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We study a fracture on a quasistatic time scale in a three-dimensional~3D! fuse network model with
‘‘strong’’ and ‘‘weak’’ disorder. These two cases differ noticeably in the development of the fracture. For
strong disorder the damage scaling is very close to volumelike@number of broken bondsNb;L3/(ln L)0.3]
unlike for weak disorder@Nb;L2.4/(ln L)0.3#. With strong disorder global load sharing is only approximately
valid. The size distribution of ‘‘avalanches’’ of broken fuses in the failure follows roughly a power-law
scaling. The power-law exponentt has a value close to 2, close to but differing from the exponent25/2
expected of global load sharing. For weak disordert is about 1.5 which means that the decay of the size
distribution is much slower than expected. These exponent values that characterize the development of damage
prior to catastrophic failure are comparable to experimental ones. For the final fracture surfaces we observe a
roughness exponentz'0.4 for weak disorder. For strong disorder, severe finite size effects are seen, but the
exponent seems to converge to the same value as for weak disorder, which is close to the one for the 3D
random bond Ising domain wall universality class.@S0163-1829~98!03642-X#

I. INTRODUCTION

In this work we study crack formation and roughness in
disordered, three-dimensional~3D! brittle solids under con-
ditions that correspond to slow crack growth. Slow growth
implies that the crack advances in such a way that the stress
fields always remain in equilibrium. The question of how
disorder affects failure has recently become popular since the
realization that crack surfaces allow fora posterioriconclu-
sions about the failure process. In particular, the observed
self-affine character of interfaces in fracture problems and
the possibility of connections to fracture toughness1 promise
even practical engineering applications.

In the fractal range, fracture surfaces have been demon-
strated to be self-affine over a range of length scales of sev-
eral orders of magnitude. Hence the scaling of roughnessr
~standard deviation of the crack profile in the direction per-
pendicular to crack plane! can be written asr;Lz. Both
dynamics and the strength of disorder may affect the crack
roughness scaling,2 as measured by the roughness exponent
z. One can also study the out-of-plane and in-plane expo-
nents separately during failure.3

The question that remains is why the roughness exponent
z attains its actual value. The experimental evidence at large
enough length scales~d@1 mm! exhibits a spectrum of
results4–8 centered aroundz50.8, but does not seem to be
universal, in contrast to early claims.4 The high value ofz
makes it difficult to formulate a theory which would exhibit
all the features that crack growth at large length scales and in
driven, dynamic conditions shows.9 At small scales and es-
pecially in the case of slow crack growth, such as, e.g., in

fatigue or in the beginning of notched failure tests, it is be-
lieved that cracks are in general smoother—the variation of
the surface in the perpendicular direction is smaller andz
measured in that region has a lower value. In this case the
role of dynamical effects such as crack bifurcation should be
minimal. The observed roughness is small and one experi-
mental exponent value is'0.45.8 At nanometer scales crack
roughness seems to be generally of the same order, e.g., for
graphite10 z50.43. For soda-lime silicate glass, the large and
small scale exponents arez50.87 andz50.4, respectively.11

Here we study adiabatic crack formation using the ran-
dom fuse network~RFN! model in which the stress field has
time to readjust completely after each microfracture. RFNs
consist of individual fuse elements, which in the brittle case
fail irreversibly when the local current exceeds a threshold
value. They allow for a generic description of disorder in the
material via the introduction of percolative disorder or local
failure threshold distributions.

