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In recent years, cloud computing has increased in popularity from both industry and
academic perspectives. One of the key features of the success of cloud computing is the
low initial capital expenditure needed compared to the cost of planning and purchasing
physical machines. However, owners of large and complex cloud infrastructures may
incur high operating costs.

In order to reduce operating costs and allow elasticity, cloud providers offer two types
of computing resources: on-demand instances and reserved instances. On-demand
instances are paid only when utilized and they are useful to satisfy a fluctuating demand.
Conversely, reserved instances are paid for a certain time period and are independent of
usage. Since reserved instances require more commitment from users, they are cheaper
than on-demand instances. However, in order to be cost-effective compared to on-
demand instances, they have to be extensively utilized.

This thesis focuses on cost optimization of cloud resources by balancing on-demand
and reserved instances. The challenge is to find an optimal resource allocation under
uncertainty. In order to solve the problem, this study introduces a theoretical model
based on Inventory Theory and a heuristic-based implementation for reserved instances
optimization.

The inventory theory model provides a theoretical framework for cost optimization.
In addition, the model describes a mathematical method to solve the optimization
problem. The heuristic-based implementation analyzes the cloud infrastructure of a
company and proposes a purchase plan of reserved instances. The implemented system
validates the theoretical finding.

In order to evaluate the proposed approaches, this work describes a set of experiments,
using simulations and data from an industry case. The experiments demonstrate the
effectiveness of the reserved instances optimizer and the validity of the theoretical
model.
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Abbreviations and Acronyms

Acronyms

AWS Amazon Web Services
EC2 Elastic Compute Cloud
IaaS Infrastructure as a Service
IRR Internal Rate of Return
NVP Net Present Value
OD On-Demand
PaaS Platform as a Service
RI Reserved Instance
RIO Reserved Instances Optimizer
ROI Return on investment
ROV Real option valuation
SaaS Software as a Service
SLA Service Level agreement

Nomenclature

cod Hourly cost for an on-demand instance
cri Effective hourly cost for a reserved instance
y Number of reserved instances
D Random variable representing the demand of in-

stances
di ith observation of demand D
C(D, y) Total cost to satisfy demand D with y reserved in-

stances
E[C(D, y)] Expected value of the total cost
ϕD Probability distribution function of the demand (ap-

proximated as a continuous random variable)
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ΦD Cumulative distribution function of demand (approx-
imated as a continuous random variable)

FD Cumulative distribution function of demand
L(θ|X) Likelihood of parameters θ on the sample X
Φ−1D Quantile function of the demand D
qp pth quantile
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Chapter 1

Introduction

In recent years, cloud computing has transformed large part of the Infor-
mation Technology industry. Cloud computing refers to a new paradigm of
providing computational assets. While computing resources are provided as
a service, users are not required to own physical machines.

The key characteristics of cloud computing are the ability of scaling re-
sources practically infinitely, the capability to pay only when a resource is
actually needed, and the elimination of large upfront costs for users [5, 6].
In addition, low prices and ease of use encourage enterprises to utilize cloud
computing to host their IT infrastructure.

Cloud computing is offered by cloud providers, among which the most
prominent examples are Amazon Web Services (AWS)1, Google Cloud2, and
Microsoft Azure3. Every cloud provider has different pricing strategies; how-
ever, for computing resources they offer two categories of products: on-
demand instances and reserved instances. On-demand instances are virtual
machines created and paid for only when utilized. A cloud user adds and
removes an on-demand instance with maximum flexibility. Conversely, re-
served instances are computational resources reserved and paid for a certain
period, with an upfront fee. The latter category requires a higher level of
commitment for the user; therefore, if extensively utilized, they result to be
cheaper during a long-term utilization.

In order avoid unnecessary expenses, users of cloud computing need care-
ful planning. On one hand reserved instances are useful for cost savings. On
the other hand, if reserved instances are underutilized, they generate unnec-
essary costs. In particular, it is crucial to analyze the usage of computational
resources and allocate reserved instances as well as on-demand instances ac-

1https://aws.amazon.com
2https://cloud.google.com
3https://azure.microsoft.com
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CHAPTER 1. INTRODUCTION 12

cordingly. A correct balance of these two types of resources allows cost
savings and flexibility.

Currently, researchers have extensively studied the field of cost optimiza-
tion in cloud computing. One of the most promising methods is to utilize
Integer Programming to model the optimization problem [22, 23]. Other au-
thors exploit a two-step approach: first, they propose a demand forecaster
and then, they aim to find an optimal solution with evolutionary algorithms
[44, 56].

Nonetheless, the current state-of-the-art approaches have some limita-
tions. First, they do not take risks into account as researchers obtain the
optimal planning strategy regardless of the investment of a client company.
Second, authors calculate the optimal number of reserved instances assum-
ing the demand distribution as given, which may lead to incorrect estimation
and ultimately losses.

Certain industrial solutions are becoming increasingly popular (Table
2.4). However, some drawbacks are caused when adopting these tools as
they need access to sensitive information such as billing data. In addition,
users are confronted with vendor lock-in risk and cannot access the algorithms
used for optimization. Therefore, it is difficult to verify the effectiveness of
the plan suggested by these tools.

This thesis aims to overcome some of the limitations of the state-of the-
art approaches. This study proposes a theoretical model based on Inventory
Theory to describe the cost optimization problem. In addition, a heuristic-
based cost optimizer has been developed in a case company.

The proposed theoretical model utilizes Inventory Theory, which aims to
scientifically describe the behavior of an inventory system. The model de-
scribes the cost optimization problem as an inventory-keeping problem. After
the formulation, it is possible to derive the optimal policy which minimizes
the costs. To the best of our knowledge, this is the first study that applies
Inventory Theory to cost optimization in cloud computing.

The heuristic-based cost optimizer outputs a purchase plan that correctly
balances on-demand instances and reserved instances in order to minimize
the costs. The proposed solution analyzes the hourly usage of the resources,
selects the best options in terms of opportunity size, and suggests a purchase
plan to decision-makers. The developed algorithm aims to be fast, extensible,
and close to the optimal solution. In addition, it takes into account risks
involved in cloud infrastructure planning. The proposed strategy considers
the past usage of cloud resources and estimates the risk by looking at the
release date of each instance type.

In order to validate the performance of the algorithm, this thesis analyzes
real data from a company active in cloud computing. The evaluation shows
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that theoretical results from the model are validated by the heuristic-based
optimization algorithm.

In conclusion, this study proves that the proposed approach will benefit
cloud users willing to optimize the cost of cloud computing assets.

The contributions of this thesis are the following.

• A survey of cost optimization techniques related to cloud computing,
considering recent literature studies and current tools from applied in
the industry.

• A theoretical model based on Inventory Theory, which describes the
cost optimization problem.

• A heuristic-based cloud optimizer which helps cloud users to plan their
infrastructure with a focus on cost savings. The proposed solution has
been implemented and tested with real data from an industry case.

1.1 Research Questions

This thesis aims to answer the following research questions.

• How cost optimization in cloud computing can be modeled with Inven-
tory Theory?

• How an heuristic-based reserved instance planner perform?

• Does the implemented system verify the theoretical results of the in-
ventory theory model?

1.2 Structure of the Thesis

This thesis is structured as follows. Chapter 1 introduces the topic of the
thesis, underlying the research questions and contributions.

Chapter 2 describes the body of knowledge related to cloud computing
and cost optimization. The survey, provides detailed information regarding
the state-of-the-art approaches on the topic from both academia and industry.

Chapter 3 describes Inventory Theory and how it can be applied to
cost optimization in cloud computing. Furthermore, it shows the analyti-
cal derivation of the optimal solution for reserved instance planning.

Chapter 4 proposes the details of the implemented solution, explaining
the algorithms and the heuristics utilized in the system.
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Chapter 5 evaluates the theoretical model comparing it with the imple-
mented algorithms. Furthermore, this chapter analyzes the performance and
efficiency of the heuristic-based implementation.

Chapter 6 analyses the results of the experiments. In addition, it states
some limitations and some possible improvement of the system.

Finally, Chapter 7 summarizes the work, proposes future directions, and
concludes the thesis.



Chapter 2

Background

2.1 Cloud Computing

According to the National Institute of Standards and Technology (NIST),
Cloud Computing is “a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort.” [46].

The document lists five the main characteristics of Cloud Computing
model:

• On-demand, self-service. Cloud users add resources at any time with-
out system administration intervention.

• Broad Network access. Cloud users access resources via network.

• Resource pooling. Cloud providers heavily utilize virtualization and
resource pooling to exploit an economy of scale.

• Rapid elasticity. Cloud users have the capability to scale resources to
satisfy a fluctuating demand.

• Measured service. Resources are monitored to allow cost optimization
and performance analysis.

NIST also describes three different service models:

• Infrastructure as a Service. This model allows the user controlling a
full stack of software from the hardware to the applications. It gives
the highest flexibility, but it requires more expertise from the user. An
example of IaaS provider is Amazon Web Services [8].

15
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• Platform as a Service. In this model users obtain a platform on top of
which they build software. Providers take care about low-level details
such as availability, security patches, and scalability of resources. Some
examples of PaaS providers include Heroku1 or Google App Engine 2.

• Software as a Service. This model includes all the software provided
to the users as a service. This broad category ranges from customer
relationship management3 to chat services4.

Researchers argues that to differentiate service models is misleading [6].
Since all of the three models refers to computing provided as a service, the
authors prefer to use the more generic term utility computing. Utility Com-
puting is characterized by properties such as flexibility, portability, and ease
of use.

Authors describe two main actors involved in cloud computing: cloud
users and cloud providers [5]. Cloud users are those enterprises which rely
on the cloud computing for their business. Cloud providers are companies
that provide cloud resources. A remarkable category of cloud providers is
Infrastructure as a Service providers, which are the companies that own
physical data centers and provide computational resources as a service.

IaaS providers benefit from an economy of scale to provide resources such
as disk, storage, and computing capacity. One of the largest IaaS providers is
Amazon Web Services (AWS). Amazon Web Services offers a variety of cloud
services that relates different types of resources such as disk (e.g. Amazon
Simple Storage Service), network (e. g. Amazon Cloudfront), and computing
capacity (e.g. Amazon EC2) [45].

The next paragraphs extensively describe the offer of computing capacity
in cloud computing. Amazon Web Service is taken as example; however,
some of the concepts are relevant for other cloud providers such as Google
Cloud or Microsoft Azure.

Amazon Elastic Cloud Compute (EC2) is the most popular AWS product
for computing capacity [35]. AWS EC2 allows users renting virtual server
accessible via API [10]. This service well summarizes all the characteristics
of cloud computing as it is self-service, elastic, inexpensive, and accessible
through network.

There are different categories of access computing capacity with Amazon
Web Services.

1http://heroku.com
2https://cloud.google.com/appengine
3https://pipedrive.com
4https://slack.com

http://heroku.com
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• On-demand Instances. In the most common version of EC2, cloud users
activate or deactivate a machine at will. The pricing is calculated on a
pay-per-use basis, enabling elasticity.

• Dedicated Instances [9]. They are similar to on-demand instances, but
the cloud provider guarantees to the user a dedicated machine. This
solution solves multi-tenancy problems, in which tenants sharing the
same physical machine may influence each other, deteriorating the per-
formance.

• Reserved Instances [13]. This type of instances requires an initial com-
mitment from users. Typically, they have to pay an upfront fee and
reserve an instance from a time slot (e.g. Amazon AWS has one and
three years plans). Buying this type of instances requires more com-
mitment, therefore the hourly prices are lower. In addition, reserved
instances allow reserving capacity in advance, so that when needed,
instances are immediately available.

