different levels

2.2 Trip Duration

There has been a significant amount of research on trip duration prediction.
Kwon et al. [5] use the flow and occupancy data from single loop detectors and
historical trip duration information to forecast trip duration on a freeway. Using
real traffic data, they found out that simple prediction methods can provide a
good estimation of trip duration for trips starting in the near future (up to 20
minutes). On the other hand, for the trips starting more than 20 minutes away,
better predictions can be obtained with historical data. The same approach is
used by Chien et al. [3]. Zhang et al. [16] propose a linear model to predict the
short-term freeway trip duration. In their model, trip duration is a function of
departure time. Their results show that for a small dataset, the error varies from
5% to 10% while for a bigger dataset, the variation is between 8% and 13%.
Support Vector Regression (SVR) is used for prediction of trip duration by
Wu et al. [15]. They utilize real highway traffic data for their experiments. They
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suggest a set of SVR parameter values by trial-and-error which lead to a model
that is able to outperform a base-line model. Balan et al. [1] propose a real-
time information system that provides the expected fare and trip duration for
passengers. They use historical data consisting of approximately 250 million paid
taxi trips for the experiment.

Considering the rapid change of behavior of vehicular networks, using the
same algorithm for forecasting the travel time over a long period and for different
vehicles, will eventually end in unreliable predictions. Therefore, it is important
to find the best algorithm for each context. One possibility is to use a trial-and-
error approach. This approach would be very time consuming, given the amount
of alternatives available. One alternative approach is metalearning which is still
missing.

2.3 Metalearning

The algorithm selection problem was formally defined by Rice in 1976 [7]. The
main question was to predict which algorithm has the best performance for a
specific problem. The first formal project in this area was MLT project [4]. The
MLT project creates a system called Consultant-2 which can help to select the
best algorithm for a specific problem. Over the years, metalearning research
has addressed several issues [8]. It may be important to select the best base-level
algorithm not for the whole dataset, but rather for a subset of the examples [2] or
even for individual examples [12]. Tuning the parameters of base-level algorithms
is another task that metalearning can be helpful to (e.g. the kernel width of
SVM with Gaussian kernel [10,8]. Rijn et al. [13] have investigated the use
of metalearning for algorithm selection on data streams. The metafeatures are
calculated on a small data window at the start of the data stream. Metalearning
uses this metafeatures to predict which algorithm is the best in the next data
windows.

3 Methodology

3.1 Database

Traditional method: Suppose the available data consists of n; entities, {E;,Vi €
{1,...,n1}}. In traditional data mining scheme, each entity E; has some associ-
ated features, C;, and there is a target variable, Y;. So the dataset used for the
traditional data mining is like DB = {E;,C;,Y;},Vi € {1,...,n1} while C; is a
vector of features. So the traditional scheme is unidirectional scheme.

Our metalearning method: The possibility of categorizing entities at upper level
adds another dimension to the dataset. So for each entity, instead of having
just one vector of features (C;), there are more features at different levels,
C1,C3.C3,...,CF, where k is the number of existing levels or categories. So
the dataset for using in the data mining process is DB = {E;,CY,Y;},Vi €
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{1,...,n1},Vj € {1,...,k}. In general, C’g is the features for entity 7 at level j. In
addition, the number of entities at higher levels (bigger j) is higher:

w<v = LY<L’ (1)

According to Formula 1, for 2 different levels w and v where w < v, the number
of entities in level w, LY, is less than number of entities in level v, L". The
proposed model used in this article is shown in Figure 2. At the lowest level,

DB={P,C/.Y},
)

Performance evaluation
Metadata
Performance of Performance of
outlier detection outlier detection 7 j
algorithm at algorithm at | mf, |max (P7)
category 1 for P; | 1 * | | category k for P, 5 e " n
k|21
1 k
Pl ‘ Pl
.
Metalearning
Metafeatures
Calculate metafeatures for |/ / \
each entity at different levels Recommendation for each
me product code
i
AR}

