
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Marko Rasa

Instrumentation of OpenMP task
scheduling

Master’s Thesis
Espoo, April 27, 2015

Supervisor: Assoc. Prof. Keijo Heljanko
Instructor: D.Sc.(Tech.) Vesa Hirvisalo

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Marko Rasa

Title:
Instrumentation of OpenMP task scheduling

Date: April 27, 2015 Pages: 58

Major: Software Technology Code: T-110

Supervisor: Assoc. Prof. Keijo Heljanko

Instructor: D.Sc.(Tech.) Vesa Hirvisalo

Parallel computing models, such as tasking, are increasingly important as the
modern processors are scaled mostly by adding processor cores instead of in-
creasing clock speed. Scheduling the tasks requires computational resources and
can be implemented with either software or hardware.

The goal of the thesis has been to develop a measurement system that is able
to yield the basic tasking performance metrics of parallel program execution.
The main challenge in developing such system is the overhead caused by the
measuring, especially when tasks are extremely fine grained. An additional aim
for the thesis has been understanding the scheduling properties of OpenMP task
parallelism model.

We selected version 4.9 of the GCC compiler and its runtime (GOMP) as the
concrete target of our study. The parts of the OpenMP 4.0 specification that
are essential for the study are implemented by the compiler. The task scheduling
operates by assigning tasks to worker threads. In doing so, it handles dependence
structures and task queues, which require synchronisation to ensure correct op-
eration. The studied GOMP implementation uses locking for that purpose.

We designed and implemented a measuring system using software performance
counters by instrumenting the runtime system (GOMP) and hardware counters by
calling PAPI (Performance Application Programming Interface) functions inside
the runtime system. We tested the measurement system by implementing a task
parallel version of AES (Advanced Encryption Standard), which yields small
granularity tasks. In our tests we observed parallel scaling up to four threads, at
which point lock congestion rose rapidly.

To understand the performance of our measurement systems, we compared the
performance of instrumented and non-instrumented versions of the runtime sys-
tem. The developed measurement system yields low overhead.

Keywords: Parallel, Task parallelism, Runtime system, Measuring,
OpenMP

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Marko Rasa

Työn nimi:
OpenMP tehtävävuoronnuksen instrumentointi

Päiväys: 27. huhtikuuta 2015 Sivumäärä: 58

Pääaine: Ohjelmistotekniikka Koodi: T-110

Valvoja: Professori Keijo Heljanko

Ohjaaja: TkT Vesa Hirvisalo

Rinnakkaislaskentamallit, kuten tehtävärinnakkaisuus, ovat yhä tärkeämpiä mod-
ernien suorittimien skaalautuessa enimmäkseen suoritinytimien lisäämisellä kel-
lotaajuuden kasvattamisen sijaan. Tehtävien vuoronnus vaatii laskentaresursseja
ja voidaan toteuttaa joko ohjelmistolla tai laitteistolla.

Tämän työn tavoite on ollut kehittää mittausjärjestelmä, joka antaa perus-
mittareita tehtävärinnakkaisuuden tehokkuudesta. Päähaaste järjestelmän ke-
hittämisessä on mittauksen aiheuttama kuormitus, erityisesti kun tehtävät ovat
erittäin hienojakoisia. Lisätavoite työlle on ollut ymmärtää vuoronnuksen omi-
naisuuksia OpenMP:n tehtävärinnakkaismallissa.

Valitsimme version 4.9 GCC kääntäjästä ja sen ajonaikaisen järjestelmän
(GOMP) konkreettiseksi kohteeksi tutkimukselle. Kääntäjä toteuttaa työlle oleel-
liset osat OpenMP 4.0 määritelmästä. Tehtävien vuoronnus toimii jakamalla
tehtäviä työsäikeille. Tämän mahdollistamiseksi sen täytyy käsitellä riippuvu-
usrakenteita ja tehtäväjonoja, jotka vaativat koordinointia. Tutkittu GOMP to-
teutus käyttää lukkoja tähän tarkoitukseen.

Suunnittelimme ja toteutimme mittausjärjestelmän käyttämällä ohjelmistote-
hokkuuslaskureita instrumentoimalla ajonaikaisen järjestelmän (GOMP) ja lait-
teistotehokkuuslaskureita kutsumalla PAPI (Performance Application Program-
ming Interface) funktioita ajonaikaisen järjestelmän sisällä. Testasimme mit-
tausjärjestelmän toteutteuttamalla tehtävärinnakkaisen version AES:stä (Ad-
vanced Encryption Standard), joka tuottaa pienijakoisia tehtäviä. Testeissä
havaitsimme rinnakkaista skaalautumista neljään säikeeseen asti, jonka jälkeen
lukon ruuhkautuminen kasvoi nopeasti.

Mittausjärjestelmämme suorituskyvyn ymmärtämiseksi vertasimme instrumen-
toidun ja instrumentoimattoman ajonaikaisen järjestelmän suorituskykyä. Ke-
hitetyllä mittausjärjestelmällä on matala mittauskuormitus.

Asiasanat: Rinnakkaisuus, Tehtävärinnakkaisuus, Ajonaikainen
järjestelmä, Mittaus, OpenMP

Kieli: Englanti

3

Acknowledgements

I would like to thank my supervisor, Associate Professor Keijo Heljanko, for
his supervising and ideas for improving the thesis.