• Spot Instances [14]. In this type of instances a user bid a price. The
price of the instances fluctuates with demands and as soon as the price
is lower than the bid, the machine is assigned to the user. Using this
type of machines usually leads to lower prices; however, the execution
might be interrupted in any moment. This type of instances is partic-
ularly useful in executing long running jobs which can be paused and
resumed.

• Lambda [11]. This type of service allows a user running code in response
to an event. The cost of the computation depends on the time needed
to execute the code. It is not part of AWS EC2 offering; however,
Lambda pushes even further the concepts of pay-as-you-go computing.

The next sections introduce the challenges of cost optimization in cloud
computing.

2.2 Cost Optimization in Cloud Computing

As in cloud computing there are two main actors involved, there are two
sides of cost optimization: cost optimization performed by providers and
cost optimization performed by users.

Cost optimization performed by cloud providers mainly focuses on mini-
mizing the cost to maintain a physical data center. The cost minimization is
typically achieved by reducing electricity consumption. A proposed approach
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involves dynamically halting network devices [38]. Another study proposes
architectural principles, algorithms, and resource allocation policies for en-
ergy savings [21].

Conversely, one of the most popular techniques for cost optimization ex-
ecuted by cloud users is to choose the correct balance the types of instances,
i.e. cloud infrastructure planning.

This thesis concentrates on cost optimization performed by users. In par-
ticular, this study focuses on finding the correct balance between on-demand
instances and reserved instances. The choice is made for two reasons. First,
while spot instances and Lambda are specific to Amazon Web Services, on-
demand and reserved instances might be relevant for different IaaS providers.
Therefore, a larger part of cloud users may benefit from the results of this
thesis. Second, researchers and practitioners studied the effectiveness of cost
optimization using reserved instances; hence, contributions in this field might
be more significant.

2.2.1 Reserved Instances

Companies usually encounter two phases. At first the demand of computing
resources is highly uncertain and cost optimization is not a priority. Af-
terwards, companies confront with two phenomena. First, the increase of
available capital. Second, the growth of operating costs due to a large IT
infrastructure. These trends allow a company exploiting an effective model
for cost optimization: reserved instances (RIs) [54].

The reserved instance model is simple. Users commit to pay an instance
for a determined time period and providers offer them a discount. After the
purchase, a reserved instance is similar owning a physical machine. If the
instance is running most of the time, the providers guarantee cost savings
compared to the same on-demand instance at the end of the commitment
time. Table 2.1 shows a qualitative comparison between on-demand and
reserved instances.

On-demand Instances Reserved Instances

Pay as-you-go (hourly fee) Upfront fee and hourly fee

For flexibility For cost savings

No need for planning Need careful planning

Table 2.1: Qualitative comparison between on-demand and reserved in-
stances.
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The two described phenomena particularly fit the reserved instances model.
First of all, as reserved instances are similar to an investment, money for an
initial commitment has to be available. In addition, low operating costs
imply no need for cost optimization with reserved instances.

This study focuses on the purchase options of reserved instances for Ama-
zon Web Services. In this case, users buy RIs for a term of one or three years.
There are three purchase options, i.e. methods to pay a reserved instance.
Each of them is characterized by a different commitment level and therefore,
a different savings rate compared to on-demand instances.

• All Upfront. Users pay the reserved instances with a single upfront
payment, without an hourly fee. This option guarantees the highest
cost savings compared to an equivalent on-demand plan.

• Partial Upfront. Users pay the reserved instances with an upfront pay-
ment and a discounted hourly fee.

• No Upfront. Users pay the reserved instances with a discounted hourly
fee, without paying any upfront fees. This option has a limited cost
savings.

It is important to underline that in the partial upfront and no upfront cases,
users pay the hourly fee every hour, even if the instance is not running.

When buying a reserved instance, users specify four properties: term
length, operating system, availability zone, and size. Table 2.2 shows an
example of pricing for a reserved instance. Table 2.3 explains the parameters
providing examples of Amazon Web Services.

Payment Option Upfront fee Effective hourly On-demand
hourly

No Upfront $0.00 $0.0580

$0.077 per HourPartial Upfront $222 $0.0533

All Upfront $457 $0.0522

Table 2.2: An example of pricing for a reserved instance, the characteristics
are: 1 year term, Linux, Europe Ireland (eu-west), m3.medium. “The effec-
tive hourly price shows the amortized hourly cost of the instance”[13]. The
price refers to the public pricing available at 2015-05-01.
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Term length It refers to the period of time when the RIs are as-
signed to a user. In AWS is one or three years.

Operative System It concerns the operative system of the instance.
Available operating systems in AWS are the follow-
ing.

• Linux/UNIX

• SUSE Linux Enterprise Server

• Red Hat Enterprise Linux

• Windows

• Windows with SQL Server

Availability Zone It specifies where to create the instance. Amazon EC2
instances are hosted in different locations called re-
gion [12]. Within a region, AWS provides the concept
of availability zones, logically isolated, but connected
with low-latency links. The availability zones are de-
veloped for high reliability applications. Examples of
regions are the following.

• Europe Ireland (eu-west-1)

• Europe Frankfurt (eu-central-1)

• US California (us-west-1)

• US Virginia (us-east-1)

Each region usually has from one to four availability
zones, usually identified with a letter. For instances,
a valid availability zone is eu-west-1a.
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Size It refers to the characteristics of the machine in terms
of CPU, memory, and disk. AWS provides a long
list of sizes organized in families [15]. Each family
groups machines with certain properties. The list in-
cludes families for general purpose computing (t2 and
m3 families), compute optimized (c3 and c3 families),
and memory optimized (r3 family). Within a certain
family, users choose the characteristics that best fit
their need.

Table 2.3: The parameters that have to be chosen when buying a reserved
instance.

An interesting problem is to minimize costs, finding the right balance
between on-demand instances and reserved instances with the correct char-
acteristics.

The problem is challenging due to usage uncertainty. Assuming a perfect
knowledge of the future, cost optimization is a trivial problem. The solution
is to buy the highest possible number of reserved instances and to compen-
sate the usage peaks with on-demand instances. This scenario is infeasible
since usage of a certain instance might decrease, instances might become ob-
solete, and infrastructure might change. In contrast, using only on-demand
instances guarantees maximum elasticity, but with higher costs. Therefore,
uncertainty is a crucial parameter to take into account in the optimization.

Recently, researchers have identified two major sources of inefficiency in
buying reserved instances: under-provisioning costs and over-provisioning
costs [24]. The first refers to the problem of buying a limited number of
RIs. In other words, it is a missed opportunity, since a larger investment
would have been more beneficial. The second refers to a waste of money for
buying an excessive number of reserved instances and pay them without a
cost-effective utilization.

From a company perspective under-provisioning costs are less harmful
than over-provisioning. The cloud flexibility allows a company buying in-
stances in small batches. The remaining need of cloud resources is compen-
sated with on-demand instances, which does not need planning. Conversely,
having underutilized instances is a bigger problem. Cloud providers usually
offers tools to mitigate this risk. For example, it is possible to modify a
reserved instances or to sell them if not needed. However, these operations
are complex and necessitate of time and expertise [31].

Another characteristic of reserved instances is an increased service guar-
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antees. Amazon Web Services, for example, guarantees availability of on-
demand instance type when a RIs contract exists. Without a reserved in-
stance machine provisioning might fail due to high load. Despite these re-
marks might be important in high availability systems, this thesis studies the
reserved instances model only as mean for cost savings.

The next sections review the body of knowledge related to cost optimiza-
tion using reserved instances.

2.2.2 Optimization Using Integer Programming

Integer Programming is one of the most important strategies of theory of
optimization [20]. An integer programming problem is generically described
as the maximization (or minimization) of a function under determined con-
straints. Among them, there must be an integrality constraint (Equations
2.2 and 2.3). Without the integrality constraint this method is called linear
programming.

Maximize
n∑
j=1

cjxj, (2.1)

Subject to:

n∑
j=1

ai,jxj = bi (i = 1, 2, ...,m) (2.2)

xj > 0, xj integers (2.3)

Integer Programming has been extensively studied in different scenarios.
A remarkable example regards capital budgeting. In this case, the problem
is to choose whether to invest or not in projects estimating their profitability.
The goal is to optimize the profit, selecting the investments with a limited
amount of money.

A subcategory of integer programming is binary integer programming,
also known as knapsack problem [49]. In this case the variables assume only
binary values. This approach is particularly useful in modeling decisions that
might or might not be engaged.

Regarding the field of cost optimization in cloud computing, a remark-
able work formulates the optimization problem and solve it using stochastic
integer programming [23]. The objective is to minimize the overall cost of
the infrastructure. The optimization problem fits in a system with four com-
ponents: cloud consumers, who demands to run jobs; cloud providers, which
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are responsible to meet users demands; virtual machine, which group the
resources needed to run a job; and cloud broker, that optimally provisions
resources for the customer.

Resources are provisioned in determined points in time called provisioning
phases. In these moments, the cloud broker solves the optimization problem
to allocate resources. The possible actions include provisioning of an on-
demand instance or perform a new reservation.

The described model is powerful; however, the approach has some limi-
tations. The goal of the proposed optimization strategy focuses on finding
the optimal combinations of reserved instances and on-demand instances, so
that user demands is satisfied with the minimum cost. Nonetheless, the au-
thors do not take into account risks and budget limitation. A crucial point
to underline is that on-demand instances are always available and they can
satisfy user demand. Using the proposed approach might result in large
and risky investments. An additional remark is that the model assumes a
limitation in the resources is not realistic in case of public cloud. Finally,
the authors takes uncertainty of future demand into account, by assuming a
known distribution.

The authors improve their work focusing of Amazon Web Service offering
[22]. They develop an algorithm for cost optimization by provisioning of
on-demand instances, reserved instances, and spot instances. The model is
based on long-term and short-term provisioning algorithms. The fluctuating
demand is taken into account as a known probability distribution.

The proposed solution reveals interesting results in the minimization of
the total provisioning cost, in particular, considering spot instances. How-
ever, risks and budget constraints are not studied.

Despite the previous articles focus on Amazon AWS as IaaS provider, a
similar approach has been applied using Microsoft Azure as cloud provider
[25]. The model of Microsoft Azure is similar to AWS. There are two options:
the first is pay-as-you-go and the second is a six months subscription with a
discounted hourly rate and an upfront fee. The study focuses on maximizing
the profit of value-added services implemented using the cloud resources.
The profit is assumed to be dependent by a known probability distribution.

Additional improvements are also proposed to efficiently solve the opti-
mization problem, which might be hard it the size of the problem increases
[24].

Another study exploit linear programming to optimize the costs of re-
placing an in-house data center with a cloud computing. In modeling the
replacement, the authors consider the possibility to use reserved instances in
order to minimize the operating costs. The method is based on two steps.
First, the input data is obtained by monitoring the existing system. Sec-
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ond, a linear programming problem is formulated and solved. An important
difference from other studies is the multi-resource strategy. The authors, in
fact, study the load curve of RAM, CPU, and storage [51].

Researchers propose a linear programming model, which include on-demand
instances, reserved instances, and spot instances [53]. An interesting remark
relates on how the authors force the model to diversify the investment in the
three types of models.

To summarize, Integer Programming fits particularly well the problem
of cost optimization in cloud computing. Authors provide sophisticated
and effective models for decision-making. However, a major weakness of
these methods relate to the fact that they consider equally important under-
provisioning and over-provisioning. Furthermore, most of the studies do not
take into account risks and budget constraints. Finally, some studies assume
a known usage demand distribution which might leads to wrong result and
it can be infeasible to estimate.