Two-dimensional RFNs have been studied extensively in
the context of statistical mechanics of failure of brittle
materials.12 The breaking currentI b obeys for dilute lattices
in 2D the system size~L! scaling I b /L;1/Aln L,13 and the
same idea applies to the breaking potentialVb as well. With
random breaking limits, the conclusion from numerical data
is thatVb /L;const1O(1/L2) for a brittle fracture in suffi-
ciently large systems andVb /L;1/(lnL)0.8 for ‘‘ductile’’
fracture.14 The concept of ductility means that despite the
microscopic brittle fuse behavior the macroscopic response
becomes smooth and the global conductivity does not exhibit
a first order jump to zero from its macroscopic value in the
precrack regime.
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Damage, quantified by the total number of broken bonds
Nb , can be divided to crack-related damage and off-crack
path damage. For 2D systems the crack-related component
would typically be expected to scale linearly with system
size whereas the off-path damage may vary considerably.
Kahng et al.14 obtainedNb;L1const for brittle disorder
and Nb;L1.61L for ductile fracture. de Arcangeliset al.
have obtained scalingsNb;L0.9521.65 for various breaking
limit distributions before the system enters the so-called
catastrophic phase andNb;L1.71 for the total number of bro-
ken bonds.15 The catastrophic phase is defined as the region
of stress-strain curve beyond the maximum current along the
VI curve. For the 3D case, the scaling laws of damage and
failure current/voltage have been studied by Sahimi and
Arbabi16,17with a qualitatively similar picture emerging as in
2D.

The generation of damage and the nature of theVI curve
~analogous to the stress-strain curve! are related to the ques-
tion as to what happens in the absence of a dominating crack.
Once a propagating large crack has been formed it is natural
to expect the propagation to become ‘‘trivial,’’ that is, the
current needed to advance the crack should decrease. Also
the scaling of the damage in this phase should arise from
microfailures in the ‘‘fracture process zone,’’ an area around
the crack tip. How this zone behaves during crack growth
and in the presence of various kinds of disorder is nontrivial,
the mechanics of self-affine cracks being not understood very
well.18 The question is whether the concept of a well-defined
stress-intensity factor makes sense in the presence of fluctua-
tions close to the crack tip.

In contrast, in the early stages of crack growth the micro-
failure dynamics should be controlled by statistics—the dis-
tribution of local failure limits—and by global load sharing
since macroscopic crack growth is not dominant. It has re-
cently been claimed by Hansen and Hemmer19 and Zapperi
et al.20 that the 2D RFN can be mapped in a special~ductile!
case to a global load sharing fiber bundle model. The ob-
served ‘‘avalanches’’ or small-scale microfractures seem in
that case to obey similar statistics as fiber bundle models
with global load sharing, in which the process is exactly
solvable by a mapping to a random walk with drift.21 The
energy release accompanied by such avalanches is in prin-
ciple directly measurable with acoustic emission22 and thus
should make comparing theory and experiment possible.

The topology of cracks in RFN models has received little
attention. Hansen, Hinrichsen, and Roux obtained a rough-
ness exponentz'0.7 for various fuse failure threshold dis-
tributions for the 2D case.23 The question of crack roughness
in 2D and 3D has recently been reconsidered by Ra¨isänen
et al., the conclusion being that the roughness exponent of
2D RFN failure interfaces seems to be very close to 2/3.24

Thus 2D brittle failure is also in the directed polymer uni-
versality class, such as perfectly plastic yield interfaces,25 for
which z is via the KPZ equation known to be exactly 2/3.26

Note that for 111D there is some experimental evidence that
slow fracture surfaces scale with the expected exponent
2/3.27 It is natural to ask whether the analogy can be ex-
tended to three dimensions. The 3D counterpart of a directed
polymer is an Ising random bond domain wall. Numerical
studies with graph theoretical optimization methods have re-

produced the functional renormalization group prediction28,29

z50.4160.01.
Here we analyze the failure of the 3D random fuse net-

works both from the point of view of fracture dynamics, and
from the point of view of final fracture surfaces. The existing
few studies of three-dimensional lattice systems have con-
centrated either on generic size-scaling behavior in small
systems16,17 or on failure of two-component networks.30 Our
own data concerning the scaling of the surface roughness
with system size have been published in brief form
elsewhere.24 The computational model used is defined in
Sec. II. In Sec. III we discuss the development of cracks in
three dimensions and present some analytical estimates.
Next, in Sec. IV, we proceed by showing results about the
scaling of crack surfaces and of the scaling of various ther-
modynamical quantities~damage, voltage/current to failure,
etc.!. Section V ends the paper with a discussion of the re-
sults.