I would also like to thank my instructor, Vesa Hirvisalo, for the possibility
to write the thesis and his frequent help with the writing.

Finally, I would like to thank my parents, siblings and friends for their sup-
port during the writing.

Espoo, April 27, 2015

Marko Rasa

4

Abbreviations and Acronyms

AES Advanced Encryption Standard
API Application Programming Interface
CBC Cipher Block Chaining
DRAM Dynamic random-access memory
ECB Electronic Codebook
GDB The GNU Project Debugger
GOMP GNU OpenMP
GPU Graphical Processing Unit
HMAC Hash-based Message Authentication Code
MCA Multicore Association
NIST National Institute of Standards and Technology
OpenEM Open Event Machine
OpenMP Open Multi-Processing
PAPI Performance Application Programming Interface
RAPL Running Average Power Limit
RFC Request For Comments
SHA Secure Hash Algorithm
TLS Transport Layer Security

5

Contents

Abbreviations and Acronyms 5

1 Introduction 9
1.1 Problem . 9
1.2 Method . 9
1.3 Results . 10
1.4 Structure of the Thesis . 10

2 Background 11
2.1 Parallel Computers . 11
2.2 Parallel Computing . 12
2.3 Task Parallelism . 13
2.4 Runtime System for Parallel Programs 13

3 Runtime System Support for Tasking 15
3.1 Task Models . 16
3.2 OpenMP Task Model . 17

3.2.1 Threads . 18
3.2.2 Tasks . 18
3.2.3 Tied Versus Untied Tasks 19
3.2.4 Dependencies . 19
3.2.5 Task Scheduling . 19

3.3 Runtime Support of Tasking 20
3.3.1 Communication . 20
3.3.2 Resource Management 21
3.3.3 Task Management . 21

3.4 Runtime Monitoring . 21
3.5 Task Scheduling . 23

6

4 An OpenMP Runtime System 25
4.1 Platform Selection . 25
4.2 OpenMP as a Multicore Platform 26

4.2.1 Coordination . 26
4.2.2 Memory Management 26
4.2.3 Thread and Task Management 27

4.3 Compiler . 27
4.4 Operating System . 28
4.5 Software Structure of GOMP 28
4.6 Interfaces . 29
4.7 Data Structures . 29
4.8 Static Operation . 30
4.9 Dynamic Operation . 30

4.9.1 Objects . 31

5 Runtime Monitoring 33
5.1 Current Operation of GOMP 33
5.2 Monitoring System Overview 34

5.2.1 Frontend . 35
5.2.2 Backend . 35
5.2.3 Monitoring Techniques 35
5.2.4 Implementation . 36

5.3 Runtime Instrumentation . 36
5.3.1 Instrumenting for Dependency Graph 36
5.3.2 Instrumenting the Task Lock 37
5.3.3 Instrumenting Runtime Entry and Exit 37

6 OpenMP Test Workload 38
6.1 Overview . 38
6.2 Advanced Encryption Standard 40

6.2.1 Block Cipher by Itself, ECB Mode 40
6.2.2 CBC Mode . 40
6.2.3 CTR Mode . 41
6.2.4 Fragmentation . 41
6.2.5 HMAC-SHA1 . 41
6.2.6 Parallelism . 42

7 Results and Discussion 43
7.1 Dependency Graph . 43
7.2 Challenges with Runtime Instrumentation 45
7.3 Speedup of the Workload . 46

7

7.4 Task Lock Congestion . 48
7.5 Time Spent in Runtime . 50
7.6 Discussion . 51

8 Conclusion 53

8

Chapter 1

Introduction

In this thesis, we have studied mechanisms to measure behavior of OpenMP
task scheduling.

The world has been shifting towards parallel computing due to improve-
ments on clock speed not keeping up with the demand. One way to implement
parallel computing is by dividing the work to tasks and schedule the tasks
for execution. The scheduling itself requires time, effort and space, which are
away from the execution of the payload of the tasks. The scheduling can be
supported by the hardware or various software mechanisms.

The more tasks there are in an execution of a program the more they bur-
den the system, as additional resources for handling the tasks are required,
which is away from the execution of the payload. Measuring an OpenMP
runtime helps to detect where the runtime and possibly the associated spec-
ification could be improved.

1.1 Problem

The goal has been to develop a measurement system that is able to yield
the basic tasking performance metrics of parallel program executions. The
main challenge in developing such a measurement system is the overhead
caused by the measuring as tasks can be quite small. In addition to mere
measuring, the aim has been to understand the scheduling properties of the
current implementations of OpenMP task parallelism model.

1.2 Method

We selected version 4.9 of the gcc compiler and its runtime (gomp) as the
concrete target of our study. The compiler implements essential parts of the

9

CHAPTER 1. INTRODUCTION 10

OpenMP 4.0 specification, including tasking with task dependencies. The
task scheduling operates by assigning tasks to worker threads. In doing so,
it handles dependence structures and task queues, which require synchro-
nization to ensure correct operation. The studied gomp implementation uses
locking for that purpose.

We designed a measuring system based on using both software and hard-
ware performance counters. The software performance counters were im-
plemented by instrumenting the runtime systems (gomp). The hardware
performance counters were implemented by using PAPI (Performance Ap-
plication Programming Interface) inside the runtime system. We tested the
measurement system by implementing a task parallel version of AES (Ad-
vanced Encryption Standard), which yields small granularity tasks.