2.2.3 Optimization Using Evolutionary Algorithms

Evolutionary algorithms mimic biological processes to solve optimization
problem. Given an initial population of individuals, a function defines the
fitness of a certain environment. As in biology, the fittest survives and gen-
erates offspring, progressively approach a optimal solution.

Exploiting this phenomenon, researchers create optimization algorithms.
The search for optimal solutions “are based on the collective learning process
within a population of individuals, each of which represents a search point in
the space of potential solutions to a given problem” [16]. After a population
is created, the entities progressively evolve towards a better solution, until
convergence. A remarkable category of evolutionary algorithms is genetic
algorithms. Figure 2.1 shows the pseudo-code of a generic algorithm of this
category.

This section presents studies which apply evolutionary algorithms to the
problem of cost optimization in cloud computing. Authors propose evolu-
tionary algorithms as a more efficient alternative to Integer Programming.
Despite Integer Programming offers are well-grounded method to approach
optimization problem, it might become computationally infeasible with in-
creasing input size [44].

Researchers propose a two-step approach [44]. At first, the authors design
a demand forecaster. The experiments show accurate results of three algo-
rithms: simple Kalman filter, Double Exponential Smoothing, and Markov
Chain. The next step utilizes a hybridized algorithm consisting of differ-
ent evolutionary algorithms for optimization: standard Genetic Algorithm,
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1: Generate initial population
2: Compute fitness of each individual
3: while !Finished do
4: for Population Size / 2 do
5: Select two individuals from old generation for mating
6: Recombine the two individuals to give offspring
7: Compute fitness of offspring
8: Insert offspring in the new generation
9: end for

10: if Population has converged then
11: finished← true
12: end if
13: end while

Figure 2.1: An example of genetic algorithm [17].

Particle Swarm, and Ant Colony. The researchers compare the results with
Stochastic Integer Programming solution, showing similar conclusions. Given
a demand curve, the proposed model takes into account reserved instances
as a possibility for cost saving.

Other work follows the two-step method [56]. In this study, firstly, future
usage demand is predicted using a Neural Network. Secondly, an Imperialist
Competitive Algorithm is used to yield the optimal plan. The work shows
results of a simulation that demonstrate the effectiveness of the methods.

Another work studies how genetic algorithms are used to predict future
demands [52]. The authors argue that a crucial point for an effective plan-
ning is to understand future demand. The study shows the result of the
experiments conducted using the load curve of four popular websites. The
evaluation demonstrate that Genetic Algorithms generate accurate results.

These studies propose evolutionary algorithms as a effective alternative
to Integer Programming. In particular, they might be more effective in case
where the input size is larger. An important remark is to notice the impor-
tance to an accurate forecasting of future usage in order to build a precise
plan. The effectiveness of reserved instance planning, in fact, highly depends
on accurate demand prediction.

2.2.4 Optimization Using Machine Learning

Some of the previously presented work have already discussed machine learn-
ing techniques as effective forecasting methods [44, 56]. However, this section
describes studies that utilize machine learning as main technique.
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Authors study a novel way to pro-actively provision virtual machines
necessary to satisfy load peak [26]. The proposed solution utilizes K-Nearest-
Neighbors classifier to decide whether to provision new virtual machines or
not. As the study focuses on database load, the classifier utilizes database
parameters as features including average query throughput, number of active
connections, read write I/O, lock ratio, CPU/Memory/Disk usage.

Another contribution to the topic of pro-actively infrastructure provision-
ing, is achieved using Principal Component Analysis (PCA) [42]. The goal
of the authors is to provide a method to reduce management costs in sci-
entific computing using the cloud. The proposed solution analyzes the past
workload to predict the infrastructure needed of a given experiment.

Others effective techniques are Neural Networks and Linear Regression
[41]. These techniques are proved to be effective in predicting peaks and
automatically provision virtual machines. Simulations using load from e-
commerce application show that Neural Networks perform better than linear
regression.

Different works provide a good explanation about how forecasting tech-
niques are used to design optimal plan [19]. At first, future demand for each
instance is calculated. The authors compare two approaches: Previous Pe-
riod, that is to predict the future demand as equal to a previous period, and
Double-Seasonal Holt-Winters time series analysis. The experiments show
that both approaches generate accurate result, even if the latter is more
effective than the former.

In order to output the plan, the authors propose PMA: Purchase Man-
agement Algorithm. At each time a new reservation could be performed the
following operations are executed. First, the system runs the forecasting al-
gorithm and output a histogram of the number of machines. Second, the
maximum profit is calculated given a possible reservation contract.

This section presents studies which utilize machine learning algorithms
for cost optimization in cloud computing. The goal of the articles is to predict
future usage in order to provision virtual machines and satisfy user demand.
Nonetheless, these approaches can be combined with optimization techniques
for an effective planning.

2.2.5 Miscellaneous Methods

This section describes miscellaneous methods. Despite the fact that these
articles do not fit in the previous categories they remarkably contribute to
body of knowledge of cost optimization.

One of the first studies in cost optimization in cloud computing utilizes
a utility function to assess the costs and the revenues of a company [47].
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The utility function is then maximized under service level agreement (SLA)
constraints such as availability, average response time, and throughput. The
study does not consider reserved instances as an option, but it discusses the
number of virtual machine to be provisioned.

Another work thoroughly describes the problem of unnecessary costs in
cloud computing [40]. The authors propose two different situations. The first
problem relates to cloud users having a fixed margin of unused virtual ma-
chines ready in case of load peaks. Provisioning of virtual machines, in fact,
it is not immediate, and a margin is needed to manage a fluctuating demand.
The researchers propose a dynamic margin allocation with SLA guarantees
to diminish the number of virtual machines and, hence, the cost. The second
problem is about reserved instance planning. The proposed algorithm looks
at the utilization ratio of existing machines and evaluates whether purchasing
a reserved instance will be cost-effective.

Recent advances in forecasting usage demand utilizes a fractal model [36].
The authors argue that the previous models are unable to predict the complex
dynamics of cloud computing. Users and providers might use the proposed
solution for a more efficient planning.

2.3 A Financial Perspective

A reserved instances purchase can be seen as a financial investment. It
involves committing money upfront to obtain a discounted price and save
money in the future. This section aims to describe methods used in finance
to evaluate an investment. It can be interesting to use some of the following
methods in evaluating or comparing reserved instances purchases.

In order to assess an investment, different strategies exist, including: Re-
turn on Investment, Profit margin, Net Present Value, Cash Flow, Internal
Rate of Return, and Payback period [34, 50, 55].

Return on Investment (ROI) It measures the performance of an invest-
ment by calculating the ratio between the inflows subtracted by the
cost and the cost of the investment.

ROI =
Gain from investment− Cost of investment

Cost of the investment
(2.4)

Profit Margin It refers to the ratio of net profit and total revenue.

PM =
Revenue− Expenses

Revenue
(2.5)
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Cash flow Cash flow is a movement of money in or out a business. Cash
inflow refers to money coming in a business, as opposite as outflow.

Net Present Value (NVP) This method allows obtaining the value of an
investment in today’s money. Equation 2.6 calculates the Net Present
Value of an investment. The cash inflow is reduced by a discount rate
in order to correctly evaluate an investment.

NV P =
T∑
t=1

Ct
(1 + r)t

− C0 (2.6)

where:

Ct = Net cash inflow during the analyzed period (2.7)

C0 = Initial Investment (2.8)

r = Discount rate (2.9)

T = The total number of periods (2.10)

Internal Rate of Return (IRR) IRR refers to the discount rate such that
the Net Present Value is zero. This means that the negative cash flow
and the negative cash flow are set to equal. The higher the IRR the
better is the investment.

Payback Period The time needed to compensate the initial money needed
for an investment.

In addition another model available in finance to evaluate an investment
is real option valuation (ROV) [4, 18]. The term real option refers to the
possibility to change strategy if certain conditions arise. The term real relates
to the fact that the decision is about tangible resources.

Examples of options include termination, initiation, temporary stop, in-
creasing, decreasing budget for a project. The crucial point in this analysis
is to take into account options in an investment evaluation.

Since purchasing reserved instances can be seen as an investment, it might
be interesting to apply financial methods to evaluate a purchase plan. In par-
ticular, ROV seems to better fit the problem as it respects the high flexibility
of cloud computing. To the best of our knowledge, literature on cost opti-
mization in cloud computing do not take these techniques into account.
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Feature Cloudability Cloudhealth Cloudyn Orbitera

Multiple cloud
providers sup-
port

No No Yes No

Optimization
method

Analysis based
on variable
time range

Analysis based
on fixed time
range

Analysis based
on fixed time
range

Analysis based
on fixed time
range

Risk analysis None None None None

Custom re-
ports capabili-
ties

Advanced Medium Advanced Low

Table 2.4: Summary of the features of the tools that provide cost optimiza-
tion.

2.4 Tools for Cost Optimization

This section proposes an overview of the tools available in industry for cost
optimization. Table 2.4 summarizes the features of the tools.

The analyzed tools are the following.

Cloudability [27]. Cloudabilty is a company that offers three solutions.
Cost monitoring, cost optimization, and cost management. Cost opti-
mization is achieved looking at the break-even point utilization on the
hourly spending [28, 29].

Cloudhealth [30] Cloudhealth proposes good analytics and customizable
reports. The algorithm for cost optimization utilized a fixed time range
of past data.

Cloudyn [32] Cloudyn offers a detailed and fine service for cost optimiza-
tion. The strategy is similar to other companies: looking at past data
and provide suggestions based on a fixed time range.

Orbitera [48] Orbitera is a company that offers analytics services. The
algorithm for cost optimization utilized a fixed time range of past data.

Industry solutions provide detailed analytics regarding optimization using
reserved instances. All the evaluated tools excel in user experience, giving to
the users good insights into unnecessary costs and planning suggestions.
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Nonetheless, they have some limitations. First of all, they do not take
risks into account and they only show maximum savings opportunities. In
addition, they need access to sensitive information such as billing data. Fur-
thermore, users are confronted with high vendor lock-in risk, since they have
to be well integrated with the company that adopt them. Finally, they do
not provide details of the algorithms to compute the suggestions, therefore
it is hard to compare them and improve the proposed plan.



Chapter 3

The Inventory Theory Model

3.1 Background

Inventory Theory is a branch of operations research focused on scientific
inventory management. It aims to mathematically describe an inventory
system and to determine the optimal policies for minimizing the costs while
satisfying demand. Other goals of Inventory Theory include finding how and
when to replenish an inventory, how to manage extra stock of a product, how
to keep control of an inventory [39].

The components of an inventory theory model are the following.

Cost of ordering or manufacturing It is the cost of the product needed
to satisfy the demand.

Holding cost It is the unit cost paid to keep a product in stock. Holding
Cost is also referred as inventory cost or storage cost.

Shortage cost It is the unit cost paid in case the firm is unable to satisfy
the demand of a product.

Revenue It represents the revenue for selling a product, it can be excluded
if the loss revenue is already modeled by the other types of cost.

Salvage value It is a value of unsold product. It can be also a negative
value, representing disposal costs.

Discount rate A discount rate can be applied to the model to consider the
time value of money.

There are two ways to classify inventory theory models. The first category
divides the models according to the way of dealing with demand of goods.

31



CHAPTER 3. THE INVENTORY THEORY MODEL 32

There are two approaches: deterministic models and stochastic models. The
former assumes the usage to be known, the latter model the demand as a
random variable.

The second category arranges the model depending on the way the inven-
tory is reviewed. In continuous review models, the inventory is replenished
when the stock level is below a threshold. In periodic review models, the
inventory is checked with fixed intervals.

