
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s): R. Khan, F. Massel, T. T. Heikkilä

Title: Cross-Kerr nonlinearity in optomechanical systems

Year: 2015

Version: Final published version

Please cite the original version:
R. Khan F., Massel, T. T. Heikkilä. Cross-Kerr nonlinearity in optomechanical systems.
Physical Review A, 91, 043822, April 2015. DOI: 10.1103/PhysRevA.91.043822

Rights: © 2015 Americal Physical Society (APS). Reprinted with permission.

Readers may view, browse, and/or download material for temporary copying purposes only, provided these
uses are for noncommercial personal purposes. Except as provided by law, this material may not be further
reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or
part, without prior written permission from the American Physical Society.

This publication is included in the electronic version of the article dissertation:
Khan, Raphaël. Nonlinearities and quantum phenomena in nanoelectromechanical systems.
Aalto University publication series DOCTORAL DISSERTATIONS, 145/2015.

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that material may
be duplicated by you for your research use or educational purposes in electronic or print form. You must
obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or
otherwise to anyone who is not an authorised user.

Powered by TCPDF (www.tcpdf.org)

http://www.aalto.fi/en/
http://aaltodoc.aalto.fi
http://www.tcpdf.org


PHYSICAL REVIEW A 91, 043822 (2015)

Cross-Kerr nonlinearity in optomechanical systems
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We consider the response of a nanomechanical resonator interacting with an electromagnetic cavity via a
radiation-pressure coupling and a cross-Kerr coupling. Using a mean-field approach we solve the dynamics of
the system and show the different corrections coming from the radiation pressure and the cross-Kerr effect on
the usually considered linearized dynamics.
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I. INTRODUCTION

Cavity optomechanics offers a framework to study the
coupling between an electromagnetic field and the vibrations
of a mechanical resonator. The interaction between these
two systems is usually mediated by a radiation-pressure-type
coupling proportional, through a coupling constant g, to the
number of photons nc in the cavity and the displacement
of the mechanical resonator. The radiation-pressure coupling
offers the possibility of altering the resonant frequency of
the mechanical resonator and its damping. The latter can be
used for cooling [1–3] or amplification [4]. Moreover, the
nonlinearity of the interaction may allow for the observation
of macroscopic quantum phenomena such as quantum super-
position of states [5,6] or quantum squeezed states [7]. The
requirements for observing these quantum phenomena are
the necessity of being close to the ground state and being
in the strong-coupling regime [8,9], where g is larger than the
cavity and the mechanical resonator decay rate. However, g is
usually weak, and to bypass this constraint a strong drive to
the cavity is applied at the cost of losing the nonlinear property
of the interaction.
Our recent proposal [10], in which the cavity and the

resonator are coupled to a Josephson junction, shows that
the interaction between the cavity and the resonator can
be enhanced via the nonlinearity of the Josephson effect.
There, the nonlinearity of the Josephson effect leads to an
additional nonlinear interaction, namely, a cross-Kerr coupling
gck between the cavity and the resonator. Quadratic and higher-
order interactions in the displacement have been investigated
also in different setups such as the membrane in the middle
geometries [11–13] and in atomic arrays placed inside a cavity
[14]. In the Josephson-junction setup the relative value of
gck and g depends on the value of the gate charge to a
superconducting island, whereas in [12–14], it reflects the
position of the resonator within the cavity.
In optics, theKerr effect refers to the change in the refractive

index of a nonlinear medium when an electric field is applied
to it, with the change being proportional to the square of the
amplitude of the electric field [15].When two electric fields are
applied simultaneously on a nonlinear medium, they undergo
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an optical effect named the cross-Kerr effect. In this case the
refractive index associated with the propagation of one of the
electric fields is changed with respect to the square amplitude
of the other [15,16]. In quantum information, this effect plays
an important role since it allows for creating entanglement
between photons [17,18]. In the context of optomechanical
systems, the cross-Kerr coupling between the resonator and the
cavity induces a change in the refractive index of the cavity that
depends on the number of phonons in the resonator, whereas
the radiation -pressure coupling gives rise to an analogous
effect that depends, however, on the displacement of the
mechanical resonator.
In this paper we solve the dynamics of the cavity and the

mechanical resonator in the presence of the cross-Kerr and
the radiation-pressure couplings. We determine the effects of
the cross-Kerr coupling on the red and blue sidebands within
a mean-field approach. In particular, we demonstrate that the
sideband peak is shifted due to the cross-Kerr coupling. In
addition, the cross-Kerr coupling induces a nonmonotonous
response of the effective mechanical damping as a function of
the number of photons pumped into the cavity.

