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Structural and magnetic properties of the Yb�Mn1−xFex�O3 �0�x�1� system have been systematically
investigated. Initial samples were prepared via a sol-gel method. A pure hexagonal phase was only obtained for
samples with x�0.5. With high-pressure annealing, a pure orthorhombic perovskite phase was achieved for all
the compositions. The 57Fe Mössbauer spectrum for x=0.5 shows that only Fe3+ ions exist in the system; there
was no evidence of chemical inhomogeneities. With increasing x, the Néel temperature TN increases for both
hexagonal and orthorhombic phases. The orthorhombic Yb�Mn0.5Fe0.5�O3 shows an interesting weak ferro-
magnetic state in the temperature range of 239–298 K, the ferromagnetism disappearing abruptly on cooling
below Tt=239 K. The transition at Tt appears to be a reorientation of the spin axis of a type-G antiferromag-
netic order from the orthorhombic a axis to the b axis in the �010� plane.

DOI: 10.1103/PhysRevB.76.174405 PACS number�s�: 75.10.�b, 75.30.�m, 71.70.Ej, 64.60.�i

I. INTRODUCTION

The RMnO3 oxides of the light rare earths R=La to Dy
are orthorhombic perovskites, space group Pbnm; for R
=Ho to Lu, they are hexagonal, space group P63cm.1,2 A
high-pressure anneal can transform the hexagonal structure
to a metastable orthorhombic perovskite.3,4 In the orthorhom-
bic structure, a cooperative rotation of the corner-shared
MnO6/2 octahedra bends the Mn-O-Mn bond angles from
180°, the angle �180°−�� decreasing with decreasing radius
of the R3+ ion. This rotation is accompanied by an intrinsic
distortion of the octahedral sites into long O-Mn-O bonds
alternating with shorter O-Mn-O bonds in the �001� planes.
This distortion biases the cooperative orbital ordering at the
high-spin Mn3+: t3e1 to give ferromagnetic �-bond e1-O-e0

competing with antiferromagnetic �-bond t3-O-t3 spin-spin
interactions in the �001� planes.5 In LaMnO3, the �-bond
component of the spin-spin interactions dominates in the
�001� planes; between planes the antiferromagnetic t3-O-t3

interactions dominate the spin-spin interactions. Therefore
LaMnO3 has type-A antiferromagnetic order with ferromag-
netic �001� planes coupled antiparallel to one another.6 Zhou
and Goodenough7 have shown that as the bias of the coop-
erative Jahn-Teller orbital ordering from the intrinsic site dis-
tortion increases with decreasing R3+-ion radius, the ferro-
magnetic �-bond component decreases relative to the
antiferromagnetic �-bond component in the �001� planes un-
til, for the heavier rare-earth perovskites stabilized by high-
pressure annealing, the two components become comparable
in energy. In these perovskites, the competition between the
�-bond and �-bond components is resolved by the stabiliza-
tion of an exchange-density wave propagating in the �110�
direction, ferromagnetic and antiferromagnetic Mn-O-Mn in-
teractions alternating with one another in the �001� planes.
This peculiar antiferromagnetic order is labeled type-E.
Orthorhombic YbMnO3 has the type-E antiferromagnetic or-
der.

In this paper, we explore the evolution with x of the mag-
netic transition temperature in the hexagonal and perovskite

phases of Yb�Mn1−xFex�O3. The YbFeO3 perovskite has only
antiferromagnetic t3-O-t3 and e2-O-e2 spin interactions,
which gives type-G antiferromagnetic order with a high Néel
temperature TN.8

II. EXPERIMENT

Hexagonal Yb�Mn1−xFex�O3 samples were prepared by a
wet-chemical route with stoichiometric amounts of Yb2O3,
Fe2O3, and MnCO3 as starting materials and ethylenedi-
aminetetraacetic acid �EDTA� as a complexant, as described
elsewhere in detail.9 The samples were sintered in air
at 1200 °C for 20 h. Orthorhombic perovskites were ob-
tained with a high-pressure �HP� technique. The as-prepared
samples were each packed in a gold capsule and heated at
1100 °C for 30 min under a pressure of 5 GPa in a cubic-
anvil HP apparatus. Our experiments showed that the HP
treatment alone without any heating does not give the ortho-
rhombic phase, and a complete transition from the hexagonal
to the orthorhombic phase requires an applied pressure of
higher than 2 GPa under heating.