Fig. 2. Proposed methodology used for Metalearning

level 1, each entity creates a unique category, C},Vi € {1,....,n;}. But at the
higher levels, levels (2,3, ..., k), several entities join to create a category. For
example, category 1 at level 2 (C?) consists of 3 different entities: Ey, s, and
Ej3, while category 2 in the same level (C%) consists of 2 different entities: £, and
Es. So the number of categories at the levels 1, 2, 3, ..., and k are ny, ng, ns, ...,
and ny, respectively. In this step, the DB = {E;,C?,Y;},Vi € {1,...,n1},Vj €
{1,..., k} is delivered to the learning process. In the model, there are g algorithms.
Having different algorithms and different levels for each entity, each algorithm
will be evaluated for each entity at each level. As result, for each entity, there are
different performance indicators: P}, ..., Pk, where Pi’; means the performance
of the algorithm ¢ at level k for entity i. On the other hand, the metafeatures
calculation for DB is made in the other side of the model. The metafeatures are
calculated for each entity and at different levels. In general mf; is the calculated
metafeatures for entity i at the level j.
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3.2 Metadata

The dataset used for metalearning is called metadata. For each entity, the best
performance obtained from the performance evaluation part is selected according
to the Eq. 2:

Pyest; = mazx(P),) , Yw e {l,..,g9},Vj € {l,...,k} (2)
w,j

So the metadata for each entity is consisted as metafeatures for different levels
plus the best performance obtained from the Eq. 2. As an example Eq. 3 shows
the general form of the metadata which is used for metalearning:

Rowj—)E’i?mf%7mf?7mf?7"'7mff7Pb&sti (3)

Therefore, the metadata has n, rows which is equal to the number of entities.
The main idea in metalearning is to find out the best algorithm and the best
level to apply the algorithm depending on the metafeatures obtained at different
levels. Consequently, the metalearning maps the extracted features from the
original datasets to the best performance obtained at different levels by applying
different algorithms on the original dataset. Our model recommends a level and
an algorithm for each entity in which, applying the recommended algorithm on
the recommended level produces the best performance with high probability (see
Eq. 4).

Output : { E; , j , g } (4)
—~ <~ <~

entity recommended level recommended algorithm

4 Evaluation

In this section, the proposed framework is evaluated by two different case studies:
INTRASTATS dataset (Section 4.1) and VANETSs dataset (Section 4.2).

4.1 Case Study 1: INTRASTATS Dataset

The dataset obtained from foreign trade statistics (Section 2.1) is used for this
case study.

Methodology For this case study, our model is reduced to just predict the best
level of hierarchy for a given algorithm. To adopt our model, each product code
is selected as an entity. Then the DB is equal to {E;,C{,Y;} = {P;,CY,Y;},Vi €
{1,...,n1} where n; is the number of unique products. In performance evalua-
tion block in our model, the first line is only relevant for this scenario. So the
performance of only outlier detection algorithm is evaluated for each product at
different levels (P} — Pk) where k is the number of different levels in this case.
Then the best performance is calculated according to the Eq. 5:

Pyests = max(Ph), Vi e {1,...,k} (5)
J
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The metadata is then created using the best performance obtained from the per-
formance evaluation block plus extracted metafeatures from the original datasets.
An example of the metadata is: P;, mf}7 mf?7 mff’7 R mff7 Prests-

Level Prediction In this section, only the prediction of the best level is eval-
uated. In our model, two algorithms are applied on metadata: Decision Tree
(ML-Tree) and Random Forest (ML-RF). Figure 3 shows the comparison of two
metalearning approaches with the baseline accuracy. It is clear that the ran-
dom forest model applied on metadata, is outperformed the base-line. But the
accuracy of the decision tree is not as well as the accuracy of the random for-
est model. Although, the decision tree shows better results than the baseline in
the last month. Instead of applying the selected algorithm on several levels and

1.0

Accuracy
0.6
|

04

—e— ML-RF
—a— Baseline
—+— ML-Tree
T T T T T

9801 9803 9805 9808 9809

0.2

Months

Fig. 3. Comparing metalearning approaches with the baseline: accuracy

compare their performance to find the best one, we just need to calculate the
metafeatures and apply the outlier detection algorithm to find the proper level.
In the Section 4.2, a complete evaluation to find both the proper algorithm and
associated level is investigated.

4.2 Case Study 2: Taxi Dataset

In this section, our model is completely evaluated by recommending both the
algorithm and the level which are proper for trip duration prediction for a given
taxi. Instead of classification task in Section 4.1, here the task is a regression
problem.

