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A superconductor-normal metal-superconductor mesoscopic Josephson junction has been realized in
which the critical current is tuned through normal current injection using a symmetric electron
cooler directly connected to the weak link. Both enhancement of the critical current by more than

a factor of two, and supercurrent suppression have been achieved by varying the cooler bias.
Furthermore, this transistor-like device demonstrates large current(g&lf) and low power
dissipation. ©2004 American Institute of Physic§DOI: 10.1063/1.1756192

Transport dynamics in mesoscopic structures where norR;=240() to two 60-nm-thick Al reservoirs, thus realizing
mal metals(N) are coupled with superconductofS) are  a SINIS cooler. The Josephson junction instead consists of an
currently the focus of extensive reseatchThis stems AI/Cu/Al SNS weak link (with normal-state resistance
mainly from the relevance these systems have both from th&,=11.5(), whoseN region is shared with the SINIS line.
fundamental physics point of view and in light of their pos- The minimum interelectrode separation in the SNS junction
sible exploitation in nanoelectronics. In diffusive SNS junc-of the present device is;=0.4 um. The structure was fab-
tions, where the length of the region exceeds the elastic ricated on a thermally oxidized Si substrate by electron beam
mean free path, coherent sequential Andreev scatfetieg  lithography and three-angle shadow-mask evaporation. The
tween the superconductors may lead to a continuum speelectrical characterization was performed at different bath
trum of resonant levetsresponsible for carrying the super- temperatures down to 70 mK in a dilution refrigerator. From
current flow through the structure. The Josephson current i®w-temperature resistance measurements we deduced the
given by supercurrent spectrum weighted by the occupatio€u diffusion coefficienD~10 cnt/s. This low value oD
number of correlated electron-hole pairs that is determineds probably caused by significant intermixing of the materials
by the quasiparticle energy distribution in tNeregion of the  at the NS interface leading to the strong reduction of the
junction. By changing the latter through current injectionelectron mean free path in the weak link. The Al energy gap,
from additionalnonsuperconductingerminals connected to A=169 weV, was inferred from the low-temperature
the N regiorf both supercurrent suppressiaas well as its  current—voltage characteristic of the SINIS lisee Fig. 4.
sign reversalz-transition) were demonstrat€tiAs predicted  The coherence lengtliy=%AD/A~62 nm is then much
in Refs. 7 and 8, the distinctive quasiparticle distributionsmaller thanL;, providing the frame of théong junction
existing in theN region of a biased SINIS structuterherel regime.
stands for an insulating barrjeis also well suited to control The experiment consists of sweeping thg current
the Josephson coupling in a long SNS weak link, allowingacross the SNS junction while measuring its differential re-
either large supercurre@nhancemenor efficient suppres-
sion with respect to equilibrium.

In this letter, we present the implementation and charac-
terization of a four-terminal superconducting struct(see
Fig. 1) consisting of a SNS mesoscopic junction integrated
with a SINIS electron cooler. A similar device was consid-
ered but not successfully operated in Ref. 7. In this transistor,
the maximum supercurrent flowing in the SNS junction is
controlled by voltage biasing the SINIS line whdseaegion 2
is shared with the Josephson junction. Low temperature 24 .../ §
transport measurements show enhancement of the critica NIS cooler
current under hot quasiparticle extraction by more than a junctions
factor of two with respect to equilibrium. In addition this
device demonstrates low power dissipation and large curren V.

; SINIS | |7
gain. ) ) _ ) AI \A/

The sample(shown in Fig. 1 consists of a Cu island,

0.37 um wide and 30 nm thick, symmetrically connected atrig. 1. scanning electron micrograph of a typical structure including a