II. NUMERICAL MODEL

We employ an electrical analog of fracture in three di-
mensions to study fracture processes, namely, the random
fuse network in a cubic lattice. The external voltage is ap-
plied in the x direction, the lattice has periodic boundary
conditions in they direction and free ones in thez direction.
It is known that failure is more easily initiated near free
boundaries.31 This effect is caused by large surface currents.
Hence the choice of boundary conditions affects, e.g., the
scaling of roughness in different lateral directions, as will be
seen in Sec. IV. A domain decomposition parallel version of
the conjugate gradient method employing thePVM message
passing library32 has been used when running the code on a
Cray T3D parallel computer. We have also used a Cray C90
vector computer for smaller system sizes. The system sizes
used range from a linear size ofL54 to L548. The scaling
of the CPU time is approximatelytCPU;L5.6 for largest sys-
tem sizes in the parallel version, due to overhead introduced
by message passing between processors.

We use the constant probability distribution

P~ i c!5H 1

w
, i cPF12

w

2
,11

w

2 G ,
0, otherwise

for the failure thresholdsi c of individual fuses. The width of
the distributionw plays the role of adisorder control param-
eter. From studies of 2D random breaking limit RFNs it is
known that the phase diagram of fracture should have three
generic regimes as a function ofw. For very small values the
failure is ‘‘trivial’’ with a single crack nucleation event being
sufficient to bring about the fatal crack.14 At larger values of
w, there is a nucleation phase ending in catastrophic crack
formation. For large enough systems this leads to a trivial
size scaling for the damage (Nb.L). With both a distribu-
tion extending down to zero (w52) and atw,2 in small
enough systems a ductile phase exists having a nontrivial
size scaling inNb . The same kind of argument can be ex-
pected to hold also in three dimensions~the trivial scaling
beingL2, naturally!, although it is unknown how exactly the
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lesser crack tip current enhancement and the larger number
of neighboring potentially weak bonds balance each other as
discussed in the next section.

III. GROWTH OF CRACKS IN 3D

A. Simple stability analysis

Fracture in two dimensions has usually been discussed
using Lifshitz arguments, i.e., the concept of most critical
defects.13 The scaling properties of failure are then deter-
mined by the existence and formation of large defects for
dilution-type disorder and failure threshold disorder, respec-
tively. In two dimensions linear cracks are obvious candidate
shapes, though the most critical defect geometry in 2D sys-
tems may be nontrivial.33 The three-dimensional cubic lattice
geometry allows for more complicated crack geometries than
a planar square one. In 3D cubic lattices, the current en-
hancement near broken fuses is smaller than in 2D square
lattices.13 For neighbors of a single broken fuse we have
a2D5p/4'1.273 anda3D'1.093. Therefore it can be ex-
pected that the amount of disorder required to cause a tran-
sition from a brittle fracture mode driven by local current
enhancements to a ductile one is smaller in 3D. Another
topological difference is that for an ensemble of ruptured
fuses in an otherwise undamaged and homogeneous lattice, a
round shape is preferred over a linear one~Fig. 1!. This
tendency can be viewed as a minimization of the interface of
the crack area with intact fuses, or ‘‘surface tension.’’ This
‘‘penny-shaped’’ form is the most critical one in three di-
mensions, and has been used as a starting point in theoretical
analyses in classical fracture mechanics.34

In the following, we present a three-dimensional version
of the unstable crack analysis of Kahnget al. for 2D random
breaking limit models.14 One goal is to calculate the size-
dependent limiting widthwc of the breaking limit distribu-
tion, below which the rupture mode is trivially brittle. An-
other aim is to try to obtain finite size scaling of the number
of broken bonds required for the system to arrive at the cata-
strophic fracture phaseNc . The Kahng argument is based on
the question: if a fuse fails, when does it automatically burn
the nearest neighbor assuming that the current enhancement
is the same as in the dilute damage limit?

