Author(s): Tsuneta, T. & Lechner, L. & Hakonen, Pertti J.

Title: Gate-Controlled Superconductivity in a Diffusive Multiwalled Carbon Nanotube

Year: 2007

Version: Final published version

Please cite the original version:


Gate-Controlled Superconductivity in a Diffusive Multiwalled Carbon Nanotube

T. Tsuneta,1 L. Lechner,1,2 and P. J. Hakonen1

1Low Temperature Laboratory, Helsinki University of Technology, Otakaari 3A, Espoo, 02015 Finland
2Institute for Experimental and Applied Physics, University of Regensburg, Universitätstr. 31, D-93040 Regensburg, Germany

(Received 5 September 2006; published 21 February 2007; corrected 26 February 2007)

We have investigated electrical transport in a diffusive multiwalled carbon nanotube contacted using superconducting leads made of an Al/Ti sandwich structure. We find proximity-induced superconductivity with measured critical currents up to $I_{\text{cm}} = 1.3$ nA, tunable by the gate voltage down to 10 pA. The supercurrent branch displays a finite zero bias resistance which varies as $R_0 \approx I_{\text{cm}}^\alpha$ with $\alpha = 0.74$. Using IV characteristics of junctions with phase diffusion, a good agreement is obtained with the Josephson coupling energy in the long, diffusive junction model of A. D. Zaikin and G. F. Zharkov [Sov. J. Low Temp. Phys. 7, 184 (1981)].

DOI: 10.1103/PhysRevLett.98.087002
PACS numbers: 74.70.Wz, 74.78.Na

Superconductivity in carbon nanotubes is an intriguing subject. To understand it one has to consider many facets of modern physics, including Luttinger liquid behavior owing to strong electron-electron interactions in one dimension as well as Kondo physics due to odd, unpaired electronic spin [1]. Proximity-induced and intrinsic superconductivity has been observed in individual and bundled single walled carbon nanotubes (SWNT) [2–6]. The magnitude of observed supercurrents has varied substantially. In Refs. [3,4], respectively, a supercurrent on the order of $10^{3}$ larger and $10^{4}$ smaller than theoretically expected was observed. Morpurgo et al. [5] and Jorgensen et al. [6], on the other hand, did observe only increased conductance near zero bias.

In multiwalled carbon nanotubes (MWNT), supercurrents have been even harder to achieve, presumably due to problems with disorder and impurities. Enhanced conductance was observed by Buitelaar et al. [7] near zero bias, which was interpreted in terms of multiple Andreev reflections (MAR) in the presence of inelastic processes [8]. Similar results were obtained by Kasumov et al. [3]. Recently a proximity-induced supercurrent was observed by Haruyama and co-workers [9,10], most notably in multi-shell-contacted tubes grown within nanoporous alumina templates [10]. Here we report proximity-induced superconductivity that is achieved in an individual, diffusive MWNT bulk(side) contacted with Ti/Al contacts. We find that the supercurrent can be smoothly controlled by gate voltage, via tuning of the diffusion constant, and a good agreement is obtained using analysis based on long, diffusive NS-NS junctions supplemented with phase-diffusion effects, modeled in terms of the resistively and capacitively shunted junction model (RCSJ).

Our tube material, provided by the group of S. Iijima, was grown using plasma enhanced growth without any metal catalyst [11]. The absence of a catalyst (which is often Ni or Fe) guarantees that our tubes do not have any magnetic impurities which are detrimental for superconductivity. The tubes were dispersed in dichloroethane and, after 15 min of sonication, they were deposited onto thermally oxidized, strongly doped Si wafers. A tube of 4 $\mu$m in length and 16.6 $\mu$m in diameter was located using an FE-SEM Zeiss Supra 40. Subsequently, Ti contacts of width 550 nm were made using standard overlay lithography: 10 nm titanium layer in contact with the tube was covered by 70 nm Al in order to facilitate proximity-induced superconductivity in Ti. Last, 5 nm of Ti was deposited to prevent the Al layer from oxidation. The length of the tube section between the contacts was 400 nm. The electrically conducting body of the silicon substrate was employed as a back gate, separated from the sample by 150 nm of SiO$_2$. An atomic force microscope (AFM) image of our sample is displayed in the inset of Fig. 1.