Dataset The dataset is obtained from a realistic and a large-scale scenario. The
scenario is the city of Porto, which is the second largest city in Portugal, sum
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up an area of 41.3 km?2. There are 63 taxi stands in the city and the main taxi
union has 441 vehicles. Each taxi has an on-board unit with the GPS receiver
and collect the travel log. The dataset is consist of five months in 2013 for all the
vehicles. The dataset related to one month has 13 variables. The objective in this
study is to predict the best level of hierarchically to apply the best algorithm to
predict the trip duration.

Methodology According to our model, the entity (E;) is replaced by a taxi
(T;). Having near 440 taxis in the city, the total number of unique entities in
the first level in our model is 440 (C}, Vi € {1,...,440}). In this study, the
total number of levels are considered 2 levels: taxi itself (level 1) and the whole
data in a month (level 2). So the dataset which is delivered to performance
evaluation and metafeatures extraction blocks, in our model (Section 3) is DB =
{E;,CY;} = {T;,C],Y;}, Vi € {1,...,440},Vj € {1,2}. The algorithm space
contains 4 algorithms: Decision Tree (DT), Random Forest (RF), Support Vector
Machine (SVM), and Linear regression (LM). Each algorithm is evaluated for
each taxi at 2 different levels Eq. 6.

Pl Ywe{l,...,4}, Vi e {1,2}, Vie {1,...,440} (6)
And the best performance among the Pf:w is selected according to the Eq. 7.

Poesti =maz(PY,), Vw € {1,...,4},Vj € {1,2}, Vi € {1,...,440}  (7)
w,j

Finally the metadata structure is consist of the taxi identification, metafeatures
for the first and the second level and the best performance obtained from per-
formance evaluation block (see Eq. 8).

T;, Wlf%, mf?: Pbesti (8)

Level Prediction The first analysis is done for just predicting the best level
for each unseen observation and a given algorithm. So a specific algorithm is
selected. Then by using our model, the best level for applying the algorithm to
have the best prediction of trip duration is recommended. Figure 4 shows the
results of this analysis. When the SVM algorithm is selected, the recommended
level is more accurate than other algorithms. The accuracy in this case is 91%
on average which is 7% more than the LM algorithm.

Level and Algorithm Prediction In this section, the complete result of si-
multaneously predicting both an algorithm and a level is analyzed. In Figure 5,
the gray bars show the algorithm with the best performance at the base-level
(BL). The prediction at meta-level (ML) is represented by blue bars (darker
bars). Each algorithm is evaluated in two levels, for example RF algorithm is
applied at level 1 (rfl) and level 2 (rf2). This plot shows that the algorithm with
the best performance at the base-level is not always the same and can be varied.
In addition, metalearning almost follows the base-line prediction without doing
analysis at the base-level.
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5 Conclusion

Metalearning approaches aim at assisting users to select appropriate learning
algorithm for the particular data mining task. This problem is even worse when
considering the existing hierarchy in the datasets. In this paper, we proposed a
new metalearning framework to predict the best level of granularity to apply the
recommended algorithm. The basic idea is to reduce the computational costs for
applying different algorithms at different levels of granularity to reach the best
performance. Our model recommends an algorithm and a level of granularity to
obtain the best performance with high probability. The proposed model has been
applied on different datasets: Statistical dataset and Taxi dataset. Extensive ex-
perimental results have illustrated the improvement of accuracy of metalearning
approaches comparing to the base-line for both case studies.
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Abstract. This paper presents a new online multiclass algorithm with
bandit feedback, where, after making a prediction, the learning algorithm
receives only partial feedback, i.e., the prediction is correct or not, rather
than the true label. This algorithm, named Bandit Passive-Aggressive
online algorithm (BPA), is based on the Passive-Aggressive Online algo-
rithm (PA) proposed by [2], the latter being an effective framework for
performing max-margin online learning. We analyze some of its operating
principles, and we also derive a competitive cumulative mistake bound
for this algorithm. Further experimental evaluation on several multiclass
data sets, including three real world and two synthetic data sets, shows
interesting performance in the high-dimentional and high label cardinal-
ity case.