In 3D there are roughly 3L3 fuses per system, and four
neighbors in the lateral direction for each burnt fuse. The 3D

current enhancement factor isa'1.09. The argumentation
goes as follows. Let us denote withv2 (v1) the lower~up-
per! bound of the breaking limit distribution, i.e., e.g.,v2

512w/2. Let one assume that the breaking thresholds of
single fuses are, on the average, evenly distributed in the
range @v2 ,v1#. Then the breaking threshold of thenth
weakest bond is given by

^vweakest~n!&5v21nw/L3. ~1!

Notice thatv2.0 makes the thermodynamic strength non-
zero, unlike in cases with dilution disorder or aP( i c) extend-
ing down to zero. Similarly, one may deduce that the average
threshold for the fuses surrounding thenth weakest one is
given by

^vedge~n!&5v21w/~4n11!.

By equatinga^vweakest(n)& and ^vedge(n)&, one may de-
ducen, the number of fuses breaking as a consequence of
current enhancement. For the casewc,w and
22w@O(1/L3/2) one may assume that the second term in
Eq. ~1! is negligible whereby the calculation gives for the
damageNc the finite, size-independent value

Nc~w,2!'
w

4v2
F a11

2~a21!
2

1

wG . ~2!

For the strong disorder limit (w→2), the quantityv2→0
and the result is

Nc~w52!'L3/2/A2a. ~3!

The second approach is to ask how much failure can be
accumulated in random, isolated fuse failures before these
form cracks of sizea.1. Burnings of fuses are considered to
be independent, unless the fuses are adjacent in the direction
perpendicular to the external voltage. For the number of sta-
tistically independent broken bondsNindep one arrives with
this assumption fora52 at the result

Nindep;L3/2. ~4!

The analysis hence results in a bound for the limiting width
of the breaking limit distribution separating the brittle and
ductile phaseswc(L);22O(1/L3/2) asL→`. The expecta-
tion is that the breaking mode is brittle~rapid crack growth!
for disorder parameter valuesw,2 at the limit L→`. Of
course, the simplistic arguments are not complete: the stabil-
ity argument is based on the assumption that the formation of
larger cracks is immediately fatal and long-range interactions
such as screening do not play any role. In Sec. III C we
compare the predictions of the analysis presented here with
the numerical data. We shall see that for the case of weak
disorder they are valid up to the beginning of the cata-
strophic phase.

B. Formation of final cracks

Two examples of fracture surfaces are seen in Fig. 2 for
low (w51) and high (w52) disorder. Diffuse damage—
i.e., microfracture not belonging to the final fracture
surface—is not shown. Thew51 case apparently corre-
sponds to current enhancement controlled fracture for most

FIG. 1. The figure is a view of bonds in a cubic lattice perpen-
dicular to the applied external voltage. The solid circles represent
burnt fuses and those drawn in dashed line represent candidates of
fuses to be burned next. In the fuse labeled A, the current enhance-
ment is largest of all the neighboring fuses, 1.33, whereas, e.g., in B
it is only 1.17.
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of the process. In contrast, strong disorder dominates so that
instead of a few major cracks the final fracture surface is
formed out of a coalescence of a large number of microc-
racks. Note the total damage accumulated in both cases.

The onset of the catastrophic stage in the weak disorder
case is characterized by strong localization of damage in the
final fracture surface. The current enhancement created by
the dominating large crack is sufficient to drive the crack
further and overcome other competing cracks. A comparison
of the weak and strong disorder cases is shown in Fig. 3,
which displays the cumulative percentage of damage belong-
ing to the macroscopic rupture zone. The percentage of burnt
fuses belonging to the final fracture surface at any given
moment can be viewed as anorder parameter, a measure for
the localization of the crack. The quantity plotted in Fig. 3 is
an integral of this order parameter. The figure demonstrates
that localization takes place for both values ofw.