On our “dipstick” dilution refrigerator (Nanoway PDR50), the samples were mounted inside a tight copper enclosure. The measurement leads were filtered using an RC filter with time constant of 1 $\mu$s at 4.2 K, followed by twisted pairs with tight, grounded electrical shields for filtering between the still and the mixing chamber, while the final section was provided by a 0.7-m long Thermocoax cable on the sample holder. In the measurements, current bias was employed via a 100 MΩ room-temperature resistor when searching for supercurrents. The differential resistance $R = dV/dI$ was recorded using standard lock-in techniques. The gap of the contact material was found to be $\Delta_{\text{lead}} = 139 \mu$eV. Normal state results were measured at $B = 0.2$ T.

Our nanotube sample is slightly $n$-type doped initially, as in our previous measurements on semiconducting MWNTs [12]. The back gate capacitance $C_g = 4$ aF was deduced from the measured gate period of SET oscillations $\Delta V = 40$ mV. The total capacitance of the 4 $\mu$m-long nanotube is estimated to be $C_2 = 0.4$ aF, which corresponds to a Coulomb energy of $E_C \approx 2.5$ K. Since the Fermi level of the tube shifts according to $C_g/C_2 \Delta V_g$, the number of channels can be varied only in the range of $N = 0$ to a few over the employed gate range of $V_g = -10 \cdot 10 + 10$ V. Most of the observed changes in resistance $R(V_g)$ are then due to a variation in the distribution of individual transmission coefficients, not from the changes...
There is a part of the change, up to 50% at most (dependent on $V_g$), that can be attributed to the Kondo effect. Other typical characteristics for our samples are: the mean free path $l_{mfp} \sim 15 \text{ nm}$ and the diffusion constant $D \sim v_F l_{mfp} = 1 \times 10^{-2} \text{ m}^2/\text{s}$, as deduced from the resistance [13]. This means that a 400 nm long section (see Fig. 1) is expected to be nearly in the long S-N-S junction limit. We find several $V_g$ values at which the normal state resistance is in the range $R_n = 15-20 \text{ k}\Omega$. Occasionally, we saw gradual or abrupt shifts of the sample which needed to be corrected by offsetting $V_g$. This is attributed to variations in the background charge on the order of 0.1–0.3 electrons.

The measured $IV$ curves are illustrated in Fig. 1. The shape is seen to change from a state with linear $IV$ characteristics at small bias to a fully “blockaded” one over $\Delta V_g = 100 \text{ mV}$. The $IV$ curves in the first category display a pronounced kink, followed by a plateau at voltages in the range of 1–10 $\mu\text{V}$; at intermediate $V_g$s even hysteresis is observed. This behavior is identified as proximity-induced superconductivity with the kink or plateau region indicating the maximum measured supercurrent $I_{cm}$. Details of the small bias regime are given in the lower right inset of Fig. 1. There is hysteresis at the intermediate values of the critical currents. After a maximum hysteresis of $\Delta I = I_{cm} - I_{retap} = 54 \text{ pA}$ at $V_g = 3.214 \text{ V}$, the hysteresis is seen to diminish as the current is lowered. The maximum product for $I_{cm} R_n = 22 \mu\text{eV} \ll \Delta_{\text{lead}}$.