The phase purity was checked by x-ray powder diffraction
�XRD; Rigaku: RINT-2000 equipped with a rotating copper
anode; Cu K� radiation�. Lattice parameters were obtained
with a Rietveld refinement program, RIETAN 2000. The pat-
tern R factors �RP� for all the refinements were less than
12%. The XRD data for the refinements were collected at
room temperature from 10° to 100° with a 2� step of 0.02°.
Magnetization measurements were made with a supercon-
ducting quantum interference device �SQUID; Quantum De-
sign: MPMS-XL5�.

For one of the HP-annealed samples, i.e.,
Yb�Mn0.5Fe0.5�O3, a 57Fe Mössbauer spectrum was measured
to confirm the valence state of iron. The measurement was
performed at 350 K in transmission geometry with a Cyclo-
tron Company 57Co:Rh �25 mCi� source. The absorber was
prepared by spreading the mixture of the sample with epoxy
resin on an Al foil. The spectrum consisting of one broad-
ened doublet peak was fitted with two components of similar
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isomer shift �IS� values to account for the broadening. The
broadening is due to random distribution of Fe and Mn at-
oms, which causes the local quadrupole coupling constant to
vary.10

III. RESULTS AND DISCUSSION

Room-temperature XRD patterns in Fig. 1 showed that
the initial samples exhibited a pure hexagonal P63cm phase
for x�0.5 �JCPDS No. 38-1246�, mixed hexagonal and
orthorhombic Pbnm perovskite phases for 0.6�x�0.8, and
a pure orthorhombic perovskite for x=1.0 �JCPDS No. 47-
0070�. Due to the Jahn-Teller effect of Mn3+ and the small
ionic radius of Yb3+, the noncentrosymmetric hexagonal
structure is preferred for YbMnO3 under ambient pressure.
Yb3+ ions are situated at two different sites 2a and 4b.
Fivefold-coordinated Mn3+ ions are located at the 6c site
surrounded by a trigonal bipyramid of O2− ions; they form a
triangular network within a hexagonal c plane. With substi-
tution of Fe3+ for Mn3+, the structure strongly depends on the

Fe3+ doping level x. However, after HP annealing, a pure
orthorhombic perovskite phase �JCPDS No. 25-0330 for
smaller x and 47-0070 for larger x� was obtained for all
values of x, see Fig. 1. The structural transformation from
hexagonal to orthorhombic phase by high-pressure treatment
is because of the pressure-induced change in density and
hence reconstruction of the lattice.11 High pressure prefers
the structure with a high symmetry and a high density, which
causes the coordination of Mn3+ ions to change from fivefold
to sixfold. The lattice parameters obtained by Rietveld re-
finement are displayed in Fig. 2. An obvious change in the
lattice parameters with Fe doping level x occurs in both hex-
agonal and orthorhombic series. The 57Fe Mössbauer spec-
trum in Fig. 3 of the orthorhombic Yb�Mn0.5Fe0.5�O3 perov-
skite phase �with a line broadening associated with different
numbers of Mn3+-ion near neighbors� shows that the isomer
shift value ��0.32 mm/s� is close to that typical of Fe3+

ions.
Figure 4 displays the temperature dependence of the zero-

field-cooled �ZFC� and field-cooled �FC� magnetic suscepti-
bility ��T� measured on heating in 100 Oe for both as-
prepared Yb�Mn1−xFex�O3 samples and those obtained by the
HP anneal. The rapid increase in ��T� at low temperatures
reflects the paramagnetic contribution to ��T� from the Yb3+