For weak disorder, the localization typically begins at the
point where approximately 50% of the fuses eventually to be
burnt have already done so and leads to around half of rup-
ture events being centered in the fracture zone. Forw52, the
~quite weak! localization takes place only after 80% of the
eventual damage has taken place, except forL58, where the
localization seems to increase smoothly. For both weak and
strong disorder, relatively large fractions of bonds belong to
the final fracture surface. Based on this tendency showing up
so frequently in both of the curves, quite often the final crack
surface seems to be formed at the location where many of the
first rupture events have taken place.

Next we study the fractions of burnt fuses belonging to
the fracture surfacey at the moment of macroscopic break-
down. The scaling of this quantity is approximatelyy

;L20.6 for strong disorder. If one assumes that the damage
not belonging to the final fracture surface is almost percola-
tionlike ~say, scaling asL32e), one obtains an estimate for
the fractal dimensionD f of the final fracture surface, namely,

y5
LD f

L32e
5L20.6, ~5!

from which one obtainsD f52.42e. It will be seen later that
the scaling of the number of broken bonds isL2.9 for w52,
which would yielde50.1 andD f52.3. As discussed below,
this is roughly in line with the roughness exponent obtained
directly from the simulations. To summarize, Fig. 3 shows
how for low disorder a single crack outperforms all the rivals
and leads to current enhancement driven failure. With strong
disorder, rupture proceeds with small cracks merging into
larger ones all over the system.

C. Crack dynamics

Next we turn to the dynamics of fracture. Cumulative
counts of burnt fuses as a function of external voltage~an

FIG. 2. Two examples of the fracture surfaces in a 3D random
fuse network. Only broken fuses belonging to the final fracture
surfaces are plotted. Left,w51; right: w52. System size is 163,
and the total number of broken bonds in thew51 case is 283 and
in the w52 case 2014.

FIG. 3. Percentage of burnt fuses in the final fracture surface as
a function of the number of broken bonds. The latter quantity has
been scaled with the total number of broken bonds. Left,w51
~solid line: L516, dashed line:L540); right, w52 ~solid line: L
58, dashed line:L516, dotted line:L528). Each of the curves is
an average over five individual runs. Please note the different sys-
tem sizes used in the two cases.
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example shown in Fig. 4! demonstrate that in thew51 case
a certain number of burnt fusesNcat is required to bring the
system to the catastrophic rupture regime after the first rup-
ture event. This number is on the average close to 50% of the
total number of broken bonds, a fact which is compatible
with Fig. 3.

One of the central questions in the failure of fuse net-
works is when is the current enhancement close to microc-
racks important? Democratic load sharing fiber bundle mod-
els present a paradigm in which the local stress of an element
is only dependent on the global damage, and thus the micro-
scopic ‘‘avalanches’’ or microfracture events of several con-
currently failing elements can be analyzed exactly.21 For 2D
fuse networks it has been shown recently that the global/
democratic load sharing~GLS! principle may be applicable
for strong disorder.19,20 Questions still remain about the va-
lidity of the picture as fuse networks have size-dependent
strength scaling laws.

The Zapperiet al. results20 for thew52 case show, simi-
larly to the GLS fiber bundles, a power-law decayn25/2 (t
55/2) for the avalanche distribution~integrated over the
whole fracture process as in the case of fiber bundles!. Figure
5 shows the corresponding distribution for weak and strong
disorder for our 3D RFN’s for two large system sizes (L
540 for weak,L528 for strong disorder!. The data has been
coarse grained by logarithmic binning into 10 bins for both
cases. We find that the exponent~which should not be di-
mension dependent, if the GLS picture is correct! is roughly
t'2.0 for w52, ignoring the high-end tail of the distribu-
tion. The tail exhibits strong fluctuations, and one should
recall that the eventual failure of the mean-field model close
to the point of catastrophic failure should be visible in ex-
actly such a way. Note that one can study either current-
driven or voltage-driven avalanches. In our case the expo-
nent seems to be independent of the ensemble.