According to the RCSJ model, there is hysteresis if the scaled temperature $\Gamma = k_B T/E_J$ is small enough and the McCumber parameter $\beta = (\omega_p R C_{\text{tot}})^2 \gg 1$, where $\omega_p$ is the plasma frequency, $R$ is the shunt resistance, and $C_{\text{tot}}$ is the total capacitance involved in the plasma oscillation. To make an estimate, we take $R = R_J = dV/dI = 2 \text{ k}\Omega$ from the $IV$ of the junction above the plateau region, $C_{\text{tot}} = 400 \text{ fF}$, and $\omega_p = \sqrt{\frac{2T_{\text{env}}}{k_B m_0}}$, we get an estimate $\beta \sim 24$ at $I_{c0} = 5 \text{ nA}$, where $I_{c0} = \frac{2eE_J}{k_B}$ is taken at $E_J/k_B = 120 \text{ mK}$. This estimate is close to critical damping and no hysteresis at $\Gamma \sim 1$ to be expected [14]. Nevertheless, a suppression of $I_{c0}$ down to $I_{cm} = 1.3 \text{ nA}$ takes place by thermal fluctuations. When $V_g$ is tuned, $R_J$ increases more strongly than $\Gamma$, leading to the appearance of hysteresis in the $IV$ curves due to a larger value for $\beta$. Eventually the increase of $I_{c0}$ with lowering $E_J$ takes over and the hysteresis disappears with decreasing $I_{cm}$ as observed in Fig. 1. Thus, the RCSJ model can qualitatively explain the main characteristics observed in Fig. 1.

The supercurrent branch is found to display a finite resistance which depends only weakly on bias (see the inset of Fig. 1). This weakness of bias dependence distinguishes our results from those of Buitelaar et al. [7] and of Jørgensen et al. [6] who both observed a clear peak in the conductance. The dependence of the measured supercurrent $I_{cm}$ on $R_0 = \frac{\partial I}{\partial V} |_{V=0}$ as well as on the normal state resistance $R_n$ is given in Fig. 2. $I_{cm}$ could be tuned over 2 orders of magnitude from 1.3 nA down to 10 pA, while the normal state resistance increased only by a factor of 2: from 15 to 35 k$\Omega$. We find that the data can be fitted by a power law behavior $I_{cm} \propto R_0^{1.35}$.

The relatively large zero bias resistance, $R_0 > 1.4 \text{ k}\Omega$, is in agreement with the ordinary picture of phase diffusion [15,16], which may coexist with hysteretic $IV$ characteristics provided that the environment of the junction is frequency dependent: at $\omega_p$, $Z_{\text{env}} \sim Z_0 = 377 \text{ }\Omega$ stabilizing phase diffusion, while at low frequencies $Z_{\text{env}} \gg Z_0$ [14]. Ingold et al. [17] have derived for the zero bias resistance due to phase diffusion

$$R_0 = \frac{Z_{\text{env}}}{I_0(E_J/k_B T)^2 - \Gamma},$$

where $I_0(x)$ represents a modified Bessel function. Subsequently, Grabert et al. have shown that Eq. (1) is rather accurate, within a factor of $\sim 2$, even when the quantum fluctuations are included [18]. We stick here to classical phase diffusion because the ratio of thermal to Coulomb energy $k_B T/E_c \sim 50$ owing to large, environmental shunting capacitance.

In Ref. [17], the IV characteristics were derived in the limit $E_J, eV \ll k_B T$ according to which there is a simple relation between $I_{c0}$ and $I_{cm}$.

![Graph](image-url)
I we get \( \frac{G_n}{R_n} \) and filled circles displays \( R \) without interaction effects, can be calculated from the normal state resistance \( R_n \) formula for transparency. We also neglect resonance effects in our analysis, suitable for our case as the contacts have a high trans-

gency. From the maximum value of \( E_j \), we find that the main Andreev peaks are located at \( \frac{\Delta}{2} \) and \( 2\Delta \), though the latter one does not coincide exactly to the expected location at \( V > 0 \).