1 Introduction

Online learning is an effective way to deal with large scale applications, especially
applications with streaming data. Algorithm PA provides a generic framework for
online large-margin learning, with many applications[4,5]. PA uses hypotheses
from a set of linear predictors. But it only works in the conventional supervised
learning paradigm, in which, the learner has access to the true labels of data
after making its prediction. In contrast, there is an other partially supervised
learning problem: the multiclass prediction with bandit feedback[1]. Unlike the
conventional supervised learning paradigm, it focuses on applications where the
learner only receives bandit feedback. “Bandit feedback” means partial feedback:
the learner only receives “correct” or “not correct” about its prediction. As we
know, full information is rarely revealed in the real world. So bandit feedback
could apply to lots of domains, including many web-based applications, such as
an online recommender system as mentioned by [1]. It is said that when user
makes a query to a recommender system, the system gives a suggestion under
its former knowledge about the user; then this user responds to the suggestion
by either clicking or not clicking it. Nevertheless the system does not know what
would happen if it would provide other suggestions as substitutions. Essentially,
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we formalize the problem as follows: the learning algorithm gets an input fea-
ture vector x; at each round ¢; then based on the obtained information from
the former round, it makes a prediction and assigns a label g, to the input; fi-
nally, according to its prediction and the true label of the input a:, it receives
a partial feedback telling whether its prediction was correct or not. In contrast,
conventional online supervised learning would disclose the true label y; to the
user at each consecutive round. So, with bandit feedback, this kind of problems
is harder than conventional supervised learning problems.

Related work. Several classification algorithms exist that address the ban-
dit feedback setting. Banditron [1], based on the Perceptron algorithm, is the
most ”classical” one, having a number of mistakes asymptotically bounded. For
the case where the data is linearly separable, the number of mistakes is bounded
as O(VT) in T rounds, and has a O(T?/3) regret in the non-linearly separable
case. To handle the difficulties of utilizing the negative feedback, Banditron uses
an exploitation-exploration scheme. In some exploratory rounds, it makes a pre-
diction uniformly with probability P(Y = i|g,) from the full set of labels instead
of choosing the most probable label given the current learner belief.

Another bandit algorithm, named ” Confidit”, was proposed by [3]. This al-
gorithm trades off exploration and exploitation via upper-confidence bounds, in
a way that is somewhat similar to the work of [12]. In confidit approach, the
bound of regret is improved from O(T%/3) to O(v/T logT).

In this paper, we discuss a new algorithm: Bandit Passive-Aggressive Online
algorithm(BPA), i.e., we adapt PA approach[3] to the bandit setting. With PA’s
advantage, BPA should in principle perform a max-margin with bandit feedback.

In next sections, we will discuss this new bandit algorithm, including its
update rules, and we provide some experiments to compare the cumulative loss
on two synthetic and three real-world data sets.

2 Preliminaries

Online learning is applied in a sequence of consecutive rounds. On round ¢, the
learner is given an instance vector x; € R? and is required to predict a label out
of a set of multiclass [k] = {1, ..., k}. We denote by ¢: the predicted label. In the
general setting, after its prediction, it receives a correct label associated with
x¢, which we denote by y; € [k]. In the bandit setting, the feedback contains a
partial information (g,—,,), where 6y,—,,) is 1 if §; = y;, and 0 otherwise.

The prediction at round ¢ is chosen by a hypothesis h; : R — [k], where h;
is taken from a class of hypothesis H parameterized by a k x d matrix of real
weight w, and is defined to be:

9t = hi(xe) = argmaz < w;, xy > (1)
i€[k]

where w; € R? is the i!" row of the matrix w € R¥*?,
Consistently with [3]’s writing, a feature function: @(z,i) is a k x d matrix
which is composed of k features vectors of size d. All rows of @(x,i) are zero ex-
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cept the #*" row which is set to x;. It can be remarked that < &(x, i), d(z,j) >=
|| 2 ||? if i = j and 0 otherwise.

3 The algorithm Passive-Aggressive with bandit feedback

In this section, we introduce a new online learning algorithm, which is a variant
of the Passive-Aggressive Online algorithm adapted to the bandit setting.