For w51 the effective exponent is even smaller,t'1.5.
This would seem surprising, as larger cracks tend to be
formed because of local stress enhancements. Thus one
would expect a sharp decay of the avalanche distribution for
large sizes as such ones would be equivalent to immediate
catastrophic failure, and very rare. Simulations of fiber

bundle models with local load sharing—failed fibers transfer
their load to nearest neighbors—lead to much higher~but
only effective! avalanche size exponents,t.4.19,38 There
is—at least to our knowledge—no theory that would be ap-
plicable to such precursor statistics with both global load
sharing and local current enhancement effects. A future idea
would be to consider the variation oft with system size and
the correlation lengths of avalanches with disorder. Both the
exponents extracted from the avalanche statistics are of the
same order as those measured by Garcimartinet al. for
acoustic emission in mode I failure of 3D media.22

For the weak disorder case, the scaling ofNcat with sys-
tem size is quite close toL2 ~Fig. 6!. The prediction of Eqs.
~3! and~4! for the ending of the noncorrelated phase appears
to be too low for all system sizes simulated. The prediction
given by the independent fuse burning picture for the rupture
potential of thenth fuse,vn'v21nw/L3, holds quite well
in 3D up to the catastrophic phase. The number of broken
bonds as a function of voltage per fusen(vn) grows in the
simulations slightly faster than the prediction forw51 and
slightly slower than the one forw52. This is an indication
that current enhancement plays a smaller role in 3D than in
2D when disorder is weak and also shows the trivial fact that

FIG. 4. Cumulative count of the burnt fuses as a function of the
external voltage forw51. Single simulation result; system size is
163.

FIG. 5. Avalanche size distributions forw51, L540 ~dia-
monds! and w52, L528 (1). Solid line: t851.5, dashed line:
t52. The lines are only guides to the eye.

FIG. 6. Number of broken bonds before the catastrophic failure,
for the weak disorder case. The lineL2 is only a guide to the eye.
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the strong disorder case involves also stronger screening ef-
fects. Note that the picture of independent failure events is
expected to be true only for the first part of theVI curve; the
subsequent processes up to global failure are a different
story.

In summary, the scaling of avalanche sizes in 3D appears
to obey power laws but with smaller exponents than sug-
gested previously on the basis of mean field-type global load
sharing theory.19,20 This result is in qualitative agreement
with experimental evidence but cannot be explained with any
of the known results from different models of load sharing in
a system of elastic components in parallel. The approach
based on the stability of cracks,14 was found to give too low
a value for finite size scaling of the beginning of the ‘‘cata-
strophic’’ phase of rupture. Before the catastrophic phase,
not surprisingly, the assumption of uncorrelatedness of dam-
age was found good.

IV. SCALING OF FRACTURE

A. Thermodynamical quantities

We discuss first the scaling of the breaking potential using
the quantityv15V1 /L, the voltage corresponding to the first
fracture event in the system andvb5Vb /L, the actual break-
ing potential of the system in relation to the voltage corre-
sponding to the lower limit of the breaking limit distribution
v2 . The Kahng-type argumentation for the breaking poten-
tial Vb predicts that the system is always brittle in the ther-
modynamic limit, if w,2. For bothw51 and w52, the
scaling can be fitted with the formVb;L/( ln L)g, with g
50.3 ~Fig. 7!. For strong disorder, this form applies for sys-
tem sizesL.10. In the 2D case, a similar ansatz yieldsg
'0.8,14 and is applicable for strong disorder only. Sahimi
and Arbabi find their force-displacement dataF(U) for three
dimensions best collapsed with a trial function of the form17

F;@LV1/(ln L)c#h(U/LV1), with c50.2, which is thus com-
parable to ours. The 3D numerical results correspond to the
effective current enhancement being smaller than expected
on analogy from two dimensions. The scaling of the maxi-
mum current which the system can sustain in both cases is
approximately trivial, i.e., it is comparable to the cross-
sectional areaL2.0.

The total number of broken bonds as a function of system
size is close to a trivial fracture mode forw51
@Nb;L2.4/(ln L)0.3# and almost volumelike forw52 ~Fig.
8!. The results for strong disorder are in particular consistent
with a power-law scaling times a logarithmic correction, i.e.,

Nb;
L3

~ ln L !0.3
. ~6!