1.3 Results

We measured performance qualities of OpenMP task scheduling model by de-
veloping an embedded monitoring system in GOMP. The monitoring system
was tested and evaluated by implementing a parallel cryptographic algorithm
with couple variations. The main variation of the workload has very high
granularity tasks.

Overhead caused by the monitoring system stayed on reasonable levels
and didn’t show signs of growing with more threads. The runtime perfor-
mance was measured by executing the workload with the custom runtime.
These results were also compared to the non-instrumented runtime.

In our tests we observed that the runtime was able to yield parallel scaling
up to four threads in the fine grained workload. At this tipping point, we
observed lock congestion to rise rapidly.

1.4 Structure of the Thesis

The thesis is structured into background chapters and contribution chapters.
Chapters 2, 3 and 4 give background on parallel computing, runtimes for
tasking and OpenMP runtimes respectively. Chapter 5 talks about moni-
toring GOMP, the OpenMP runtime chosen for the concrete study of this
thesis. Chapter 6 describes The implemented test workload for the measure-
ments and Chapter 7 provides the results of the measurements. Chapter 8
concludes the thesis.

Chapter 2

Background

2.1 Parallel Computers

Parallel execution is increasingly important for development of computer
hardware. This change requires attention to computer architecture details
such as memory hierarchy, different parallelism levels, multicore processors
and synchronisation of the processor cores. This section largely cites Hen-
nessy and Patterson [35].

Parallel processors have multiple separate processor cores, which can ex-
ecute different program code at the same time. If the cores execute program
codes that are related to each other, for example parts of the same program,
they and their L1 caches need enough synchronisation that the program runs
correctly. Normally only one program thread can be in execution at a time
within a single processor core. However, if the processor implements simul-
taneous multithreading, such as Hyper-Threading, a processor core can have
instructions from two or more, depending on the architecture, threads in its
pipeline at the same time.

Memory hierarchy consists of L1 cache that is closest to a processor core,
fastest to access, but small in size. Each processor core typically has its
own L1 cache. If the processor has also both, L2 and L3 caches, L2 cache
might be shared between pair of processor cores and L3 shared by the whole
processor. If a required data is not found in L1 cache, it will be looked for
from L2 cache and from L3 cache if still not found. The next step is to look
from the DRAM memory, which is located outside of the processor and thus
has a large increase in latency.

Hennessy and Patterson divide parallelism into Data-Level Parallelism
and Task-Level Parallelism. Data-Level Parallelism has processor cores exe-
cuting the exact same code, but on different data, which is typical on GPUs

11

CHAPTER 2. BACKGROUND 12

(Graphics Processing Units). Task-Level Parallelism contains both thread
level parallel model and task parallel model, which is also called tasking
model. Thread parallel model has multiple threads executing at the same
time with possibly different program code on each. Task parallel model can
be seen to be implemented on top of the thread parallel model. Task parallel
model is further explained in Section 2.3.

In addition to the above, processors have Instruction-Level Parallelism,
where multiple instructions are in execution simultaneously in so called in-
struction pipeline. The instruction execution is divided into multiple steps
and a processor core can have an instruction in each step, but the instructions
cannot depend on each other. For that, the compiler will typically attempt
to reorder instructions of a program in such a way that Instruction-Level
Parallelism is as effective as possible while not changing the behaviour of the
program.

New processors can have high amount of processor cores, such as Intel’s
Knights Landing [28] with 72 cores. Utilising all available performance from
such processors will require large amount of parallel tasks.

2.2 Parallel Computing

Processors used to calculate everything in serial, but eventually the increase
in clock speed could not keep up with the demand for faster computation [35].
Solution for this was found from parallel computation, in which each proces-
sor has multiple cores, each computing different code at the same time. Thus,
the calculation power of processors was increased through having more than
one core in the processor.

With the increase of multicore processors, the importance of concurrent
and parallel programming also increased. Concurrent programming [30] con-
centrates on utilising coordination for correctness of the execution, which
means that the result should be the same as with a serial counterpart of the
program and the program should not lock due to behaviours of threaded ex-
ecution. Concurrent programming is useful even on a single core machine, as
it divides the execution time between threads, which can for example make
interface of a program more responsive.

Parallel programming [47] concentrates on utilising all the performance
from the processor cores by executing the program in multiple threads at
the same time. This requires the program to have parts that are not too
dependent on each other.

CHAPTER 2. BACKGROUND 13

2.3 Task Parallelism

Task parallelism models [46] consider parallel execution as entities consisting
of code to be executed and the related data. The task system gives such
entities the handles for execution. In this respect, tasks for parallel execution
resemble procedural closures. Individual tasks may be executed in parts, but
a natural way is to execute them unsuspended and leave the synchronisation
up to resolving the inter-task dependencies.

This contrasts with the traditional thread parallelism [35] that bases syn-
chronisation on placing primitives within the code. Thus, instead of ab-
stracting the parallelism with execution handles, thread parallelism exposes
the hardware program counters in a raw manner to the programmer.

Inter-task dependencies are unrestricted in task parallel programming
models. Whereas in data parallelism [35], the dependencies should follow
the structure of the underlying data. Task parallelism assumes no replicated
structures in the underlying data to directly indicate the structure of the
parallelism.