ions. The long-range magnetic-ordering temperatures are dif-
ficult to be defined clearly from the ��T� curves for some
samples, so we show in Fig. 5 the curves d� /dT. As shown
previously,9 the anomaly at 88 K in hexagonal YbMnO3 is
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FIG. 1. XRD patterns for Yb�Mn1−xFex�O3 with x=0, 0.1, 0.3,
0.5, 0.7, and 1.0: �a� sintered at 1200 °C for 20 h in air, and �b�
further annealed at 1100 °C for 30 min under a pressure of 5 GPa.
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FIG. 2. Lattice parameters for �a� hexagonal and �b� orthorhom-
bic Yb�Mn1−xFex�O3 samples.
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due to a canted spin ordering of the Mn3+ ions. This TN
increases progressively to 112 K with increasing x in hex-
agonal Yb�Mn1−xFex�O3 �0�x�0.5�. In the as-prepared x
=0.6 and 0.7 samples, the TN of the hexagonal phase remains

fixed at the value for x=0.5, which signals that the compo-
sition limit of the hexagonal phase is about x=0.5. For the
orthorhombic HP samples, the type-E antiferromagnetic TN
=43 K for x=0 increases to TN=62 K for x=0.4. The ortho-
rhombic x=0.5 sample exhibits a completely different mag-
netic behavior; it shows a weak ferromagnetic state in the
temperature range of 239–298 K below an apparent Néel
temperature at TN=298 K; the weak ferromagnetic state is
followed by an abrupt transition to an antiferromagnetic
phase below Tt=239 K. An anomaly at 8 K is ascribed to an
ordering of Yb3+ spins as confirmed in our previous work;9 it
can also be observed in the other Yb�Mn1−xFex�O3 samples.
As x increases further, the onset of long-range magnetic or-
der increases to above 350 K and the transition at Tt gets
weaker, disappearing in the x=0.8 and 1.0 samples.

To determine further the magnetic state of the orthorhom-
bic x=0.5 sample, we measured magnetization �M� as a
function of magnetic field �H� at various temperatures. As
shown in Fig. 6, the M-H curves from 230 to 300 K exhibit
an almost linear relationship, being dominated by the para-
magnetic susceptibility of the Yb3+ ions. However, an M-H
hysteresis loop can be observed at a temperature 250 K
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FIG. 4. �Color online� Temperature dependence of zero-field-cooled �ZFC� and field-cooled �FC� susceptibility ��� measured under a
field of 100 Oe for Yb�Mn1−xFex�O3 with x=0–1.0 �Hex: hexagonal phase without HP annealing; Mix: mixed hexagonal and orthorhombic
phases without HP annealing; and Orth: orthorhombic phase obtained via HP annealing�.
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FIG. 3. �Color online�57Fe Mössbauer spectrum at 350 K for the
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where the weak ferromagnetism is large �see the inset A of
Fig. 6�. The weak ferromagnetic component causes only a
small shift in the Weiss constant. After subtraction from the
measured magnetization of the paramagnetic component
caused by the Yb3+ ions, we obtained the contribution from
the transition-metal ions. The as-obtained result is shown in
the inset B. The M-H hysteresis loop becomes more obvious
in inset B; it has a small saturation magnetization in a field of

5 T and a large coercivity Hc�1.8 kOe. This result clearly
indicates that the orthorhombic x=0.5 sample exhibits a
weak ferromagnetism.

The hexagonal structure of YbMnO3 contains Mn3+ ions
at trigonal-bipyramidal 6c sites and Yb3+ ions at 2a and 4b
sites. The Mn3+ ions form a triangular network in the �001�
planes, and the axes of the trigonal-bipyramidal sites are
canted with respect to the c axis. For a given triangle of
Mn3+ ions, the projections of the canting are at 120° with
respect to one another. These cantings displace the Yb3+ ions
along the c axis from the centers of their interstices, the Yb3+

ions at 4b sites moving opposite to those at the 2a sites to
give a ferrielectric transition below a Tc�1000 K.12 The an-
tiferromagnetic spin-spin interactions in the Mn planes are
frustrated, which makes the antiferromagnetic order below
TN=88 K noncollinear. The canting of the Mn3+-ion spins is
enhanced by exchange striction below TN to give a coupling
of the magnetic order to the ferrielectric polarization, which
makes the hexagonal phase multiferroic.13