3.1 Passive-Aggressive Online learning

The goal of online learning is to minimize the cumulative loss for a certain predic-
tion task from the sequentially arriving training samples. PA achieves this goal
by updating some parameterized model w in an online manner with the instan-
taneous losses from arriving data x;;>¢ and corresponding responses y; ;>0. The
losses [(w; (xt,y:)) can be the hinge loss. The update of PA derives its solution
from an optimization problem:

1
Wy = argming || w—w; || s.t. Ww; (z¢, ;) = 0 (2)

Namely, each instance x; is associated with a single correct label y; € Y and
the prediction 7, extends by Eq. 1. A prediction mistake occurs if y; # g;. The
update w of PA in Eq. 2 has the closed form solution,

H(we; (24, 1))
ﬂﬁt,yt) - é(l’t’?gt)

Wip1 = Wy + K E (P(, 1) — P(24, 1)) 3)

Intuitively, if w; suffers no loss from new data, i.e., [(wy; (z¢,y:)) = 0, the
algorithm passively assigns w;11 = wy; otherwise, it aggressively projects w; to
the feasible zone of parameter vectors that attain zero loss.

3.2 Passive-Aggressive algorithm in bandit setting

We now present BPA in Algorithm 1, which is an adaptation of PA for the
bandit case. Similar to PA, at each round it outputs a prediction g; to be the
label with the highest score of (w;,x:), to make a reference to Eq. 1. Unlike
the conventional learning paradigm, if §; # vy, it is difficult to get a PA update
because the true label’s information is not supported. So we need to perform
an exploration, i.e. sample a label randomly [k] with parameter v and contrast
this random prediction with a bandit return é3,—,,), where g is the result of a
random draw from a certain distribution P(Y|g,):

P(Y = ilge) = 8(i=g,) - (1 =) + % (4)

The above intuitive argument is formalized by defining the update matrix U
to be a function of the random prediction ;.
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We redefine the instantaneous loss by the following function,

Ly =1+ (1= 20(5,=y,)) - (w, P(x4,G¢))] + (5)

with (1—20(5,=y,)) equal to -1 when § = y and 1 elsewhere. This loss is the stan-
dard hinge loss [1 — (w, ®(x¢, §¢))]+ when the prediction is correct: it stays at 0
for (w, ®(xy,31)) > 1 and then increases for decreasing values of (w, ®(xy, §)). In
contrast, when the prediction is incorrect, the loss is equal to [1+{w, ®(z¢, §t))]+,
i.e. stays at 0 for -(w, P(z;, 7)) < —1 and then increases for increasing values of
(w, P(2¢, 7t))-

The linear classifiers are updated at each trial using the standard tools from
convex analysis [6]. If [; = 0, w, satisfies the constraint in Eq. 2 , otherwise it
should to satisfy the constraint optimization problem defined in Eq. 2 by the
Lagrangian,

L(w,7) = % | w = we |2 +7([1+ (1= 28(5,2,)) - (w, P(2, 50))]+)  (6)

w = We —+7- (2(5(%:%) — l)é(l‘t,gt)

Taking the derivative of L(7) with respect to 7 and also setting it to zero, we
get that:
b

T=
[RACTRN &

= w=w; + (25(37t:yt> —1)-7-D(xe,Gr) (7)

Algorithm 1 The Bandit Passive-Aggressive online learning

Require: w; = 0 € RF*¢
1: for each t =1,2,...,T do

2: Receive z; € Rd;

3: Set g = argmax(< we, P(xe, 1) >)
re(k]

4: for all i € [k] do

5: P(Y =ilge) = (1 =7) - 6G=p0) + 7

6: end for;

7 draw g; randomly

8: Receive the feedback 6(5,—y,)

9: Iy = [1 + (1 — 2§(gt:y1))- < wt,tﬁ(wt,?}t) >]+
10: Update: w1 = wi + (20(5,=y,) — 1) - m (e, i)
11: end for

Considering for instance the common phenomenon of label noise, a misla-
beled example may cause PA to drastically change its classifiers in the wrong
direction. To derive soft-margin classifiers [13] and a non-negative slack variable
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¢ is introduced into the optimization problem in Eq. 2. Accordingly with [2], the
variable can be introduced in two different ways.