Inventory Theory has been extensively studied and applied in supply
chain management. Researchers illustrate a review of inventory theory mod-
els and methodologies [1]. The study provides further details about the
different classification, as well as limitation of the models.

Recent studies have utilized Inventory Theory to electric-power plant
planning [57]. The crucial components of the proposed model are the stock
of energy sources (e.g. coal) and the demand of electricity. Inventory The-
ory is demonstrated to work in this context, ensuring a stable electric power
production and minimizing the costs for inventory management.

3.2 Inventory Theory Applied to Cloud Com-

puting

This section proposes a mathematical model of the cost optimization in cloud
computing based on Inventory Theory. The development of a theoretical
framework to solve a problem is particularly useful. As underlined by Hillier
and Lieberman, a mathematical model abstracts the details, unveiling the
core aspects, the structure, and causality relationship of the problem [39].

The problem of minimizing the cost by using reserved instances has re-
markable similarities with Inventory Theory. Inventory Theory helps compa-
nies to deal with stock of goods in order to minimize the costs. The goal of the
model is to describe the optimal purchase in order to satisfy the demand of
a product. Similarly, in the context of cloud computing, the decision-makers
manage a reserved instances portfolio and optimize purchases to satisfy the
demand with minimum cost.

This work proposes a stochastic model which formulates the total cost
involved to satisfy the demand of computing capacity as a random vari-
able. Afterwards, the analytical solution to minimize the costs is found. The
proposed approach follows Hillier et al., which discuss the applications of
operations research in greater details [39].

Inventory theory models focus on a product to store and manage. In this
context the product is a reserved instance. The parameters of the proposed
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model can be directly mapped to Inventory Theory literature (Table 3.1).
An important remark is that the proposed model considers only one re-

served instance type. In other words, the goal is to find the optimal purchase
given operative system, availability zone, size, and purchase option (Table
2.3). These four parameters completely characterize a reserved instance.

Inventory Theory
nomenclature

Symbol Description

Cost of ordering cri It is the effectively hourly cost of buying a
reserved instance. In other words, an instance
is paid for a term using upfront fees and hourly
fees. The effective hourly fee amortizes the
hourly fees on the length of the term (Section
2.2.1).

Holding Cost h = 0 It is the cost of storing a reserved instance.
Since there are no costs involved in stocking
reserved instances this parameters is set to
zero.

Shortage Cost cod It is the cost incurred if there are not enough
reserved instances compared with the demand.
In the context of Inventory Theory this value
refers to customers dissatisfaction or disposal
costs. In cloud computing context, when there
are not enough reserved instances it is neces-
sary to use on-demand instances. Therefore
the shortage cost per unit is the on-demand
hourly price.

Table 3.1: The parameters of the inventory theory model applied to cost
optimization in cloud computing.

3.2.1 Description of the Model

The model describes the total cost as a random variable. Afterwards, the
expected value is calculated and it is analytically minimized.
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Let:

y = Number of purchased reserved instances (3.1)

D = Random variable representing the hourly demand of instances
(3.2)

di = ith observation of the demand D (3.3)

cri < cod (3.4)

Assuming no initial inventory (i.e. no initial reserved instances) the total
cost of a period of N hours can be express as:

Total Cost =
N∑
i=1

(
cri y + cod max{0, di − y}

)
(3.5)

This model abstracts the problem of cost optimization and describes it in
clearer terms. For example, a company which does not buy any reserved
instances (i.e. y = 0) has to relies completely on on-demand instances to
satisfy the demand. The total cost will be:

Total Cost =
N∑
i=1

(
cri 0 + cod max{0, di − 0}

)
(3.6)

=
N∑
i=1

cod di (3.7)

Conversely, a company that exceeds in buying reserved instances would incur
in a large ordering cost. Assuming that y > D the total cost will be:

Total Cost =
N∑
i=1

cri y (3.8)

Now, let us assume to obtain information about the distribution of D for all
values of d.

PD(d) = P{D = d} (3.9)

In addition, let us consider the cost express in terms of random variable D.
In order to minimize the total cost, the goal of the next step is to find the
optimal value for y, the number of reserved instance to purchase. The cost
with demand D and y RIs is expressed as follows.

C(D, y) = cri y + cod max{0, D − y} (3.10)
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Since C(D, y) is a random variable it is possible to calculate the expected
cost:

C(y) = E[C(D, y)] =
∞∑
d=0

(cri y + cod max{0, d− y})PD(d) (3.11)

= cri y +
∞∑
d=y

cod (d− y)PD(d) (3.12)

In order to find an analytical solution, let us approximate the discrete random
variable D with a continuous random variable.

ϕD(ξ) = Probability density function of D (3.13)

ΦD(a) = Cumulative distribution function D (3.14)

=

∫ a

0

ϕD(ξ) dξ (3.15)

The total cost C(y) can now be expressed as:

C(y) = E[C(D, y)] =

∫ ∞
0

C(ξ, y)ϕD(ξ) dξ (3.16)

=

∫ ∞
0

(cri y + cod max{0, d− y})ϕD(ξ) dξ (3.17)

= criy +

∫ ∞
y

cod (ξ − y)ϕD(ξ) dξ (3.18)

At this point it is necessary to minimize the expected total cost by taking
the derivative and set it to zero. Assuming that the cost function has one
point of minimum the expression would be:

C(y) = criy + cod

∫ ∞
0

(ξ − y)ϕD(ξ) dξ − cod
∫ y

0

(ξ − y)ϕD(ξ) dξ

(3.19)

dC(y)

dy
= cri − cod + cod

∫ y

0

ϕD(ξ) dξ = 0 (3.20)

= cri − cod [1−
∫ y

0

ϕD(ξ) dξ] = 0 (3.21)

= cri − cod [1− ΦD(y)] = 0 (3.22)

Solving this expression results in:

ΦD(y) =
cod − cri
cod

(3.23)
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Therefore, the value y such that the condition above holds, minimize the
cost.

In a discrete scenario, the cumulative distribution function of D is:

FD(a) =
a∑
d=0

PD(d) (3.24)

The optimal solution is the smallest integer y such that:

FD(y) ≥ cod − cri
cod

(3.25)

To demonstrate that the solution minimizes C(y), let us calculate the second
order derivative and verify that it is ≥ 0 for every value of y.

d2C(y)

dy
= cod ϕD(y) ≥ 0 (3.26)

In the derivation the property of probability density is applied.∫ ∞
0

ϕ(ξ) dξ = 1 (3.27)

In addition, to find the derivative of a definite integral, the following formula
has been used.

d

dy

∫ h(y)

g(y)

f(x, y)dx =

∫ h(y)

g(y)

∂f(x, y)

∂y
dx+ f(h(y), y)

dh(y)

dy
− f(g(y), y)

dg(y)

dy

(3.28)

In the particular case of the derivation above:

d

dy

[
− cod

∫ y

0

(ξ − y)ϕD(ξ)dξ
]

= cod

∫ y

0

ϕD(ξ)dx+ (y − y)ϕD(y) 1− 0

(3.29)

= cod

∫ y

0

ϕD(ξ)dx (3.30)

Similar approach is applied in the second order derivative.

d2

dy

[
− cod

∫ y

0

(ξ − y)ϕD(ξ)dξ
]

=
d

dy
cod

∫ y

0

ϕD(ξ)dx (3.31)

= cod

[ ∫ y

0

0dx+ ϕD(y)− 0
]

(3.32)

= cod ϕD(y) (3.33)
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3.2.2 Model with Initial Stock

Some additional remarks are needed in order to correctly model the scenario
where a company already bought some reserved instances, i.e. model a initial
stock level.

Let us assume to have purchased x reserved instances. The amount of
reserved instances to be ordered in order to have y after the purchase is y−x.
Therefore, it is necessary to change the cost equation of the expected cost:

The objective function can be expressed as follows.

min
y≥x

[
cri(y − x) +

∫ ∞
y

cod(ξ − y)ϕD(ξ)dξ
]

(3.34)

The constraint y ≥ x ensures new reserved instances are purchased only
if the current amount it is not sufficient. In particular, let y be the optimal
number of reserved instances. If x ≥ y then there so need for a new purchase,
because there are already enough reserved instances. Conversely, if x < y it
is necessary to order y − x reserved instances to reach the optimum number
y.

3.2.3 The Model and Cost Optimization in Cloud Com-
puting

The main finding of the proposed model is expressed as following.

ΦD(y) =
cod − cri
cod

(3.35)

This formula explains the relation between the demand of instances D, the
optimal number of reserved instances y and the prices of reserved instances
and on-demand instances.

Intuitively, the higher the cost-savings of reserved instances over on-
demand instances the higher should be the optimal value of reserved in-
stances. This fact is visible from the model, as cod−cri

cod
represents the saving

rate using RIs. In addition, the models shows how the demand is a crucial
component in reserved instances optimization.

The main objective of the model is to output the optimal number of
reserved instances given observations of demand observations. However, it
assumes the probability distribution of the demand to be known. In order
to utilize the formula this work proposes two strategies. First, to fit a prob-
ability distribution to the demand and use the fitted cumulative distribution
function. Second, it is possible to calculate the optimal number of instances
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using the empirical distribution function of the observations. Section 5.1 ex-
tensively describes the former approach, while Section 6.3 explain the latter.

In order to validate the proposed model, the next chapter describes the
implemented reserved instances optimizer. Furthermore, Chapter 6 discusses
how the implemented system is improved after the theoretical findings.



Chapter 4

RIO: Reserved Instances Opti-
mizer

As presented in Chapter 2, researchers and practitioners extensively stud-
ied the problem of cost optimization in cloud computing. In particular,
researchers studied the positive effect of reserved instances planning by ap-
plying different methods such as Integer Programming, Evolutionary Algo-
rithms, and Machine Learning.

However, the proposed approaches might be difficult to apply for the
following reasons. First, all the methods aim to minimize both under-
provisioning and over-provisioning costs, which is unrealistic in an indus-
try case. Second, they are hard to implement and to maintain, hampering
customization. Third, they do not take risks into account.

Industrial companies offer cost optimization tools which allow cloud users
an easier and effective solution, providing useful data to support decision-
makers. Table 2.4 summarizes the features of the tools available in industry.
Nonetheless, the use of these tools has privacy problems and vendor lock-in
risks.

This thesis proposes RIO, Reserved Instances Optimizer. RIO is a simple,
effective, and extensible tool for cost optimization in cloud computing. The
implementation is based on state-of-the-art techniques from industry and
literature. It operates in four steps: calculation of opportunity size, reserved
instances planning, visualization, and risk analysis.

The implemented system utilizes an heuristic approach to find the opti-
mal number of reserved instances. The results obtained using RIO are then
compared to the theoretical findings of Chapter 3.

Figure 4.1 shows an overview of Reserved Instances Optimizer. The sys-
tem utilizes a bottom-up approach: the first step calculates the opportunity
size for each type of reserved instances, selecting the best options to pur-

39



CHAPTER 4. RIO: RESERVED INSTANCES OPTIMIZER 40

Linux
eu-west-1a
m3.medium

Linux
eu-west-1a
m3.medium

Linux
eu-west-1a
m3.medium

Linux
eu-west-1a
m3.medium

Linux
eu-west-1a
m3.medium

Linux
eu-west-1a
m3.medium

TOP N options
for opportunity size

RI Planner with 
budget constraints

RI Planner with 
fraction of 
opportunity size

Purchase Plan
- Options with quantity
- Estimated monthly profit
- Risk

Risk Analyzer

Plan builder

Risk Analysis

Figure 4.1: High level overview of the system.

chase. Afterwards, different types of reserved instances are bundle together
according to the requirements of the decision-makers. Finally, the result is
visualized in a report, showing the risks involved in the purchase.