2.4 Runtime System for Parallel Programs

Runtime system works as an interface between compiler and operating sys-
tem. Operating system provides resources [38], such as memory alloca-
tion/deallocation, call stack and threads to the runtime and the runtime
works as an abstraction to these resources for the compiler to utilise. A pro-
gram using the runtime can then be compiled by the compiler and can use
the resources during execution through the runtime library.

Runtimes for parallel programs are especially interested in threads. To get
any performance gains, the underlying hardware needs to provide hardware
threads. In multicore environments, each processor core provides at least one
hardware thread. In case of simultaneous multithreading, each core provides
multiple threads. However, the performance gain from using both or all of
the threads provided by simultaneous multithreading vary and may be quite
small in some cases.

The operating system running on top of the hardware will have software
threads. The operating system can assign the software threads to run on the
hardware threads. If there are not enough hardware threads, the rest of the
software threads will wait their turn.

These operating system threads are further provided for usage by the
runtime library, which allows the usage of threads or some abstraction built
on top of the threads to the program using the runtime.

CHAPTER 2. BACKGROUND 14

Some programming languages are designed to run their binaries in a vir-
tual machine of the language [36]. The virtual machine in this case is basically
a runtime environment for running the code compiled from the language in
question.

Different task parallel runtimes include [31], but is not limited to: MPI,
OpenMP [23], Cilk [2], TBB [17], Java Threads, Fork/Join framework, TPL,
CAF, UPC, Fortress, Chapel, X10, CnC, Parallel Haskells, Erlang, Manti-
core, Offload, SkePU and P3L.

Chapter 3

Runtime System Support for Task-
ing

Runtime systems for parallelisation provide userland programs tools for par-
allel execution. The runtime acquires the necessary resources from underlying
operating system.

Annotated source code

Early expansion

IR: Parallel code + runtime calls

Optimisation

Compiler back end

Parallel program

Runtime

Parallel program

Operating system

Hardware

Figure 3.1: Compilation process for parallel program code on left and plat-
form stack on right

The left side of Figure 3.1 pictures a currently typical compilation process
for parallel program as explained by Pop et al. [45]. The process starts
with source code annotated with parallelisation directives. The annotations
from the code are first expanded into runtime calls and other code necessary
for the runtime structures. This result is fed into optimisation passes and
finally to the compiler backend which converts the optimised intermediate
representation into executable program.

The right side of Figure 3.1 shows how hardware, operating system, run-
time and a parallel program are built on top of each other. Operating system

15

CHAPTER 3. RUNTIME SYSTEM SUPPORT FOR TASKING 16

has direct access to the hardware and provides abstractions of the hardware
resources to the layers on top. Parallelisation runtime uses the abstractions
provided by the operating system and offers tools for creating parallel pro-
grams. The parallel program built on top of the runtime uses the tools
provided by the runtime. The program also accesses the abstractions pro-
vided by the operating system, but likely only for other needs and leaves all
the parallelism needs for the runtime.

Runtimes for task parallelisation interact with compiler and operating
system in similar manner as other parallelisation runtimes. Annotations
and function calls to the runtime are different, but compiler and operating
system handling of tasking annotations is similar to the handling of other
parallelisation annotations. More about task parallelism with runtimes on
Sections 3.1 to 3.3.

Section 3.4 concentrates on how the functioning of runtime can be moni-
tored and Section 3.5 talks more about the scheduling aspect of task paral-
lelism runtimes.

3.1 Task Models

Task models are parallel computation models where computation is divided
into tasks. The runtime for a task model contains a pool of tasks, which
usually can be created during the execution, and pool of worker threads,
which execute those tasks in parallel. The details of the tasks and pools vary
between different runtimes, but the main characteristics stay the same. This
section mainly references Belikov et al. [31].

Task parallel models differ from the thread parallel models in the man-
agement of the threads. In task parallel models the worker threads process
multiple tasks during their lifetime, whereas in thread parallel models the
thread is terminated after its workload is done. Thread parallel models tend
to favour larger workloads to avoid overhead from thread creation, whereas
creating tasks in task parallel models is comparatively light operation. Task
parallel models also have static number of worker threads, whereas in thread
parallel models the programmer need to pay attention to the number of
threads in the program. Synchronisation in thread parallel models is done
inside the code executed by the thread, which makes the relation of differ-
ent threads less apparent. Whereas, depending how well the task parallel
model supports dependencies between tasks, most of the synchronisation of
the tasks can be done in the handling of the tasks with the task dependencies
making the task relations more apparent.

Task parallel runtimes have differences between each other, even though

CHAPTER 3. RUNTIME SYSTEM SUPPORT FOR TASKING 17

the main idea behind each of them is the same. As classified by Belikov et
al. [31], the abstraction level of the runtime can vary from low level, where
the programmer is exposed to most coordination issues, to high level, which
abstracts over most of the coordination issues. Various different memory
models are used in different parallelism runtimes. Some runtimes have such
a programming model that they guarantee the parallel program to have the
same result as a serial counterpart. For other runtimes the programmer needs
to pay attention to make the result same when it is desirable. Embedding
the runtime directives to the host language can also be achieved in multiple
different ways ranging from just a library to an entirely new language. Em-
bedding parallelisation as a library has a drawback of being restricted to the
optimisations available in the host language, whereas a new language has all
the problems of any new language.