II. MEAN-FIELD APPROACH

We consider an electromagnetic cavity with frequency
ωc and linewidth κ coupled to a mechanical resonator with
frequency ωm and linewidth γ . The number of phonons in
the cavity nc is coupled to the vibration amplitude of the
mechanical resonator x̂ via a radiation-pressure-type coupling
g. In addition the number of photons nc is coupled to the
number of phonons nm in the mechanical resonator through
a cross-Kerr coupling gck (Fig. 1). The Hamiltonian of the
system is (� = 1)

H = ωca
†a + ωmb†b − ga†a(b† + b)− gcka

†ab†b, (1)

where a and b are the annihilation operators of the cavity
and the mechanical resonator, respectively. We treat the
interactions with a mean-field (MF) approach. Within it, the
radiation-pressure interaction becomes

ga†a(b† + b) = g[(〈a†〉a + 〈a〉a† − 〈a†a〉)(b† + b)

+ (a†a − 〈a〉a† − 〈a†〉a)〈b† + b〉], (2)

where 〈A〉 stands for the average of A over the static nonequi-
librium state of the system (mean field). The negative terms in
Eq. (2) are included to suppress double counting. The first line
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FIG. 1. (Color online) Schematic picture of the system. A cavity
and a mechanical resonator coupled via a radiation-type coupling g

and a cross-Kerr coupling gck . The number of photons in the cavity
nc is coupled to the oscillations of the mechanical resonator x̂ and the
number of phonons in the mechanical resonator nm.

of Eq. (2) describes exchange processes between the resonator
and the cavity, while the second line gives a frequency shift of
the cavity, which is proportional to the average displacement of
the resonator. This decomposition allows us to find the usual
results of the weak radiation-pressure coupling [4,19]. The
validity range of such an approach is thus similar to the usual
scheme of optomechanics, i.e., |〈a†a〉 − 〈a†〉〈a〉|/〈a†a〉 � 1
[3,20]. In MF, the cross-Kerr coupling becomes

gcka
†ab†b = gck[〈a†a〉b†b + 〈b†b〉a†a + 〈b†a〉ba†

+〈ba†〉b†a + 〈ba〉b†a† + 〈b†a†〉ba]. (3)

The term 〈a†a〉b†b (〈b†b〉a†a) describes a Hartree-like inter-
action between the resonator and the cavity. It corresponds to
an effective field induced by the average number of photons
(phonons) coupling to the number of mechanical excitations
(the number of cavity photons). The other terms describe
exchange processes between the resonator and the cavity. Thus
we can rewrite the Hamiltonian as

H = [ωc − gck〈b†b〉]a†a + [ωm − gck〈a†a〉]b†b
−G[〈a†〉ab† + 〈a〉a†b†]− G∗[〈a†〉ab + 〈a〉a†b]

+ g[(a†a − 〈a〉a† − 〈a†〉a)〈b† + b〉 − 〈a†a〉(b† + b)],

(4)

where the expectation values of the different operators have
to be determined self-consistently within the MF picture and
G = g + gck〈b〉. We assume the usual experimental situation
whereωc � ωm and where the cavity is driven with a coherent
field of strength fp oscillating at frequency ωp = ωc + .
Using the input-output formalism [19],we get for the equations
of motion

ȧ = −i[− − gck〈b†b〉]a − κ

2
a + √

κfp

+ iG∗〈a〉b + iG〈a〉b† − ig〈b† + b〉[a − 〈a〉], (5)

ḃ = −i[ωm − gck〈a†a〉]b − γ

2
b + √

γ bin

+ iG〈a†〉a + iG〈a〉a† − ig〈a†a〉. (6)