This is in accord with the scaling of the rupture potential,
exactly as one would expect to be the case at the thermody-
namical limit. The earlier 2D results forw50.7–1.0 show a
trivial scaling Nb;L1const forw51.2 and ‘‘ductile’’ one
Nb;L1L1.6 for w51.5. The scaling of broken bonds in the
limit of strong disorder agrees with the mean field picture
that one gets by integratingP( i c) up to aL-dependent cutoff
scale. The cutoff scale is consistent with a ‘‘critical defect’’
-type-like fracture point scaling. Straightforward power law
fits nb;La result in the exponentsa52.25 anda52.95 for
weak and strong disorder, respectively. The logarithmic cor-
rection, however, seems to fit the data better and is consistent
with theVb scaling as well. Note finally the fact thatnb does
not scale exactly with the system volume is also related to
that the avalanche size exponentt differs from the global
load sharing one.

Finally we comment on the compatibility of the scaling of
the number of broken bonds with that ofVb and I b in the
brittle case. In Sec. III C it was shown that the number of
broken bonds before catastrophic failure scales approxi-
mately with the cross section of the system,Ncat;L2. Since
nb increases faster withL this indicates that the damage ac-
cumulated in catastrophic crack propagation is nontrivial
~faster thanL2).

B. Crack surface roughness

We measure the roughness of a rupture surface, possible
overhangs excluded, using the ordinary definition, i.e., the
average width of the interface

FIG. 7. The maximum voltage in the brittle case with the scaling
Vb /L;1/(ln L)0.3 shown with a line.

FIG. 8. The scaling of the total damage measured with average
of the number of bonds broken during failure as a function ofw.
Upper dataset:w52; lower one,w51. The highest line indicates
volumelike behavior (;L3) and the lowest one the trivial limit
(;L2). The line drawn throughw52 data represents anb

;L3/(ln L)0.3 scaling.
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r 5A^h2&x2^h&x
2, ~7!

where^ &x signifies averaging over spatial coordinates~here:
perpendicular directions!. The scaling of roughness as a
function of the system size is measured with the exponentz,
i.e., r;Lz. A change in the exponent is seen atw51 with
small enough system sizes, which is most probably due to
finite size effects. To correct for this, we compute ‘‘win-
dowed’’ roughness, taking samples of sizeL3L of systems
of size M3M with M>2L. The sampling is performed in
two ways, namely, by taking samples only of the middle of
the system in the first case and averaging over many samples
of each system in the second.

The results of this averaging are seen in Fig. 9, where it
can be observed that the anomalous scaling of roughness at
small system sizes disappears with the sampling method. For
w52, the ‘‘raw’’ data yield an exponentz'0.7 ~in agree-
ment with theD f argument presented in Sec. III B!, whereas
the exponent obtained with sampling is consistent with mini-
mum energy surface roughness. The difference between the
two sampling techniques is due to boundary effects, a fact
which will be illustrated below.

The distribution of roughness valuesP(r ) is not Gauss-
ian, but has a tail extending towards large values. Hence
normal symmetric error bars do not give a correct description
of the variability of roughness. It turns out that with the
sampling method, this asymmetry is amplified in the sense
that when samples are taken from a larger system, the aver-
age roughness can be larger than the sample size. Of course,
this does not occur in direct simulations. These undulations
cause the averaged roughness of the samples to differ from
the most frequent value of roughness in thePsampled(r ).

To analyze the effect of anisotropic boundary conditions,
we have measured the height-height correlations

C~ l !5A^@h~x!2h~x8!#2&x,x8, ux2x8u5 l ~8!

of the surface in both directions perpendicular to the external
voltage. It can be shown35 thatC( l ); l z. The results display
differences between the periodic and free directions, as could

be expected.C( l ) for weak disorder data yields approxi-
mately 0.460.1 for the scaling exponent ofC( l ). The use of
height-height correlation functions in measuring the value of
the roughness exponentz at short distances@O(10)# can be
questioned, butC( l ) can be viewed as a means of possible
differentiation between the two directions even if it does not
give the value ofz precisely.