Event models, such as OpenEM [13], organise the tasks with events, exe-
cution objects and event queues. Events hold the data to process. Execution
object contain the code to execute for given data. Event queue contains the
events waiting to be processed by execution objects. Event models are more
restricted and straightforward than other task models, which helps their effi-
cient and scalable scheduling with hardware scheduler. OpenMP 4.0, which
is the focus of this thesis, on the other hand has much more complex and
dynamic tasks. More on the OpenMP task model in Section 3.2.

3.2 OpenMP Task Model

Tasks were introduced into OpenMP in version 3.0 [20] of the specifica-
tion and extended in OpenMP 4.0 with, for example, dependencies between
tasks [22]. Original focus of OpenMP was in parallel for-loops. Multiple
hardware vendors contribute to the OpenMP specification in order to have
more standard directives for parallelism [39]. OpenMP specification specifies
a set of compiler directives, library routines and environment variables that
can be used to create parallel C, C++ or Fortran code [14].

OpenMP is designed around shared memory model [23], which means
that all the threads of the program have access to the same memory, which
needs to be kept consistent between threads using the memory. In addition,
depending on the implementation, threads may have their own view of the
memory working as a cache.

OpenMP tasks contain block of code to execute and data to operate on.
If a task is created inside another task, it will have the other task as its
parent task and every other task created directly inside that parent task as
its sibling tasks.

CHAPTER 3. RUNTIME SYSTEM SUPPORT FOR TASKING 18

OpenMP 4.0 added possibility for dependencies between sibling tasks.
The task can be specified to have in, out or inout dependencies to variables,
which correspond to reading, writing and doing both to those variables. If a
task has out dependency on a variable, the task will require all sibling tasks
depending in any way to the same variable and created before this task to
be finished before this task can be started. With an in dependency, the task
will require all previously created sibling tasks with out dependency to the
same variable to be finished.

If not otherwise specified, OpenMP tasks are tied [39], which means that
whichever thread starts the execution of a task will keep the task until it is
executed. A thread may switch which task is currently being executed at a
task scheduling point. However, if starting a new tied task, the task must
be descendant of all the tasks already tied to the thread. More about task
scheduling in Section 3.5.

3.2.1 Threads

At the parallel directive, OpenMP creates a group of threads, which in
OpenMP is called a team [23]. Each thread of the created team will then
start to execute the contents of the parallel section.

A useful construct with the task model is to use a single directive directly
inside the parallel directive and create initial tasks in the single directive.
In this case, one of the threads will execute the single contents of the single
directive and the rest will skip the single and continue to the end of the
parallel section. The threads will hit an implicit barrier at the end of the
parallel block, which will cause them to wait for either the last thread or new
tasks to execute.

3.2.2 Tasks

The task directive was added to OpenMP specification in the version 3.0. At
a task directive, OpenMP creates a new task. In the case of libgomp, the new
task is placed to the end of the task queue and the current task continues
execution.

Any thread waiting in a barrier will pick the first task from the queue
when there are tasks available. This will in effect result in breadth first
traversal of the tasks. When a task gets finished, the thread will return to
the barrier and pick another task, if available.

CHAPTER 3. RUNTIME SYSTEM SUPPORT FOR TASKING 19

3.2.3 Tied Versus Untied Tasks

OpenMP tasks can be either tied or untied [23]. When a thread picks a tied
task for execution, the task will be tied to the thread and no other thread can
work on the task. In comparison, untied task does not have such restriction.
If untied task is not in execution at the moment, any free thread can pick
the task to continue its execution. By default, OpenMP creates tied tasks,
but untied task can be created by adding a clause to the task directive.

Duran et. al. [34] have experimented with different schedulers for OpenMP
3.0. They tested breadth first and work first schedulers with different work
stealing strategies. They concluded that work first schedulers are better in
general, but tied tasks, which are default in OpenMP, severely restrict the
performance of the work first schedulers. And that in the default circum-
stances for OpenMP, the breadth first schedulers outperform the work first
schedulers.

3.2.4 Dependencies

OpenMP 4.0 adds the possibility to define dependencies between tasks. When
a task has input dependencies, all sibling tasks created before the task in
question, which have a requested input as their output dependency, need to
be finished before executing the task in question [23].

In libgomp, the tasks depending on other tasks will not get placed to the
task queue for execution. Instead, they will get added into a structure for
tasks with dependencies. A task’s counter for unfulfilled dependencies will
be reduced every time its dependency task gets executed. When the counter
reaches zero, the task is ready for execution and will be added to the end of
the task queue.

3.2.5 Task Scheduling

In task scheduling, OpenMP threads are used as worker threads. The threads
themselves are scheduled by the underlying operating system, but the thread
scheduling has no significant impact to the task scheduling. A task is exe-
cuted by a thread until the task is either finished or a task scheduling point
is reached in the code of the task. Task scheduling points include creation
of new task, taskwait directive and barriers. At a task scheduling point, the
thread may switch to another task or continue executing the current task. [23]

Because the task scheduling points do not force any change, an OpenMP
implementation might ignore some of them. For example, current imple-
mentation of GOMP fully ignores taskyield directive, which would add task

CHAPTER 3. RUNTIME SYSTEM SUPPORT FOR TASKING 20

scheduling point, but won’t break anything when ignored. Other task schedul-
ing points, such as barriers and taskwaits, must be implemented to avoid
deadlocks.