4.1 Calculation of Opportunity Size

4.1.1 The Parameters to Choose

The calculation of opportunity size aims to assess which types of reserved
instances are more beneficial to purchase. This section refers to different
reserved instances types as options. A plan is composed of a set of options,
and an option is composed of the parameters needed to define a reserve
instance. In other words, building a purchase plan means to purchase a
certain amount of options.

An option has five elements: operating system, availability zone, size, term
length, and purchase option. A more formal definition follows.

O = {linux,windows} (4.1)

Z = {eu-central-1a, eu-central-1b, eu-central-1c...} (4.2)

S = {m3.medium,m3.large, t2.small...} (4.3)

T = {1 year, 3 years} (4.4)

P = {no upfront, partial upfront, all upfront} (4.5)

optioni = (Oos, Zzone, Ssize, Tterm, Ppurchase option) (4.6)
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Figure 4.2: Comparison of the RI purchase options available at AWS. The
chart refers to an option using linux, eu-west-1a, m3.medium. The on-
demand cost is calculated using 100% of utilization.

This study focuses only on one-year term options. Three years term are
excluded because they require more data about demand and infrastructure
planning.

Moreover, despite the presence of multiple purchase options, this work
utilizes only partial upfront. Partial upfront provides the right balance be-
tween initial investment and cost savings in the long term. All upfront has
about 1-3% more savings after one year; however, the initial upfront fee
is remarkably higher. This fact increases the risk; therefore, all upfront is
excluded from the analysis. A possibility would be to include no upfront ;
nonetheless, the savings are significantly lower and it is avoided.

Figure 4.2 compares the three purchase options in terms of cost during a
year. The chart refers to an option using linux, eu-west-1a, m3.medium. The
on-demand cost is calculated using 100% of utilization of the instances.

Full upfront is a horizontal line, because after the upfront fee no more
payments are needed. On-demand and no upfront linearly increases with
time without upfront; however, the on-demand hourly price is higher. Finally,
partial upfront has a lower upfront fee compared to all upfront, but costs
occur during the year.

At month 12, the chart shows the different costs. Full Upfront and partial
upfront are similar, while the others are significantly higher.

It is important to remark that the cost of on-demand instances depends
on the extent to which the instances is utilized. For example, if an instance
is utilized for one hour, the cost will be minimum. Conversely, reserved
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Figure 4.3: Comparison of the RI purchase options available at AWS. The
chart refers to an option using linux, eu-west-1a, m3.medium. The on-
demand cost is calculated using 50%. After 12 months the break-even point
is not reached; therefore, it is cheaper to utilize only on-demand instances
rather than reserved instances.

instances are paid every hour, independently of the demand. Therefore, in
some cases is more convenient to use only on-demand instances (Figure 4.3).
The scope of the analysis is to purchase reserved instances without incurring
in this scenario.

To summarize, the calculation of opportunity size focuses on finding the
types of reserved instances that yield the highest cost-savings. A type of
reserved instances is identified by operating system, size, and zone.

4.1.2 Analysis of the Hourly Demand

In order to find the most profitable purchase, RIO processes the hourly de-
mand of all instances of a company. The hourly demand refers to the number
of instances per hour in a given time range.

As reported by the literature of cost optimization, forecasting future de-
mand might have a strong impact on the performance of the optimizer [19].
However, forecasting demand requires a large amount of data and can be
imprecise in case of limited data, leading to incorrect planning. As an alter-
native, studies show that an effective approach to deal with uncertainty is to
analyze past data, for example the past thirty days [19]. The implemented
system follows this approach to deal with uncertainty.

The analysis involves finding two values for each option: maximum profit
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Figure 4.4: The figure illustrates a simulated demand during 30 days, the
red line represents the maximum profit threshold, the green line represents
the loss threshold.

threshold and the loss threshold. These metrics evaluate the effectiveness of
an option.

The maximum profit threshold is the cost-saving associated with the op-
timal number of reserved instances, defined as opportunity size. The oppor-
tunity size is the number of reserved instances which maximizes the savings
compared to an equivalent on-demand plan. In other words, the opportunity
size is the number of reserved instances such that, buying one less results in
under-provisioning and buying one more result in over-provisioning.

The loss threshold is the number of reserved instances, such that the
over-provisioning costs exceed the cost-saving. In this case, the demand
does not compensate the costs of a reserved instances investment. This
threshold allows assessing the robustness of the investment. The higher the
loss threshold, the more robust is the purchase plan. The reason is due to the
fact that in case of harmful event, such as a decrease in demand, the reserved
instances will still generate cost-saving compared to on-demand instances.

Both metrics highly depend on a time range. Figure 4.4 illustrates the
two thresholds, thirty days of hourly demand is simulated with a Gaussian
distribution with µ = 60.0 and σ = 10.0.

4.1.3 Profit Function

The profit function represents the cost-saving achieved utilizing a certain
amount of reserved instances. In other words, it is the margin between the
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costs using only on-demand instances and the costs using a certain amount
of reserved instances. It is calculated using a time range and it is formally
defined as following.

cod = Hourly cost for an on-demand instance (4.7)

cri = Effective hourly cost for an reserved instance (4.8)

di = Number of on-demand instance running in a given hour
(4.9)

y = Number of reserved instances (4.10)

H = Number of hours in the analyzed time frame (4.11)

(4.12)

profit(d1...dH , y) =
H∑
d=1

cod di −
[
y cri + cod max{0, di − y}

]
(4.13)

where:

(4.14)

di cod = Cost for using only on-demand instances (4.15)

y cri = Cost for buying y reserved instances (effective hourly cost)
(4.16)

cod max{di − y, 0} = Cost of remaining instances after purchasing y RIs
(4.17)

The profit is calculated using the effective hourly cost. This value amor-
tizes the hourly cost of a reserved instance over the length of the term, in-
cluding upfront payments. The effective hourly cost simplify the calculation
and allow flexibility in case of price change.

Figure 4.5 illustrates the profit function, simulating the demand as ran-
dom variable with Gaussian distribution with µ = 60.0 and σ = 10.0.

The profit function proposed in this section is equivalent to the cost func-
tion formulated in the Inventory Theory model (Section 3.2.1). While the
goal of the theoretical model is to minimize the cost, the implemented solu-
tion maximizes the profit. In the implemented system the demand is obtained
directly from past data.

The goal of the proposed system is to maximize the profit function, and
find automatically and effectively the thresholds. Reserved Instance Opti-
mizer utilizes hill-climbing.
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Figure 4.5: Profit function simulating demand as a Gaussian function with
µ = 60.0 and σ = 10.0. The red line represents the maximum profit thresh-
old; the green line shows the loss threshold.

4.1.4 Hill-climbing

Hill-climbing refers to a local search heuristic [43]. Given a target, function
f(X), where X is a vector, the algorithm changes a single element in X at
the time and adjust the value until no changes can be found to improve the
result. Hill-climbing works effectively because the profit function has a global
optimum.

Figures 4.6 and 4.7 show the pseudocode used to find the maximum profit
threshold and the loss threshold.

4.2 Reserved Instances Planning

After analyzing single options, it is necessary to bundle different options in
a plan. The goal of reserved instances planning step is to suggest a purchase
plan, respecting some constraints.

RIO offers two types of constraints: finding the best plan given budget
constraints and finding the best plan exploiting a fraction of the full oppor-
tunity size.

Both strategies rely on a pre-processing step which selects the top N
options in terms of maximum profit threshold. An important decision is to
decide how many options to take into account, i.e. how to decide the value
of N . Since this is also a business decision, the system does not choose the
parameter automatically, but it assumes it as given.
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1: function findMaximumProfitThreshold(tstart, tend)
2: hourlyDemand ← getHourlyDemand(tstart, tend)
3: RICount ← min(hourlyDemand)
4: bestRICount ← 0.0
5: lastProfit ← 0.0
6: finished ← false
7: while !finished do
8: profit ← calculateProfit(hourlyDemand, RICount)
9: if profit ≥ lastProfit then

10: bestRICount ← RICount
11: lastProfit ← profit
12: RICount ← RICount + 1
13: else
14: finished ← true
15: end if
16: end while
17: return (lastProfit, bestRICount)
18: end function

Figure 4.6: Hill-climbing approach to find the RI count the returns the best
profit.
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1: function findLossThreshold(tstart, tend)
2: hourlyDemand ← getHourlyDemand(tstart, tend)
3: RICount ← min(hourlyDemand)
4: lossThreshold ← 0.0
5: lastProfit ← 0.0
6: finished ← false
7: while !finished do
8: profit ← calculateProfit(hourlyDemand, RICount)
9: if profit ≥ 0.0 then

10: lossThreshold ← RICount
11: lastProfit ← profit
12: RICount ← RICount + 1
13: else
14: finished ← true
15: end if
16: end while
17: return (lastProfit, lossThreshold)
18: end function

Figure 4.7: Hill-climbing approach to find the RI count the returns the loss
threshold.
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In order to assess a purchase plan, it is necessary to calculate the overall
profit. Since a plan is a set of options, the profit of a plan is simply defined
as the sum of the profit of the elements.

profit(plan) =
∑
i

profit(optioni) (4.18)

where:

optioni belongs to the plan (4.19)

The next sections present the details of the algorithms for creating a plan.

4.2.1 Budget Constraints

There are two types of costs related to a plan: upfront fees and monthly
fees. The upfront fees are the sum of the upfront fees of all the options. The
monthly fees are the sum of the hourly costs of the options in a month.

The algorithm assumes a budget for each type of cost, namely a budget
for upfront fee and a budget allocated each month for the monthly fees.
The objective is to find the plan that maximizes the profit margin without
exceeding the budget constraints.

The formulation of the problem is the following.

Maximize profit(plan) (4.20)

Subject to:

Upfront Cost ≤ Upfront Budget (4.21)

Monthly Cost ≤ Monthly Budget (4.22)

This problem is an instance of the M-constraints Unbounded Knapsack
problem [49].

The knapsack problems are a well-known combinatorial optimization fam-
ily of problems. In the general form, a knapsack problem is stated as follows.
There are a set of items, each one with a volume and a value, and a knapsack
with a fixed capacity. The goal is to find the collection with maximum value
that fits in the knapsack.

The family of knapsack problems is divided in three categories, depending
on the characteristics of the items.

0/1 knapsack problem Each item can be chosen only once.
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Bounded knapsack problem Each item can be chosen a limited amount
of times.

Unbounded knapsack problem There are no constraints on the number
of items to be chosen.

A M-constraints variant has multiple constraints. For instance, having
weight and volume constraints for each item.

The problem of building a plan can be modeled as an instance of knapsack
problems in the following way. Every item is an option that can be purchase
indefinitely. The limits are given by the budget, and the profit function,
which takes into account the hourly demand. Every option has a value, the
profit, and two characteristics linked with constraints upfront fee and monthly
fee.

The optimization problem is proven to be NP-hard [49]. Techniques to
approach this family of problems include dynamic programming, branch and
bound, and evolutionary algorithms. Researchers also underline the similar-
ities between knapsack problems and integer programming [49]. Therefore,
state of the art methods for cost optimization in cloud computing might be
extended to solve this problem.

This work proposes a heuristic-based approach to find an approximate
solution to this problem (Figure 4.8). The implemented solution iterates
over the best N options and checks if adding a new reservation fits in the
budget. If the new instance fits in the budget, it is added to the plan, and
the available money decreases. The loop continues until there are no more
instances available, or the budget is totally utilized.

The proposed solution is not guarantee to be optimal. For example, the
system can choose to purchase the best option and completely fill the budget,
while buying two options which are less profitable singularly might lead to a
higher overall profit.