Here we have written the cavity operator a in a frame rotating
with frequency ωp, neglecting the fast oscillating terms. We
define bin as the thermal input of the resonator satisfying
〈bin(t)〉 = 0 and 〈b†in(t)bin(t ′)〉 = nthδ(t − t ′), where nth is
the number of phonons in the thermal bath damping the
resonator.We split the cavity and themechanical operators into
a sum of coherent and fluctuation parts, i.e., a ≡ δa + α and
b ≡ δb + β, with α = 〈a〉, β = 〈b〉, and 〈δa〉 = 〈δb〉 = 0. As
usual, we assume that α and β oscillate at the same frequency
as the coherent drive so that α̇ = β̇ = 0. In addition |α|2 �
〈δa†δa〉 to ensure the validity of themean-field approach.With
these approximations, the solutions of Eqs. (5) and (6) are

α =
√

κfp

κ
2 − i[ − gck〈b†b〉 − (G∗β + Gβ∗)]

, (7)

β = i(2G − g)|α|2 − ig〈δa†δa〉
γ /2+ i(ωm − gck〈a†a〉) . (8)

In the derivation of Eqs. (7) and (8), we have assumed, in
agreement with what is usually done in the optomechanical
literature (see, e.g., [21]),  + g〈b† + b〉 ≈ . The equations
of motion for the fluctuations in the Fourier space are given by[

κ

2
− i(ω + ̃)

]
δa = iGαδb† + iG∗αδb, (9)

[
γ

2
− i(ω − ω̃m)

]
δb = iGα∗δa + iGαδa† + √

γ bin, (10)

where ̃ =  + gck〈b†b〉 and ω̃m = ωm − gck〈a†a〉. The ef-
fect of the thermal drive bin on the response of the cavity
is mediated by the coupling G. Through this coupling the
oscillations of the mechanical resonator produce sideband
peaks at ωd ± ω̃m in the cavity response. They allow for the
exchange of energy between the cavity and the resonator when
 ≈ ±ωm [2,22]. These processes are depicted in Fig. 2. For
 ≈ −ωm the system is in the red sideband regime, and one

nm

nc

nc+1

nm nc+1

nm
nc

−1

nm−1

c
d

m

nm nc+1

nc

+1

nm+1

FIG. 2. (Color online) Cooling (heating) process. The cavity
is driven with a frequency ωd = ωc − ωm (ωd = ωc + ωm). The
drive does not allow a transition from |nm,nc〉 to |nm,nc + 1〉 but
allows the transition from |nm,nc〉 to |nm − 1,nc + 1〉 (|nm,nc〉 to
|nm + 1,nc + 1〉). The cavity relaxes then to the state |nm − 1,nc〉
(|nm + 1,nc〉), resulting in cooling (heating) of the mechanical
resonator.
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can transfer energy from the resonator to the cavity; thus the
mechanical resonator is damped and cooled. For ≈ ωm, the
system is in the blue sideband regime, and one can transfer
energy from the cavity to the resonator; thus the mechanical
resonator is excited and heated. In order to find the correction
to the damping, we solve the response function of δa for the
thermal input δbin. We find that it is a Lorentzian function
peaked at ω̃m + ωshift, with

ωshift = −|G|2|α|2(̃2 − ω̃2m + κ2

4

)
ω̃m

×
(

1
κ2

4 + (ω̃m + ̃)2
− 1

κ2

4 + (ω̃m − ̃)2

)
, (11)

whose linewidth is γ + �opt, with

�opt = |G|2|α|2κ
(

1
κ2

4 + (ω̃m + ̃)2
− 1

κ2

4 + (ω̃m − ̃)2

)
.

(12)

Integrating the Lorentzian function obtained above, we obtain
the number of phonons and photons coming from the thermal
vibrations of the resonator. We get [3]

〈δb†δb〉 = γ nth + �optnm0

γ + �opt
, (13)

〈δa†δa〉 = G2|α|2〈δb†δb〉

×
(

1
κ2

4 + (ω̃m + ̃)2
+ 1

κ2

4 + (ω̃m − ̃)2

)
, (14)

with

nm0 = − (ω̃m + ̃)2 + κ2

4

4̃ω̃m

. (15)

The validity of the mean field in Eq. (3) is given by the
condition 〈δa†δa〉 � |α|2, which translates to the following
condition:

〈δb†δb〉 � G−2
(

1
κ2

4 + (ω̃m + ̃)2
+ 1

κ2

4 + (ω̃m − ̃)2

)−1

≈
(

κ

2G

)2
, (16)

where the latter approximation is valid in the resolved sideband
regime κ � ωm ≈ ||. Equations (7), (8), (13), and (14) form
a set of self-consistency equations. This constitutes a nonlinear
system that hence has multiple solutions. It should thus show
some bistability as the numbers of photons and phonons are
increased [4]. However, when solving the system, we limit
ourselves close to the stable solution of the radiation pressure
in the weak-coupling regime without cross-Kerr coupling, as
discussed in [4]. We now focus on the different sidebands.