3.3 Runtime Support of Tasking

Multicore platforms are computation platforms with multiple cores. They
are designed for parallel computation. To support parallel computations,
the multicore platform needs to have some level of communication between
different cores or threads, resource management for shared memory and task
management for threads and tasks. This section considers the model used
by Multicore Association (MCA) [11].

Over the years the computational platforms have shifted towards mul-
ticore processing leading to the growing importance of multicore platforms.
Unlike single core platforms, multicore platforms require attention to com-
munication between cores, managing resource usage between different tasks
and managing the tasks themselves.

3.3.1 Communication

During some operations, the cores need to synchronise their data. Some
of the communication is typically done automatically by the platform, for
example if a core has executed all its work, the platform might automatically
give it more work from another core. Other kinds of communication might
require the programmer to mark when it should be done. For example, if the
cores need access to the same shared memory, the programmer might need
to mark when to synchronise that shared memory with the core’s own view
of the memory.

Communication can be done with either blocking or non-blocking oper-
ations. Blocking operations will pause the execution until the operation is
ready and returns. For example, a blocking read operation will wait until it
has something to read and then returns the data which was read. In compari-
son, non-blocking operations will return immediately and if the requirements
for the operation were not fulfilled, the operation will return a value inform-
ing of failure. In the case of reading, the operation would succeed, if a buffer
for the operation had something and fail if the buffer was empty.

Multicore platforms have some overhead and latency compared to sin-
glecore platforms due to synchronisation of the cores. However, the overhead
is smaller than the gain from the parallelisation. In addition to differences on

CHAPTER 3. RUNTIME SYSTEM SUPPORT FOR TASKING 21

overhead and latency, multicore platforms may also differ on how well they
scale when more cores are added to the system.

3.3.2 Resource Management

Multicore platforms need to handle both thread private and shared memory.
Thread private memory is only accessible by the specific thread and as such
can be handled easily. For shared memory, attention needs to be paid to
latency and concurrent access.

Some basic synchronisation is required within the resource management
of multicore platforms to handle concurrent access to resources. This could
be, for example, a basic lock to let only one thread to use a resource at a
time.

3.3.3 Task Management

Task management in multicore platforms need to handle the tasks from their
creation to when they are finished and destroyed. The created tasks need to
be stored in some form until a thread picks them for execution. One simple
way to store a task is storing its code as a function and the arguments for
that function as data. The data can then be placed in a queue or other data
structure to wait for its turn.

After the task is created, a task scheduler of the multicore platform will
choose when and in which thread or core the task will be executed. Tasks
can have different priorities, which define the order in which the tasks get
executed. Also, the tasks may have dependencies between each other, which
add further restriction on the execution order.

Different platforms may have different requirements on the decision of
which thread or core a task is executed on. The typical goal is to achieve
good load balance, so that each available core is efficiently used. On some
architectures, the distance between task origin and a core may have a role
on the performance [40]. And on other situations, the scheduling may aim
to keep the core temperatures even between cores [44]. Olivier et.al. [42]
compared OpenMP 3.0 task scheduling on a platform with importance on
cache locality.

3.4 Runtime Monitoring

Runtime monitoring can be done in various different ways. Lowest level
approach is to read the performance monitor counters manually with an in-

CHAPTER 3. RUNTIME SYSTEM SUPPORT FOR TASKING 22

struction for reading the counters. Another approach for monitoring is to get
some performance information from Linux kernel. The kernel tracks various
statistics related to the performance of programs. Tools for debugging used
for programming also include measuring performance. Of course some exter-
nal programs exist for specifically measuring performance of other programs.
And finally, with access to source code, runtime or some workload for it can
be instrumented to get more fine grained or specific measurements.

Modern computer processors have performance counters, which can be
used to read performance metrics of the processor. The performance counters
are special registers in the processor that store performance metrics of the
processor’s activity. The available counters and how many of them can be
read at once vary between different processors.

Linux kernel tracks some performance statistics of programs through its
own events. Application performance and its kernel event trace can be
tracked for example with KProbes [9], which is intended as a debugging
mechanism for the Linux kernel, or LTTng [10], which is a toolkit for tracing
Linux systems and applications and an acronym for Linux Trace Toolkit:
next generation.

Tools for debugging, such as GDB [6] and gprof [7] can be used for mea-
suring the performance statistics of a program. Part of program development
is optimising its performance, which requires measurements for the perfor-
mance to be optimised. Thus, the programming tools can be also used for
measuring the performance and tracing the execution.

Performance measuring also has its own tools, such as perf [16]. These
tools measure the performance of another program. The tools work by read-
ing the performance counters mentioned earlier in this section and make the
measurement of the counters much easier by creating an abstraction on the
low level access to the processor registers.

With access to the source code of the runtime to be monitored or a work-
load program using the runtime, the source code can be instrumented for
measuring the performance of the runtime. Some performance metrics can
be acquired by instrumenting just the workload, but other details require in-
strumentation code inside the runtime source. In addition to basic time mea-
surements, performance measurements can be made by accessing hardware
performance counters. PAPI [15], Performance Application Programming
Interface, provides an abstraction as a library for reading the performance
counters.