4.2.2 Exploiting a Fraction of Opportunity Size

In case of absence of budget constraints, a possible strategy is to purchase
a fraction of the full opportunity size. The opportunity size is the number
of reserved instances that generate the maximum profit. A use case, for
instance, is a company want to buy 50% of the opportunity size, regardless
the budget.

The proposed heuristics is simple and effective. Given the top N options,
a fraction of the opportunity size is allocated. Figure 4.9 illustrates the
algorithm: it iterates through the possible options and allocates a fraction
of then for the purchase plan.
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1: function createPlanWithBudget(N , tstart, tend, upfront budget,
monthly budget)

2: topNcombinations ← getTopCombinations(N , tstart, tend)
3: Bupfront ← upfront budget
4: Bmonthly ← monthly budget
5: plan ← new Plan()
6: while enough money && enough instances do
7: for c ∈ topNcombinations do
8: if c fits in the budget then
9: plan.add((c, 1))

10: Bupfront ← Bupfront - upfront fee(c)
11: Bmonthly ← Bmonthly - monthly fee(c)
12: end if
13: end for
14: end while
15: return plan
16: end function

Figure 4.8: Pseudocode of the proposed solution to build a plan using con-
straints on upfront fees and monthly fees.

1: function createPlanWithRate(N , tstart, tend, rate)
2: topNcombinations ← getTopCombinations(N , tstart, tend)
3: plan ← new Plan()
4: for c ∈ topNcombinations do
5: RICount ← findBestProfit(c)
6: suggestedCount ← RICount * rate
7: plan.add((c, suggestedCount))
8: end for
9: return plan

10: end function

Figure 4.9: Algorithm for plan builder exploiting a fraction of opportunity
size
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Operating System Zone Size Purchase option How many
Linux eu-west-1a m3.medium partialUpfront 5
Linux eu-west-1a m3.large partialUpfront 5
Linux eu-west-1a t2.small partialUpfront 5

Upfront Fee $3,895.00

Monthly Fee $332.15

Monthly Ammortize margin $228.62

Suggested plan (TOP 3 / 20% of opportunity)

Figure 4.10: Summary of the proposed suggested plan with additional pa-
rameters.

4.3 Visualization

The visualization of the result is a crucial step. The goal is to provide an
effective summary of relevant data to decision-makers. The implemented sys-
tem generates a report showing the proposed plan. In addition, the report
shows for each option belonging to the plan a detailed analysis. The detailed
analysis illustrates the opportunity size in different months, the loss thresh-
old, the hourly demand, and the utilization of previously purchased reserved
instances. Figures 4.10, 4.11, and 4.12 show parts of the report generated
with a simulation.

4.4 Risk Analysis

The risk analysis step analyzes the risks involved in purchasing a set of
reserved instances. The identified risks are the following.

• Demand of an instance decreases. In other words, a possible risk is
that the utilization of an option lowers until the reserved instance are
not cost-effective.

• A new instance type is released. Cloud providers release new instances
regularly. Since reserved instances require a commitment for a long
term, a risk is to be forced to utilize old instances. This could happen
if a company execute the purchase before the release of new instances.
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Figure 4.11: Detailed analysis of a single option belonging to the proposed
plan in different months.

Operating System Zone Size Purchase Option Quantity Active from Utilization ratio
linux eu-west-1a m3.large Partial upfront 3 1/4/2015 100.00%
linux eu-west-1a m3.medium Partial upfront 3 1/4/2015 100.00%
linux eu-west-1a t2.small Partial upfront 3 1/4/2015 100.00%

Figure 4.12: Monitoring of existing reserved instances.
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• Infrastructure changes. Another possible risk is to be unable to change
infrastructure because of a high number of reserved instances.

• The cloud provider lower the prices. Periodically cloud providers de-
crease the upfront fee and hourly fee of instances. A potential risk is
to perform a large investment before price changes.

Cloud providers usually offer tools to mitigate these risks. For example,
it is possible to modify reserved instances or to sell them [7, 31]. However,
these operations can be complex to execute since they need time and exper-
tise. This step aims to pro-actively deal with the risk involved in a reserved
instances purchase.

4.4.1 Risk Mitigation Strategies

This section describes some risk-mitigation strategies crucial part of the re-
served instances purchase process.

An important strategy is to iterate the process of buying reserved in-
stances regularly and in short time frames. This approach mitigates the risk
of large investments before the release of a new instance type. In addition,
short iteration diminish the harmful effect of price decrease. Furthermore,
the past data analyzed for the optimization is constantly updated and the
opportunity size increases or decreases with the actual demand, leading to
more accurate estimations.

Decision-makers are also encouraged to evaluate the risks from results
of the analysis. Loss threshold illustrates the maximum number of reserved
instances until the underutilization costs will hamper their profitability. An-
other recommendation for practitioners is to purchase a fraction of the op-
portunity size, so that if the demand decreases the reserved instances will
remain fully utilized.

An additional approach is to choose the IT infrastructure of a company,
so that the instances belong to the same family and same availability zone.
Amazon Web Services allows changes to reserved instances if they belong
to the same region and the same family [31]. In particular, small instances
can be combined to form a bigger one (e.g. two m3.medium are merged in
m3.large). Conversely, it is possible to split large sizes to smaller ones (e.g.
one m3.large is split in two m3.medium). Buying reserved instances in the
same family allows more flexibility in changing the infrastructure.
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4.4.2 Risk Calculation

The implemented system automatically takes into account some of the risk
parameters involved in a reserved instances purchase.

First, the system excludes from the purchase plan any option which is
announced to be retired from the market. Amazon Web Services, for exam-
ple, regularly retires old instances and releases new ones. When a new plan
is created the old instances are excluded in favor of new ones.

Second, RIO provides to decision-makers a degree of risk based on the
age of the instances. The thresholds of risks are empirically decided: if
an instance type has been released for more than two years than the risk is
high. After two years, in fact, instance types are usually substituted or prices
decrease. If the release date is between one year and two years the risk is
medium. If it is less than one year the risk level is low. This categorization
aims to direct decision-makers purchase newer instances, which are more
efficient and less susceptible to price change. Table A.1 provides information
about the release dates from Amazon Web Services.



Chapter 5

Evaluation

This chapter describes the experiments designed to evaluate the theoretical
model and the implemented system. The conducted experiments utilize real
data from an industry case in order to demonstrate the effectiveness of the
implemented system and the theoretical model. However, data regarding de-
mand of cloud resources is confidential. In order to describe the experiments
and illustrate the results, the traces are obfuscated and some information is
omitted. In addition to real data, this work proposes experiments in an ideal
environment using simulations.

This thesis has been developed at the R&D team at Nordcloud1. Nord-
cloud is a European cloud infrastructure consulting and managed service
company, with headquarters in Helsinki, Finland. As cost-optimization prob-
lem arises in the company, the proposed solution has been developed and
evaluated. In particular, Nordcloud provides the real data for the evalua-
tion.

5.1 Evaluation of the Model

Chapter 3 presents a model based on Inventory Theory. The optimal number
of reserved instances y has proved to respect the following condition.

ΦD(y) =
cod − cri
cod

(5.1)

1http://www.nordcloud.com
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Where ΦD is the cumulative distribution function of the demand, approx-
imated with a continuous random variable. Modeling the demand with a
discrete random variable results in the following formula. Given FD, the cu-
mulative distribution function of the discrete demand D, the optimal number
of instances is the smallest integer y such that:

FD(y) ≥ cod − cri
cod

(5.2)

In the evaluation of the model it is crucial to understand the performance
of the model in the ideal case and using real data. This work proposes two
experiments. The first experiment test ideal cases by simulating the demand
and by using different probability distributions. The second experiment uti-
lizes demand data from a industry case.

5.1.1 Simulation

Experiment Setup

This set of experiments generate hourly demand of instances using known
distributions. The generated traces simulate a month of data.

The simulation assumes that the demand is a set of observations inde-
pendent identically distributed. The evaluation proposes four probability
distributions: Uniform, Exponential, Poisson, and Gaussian. Uniform and
Exponential demonstrate an analytical approach. Poisson is an example of
discrete probability distribution. Finally, Gaussian distribution is also pro-
posed. The distribution are chosen empirically investigating real data and
they serve to verify the correctness of the model in a ideal case.

After generating the demand, each experiment computes the optimal
number of reserved instances using the inventory theory model and the hill-
climbing approach. Then, the two results are then compared.

All the calculations assume that the demand refer to an option with pa-
rameters linux, eu-west-1a, m3.medium, partial upfront. Table 2.2 illustrates
the pricing details of this instance type2.

Uniform Distribution

A uniform distribution is a distribution with constant probability. The prob-
ability density function and cumulative distribution function in the interval
[a, b] are the following.

2The price refers to the public pricing available at 2015-05-01.
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ϕD(ξ) =


0 if ξ < a.
1
b−a if a ≤ ξ ≤ b

0 if ξ > b.

(5.3)

ΦD(y) =


0 if y < a.
y−a
b−a if a ≤ y ≤ b

1 if y > b.

(5.4)

Figure 5.1a shows an example of the simulated demand using a uniform
distribution in the interval [10, 15]. The simulation uses a continuous uniform
distribution to approximate the demand. Assuming the optimal number of
reserved instance is 10 ≤ y ≤ 15, we obtain the following.

ΦD(y) =
cod − cri
cod

(5.5)

y − 10

15− 10
=

0.077− 0.0533

0.077
(5.6)

y = 11.54 (5.7)

Rounded at:

y = 12 (5.8)

The hill-climbing approach finds the same results. It iterates from the
minimum value in the hourly distribution and it increases the optimal number
until the profit starts to decrease. Figure 5.1b shows the profit function and
the optimal value found with hill-climbing.

Exponential Distribution

This section utilizes an exponential distribution to simulate the demand. The
characteristic of probability distribution function and cumulative distribution
function are the following.

ϕD(ξ) =

{
0 if ξ < 0.

λe−λξ if ξ ≥ 0.
(5.9)

ΦD(y) =

{
0 if y < 0.

1− e−λy if y ≥ 0.
(5.10)
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(b) Profit function.

Figure 5.1: Simulation of demand using a continuous uniform distribution in
[10, 15]

Assuming the demand to follow an exponential distribution with λ = 0.25,
The optimal solution is obtained with the following steps.

ΦD(y) =
cod − cri
cod

(5.11)

1− e−0.25y =
0.077− 0.0533

0.077
(5.12)

e−0.25y = −0.077− 0.0533

0.077
+ 1 (5.13)

−0.3y = ln
(

1− 0.077− 0.0533

0.077

)
(5.14)

y = 1.47 (5.15)

Rounded at:

y = 2 (5.16)

Figure 5.2a shows the simulation of the demand using an exponential
distribution with λ = 0.25. Figure 5.2b shows the maximization of the profit
function. Hill-climbing outputs the same optimal value as the inventory
theory model.

Poisson Distribution

This section utilizes a Poisson distribution to simulate the demand. The
Poisson distribution is a discrete probability distribution and the probability
mass function and cumulative distribution function are the following.
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Figure 5.2: Simulation of demand using a exponential distribution with λ =
0.25
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Figure 5.3: Simulation of demand using a Poisson distribution with λ = 20

p(x;λ) =
λx

x!
e−λ for x = 0, 1, 2, ... (5.17)

F (x;λ) =
x∑
i=0

p(x;λ) =
x∑
i=0

λx

x!
e−λ (5.18)

Figure 5.3a shows the simulated demand and figure 5.3b illustrates the
profit function used in the implemented system.

The theoretical optimum is calculated numerically. The same result is
obtained running the hill-climbing approach.