The roughness results obtained by measuring directly the
width of the rupture interface and calculating the height-
height correlation functions show that the roughness expo-
nent may be universal.24 That is,z would attain its random
bond Ising value of 0.41 after initial finite size crossover
effects. According to the results of Hansenet al. the scaling
of fracture quantities in two dimensions does not depend on
the breaking threshold distribution, as long as there are no
excessively strong bonds.36 If very strong bonds exist, they
can trap a propagating crack, given that their volume fraction
is large enough. Assuming that the universality of the scaling
of fracture quantities also applies to 3D, the possible univer-
sality of roughness exponents would extend also to distribu-
tions different from the constant one used by us. This would
also be the expectation based on the analogy with directed
polymers in random media. In that case, for the scaling ex-
ponents to differ from the usual ones, the energy distribu-
tions should, e.g., have anomalous tails for large values.

V. DISCUSSION

We have presented results for a three-dimensional random
fuse network model concerning the effect of disorder on the
brittle and ductile fracture modes. The rupture of the system
has been studied for two values of the strength of disorder
and several system sizes and compared with analytical argu-
ments. Comparisons were also made with earlier numerical
results.

The increasing concentration of damage in the final frac-
ture crack for weak disorder indicates that fracture is gov-
erned by a small number of relatively large cracks. When
disorder is strong, the final rupture surface is formed by an
amalgam of a large number of ‘‘microcracks.’’ However, the
‘‘avalanche’’ distribution of microcrack sizes does not fol-
low a mean field picture of global load sharing. The power-
law exponent for strong disorder, for which one could expect
such behavior, is distinctly different from the analytical21

value 5/2, about 2. This, combined with the damage scaling
exponent~effective exponent close to 3!, shows most likely
that even the dynamics of the strong disorder case is gov-
erned by stress-enhancement effects in the final stages of
rupture. For weak disorder we obtain an effective exponent
whose value is unexpectedly still lower, about 1.5. It would
be interesting to try to relate the apparent load sharing with
the failure statistics. This has been recently attempted for
more realistic fiber bundle models. The net outcome seems
to be that the failure probability of large systems seems to be
determined at a mesoscopic length scale, but with democratic
load sharing at that level.37

The smaller current enhancement causes the three-
dimensional system to be ‘‘less brittle’’ than its 2D counter-
part at the same disorder level. This effect shows in the scal-
ing of the number of broken bonds being further from the
trivial fracture in 3D than in 2D. Also, the brittle case yields

FIG. 9. Roughness of rupture interfaces@as defined in Eq.~7!#
as a function of system size. Upper dataset:w52, lower one:w
51. 3 and L: raw data;n, 1, h: sampling; upper dashed line:
z50.3; lower dashed line:z50.42. The lines are only guides to the
eye.
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the scalingVb;L/( ln L)x for the breaking potential, withx
50.3. This scaling applies also to the strong disorder data for
system sizesL.10. The macroscopic fracture points are re-
flected in the damage accumulated, in spite of the fact that
thew52-case has arbitrarily weak fuses36 and could perhaps
be expected to result in an algebraic scaling.

Our numerical data show that the finite size of the system
affects the roughness results, as expected. After all the attain-
able system sizes are limited indeed, to say nothing about
ranges in which continuum mechanics would be valid. Thus
the scalings of crack surfaces of random fuse networks
should be considered with a grain of salt. Nevertheless there
is evidence of algebraic roughness, withz being close to the
minimum energy surface value 0.41. In comparing our re-
sults with experimental data, we note that no initial notch for
initiation of crack growth was used in our simulations. In our

case, the fracture nucleates from weak regions in the system.
Finally, any analytical description of the actual dynamics of
crack growth as well as a rigorous derivation for the rough-
ness of fracture surfaces is still lacking both in two and three
dimensions for slow, adiabatic crack growth processes.
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