Approach for runtime monitoring for this thesis is to instrument runtime
and workload source code with PAPI and time measurements. In addition,
the runtime will be modified to print some of its internal information about
the program execution.

CHAPTER 3. RUNTIME SYSTEM SUPPORT FOR TASKING 23

3.5 Task Scheduling

Task parallel systems use threads as worker threads. However, thread schedul-
ing has only a minor role on task scheduling. Task scheduling is more con-
cerned on the worker threads switching tasks on specific places in the program
code and in which order the tasks are taken from the pool of available tasks.
Work-first [41] scheduling switches the executing thread to execute the cre-
ated task, whereas help-first [41] scheduling continues executing the parent
task resembling breadth first execution. Cilk and OpenMP will be mentioned
as examples on work-first and help-first scheduling approaches.

Worker threads are typically acquired from the underlying operating sys-
tem. Also, the scheduling of those threads is handled by the operating sys-
tem. However, the thread scheduling has very little effect on task scheduling,
as task scheduling can be done inside each worker thread when they need to
look for more work to do.

Ideally the runtime would have as many worker threads as the machine
has hardware threads available and each of the threads would be executing
tasks all the time. In this case, all the available resources for calculations
would be utilised. However, in a less ideal situation some worker thread may
get stuck either with a task waiting for a resource or without a task. The
possibility of this of course depends on the situation and the runtime being
used, as different runtimes have varying amount of freedom for choosing the
next task to execute.

Work-first [41] approach for task scheduling is used in Cilk. With work-
first approach, whenever a worker thread creates a new task, the parent task
is suspended and the thread continues execution to the newly created task.
This causes the execution order to slightly resemble that of the sequential
execution. If sequential execution has good temporal locality, the parallel
execution will have good temporal locality as well. Olivier et.al. have looked
into Cilk and OpenMP 3.0 performance on unbalanced task graphs [43].

To function, a runtime with work-first scheduling approach must be able
to migrate partially executed tasks between threads, because all the free tasks
will be partially executed. Help-first [41] approach for task scheduling on the
other hand will continue the parent task when a new task is created. The
help-first approach can be implemented without such migration, as the new
tasks are placed into queue without starting their execution.

If not mentioned otherwise on task creation on OpenMP, the task will
be tied meaning it can’t be migrated to any other thread after starting its
execution. Untied tasks would be allowed to migrate, but tasks are only
untied if mentioned so and OpenMP implementations are not required to

CHAPTER 3. RUNTIME SYSTEM SUPPORT FOR TASKING 24

implement untied tasks. Thus, OpenMP runtimes have mainly help-first or
similarly behaving scheduler.

Chapter 4

An OpenMP Runtime System

There are three parts required for the OpenMP: the OpenMP specifica-
tion [23], a runtime and a compiler which is able to convert the OpenMP
directives into calls to the runtime. OpenMP specification specifies the direc-
tives and other details that are required from a compliant OpenMP runtime.
Runtime is the part which contains the implementation of the OpenMP.
Thus, runtime is the only one of these active during program execution.

4.1 Platform Selection

Two choices of OpenMP runtimes were considered: GNU implementation
called GOMP [27] and Intel implementation called iomp5 [8]. At the time
of the selection, GOMP worked with GCC and iomp5 worked with a branch
from Clang called OpenMP/Clang [29], which was being cleaned for inclusion
into the main branch. Iomp5 combined with GCC produced wrong behaviour
with dependencies between tasks.

GCC 4.9 adds support for OpenMP 4.0 [26]. As expected, this works
correctly with libgomp. However, with libiomp5, the task dependencies were
tested to not work even with the update of 4th September 2014 [37]. Another
correctly functioning combination that was tested was a branch for Clang [29]
with libiomp5.

The combination of GCC and GOMP was chosen for this thesis. GCC had
had the support for OpenMP 4.0 for longer time suggesting more stability
and less bugs in the implementation.

25

CHAPTER 4. AN OPENMP RUNTIME SYSTEM 26

4.2 OpenMP as a Multicore Platform

This section will give a bit background on how OpenMP functions as a mul-
ticore platform. The subsections will divide the subject into coordination
in Section 4.2.1, memory management in Section 4.2.2 and thread and task
management in Section 4.2.3.

4.2.1 Coordination

OpenMP abstracts away most communication and synchronisation between
threads. For example, for mutual exclusion, the OpenMP specification [23]
has a simple directive for marking a structured block as a critical section.
The specification does also have locks for lower level synchronisation.

OpenMP specification [23] states that the parallel directive will start
the parallel execution. At this point, the OpenMP runtime will create a team
of threads, which will execute the contents of the parallel region. Normal code
in the parallel section get executed by each of the threads. Some directives,
such as single and master, get executed by only a single thread and some
directives, such as for, will be cooperated on by all of the threads together.

If a thread encounters a task directive [23], it will create a task that will
be executed at a later time. Such task will be scheduled for execution when
any thread hits an implicit or explicit barrier. An explicit barrier is marked
by the user of the API with a barrier directive and an implicit barrier is
implied by some other directive. For example, at the end of a parallel region
is an implicit barrier. At any barrier, the threads that get there need to
execute the accumulated tasks and wait for all other threads of the team to
get to the barrier.