Wi = argmin% |w—w || +C¢ st L(w;(xg,y:)) <€ and € >
CRkX

w 8
wesr = argmin} | w—w, |2 +C€ st. Uw; (o)) < € a
weRF x4

By these optimization problems, we get the corresponding optimization solu-
tions:

Wig1 = Wi + (20(5,=y,) — 1) - min {C, 7”¢(sz@)”2 } - D(xy, Tr)
Wig1 = Wy + (20(5,=y,) — 1) - m “ (w1, 1)

4 Analysis

In this section, we prove the cumulative squared loss has a upper bound. To
simplify, we note I(wy; (x¢,y¢)) as Iy and I(u; (x¢, y¢)) as [

Theorem 1. Let (x1,y1), ..., (xr,yr) be a sequence of separable examples where
z, € RY, y, € [k] and || 2, ||< R for all t, and u € R¥*4. Then, the cumulative
squared loss of this algorithm is bounded by,

T
SRR [ulP (9)
t=1

Proof. Define A; to be:

A=l wy = |* = || wepr —u |?

By summing A; over all t from 1 to T, that >, A; is a telescopic sum which
collapses to,

T T
A=Y (lwe—ul? = lwes —u|?) = wr —u|? = [ wepr —u |
t=1 t=1

By the initiation of w; = 0,

T
YAc=|ulP = wis —wP<] u |? (10)

t=1

Using the definition of update in Eq.7,

Ay =2 <(wt —u), (26 — 1)@#)”2@(%@)% (mé(% 37,5))2

259



Hollmén, Papapetrou (editors): Proceedings of the ECMLPKDD 2015 Doctoral Consortium

Wlth lt = [1 + (1 — 2(5(:&2:%)) . <U7t7¢(xt7§t)>]+ and l: = [1 + (1 — 25(17t:1/t)) .
<’w*7¢(rt7gt)>]+ ) SO7

PP el —( L ||45(:v21)||)2
g P \ T8 2 | 2

_ 12 —2U,lr
D(we, Ge) |I?
If all examples are separable, Ju such that V¢ € [1,...,T] , If = 0, following the

Eq. 10,
T
2
= u||*> A ( )
[l ; ¢ > Z I\met E

T
=D < ul® | S e) P
-

<R ul?

M=

t

Il
-

Theorem 2. Let (x1,y1), ..., (xr,yr) be a sequence of non-separable examples
where z; € R, y, € [k] and || 2, |< R for all t. Then for any vector u € R¥*4
the cumulative squared loss of this algorithm is bounded by:

2
T T

DB RIul+2y > )2

=1 t=1
Proof. By the proof of Theorem 1,

T T

STE<R Jul? 23 bl
t=1

t=1

To upper bound the right side of the above inequality, and denotes L; = ZtT:1 12
and U, = /0, ()2,

T
2(L,Uy)? Zz, Z +ZZF 7222111111;

H
i M%

i=1 j=1 i=1 j=1
T T
=N Wl - 1) >0
i=1 j=1
T T
D ESRulP+2) Ul <R |u | +2L;
t=1
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Le U+ R? || u |? +U}
Using the fact that va + b < v/a + Vb,

Li < R || u| +2U;

T

S RIull 424> 1)?

t=1 t=1

5 Experiments

In this section, we evaluate our algorithm with experimental results on three
bandit algorithms and two supervised algorithms over two synthetic and three
real world data sets. Their characteristics are summarized in Table 1. The cu-
mulative loss is presented for each data sets.

5.1 Data sets

The first data set, denoted by SynSep, is a 9-class, 400-dimensional synthetic
data set of size 10°. More details about the method to generate this data set can
be found in [1]. The SynSep idea is to have a simple simulation of generating a
text document. The coordinates represent different words in a small vocabulary
of size 400. We ensure that SynSep is linearly separable.

The second data set, denoted by SynNonSep, is constructed the same way
as SynSep except that a 5% label noise is introduced, which makes the data set
non-separable.