The weak gate dependence of the MAR lines is quite similar to that found in Ref. [7], where it is assigned to a shift in the resonance condition as \( V_g \) is varied [27]. However, since we cannot observe any negative \( dV/dI \), as expected for this situation, we do not believe that our results are related to resonance phenomena, unlike the data in SWNTs [4]. Between \( \Delta \) and \( 2\Delta \) there is an additional peak that may be connected to Thouless energy (\( \epsilon_{\text{Th}} \)). As we approach the supercurrent region by decreasing the \( V_g \), \( \epsilon_{\text{Th}}(D) \) increases and, consequently, the peak should move towards \( 2\Delta \) [26]. In our experiment, however, the peak

![FIG. 2](color online). \( I_{cm} \) vs. zero bias resistance \( R_0 \) and normal state resistance \( R_n \) measured at \( T = 80 \text{ mK} \). The open and filled circles displays \( R_0 \) and \( R_n \) at \( V_g = 3.21 \ldots 3.33 \text{ V} \), respectively. The filled triangles denote \( R_0 \) at \( V_g = 5.98 \ldots 6.02 \text{ V} \). The solid curve is a power law fit with \( I_{cm} \propto R_0^{-1.35} \) while the dashed line represents \( I_{cm} \propto R_n^{-0.49} \). The dotted curve displays the phase-diffusion relation \( I_{cm} \propto R_0^{-1} \) valid at \( E_j \propto k_BT \). The inset displays the normal state conductance \( G_n = 1/R_n \) vs \( V_g \). The range of the superconducting IV curves in Fig. 1 (\( V_g = 3.214 \ldots 3.244 \text{ V} \) is indicated by the gray shading.

\[
I_{cm} = \frac{E_j}{4k_BT}I_0. \tag{2}
\]

Thus, independent of \( Z_{\text{env}} \), one expects \( I_{cm} \propto E_j^2 \) in the overdamped limit. From the maximum value of \( I_{cm} = 1.3 \text{ nA} \), we get \( E_j/k_BT = 90 \text{ mK} \) at \( T = 65 \text{ mK} \), which is at the limit of applicability of Eq. (2). Equation (1) yields \( R_0 \propto E_j^2 \) in the limit \( E_j \ll k_BT \). Therefore, using Eq. (2), we get \( I_{cm} \propto R_0^{-1} \), which is displayed as a dotted line in Fig. 2.

The Josephson energy for a long diffusive junction, without interaction effects, can be calculated from the equation [19,20]

\[
I_{0j} = \frac{32}{3 + 2\sqrt{2}} \frac{\epsilon_{\text{Th}}}{eR_n} \left( \frac{L}{L_T} \right)^3 \exp \left( -\frac{L}{L_T} \right), \tag{3}
\]

which is valid in the limit \( \Delta/\epsilon_{\text{Th}} \to \infty \) when \( T \approx 3\epsilon_{\text{Th}}/k_BT \) and where \( L_T = \sqrt{\hbar D/2\pi e k_BT} \) [21]. In S-N-S structures with tunnel barriers, perturbation analysis of the interacting case has shown that there are logarithmic corrections that reduce Josephson coupling [22], but this theory is not suitable for our case as the contacts have a high transparency. We also neglect resonance effects in our analysis, i.e., the contribution that might be related to Kondo effect.

By combining Eqs. (2) and (3), we obtain an analytical formula for \( I_{cm} \) that has only one fitting parameter, namely \( D \) (or \( L_T \) at certain \( T \)). In Fig. 3, we compare this formula with the measured temperature dependence of \( I_{cm} \). The solid curve in Fig. 3 is the result of the fit using \( L_T = \sqrt{80 \text{ mK}/T \times 188 \text{ nm}} \). This thermal length corresponds to \( D = 2.2 \times 10^{-3} \text{ m}^2/\text{s} \), yielding \( \epsilon_{\text{Th}} = 9.0 \text{ \mu eV} \) [23]. The discrepancy at the lowest temperatures may be an indication that Eq. (2) becomes invalid and numerical analysis based on the Ivanchenko-Zilberman theory should be done. Deviations at the lowest temperatures are also observed between the fit of Eq. (1) and the measured \( R_0 \) in Fig. 3.