III. OPTIMAL COOLING AND HEATING

In order to minimize or maximize the optical damping �opt,
we set ̃ = ∓ω̃m. The upper sign refers to the red sideband
(�opt > 0), and the lower sign refers to the blue sideband

FIG. 3. (Color online) Schematic picture of the red sidebandwith
and without cross-Kerr coupling for < 0. For gck > 0 the sideband
peak is shifted to lower values, while for gck < 0 the sideband peak
is shifted to higher values.

(�opt < 0). In the resolved sideband limit, ωm � κ � γ , the
frequency shift and the optical damping become

ωshift = ∓|G|2|α|2
ω̃m

= ∓ |G|2|α|2
ωm − gck〈a†a〉 , (17)

�opt = ±4|G|2|α|2
κ

. (18)

The result for the optical damping equation (18) is identical
to the one usually obtained in optomechanics in the absence
of the cross-Kerr coupling. The effect of gck shows up only
in the frequency shift, which now depends on the number of
coherent and thermal photons in the cavity Eq. (17). In Fig. 3
we show a schematic picture of what happens to the sideband
in the presence of the cross-Kerr coupling.

FIG. 4. (Color online) Steady-state phonon number in the res-
onator and �opt (inset) as a function of the ratio ωm/κ at the red
sideband for the optimal case ̃ = −ω̃m with γ = 10−3κ , g = 10−2κ .
The number of photons pumped into the cavity is fixed to |α|2 = 100,
and the bath temperature corresponds to nth = 100.
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FIG. 5. (Color online) Steady-state phonon number in the res-
onator and �opt (inset) as a function of the ratio ωm/κ at the blue
sideband for the optimal case ̃ = ω̃m with γ = 10−2κ , g = 10−2κ .
The number of photons pumped into the cavity is fixed to |α|2 = 100,
and the bath temperature corresponds to nth = 10. The dashed lines
indicate the onset of the parametric instability for �opt = −γ .

(a)

(b)

FIG. 6. (Color online) (a) Steady-state phonon number in the
resonator and (b) the optical damping�opt as a function of the number
of photons pumped into the cavity in the case where  = −ωm.
The values for the parameters are γ = 10−4ωm, κ = 10−1ωm, g =
10−3ωm, and the bath temperature corresponds to nth = 10.

In the Doppler limit (ωm � κ) the frequency shift and
optical damping are given by

ωshift = ∓4|G|2|α|2 ωm − gck〈a†a〉
κ2

4 + 4(ωm − gck〈a†a〉)2 , (19)

�opt = ±4|G|2|α|2
κ

4(ωm − gck〈a†a〉)2
κ2

4 + 4(ωm − gck〈a†a〉)2 . (20)

Now both the frequency shift and the optical damping depend
on the cross-Kerr coupling. In Figs. 4 and 5we plot the number
of phonons and the optical damping as a function of ωm/κ for
the red sideband in the Doppler limit. Since the cross-Kerr
coupling shifts the mechanical frequency, the value of �opt is
shifted as well. The sign of the shift is given by the sign of
gck . Otherwise, we recover the cooling of the resonator for
the red sideband (Fig. 4) and the parametric instability when
�opt = −γ for the blue sideband (Fig. 5).