The third data set is collected from the Reuters RCV1-v2 collection[7]. The
original data set is composed by multi-label instances. So we make some prepro-
cessing likes [8]. First, its label hierarchy is reorganized by mapping the data set
to the second level of RCV1 topic hierarchy. The documents that have labels of
the third or forth level only are mapped to their parent category of the second
level; Second, all multi-labelled instances have been removed. This RCV1-v2 is
a 53-class, 47236-dimensional real data set of size 10°.

Table 1. Summary of the five data sets, including the numbers of instances, features,
labels and whether the number of examples in each class are balanced.

Data Instances|Features|Labels|Balanced
SynSep | 100 000 400 9
SynNonSep| 100 000 | 400 9
RCV1-v2 | 100 000 | 47236 53
Letter 20 000 16 26
Pen-Based | 13 200 16 10

z| z| Z| <] =<
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The fourth and fifth data sets are collected from [9,10]. The fourth data
set is to identify each of a large number of black-and-white rectangular pixel
displays as one of the 26 capital letters in the English alphabet. The character
images were based on 20 different fonts and each letter within these 20 fonts
was randomly distorted to produce a file of 20000 unique stimuli. Each stimuli
was converted into 16 primitive numerical attributes (statistical moments and
edge counts). It forms a 26-class, 16-dimensional real data set of size 20000.
The fifth data set is a digit data base made by collecting 250 samples from 44
writers, using only (x,y) coordinate information represented as constant length
feature vectors, which were resampled to 8 points per digit (therefore the data
set contains 8 points X 2 coordinates = 16 features). This one is a 10-class,
16-dimensional real data set of size 10992.

5.2 Algorithms

Five algorithms are evaluated:

Perceptron[11] and PA[2], they work in the full information setting and no
parameters are needed.

Banditron[1] working in bandit feedback, its simulations are run for different
~ values from interval [0.01,0.99] to determine the best value for each data set.

Confidit[3] working in bandit feedback, to simplify the computing process,
we replaced the multiplier of 7 A jz; in the definition of €2, (see [3]) with
some constant 7).

Our algorithm, BPA works in bandit feedback, different simulations are run
to choose the best v value for each data, set like Banditron.

5.3 Results

Figures 1 and 2 show the experimental results on two synthetic data sets and
three real data sets. For SynSep, a separable linear data set, all algorithms except
Banditron obtain a good performance; with the non-separable SynNonSep data,
Confidit and BPA outperform the other algorithms, even the algorithms having
a full feedback.

With the three real data sets, the algorithms with full information, despite
their competitive advantage with respect to the ones with bandit feedback, do
not significantly depart from BPA and Confidit, with classification results that
clearly outperform Banditron. While having a lower computational complexity,
BPA approach is even found to outperform Confidit in the most challenging
situation, i.e. the high-dimensional case with a large number of classes (RCV1-
v2 data set).

The ~ parameter represents the exploration rate in Banditron and BPA al-
gorithms. We compare on Figure 3 the average error rates obtained on the two
algorithms for different values of v on the different data sets. In contrast with
Banditron, BPA shows that v has a very little influence on the final error rate,
indicating a capability to deal with small exploration rates.
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Fig. 1. Cumulative Errors on the synthetic data sets: SynSep and SynNonSep.

Cumulative loss.

“rumber of examples” T Number of examples

Fig. 2. Cumulative Errors on the real data sets: RCV1-v2 (53 classes), Letter Recog-
nition (10 numbers) and Letter Recognition (26 Letters).
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ralio of errors
atio of errors
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Fig. 3. Average error on Banditron and BPA for parameter’s value ~.

6 Conclusion and Open Questions

In this paper, we proposed a novel algorithm for online multiclass with bandit
feedback. By the advantage of PA max-margin principle, BPA appears effective
to address the bandit online learning setting. Its main advantage is its linear com-
plexity in space that allows to deal with high dimensional data sets and a large
number of classes, on the contrary to second-order methods. The practicability
of this algorithm is verified theoretically by showing a competitive loss bound.
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Moreover, experimental evaluation shows that BPA performs better than other
algorithms on some real sets, even better than the algorithms with full feedback
on the data sets non-separable.

Ongoing research, we will take BPA to deal with data sets non-linear by
combining the Kernel method. Otherwise, Algorithm PA could be adapted to the
task of multilabel classification. So our work could be extended by the problem
of “Multilabels in bandit setting” which is proposed by [14].
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