F (x;λ) ≥ cod − cri
cod

(5.19)

x = 18 (5.20)
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Gaussian Distribution

Finally, this work proposes a simulation of the hourly demand using a Gaus-
sian distribution with µ = 12 and σ = 2. The Gaussian distribution is
characterized by the following probability density function and cumulative
distribution function.

ϕD(ξ) =
1

σ
√

2π
e−(x−µ)

2/2σ2

(5.21)

ΦD(y) =
1

σ
√

2π

∫ y

−∞
e−(t−µ)

2/2σ2

dt (5.22)

The theoretical result is expressed as ΦD(y) = cod−cri
cod

. This experiment

obtains the value of y numerically using the tool Matlab 3.

ΦD(y) =
cod − cri
cod

(5.23)

when:

y = 10.99 (5.24)

Rounded at:

y = 11 (5.25)

Figure 5.4a shows the simulated trace, while Figure 5.4b shows the profit
function varying the number of reserved instance. As in the previous cases,
the theoretical results and the empirical results confirm the same optimal
solution.

Final remarks

This set of experiments demonstrate that the theoretical findings and the
implemented system are equivalent in an ideal case. The ideal case is rep-
resented by a known probability distribution of the demand. Despite some
errors might occur if modeling demand with a continuous distribution, the
experiments show accurate results.

The next section describes the performance of the model and the reserved
instance optimizer using real data.

3http://se.mathworks.com/products/matlab/

http://se.mathworks.com/products/matlab/
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Figure 5.4: Simulation of demand using a Gaussian distribution with µ = 12,
σ = 2.
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Figure 5.5: Obfuscated hourly distribution from the industry case.

5.1.2 Industry Case

Experiment Setup

In order to measure the performance of the model using real data, the exper-
iment utilizes the hourly distribution from the industry case. For confiden-
tiality, this study report an obfuscated trace. The parameters of the studied
option are linux, eu-west-1a, m3.medium, partial upfront. Figure 5.5 shows
the trace of hourly demand for the industry case.

The experiment consists in two steps. The first step finds the optimal
number of reserved instances using hill-climbing. The second step calculate
the result using the model and compares the result. In order to utilize the
model, it is necessary to find a probability distribution which fits the real
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demand trace. The estimation is achieved using maximum likelihood esti-
mation.

Hill-climbing

The obfuscated demand is given as input to the hill-climbing heuristic. The
optimal number of reserved instances results to be 25. Figure 5.6 reports the
profit with different value of reserved instances.
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Figure 5.6: Profit calculated varying the number of reserved instances, using
the obfuscated demand.

Parameter Estimation

The performance of the proposed model highly depends on the utilized prob-
ability distribution. In order to find the parameters of a probability distri-
bution, this work utilizes maximum likelihood estimation.

Maximum likelihood estimation is a well-known method in inferential
statistics. Let us assume to have N independent identically distributed ob-
servations xi ∼ p(x|θ). The goal is to find the parameters θ of the distribu-
tion.

The maximum likelihood estimation finds the parameter θ, such that
p(θ|X) is maximum. Intuitively, p(θ|X) is exactly the probability of having
a parameter θ observing the data X [2].

Assuming that the demand trace is composed of observations indepen-
dent identically distributed, it is possible to apply the maximum likelihood
approach to estimate the parameters of the distribution. In particular, the



CHAPTER 5. EVALUATION 63

total likelihood of the observations results to be the product of the likelihood
of the single ones. Besides, it is possible to calculate the log-likelihood to
simplify calculations [2].

L(θ|X) ≡ p(X|θ) =
N∏
i=1

Li =
N∏
i=1

p(xi|θ̂) (5.26)

This work proposes three estimations. The first and the second use a
Uniform and Poisson distribution respectively. The maximum likelihood es-
timation is calculated analytically. The third uses a Gaussian distribution
and the estimator is derived numerically.

Uniform Distribution

Assuming that the demand data is drawn from a uniform distribution, it is
necessary to estimate the parameters θ1 and θ2: the extreme of the interval
of the uniform distribution [58].

The probability distribution function follows.

p(X|θ) =

{
1

θ1−θ2 if θ1 ≤ X ≤ θ2.

0 otherwise
(5.27)

Let us now calculate the likelihood:

L =
n∏
i=1

p(xi|θ) =
n∏
i=1

1

θ2 − θ1
(5.28)

Applying the natural logarithm the expression would be:

ln L =
n∑
i=1

ln
1

θ2 − θ1
(5.29)

=
n∑
i=1

−ln(θ2 − θ1) = −n ln(θ2 − θ1) (5.30)

We need to maximize the likelihood, which is achieved by minimizing ln (θ2−
θ1). The logarithm is minimum when the argument is minimum; therefore,
the goal is to minimize θ2 − θ1. For construction of the probability density
function, θ1 ≤ xi for every i, and θ2 ≥ xi for every i. Therefore, the maximum
likelihood estimators are:

θ̂2 = max(x1...xn) (5.31)

θ̂1 = min(x1...xn) (5.32)
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In the industrial case, the estimators are the maximum and the minimum of
the demand trace.

θ̂2 = 72 (5.33)

θ̂1 = 18 (5.34)

Therefore, applying the inventory theory model, we calculate the optimal
number of reserved instances y:

y = 35 (5.35)

Poisson Distribution

Assuming the demand follows a Poisson distribution, we need to estimate
the parameter λ using maximum likelihood estimation [33].

The probability distribution function follows.

p(x;λ) =
λx

x!
e−λ for x = 0, 1, 2, ... (5.36)

The likelihood is:

L =
n∏
i=1

λxi

xi!
e−λ =

e−λn λ
∑n

i=1 xi∏n
i=1 xi!

(5.37)

The log-likelihood is:

ln L = −λn+
n∑
i=1

xi ln(λ)−
n∑
i=1

ln(xi!) (5.38)

Let us compute the derivative with respect to λ in order to maximize the
likelihood and set it to zero.

∂lnL

∂λ
= −n+

∑n
i=1 xi
λ

(5.39)

Let us set the derivative to zero.

−n+

∑n
i=1 xi
λ

= 0 (5.40)

And find the maximum likelihood estimator:

λ̂ =

∑n
i=1 xi
n

(5.41)
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Let us take the second order derivative of the likelihood to check that the
likelihood is maximized.

∂lnL

∂λ
= −n+

∑n
i=1 xi
λ

(5.42)

= −
∑n

i=1 xi
λ2

< 0 for every λ 6= 0 (5.43)

Therefore, the maximum likelihood is maximized. Applying the maximum
likelihood estimation in the real demand case we have:

λ̂ = 30.3858 (5.44)

We can use a Poission distribution with λ = λ̂ in the model and obtain the
following optimal number of RIs:

y = 27 (5.45)

Gaussian Distribution

This experiment utilizes the maximum likelihood estimation for the real de-
mand observation, assuming the observations belongs to a Gaussian distri-
bution.

The estimated parameters are calculated numerically.

µ = 30.3858 (5.46)

σ = 7.48802 (5.47)

At this point, it is possible to utilize the finding of the model plugging the
estimated parameters.

ΦD(y) =
cod − cri
cod

(5.48)

when:

y = 26.62 (5.49)

Rounded at:

y = 27 (5.50)

Final Remarks

The experiments conducted using real data provide good results. The the-
oretical model and the hill-climbing approach are similar using Poisson and
Gaussian distribution. Uniform distribution might not be a good choice in
this context, because it tends to overestimate peaks of usage, which are com-
mon in real traces.
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Figure 5.7: Number of iterations of the hill-climbing approach.

5.2 Evaluation of Reserved Instances Opti-

mizer

This section proposes a set of experiments to evaluate the implemented so-
lution. In particular, the first experiment analyzes the performance of the
hill-climbing approach. The second experiment focuses on assessing the per-
formance of the heuristic for creating a plan with budget constraints.

5.2.1 Hill-climbing Heuristic

In the implemented system the hill-climbing heuristic is crucial to obtain
the optimal number of reserved instances. The proposed approach calculates
the profit using a certain number of RIs and stops at the maximum value.
It is interesting to measure the number of iterations using different options.
Figure 5.7 depicts the results.

5.2.2 Reserved Instance Planning with Budget Con-
straints

The proposed solution is based on two types of instances planner: reserved
instances planner with budget constraints and reserved instances planner
exploiting a fraction of the opportunity size. This experiment focuses on
analyzing the performance of the first type.

The proposed heuristic is not optimal; however, the system outputs a
plan that efficiently utilizes the budget. In order to demonstrate this fact,
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Figure 5.8: Remaining upfront budget and profit. The calculation are done
using a 30 days period, using the top 5 options.

this work proposes two experiments.
In both experiments the algorithm analyzes the best five options in terms

of opportunity size. The first experiment runs the algorithm with an increas-
ing upfront budget, the monthly budget is set large enough to be negligible.
Figure 5.8 shows the budget not allocated, together with the profit. A re-
markable result is that the profit increases linearly with the upfront fee;
therefore, the resources are efficiently allocated. A similar experiment is per-
formed setting a large upfront fee and using an increasing monthly budget.
Figure 5.9 shows the result. The experiments prove that with an increasing
investment the resources are allocated accordingly and it efficiently utilizes
the budget.

5.3 Pilot Purchase

This thesis has been developed at the R&D team at Nordcloud. From Nord-
cloud website it is possible to read: “we are experts in the automation and
management of modern Cloud infrastructure. We offer Cloud service con-
sultancy, migration and capacity planning, optimization, monitoring, and
infrastructure management, and we assist enterprises to gain from lean busi-
ness processes and maximum cost benefit from their Cloud investments, while
delivering world-class security, reliability and service quality”.

In other words, the value proposition of Nordcloud focuses on supporting
companies in benefit from cloud computing. In particular, the offer of Nord-
cloud concentrates on Infrastructure as a Service providers (IaaS). IaaS gives
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Figure 5.9: Remaining monthly budget and profit. The calculation are done
using a 30 days period, using the top 5 options.

to the user full control of the cloud resources and it allows to build complex
infrastructure. However, it is harder to manage and utilize.

An important component of the business of Nordcloud relates to cost
optimization. Nordcloud operates complex cloud infrastructures on behalf
of its customers, which incur significant cloud capacity costs. The Reserved
Instance Optimizer has been developed to be part of the software utilized by
Nordcloud to ensure high level services, both internally and for the customers.

Nordcloud management team executed a pilot purchase of reserved in-
stances using the suggested plan of the implemented Reserved Instances
Optimizer. The details of the purchase plan and the performance of the
instances are confidential. However, the reserved instances purchased fol-
lowing the suggestion of the system are allocated 100% of the time. This
scenario produces the highest cost-saving.



Chapter 6

Discussion

6.1 Maximum Likelihood Estimation of the

Demand

Section 5.1 evaluates the inventory theory model in two scenarios: an ideal
case where the distribution of demand is known and in a real industry case.
In both scenarios the theoretical findings are compared with the hill-climbing
approach, which outputs the ground-truth value.

In the ideal case the model and the empirical approach match in all the
cases. Small errors might occur when approximating the demand with a
continuous random variable.

In the real demand case the main challenge is to estimate the parameters
of the distribution to use in the model. The proposed approach is to use max-
imum likelihood estimation. However, this approach has some limitations.
In particular, it assumes that the observations, i.e. the values of demand,
are independent identically distributed. This assumption is not valid in the
case of the demand, since it is a time series and the previous values influence
the future ones.

Nonetheless, the results in the industry case are similar to the hill-climbing
results, using a Poisson or Gaussian distribution. Uniform distribution, in-
stead, does not perform well. The Uniform distribution tends to overestimate
outliers. Since in cloud computing peaks in demand occur frequently, this
distribution might be avoided in this context.