![FIG. 3](Temperature dependence of \( I_{cm} \) (●) and \( R_0 \) (○) measured at \( V_g = 3.489 \text{ V} \). The solid curve is a fit obtained from Eqs. (2) and (3) using \( D = 2.2 \times 10^{-3} \text{ m}^2/\text{s} \), \( L = 0.4 \text{ \mu m} \), and \( R_n = 17 \text{ k\Ω} \). The dashed line displays \( R_0 \) calculated from Eq. (1) using \( Z_{\text{env}} = 400 \text{ \Ω} \) and \( E_j(T) \) from the above \( T \)-dependence fit.)
Superconductivity in a diffusive plasma-enhanced chemisorption on a set of transmission channels would yield an even though a description using the model of a long, diffusive \( S-NS \) contacts \([28]\) rather good agreement is obtained for Fig. 1 with the calculated \([7]\). In fact, when comparing the shape of the result, especially, from the Kondo resonance that is known small in our sample, it is possible that the subgap transport at small bias.

Order MAR processes and lead to inelastic processes enhance conductance due to higher order \( S-NS \) contacts and maximum supercurrent.

In summary, we have observed proximity-induced supercurrent peak near zero bias starts to develop before the first Andreev reflection process if governed by unrenormalized conductance due to higher order Andreev peaks. This seems to contradict with the scenario of Vecino et al. \([8]\) who argue that inelastic processes enhance conductance due to higher order MAR processes and lead to \( IV \) curves with hysteresis at small bias.

Since the number of transmission channels is rather small in our sample, it is possible that the subgap transport is basically dominated by one single channel. This might result, especially, from the Kondo resonance that is known to play a role in the conductance of good quality MWNTs \([7]\). In fact, when comparing the shape of the \( IV \) curves in Fig. 1 with the calculated \( IV \) curves for single-channel \( S-NS \) contacts \([28]\) rather good agreement is obtained for the range of transmissions \( \tau = 0.3 - 0.7 \). Therefore, even though a description using the model of a long, diffusive junction seems to work well, presumably an analysis based on a set of transmission channels would yield an even better agreement.

In summary, we have observed proximity-induced superconductivity in a diffusive plasma-enhanced chemical vapor deposition-grown MWNT. The Josephson coupling energy could be tuned by \( V_g \) via a change in the diffusion constant \( D \propto 1/R_g \). The model for long diffusive junctions was successfully employed for calculating the dependence of \( E_J \) on \( R_g \) and \( T \). The measured \( IV \) curves (the zero bias resistance \( R_0 \) and maximum supercurrent \( I_{cm} \)) could be understood using analysis based on classical phase diffusion, which leads to a decrease of \( I_{cm} \) as \( E_J^2 \). At \( T = 65 \text{ mK} \), the largest obtained Josephson coupling energy was 0.09 K.

We thank S. Iijima, A. Koshio, and M. Yudasaka for the carbon nanotube material. We wish to acknowledge fruitful discussions with D. Gunnarsson, T. Heikkilä, F. Hekking, P.-E. Lindelöf, M. Paalanen, B. Placais, C. Strunk, and A. Zaikin. This work was supported by the TULE programme of the Academy of Finland and by the EU Contract No. FP6-IST-021285-2.

FIG. 4 (color online). Conductance \( G \) vs bias voltage \( V \). Gate voltage \( V_g \) has been stepped over \( V_g = 3.323 \ldots 3.355 \text{ V} \) in steps of 2 mV. The dashed vertical lines indicate locations for the first Andreev reflection process if governed by unrenormalized \( \Delta_{\text{lead}}/e = 139 \mu \text{eV} \).

12. F. Wu et al., cond-mat/0606661.
13. These estimates are given for our regular two-lead sample with a number of channels \( N \sim 10 \). In our present sample, \( N \) depends strongly on the estimate of \( C_S \): using a two-lead capacitance for the middle section, \( C_S \sim 0.1 \text{ IF} \), we end up with \( N = 10 - 15 \) in the most investigated range of \( V_g = 3 - 6 \text{ V} \).
23. The values for \( D \) and \( \varepsilon_{\text{ph}} \) would be 10%–20% higher if one would employ a self-consistent numerical evaluation for the product \( I_{cm}R_g \). This has been neglected as the main error comes from the lowest order estimate for \( I_{cm} \).