IV. CASE WITH � = ωm.

In experiments the parameter one can tune directly is the
detuning  and not ̃ as it can be difficult to set ̃ = ∓ω̃m

for each value of |α| as the pump strength is varied. Therefore

0 10 20 30 40
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1

10
2

10
3

10
4

0 10 20 30 40
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0 x 10
−3

(a)

(b)

FIG. 7. (Color online) (a) Steady-state phonon number in the
resonator and (b) the optical damping �opt as a function of the
number of photons pumped into the cavity in the case where  =
ωm. The values for the parameters are γ = 10−3ωm, κ = 10−1ωm,
g = 10−3ωm, and the bath temperature corresponds to nth = 10.
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FIG. 8. (Color online) Frequency shift as a function of the
number of photons pumped into the cavity when  = −ωm with
γ = 10−3ωm, κ = 10−1ωm, g = 10−2ωm and the bath temperature
corresponds to nth = 100.

another regime we consider is the case where  = ∓ωm, i.e.,
setting ̃ = ∓ωm + gck〈b†b〉. In this case the frequency shift
and optical damping in the red (upper sign) and blue (lower
sign) sidebands become

ωshift = ∓|G|2|α|2
ω̃m

[κ2/4− 2gckωm(〈b†b〉 − 〈a†a〉)][
g2ck(〈b†b〉 − 〈a†a〉)2 + κ2/4

] , (21)

�opt = ± |G|2|α|2κ
g2ck(〈b†b〉 − 〈a†a〉)2 + κ2/4

. (22)

In Figs. 6 and 7 the steady-state phonon number and the
optical damping are plotted as a function of the number of
photons pumped into the cavity for the red and blue sidebands,
respectively. For the red sideband (Fig. 6) the optical damping
increases with increasing |α| until it reaches a maximum
value at |α| = αc. Assuming that the minimum is reached for
|αc|2 � 〈b†b〉, the maximum corresponds to α2c = κ/(2|gck|),
implying cooling to 〈δb†δb〉 ≈ γ nth/(γ + G2/gck) phonons.
This estimate is valid when nth � κ/(2gck)[1+ g2/(γgck)].
When |α| � αc, the optical damping becomes inversely
proportional to the number of photons pumped into the cavity;
consequently, the cooling deteriorates when more photons are
pumped into the cavity.
In the blue sideband (Fig. 7) the main effect of a small

cross-Kerr coupling is to limit the instability to a finite number
of phonons, 〈b†b〉 ≈ √

κ/γ |G||α|/|gck| + |α|2. For gck �
κ/(4nth) the cross-Kerr coupling prevents the instability alto-
gether. This effect thus competeswith the usual limitation com-
ing from the intrinsic (Duffing) nonlinearity of the resonator.
In Figs. 8 and 9 we plot the frequency shift as a function of

the number of photons pumped into the cavity for the red and

FIG. 9. (Color online) Frequency shift as a function of the
number of photons pumped into the cavity when  = ωm with
γ = 10−3ωm, κ = 10−1ωm, g = 10−2ωm and the bath temperature
corresponds to nth = 100.

blue sidebands. For the red sideband (Fig. 8), when gck > 0
(gck < 0), the frequency shift first increases (decreases) as α

increases until α ≈ 〈b†b〉, after which it decreases (increases).
For the blue sideband (Fig. 9), when gck > 0, the frequency
shift decreases, while for gck < 0 it increases. The difference
at small α between the red and blue sidebands arises from
the fact that in the red sideband, when more photons are
pumped into the cavity, the cooling improves; thus the number
of phonons in the mechanical resonator decreases, making it
possible to have a number of photons in the cavity of the
same order as and larger than the number of phonons in the
resonator.

V. CONCLUSION

In conclusion, we have solved the dynamics of amechanical
resonator coupled to an electromagnetic cavity via a radiation-
pressure coupling and a cross-Kerr coupling using amean-field
approach. We have shown that the cross-Kerr coupling shifts
the frequencies of the mechanical resonator and of the optical
cavity, with the shift depending on the number of photons in
the cavity and phonons in the resonator. In addition, we have
shown that when the detuning of the pump is equal to the
frequency of the mechanical resonator, the variation of the
optical damping is nonmonotonous instead of being linearly
dependent on the number of phonons pumped into the cavity.
We also find that the cross-Kerr coupling can suppress the
parametric instability to self-oscillations for the blue sideband
pumping.
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480, 351 (2011).

[5] W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, Phys.
Rev. Lett. 91, 130401 (2003).

[6] D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A.
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[8] S.Gröblacher, K.Hammerer,M.R.Vanner, andM.Aspelmeyer,
Nature (London) 460, 724 (2009).

[9] J. D. Teufel et al., Nature (London) 471, 204
(2011).
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