The differences between hill-climbing and the model are due to the fact
that the estimated distribution does not exactly fit the real one. Figure 6.1
shows the real demand and the trace generated with the Poisson distribution
estimated in Section 5.1.2.

69
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Figure 6.1: Obfuscated demand from the industry case and a simulation with
the estimated Poisson distribution.

6.2 Granularity of the Analysis

The implemented system and the experiments propose analysis based on
hourly demand. Hourly demand is the most precise value of demand that
cloud providers offer. Furthermore, it offers detailed information about
changes during the day, such as differences during working hours and night
time.

However, less granularity in the analysis might decrease the noise of peaks
of demand. In addition, aggregated values decrease the number of data to
analyze, improving the performance of the algorithm.

Figure 6.2 shows a comparison between the hourly and the daily de-
mand. The aggregation is performed taking the average demand for each
day. Despite the possible advantages, this strategy might lead to wrong re-
sults. Further investigations are needed to better understand this approach.

6.3 Improving the Implemented System

As discussed in Section 5.1, the inventory theory model predicts the optimal
number of reserved instances. This section discusses possible improvements
of the implemented system after the theoretical findings.

The main theoretical finding from the model states that the optimal num-
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Figure 6.2: Comparison between the hourly demand and the daily demand.

ber of reserved instances y is such that.

ΦD(y) =
cod − cri
cod

(6.1)

Let us apply to both members of the equation Φ−1D , the inverse of the cumu-
lative distribution function. At this point we obtain the following.

y = Φ−1D

(cod − cri
cod

)
(6.2)

The quantile function Φ−1D is a function such that Φ−1D (n) is the pth quantile
of the distribution. The pth quantile is defined as:

qp = min{q : ΦD(q) ≥ p} (6.3)

In order to find the pth quantile, this study proposes the quantile estima-
tion of a set of observation [37]. As discussed in Section 5.1.2, we assume
every observation of the hourly demand to be independent identically dis-
tributed.

Given d1...dN , N observations of the demand D, we calculate the ith order
statistic of the sample. In other words, we re-order the observations such
that d(1) ≤ d(2) ≤ ... ≤ d(N). Then we calculate:

qn = D(dNpe) (6.4)

Where D(dNpe) is the smallest dNpeth value of demand.
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The finding of the model states that we should find the pth quantile where:

p =
cod − cri
cod

(6.5)

The algorithm to find the pth quantile is simple. Given N observations of
the hourly demand, the steps are the following.

1. Sort d1...dN in d(1)...d(N)

2. Calculate p = cod−cri
cod

3. Output D(dNpe)

Let us explain the concept with an example from the industry case utilized
in Section 5.1.21.

Let d1 be the demand at hour 1. In general, di is the demand at the ith hour.
Since the analyzed option is linux, eu-west-1a, m3.medium we have:

p =
0.077− 0.055

0.077
= 0.3 (6.6)

N = 744 Number of hours in a month (6.7)

dNpe = d744 ∗ 0.3e = 224 (6.8)

D(224) = 25 Same result as with hill-climbing (Section 5.1.2).
(6.9)

Extensive empirical tests have been performed using all possible combina-
tions of the parameters. The estimator of quantile outputs accurate results,
always matching with the hill-climbing approach.

Calculating the opportunity size utilizing quantile results to be also more
efficient. While the hill-climbing approach iterates until convergence, the
quantile estimator approach sorts the data and selects the corresponding
element. Figure 6.3 compares the performance of the hill-climbing approach
and the quantile estimation approach. The outcomes shows that quantile
estimation is a more efficient approach.

1The price refers to the public pricing available at 2015-05-01.
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Figure 6.3: Efficiency of the two proposed approaches used to calculate
the opportunity size. The performance measurements are repeated multi-
ple times, the picture illustrates the execution time of the evaluations.



Chapter 7

Conclusion

This thesis analyzes the problem of cost optimization in cloud computing.
Cloud computing refers to a paradigm for accessing computing resources
which is becoming increasingly popular. Despite the fact that having a
cloud infrastructure is usually cheaper than maintaining a physical data cen-
ter, owners of large and complex IT infrastructure might incur large costs.
Therefore, the problem of cost optimization in cloud computing is becoming
increasingly important.

One of the most common and effective techniques for cost savings is to
utilize reserved instances. Reserved instances are computing resources re-
served for a fixed term. Since they require an higher commitment from the
users, they result to be cheaper than on-demand instances. However, re-
served instances need careful planning in order to be cost-effective and to
maximize the savings.

As discussed in Chapter 2, researchers extensively studied the topic of
cost optimization in cloud computing, proposing interesting approaches such
as Integer Programming, Evolutionary Algorithms, and Machine Learning
techniques. Industry tools also offer analysis of a cloud infrastructure and
perform cost optimization (Table 2.4).

Despite researchers and practitioners studied this topic, still work has to
be done. This thesis aims to answer the following research questions.

• How cost optimization in cloud computing can be modeled with Inven-
tory Theory?

• How an heuristic-based reserved instance planner perform?

• Does the implemented system verify the theoretical results of the in-
ventory theory model?
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Chapter 3 answers the first question by proposing a theoretical model
based on Inventory Theory. Inventory Theory aims to describe the behavior
of an inventory system. The problem of planning reserved instances has re-
markable similarities with inventory-keeping challenges and the model results
to be accurate.

The second question is answered by Chapter 4. This work proposes RIO,
a Reserved Instances Optimizer. The goal of the implemented system is to
output a purchase plan which maximizes the cost-saving. Currently, the sys-
tem is undergoing trial use at Nordcloud, a cloud infrastructure consulting
and managed service company. Nordcloud performed a pilot purchase fol-
lowing the purchase plan suggested by the implemented system with good
results.

Finally, Chapter 5 proposes an extensive evaluation of the model and
compares the theoretical results with the implemented solution. The experi-
ments evaluate the model in an ideal case and using real demand data from
an industry case. In both cases, the model accurately predicts the optimal
number of reserved instances. As a consequence of the theoretical findings,
the implemented system has been further improved (Section 6.3). Therefore,
we can positively answer to the third research question.

In conclusion, the main contributions of this work are the following. A
survey of the body of knowledge of cost optimization in cloud computing, ana-
lyzing literature and industry tools. In addition, this thesis proposes a novel
application of Inventory Theory to cost optimization in cloud computing.
Furthermore, this work introduces the implementation of an heuristic-based
reserved instances planner.

7.1 Future Directions

This section describes future research directions and possible improvements
related to the survey of the body of knowledge, the inventory theory model,
and the implemented system.

The survey includes literature of cost optimization in cloud computing.
In addition, Section 2.3 proposes financial perspective of the problem of cost
optimization. A reserved instances purchase could be modeled and analyzed
as an investment. Therefore, financial methods such as real option valuation
(ROV) might be further investigated.

The theoretical model proposed in Chapter 3 is a first application Inven-
tory Theory in the context of cloud computing. Despite the model outcomes
are accurate, additional improvements are possible. A potential improvement
is to include discount rate to take into account the time value of money. More-
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over, a research direction would be to model an entire purchase plan utilizing
a multi-product inventory system [3]. Finally, a further improvement would
be to formulate theoretically a risk analysis.

Risk analysis could be modeled mathematically by estimating a proba-
bility distribution of events that change the demand or the prices. Assuming
probability distributions of harmful events, it would be possible to develop a
more sophisticated model of the cost. However, this approach might be infea-
sible due to the difficulties in estimating probability distributions of negative
events.

Future work about heuristic-based reserved instances planner involves
risk analysis. The current method empirically works; however, more complex
analysis could be performed. Potential improvements include forecasting of
demand and infrastructure changes simulation. Both methods aim to take
into account the impact of harmful events in cloud infrastructure planning.



Bibliography

[1] Aggarwal, S. C. A review of current inventory theory and its appli-
cations. International Journal of Production Research (1974).

[2] Alpaydin, E. Introduction to Machine Learning. The MIT Press, 2010.

[3] Altiok, T., and Shiue, G. A. Single-stage, multi-product produc-
tion/inventory systems. In American Control Conference, 1991 (1991),
IEEE, pp. 443–448.

[4] Amram, M., and Howe, K. M. Real options valuations: Taking out
the rocket science. Strategic Finance 83, 8 (2003).

[5] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,
I., et al. A view of cloud computing. Communications of the ACM
53, 4 (2010), 50–58.

[6] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,
I., and Zaharia, M. Above the clouds: A berkeley view of cloud
computing. Tech. rep., Electrical Engineering and Computer Sciences
University of California at Berkeley, 2009.

[7] (AWS), A. W. S. Amazon web services marketplace. https://aws.

amazon.com/marketplace.

[8] (AWS), A. W. S. Amazon web services website. http://aws.amazon.

com/.

[9] (AWS), A. W. S. Documentation of aws dedicated instances. http:

//aws.amazon.com/ec2/purchasing-options/dedicated-instances/.

[10] (AWS), A. W. S. Documentation of aws ec2. http://aws.amazon.

com/ec2/.

77

https://aws.amazon.com/marketplace
https://aws.amazon.com/marketplace
http://aws.amazon.com/
http://aws.amazon.com/
http://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
http://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/


BIBLIOGRAPHY 78

[11] (AWS), A. W. S. Documentation of aws lambda. http://aws.amazon.
com/lambda/.

[12] (AWS), A. W. S. Documentation of aws region.
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

using-regions-availability-zones.html.

[13] (AWS), A. W. S. Documentation of aws reserved instances. http:

//aws.amazon.com/ec2/purchasing-options/reserved-instances/.

[14] (AWS), A. W. S. Documentation of aws spot instances. http://aws.

amazon.com/ec2/purchasing-options/spot-instances/.

[15] (AWS), A. W. S. List of aws ec2 instance types. http://aws.amazon.

com/ec2/instance-types/.
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Appendix A

Release dates of Amazon Web
Services Instances

Table A.1 reports the release date of instances from AWS. The information
has been retrieved using multiple sources: AWS blog, Twitter and the way
back machine 1 2 3. The release dates are updated till the release of m4
family (2015-06-11).

Instance Release Date

t2.micro 2014-07-01

t2.small 2014-07-01

t2.medium 2014-07-01

m3.medium 2014-01-21

m3.large 2014-01-21

m3.xlarge 2013-01-21

m3.2xlarge 2013-01-21

m4.large 2015-06-11

m4.xlarge 2015-06-11

m4.2xlarge 2015-06-11

m4.4xlarge 2015-06-11

1https://aws.amazon.com/blogs/aws/ec2-instance-history/
2http://archive.org/web/
3https://aws.amazon.com/blogs/aws/
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m4.10xlarge 2015-06-11

c4.large 2014-11-13

c4.xlarge 2014-11-13

c4.2xlarge 2014-11-13

c4.4xlarge 2014-11-13

c4.8xlarge 2014-11-13

c3.large 2013-11-14

c3.xlarge 2013-11-14

c3.2xlarge 2013-11-14

c3.4xlarge 2013-11-14

c3.8xlarge 2013-11-14

r3.large 2014-04-10

r3.xlarge 2014-04-10

r3.2xlarge 2014-04-10

r3.4xlarge 2014-04-10

r3.8xlarge 2014-04-10

g2.2xlarge 2013-11-04

g2.8xlarge 2015-04-16

i2.xlarge 2014-11-14

i2.2xlarge 2014-11-14

i2.4xlarge 2014-11-14

i2.8xlarge 2014-11-14

d2.xlarge 2015-03-31

d2.2xlarge 2015-03-31

d2.4xlarge 2015-03-31

d2.8xlarge 2015-03-31

Table A.1: Release dates of Amazon Web Services Instances.
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