its ends via insulating barriersvith normal-state resistance sketch of the measurement circuit. Two superconducting Al electrodes are
connected through insulating barriers to a Cu island to realize a symmetric
SINIS electron cooler. The supercurréptn the AI/Cu/Al junction is tuned
dElectronic mail: savin@boojum.hut.fl upon voltage biasing the SINIS control line.
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51 A 3_ 00 characteristicgb) of the SNS junction al =72 mK
§ 3 % for differentVg s values(all curves are offset for clar-
% R o4 ~q -0.1 ity): 1-0, 2—-194uV, 3—-300uV, 4—-342uV, 5-355uV,
02 6—938 uV. Curves in(b) were obtained by numerical
- 17 ’ integration of the corresponding ones(aj.
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sistancedV/d| at different values of voltage biad/§ns) smaller thariT .-’ At low temperaturdi.e., kg Tpar<A), in
across the SINIS control line. Figurga® shows a subset of a long SNS junction), is predicted to decrease exponen-
dV/dI vs |l gyg Characteristics measured at the bath temperatially as T, increase¥ in the regime wherekgT > Eqy,
ture Tpay=72 MK for severaVgys. The curves display a =#D/L3. Thus, upon biasing the SINIS ling, will be
nonhysteretic behavior characteristic for overdampedhanged with respect to equilibriuthe., atVgs=0), due
junctions? In the case of a SNS weak link the effect of to the modification ofT, that now differs fromT ..
thermal fluctuations on the smearing of the voltage—current In Fig. 3(@) we plot the extractedl; values as a function
characteristic is strong€rthan predicted by the model for of Vgys at three different bath temperatures. For all dis-
resistively shunted junctioH. We have chosen to define the played temperatures, the critical current increases monotoni-
experimental critical current as the current where the differcally up to abou¥/ g\ s=1.8A/e as expected from the reduc-
ential resistance reaché@gy/2.12 Notably, upon increasing tion of Te by cooling. Then, further increase of bias voltage
Vginis: the current range where the differential resistancedeads to an efficient supercurrent suppression due to electron
vanishes widens initially, thus reflecting an enhancement ofieating. The equilibrium critical currefite., atVg;ys=0) vs
l;, being maximized at a voltage correspondingM@nis Ty is displayed in Fig. ). The |; behavior follows a
=300 uV=1.8A/e"*[curve labeled as 3 in Fig(@]; then,  characteristic trend, decreasing upon rising the temperature,
further increase of bias leads to a monotonic decay and to lput it differs from the temperature dependence predicted by
complete suppression ¢f at larger voltagegcurve labeled  quasiclassical Green-function thedrfhe discrepancy can
as 6 in Fig. 2a)]. This nonmonotonic behavior is seen in the pe ascribed to the uncertainty in the determination of the
correspondind—V curves in Fig. 2b). actual values of critical current, relatively narrow tempera-
The observed behavior is due to the relation existingyre range where it was observed and thermal decoupling
between the observable maximum supercurignand the  petween electrons and bath at temperatures below 200 mK.
quasiparticle energy distribution in the weak link. In the n Fig. 3, we show the expected critical current dependence
present experimental situation of lardesys, inelastic  on v, s at Tp.=283 MK obtained from the solution of
electron—electron relaxation forces the electron system to re=qs (1) and(2) to determine the effective electron tempera-
tain a local thermalquasjequilibrium. As a consequence, re T, upon biasing the SINIS line, and assuming a linear
the quasiparticle energy distribution can be described with ahavior of the critical current, vs T, below about 350 mK,
Fermi-Dirac function at areffectiveelectron temperature ¢ gjope of the linear dependence being inferred from the
Te. The temperaturd’, is determined by the balance be- meaqured (T,.). For this calculation, we assumed the al-
tween two heat flows: ready given parameters for the SINIS line afid=1.8
P(Vsis, Tes Thath) + Pe—batd Te» Thath) =O. (1) x 10 3A estimated from the ratiq=I/A) of the low-

_ temperature SINIS conductance at low and high blaghe
The first term accounts for the net heat curr@rttansferred

from the N island to the superconductors upon biasing the

SINIS line!® v
b
020l @ S 1 \\i ) lo.20
2 (= ~ ~ @8 5
P | BB T~ o E T ECE, S R L N loss
e Ry J-= _ 000090 ‘il-f‘, ° =
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whereE=E—eVgnd2, fo(E,T) is the Fermi—Dirac distri- f‘; Dl 9asa “,‘f:.' ° T ? 1918 o
bution function and"l(E)=|Re[(E+iF)/\/(_E+iI‘)2—A2]| is 0.05 -"'01.: . '_IL 1 % loos
the (smeared by nonzerb) BCS density of states of the A P | !
superconductol? Equation(2) is symmetric inVgys, being 0.00f = -TZ=I283 mk A-f’..-. . . & {000
maximized slightly below2A/e|. The second term accounts 0.0 0.2 04 00 02 04
for energy transfer from electrons to the phonons of the nor- Vs (MVY) T oK)

mal island at the temperatuiB,,, and is equal t0Pe_ path N .

_ EV(TS— Tg t9’16 whereV is the volume of theN island FIG. 3. (a) CrlFlcal cu_r_rer_ltlJ vs control voltage/gy s at three different bath
e a e -3 A3 . temperatures(b) equilibrium supercurrent\(gs=0) vs bath temperature.

andX~2 n\_NK pm-* for coppe .~ The temperatur@, in Dashed line in(a) represents curve ohtained from enerqy balance(FEx.

the weak link thus strongly depends ;i and can be and the linear approximation §(T ) Shown in(b).
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0.2 03 Veuws(MV] 0.4 107 tal result shows the potential of a SINIS line as a basis of a
] promising class of mesoscopic transistors with high current
. o ] 10° gain.
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