The tabulated ionic radii for the Fe3+ and Mn3+ ions are
essentially the same, but the Mn3+ ions, with a 3d4 half-shell,
are more stable than the Fe3+ ions at the trigonal-prismatic
sites of the hexagonal structure. Therefore the hexagonal
RFeO3 phase is not found in the bulk state; it has only been
obtained as nanoparticles for Eu and Yb and as epitaxial
films for Eu-Lu.14,15 The increase with x in the c lattice pa-
rameter of the hexagonal phase in Fig. 2, but not the a pa-
rameter, shows that the hole in the 3d4 half-shell of the Mn3+

ion occupies the 3z2-r2 orbital. In contrast to the hexagonal
phase, the volume of the orthorhombic phase decreases with
increasing x. In orthorhombic YbMnO3, a c /�2	a signals a
cooperative antiferroic Jahn-Teller orbital ordering, but the
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FIG. 5. d� /dT as a function of temperature for �a� and �b� hexagonal and �c� and �d� orthorhombic Yb�Mn1−xFex�O3 with x=0–1.0.
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type-E antiferromagnetic order below TN=43 K shows a
competition between ferromagnetic �-bond and antiferro-
magnetic �-bond spin-spin interactions. In YbFeO3, there is
no orbital ordering, so c /�2
a is found and strong antifer-
romagnetic e2-O-e2 �Fe-O-Fe� interactions between nearest
neighbors order the Fe3+-ion spins at room temperature. As
Fe3+ is substituted for Mn3+ with increasing x, the coopera-
tive orbital ordering is progressively made less stable, so
c /�2 increases relative to the a axis.

The iron spins couple much more strongly to neighboring
spins than do the Mn3+ ions, so TN increases progressively
with x in the hexagonal phase for x�0.5. A similar increase
in TN with x�0.4 is found for the orthorhombic phase; but
an abrupt change in the internal 0.4	x	0.5 shows that the
long-range cooperative orbital ordering at the Mn3+ ions dis-
appears by x=0.5. With the disappearance of long-range,
static orbital order, a dynamic Jahn-Teller site deformation
can be expected to remain. There is, therefore, no reason to
assume anything other than antiferromagnetic nearest-
neighbor interactions and a type-G magnetic order for 0.5
�x�1.0 in the orthorhombic phase. A type-G magnetic or-
der has a Dzialoshinskii vector Dij along the axis of the co-
operative octahedral-site rotations, i.e., the b axis in Pbnm.
In this case, the antisymmetric exchange term Di ·Si�Sj
gives a weak ferromagnetic component due to spin canting if
the spins are in the �001� plane perpendicular to b, but no
ferromagnetic component if the spins are parallel to the b
axis.16 Since the ferromagnetic component remains weak and
Mössbauer data show no evidence of chemical inhomogene-
ity, we conclude that the peculiar magnetization curves in the
interval 0.5�x�0.7 of Fig. 4 reflect a canted-spin weak
ferromagnetism in the interval Tt�T�TN with a reorienta-
tion of the spin axes to the b axis below Tt.

IV. CONCLUSIONS

With substitution of Fe3+ for Mn3+, stable hexagonal
Yb�Mn1−xFex�O3 samples can be obtained for x�0.5. High-
pressure annealing can completely transform the hexagonal
phase to the orthorhombic perovskite for all the composi-
tions with 0�x	1. For the compounds with the same
composition, the hexagonal phase and the orthorhombic
perovskite show totally different magnetic behaviors. The
hexagonal Yb�Mn1−xFex�O3 samples are antiferromagnetic
at low temperatures with a canted-spin ordering of the frus-
trated Mn3+ spins. Their TN values increase with x in
the range 0�x�0.5. The perovskite series shows an inter-
esting magnetic phase diagram. Type-E antiferromagnetic
TN=43 K for x=0 increases to TN=62 K for x=0.4, but the
x=0.5 sample exhibits a weak ferromagnetism below a Néel
temperature TN=298 K followed by an abrupt loss of the
weak ferromagnetism below Tt=239 K. The magnetic be-
havior for x�0.5 is characteristic of type-G antiferromag-
netic order. Further increases in x give rise to an increase of
TN and a decrease of Tt, which disappears at x=0.8 and 1.0.
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