4.2.2 Memory Management

Managing the physical memory is still left to the operating system, but an
OpenMP API needs to handle the distinction of variables shared between
threads and variables private to each thread [23].

In the case of variables private to each thread, each of the threads have
their own private version of the variable. The initial value for this variable
may be copied from the original variable at the beginning of a parallel section
or the private variable may be initialised with the default value for that
variable type.

For shared variables, each thread has their own temporary view of the
variable in addition to the global state. The thread’s view can be made con-
sistent with the global state with an implicit or explicit flush. The flush will

CHAPTER 4. AN OPENMP RUNTIME SYSTEM 27

write the variable to global state, if there were any changes to the variable,
and the next time the variable is read, the read is done from the global state.

4.2.3 Thread and Task Management

The parallel directive of OpenMP forks the execution into multiple threads
and joins them back at the end of the structured block of the parallel direc-
tive [23]. These threads are then used to execute the parallel block and any
tasks spawned from the block. In GOMP, the scheduling of threads is left
to the operating system and the scheduling of tasks simply chooses the next
task to execute in certain locations explained in more detail in the following
paragraphs.

In GOMP, a task execution can start in four different places: creation of
the task, an implicit or explicit barrier, a taskwait directive and at the end
of taskgroup directive. A task will be executed immediately at the creation
only if we want to execute it as if it were just sequential code. The other
three locations will form the scheduling of the tasks.

In a barrier, GOMP thread will pick any free task created by the team
of threads. The scheduling made in a barrier will pick the first task that
was added in the queue, which results in first in first out order. The threads
will execute any new tasks until all threads have reached the barrier and all
created tasks are executed.

At the taskwait directive, the thread will pick a child of the current task.
The children of a task will behave like a stack, resulting in a first in last out
order. Already completed child tasks will be put into the bottom of the stack
and cleared at a later time. If all the children are already being executed,
the thread will wait for them to be finished. This waiting may result in
inefficiency, as the thread will not pick anything else to do while waiting,
even though the OpenMP specification would allow the thread to pick any
descendant task for execution and not just immediate children.

4.3 Compiler

Compiler converts OpenMP directives into code containing calls to runtime
functions. In case of GCC, the functions to use are taken from libgomp [27].
To use another runtime with the compiler, the other runtime must either
work with the same function calls or the compiler needs to be modified.
Code construct that jumps away from parallel region are not allowed, such
as break and goto. However, the OpenMP specification [23] defines that a

CHAPTER 4. AN OPENMP RUNTIME SYSTEM 28

compiler may assume users to write code conforming to the specification. So,
it is up to the compiler if the code conformity is checked or not.

The compiler converts structured blocks affected by parallel and task
directives into functions. This makes it easier for the parallel directive to
start new threads and the execution of a task directive to be postponed and
makes executing tasks on different threads simpler.

4.4 Operating System

Operating system offers some necessary resources for the OpenMP runtime
to use. For the case of GOMP, the required services are memory and threads.

Like any other program, OpenMP runtime won’t use physical memory
directly. Instead, the program utilising memory will get a virtual memory
address space from the operating system and the runtime will use the pro-
gram’s virtual memory address space.

When creating a team of threads with the parallel directive, OpenMP
asks for threads from the operating system. In the case of libgomp, the
threads are acquired through the pthread library [33].

4.5 Software Structure of GOMP

The source code of GOMP resides in the repository of GCC [5] in a directory
named libgomp. The directory contains various c-files from which task.c

is the most important for task parallelism and contains functions related to
tasks. Other interesting files include: team.c for team related functions and
parallel.c for functions related to parallel directive.

Some essential source files are further in the directory structure, as they
are platform specific. So, in the case of Linux system, mutex.c, mutex.h and
bar.c can be found under libgomp/config/linux among with less relevant
files for the purpose of this thesis. Mutex files contain mutex lock and unlock
functions, which are needed for a task_lock every time task queues and
dependencies are handled. bar.c contain the code for when a barrier is
reached, which also is one location for starting the execution of tasks.

libgomp.h is used as an internal header file for most c-files and con-
tain structure definitions, enumerations and function declarations that are
needed in multiple places. Notably for task parallelism, libgomp.h contains
definitions for task, thread and team structures.

GOMP is compiled along with GCC compilation [4]. That is, by get-
ting the GCC source, configuring to a build directory with the provided

CHAPTER 4. AN OPENMP RUNTIME SYSTEM 29

configuration script and building with make. This should result in GOMP
shared object files in build/<architecture>/libgomp/.libs/. Setting en-
vironment variable LD_LIBRARY_PATH to point to this directory will cause
programs using GOMP runtime to use the newly compiled version instead of
the systemwide version.

The GOMP used in this thesis is from the GCC version 4.9 release tag
from the GCC repository [5].

4.6 Interfaces

GOMP interfaces to multiple directions. On user side, the interface is with
directives, which are implemented as pragmas in C, and API calls. On com-
piler side, these directives are converted to runtime calls and surrounding
code, such as converting task content into a function. Interfacing with op-
erating system is done mainly through pthread and standard C libraries.
Though, few system specific header files are also used inside the system spe-
cific components in the libgomp/config/ directory.

4.7 Data Structures

Basic data structure definitions can be found from libgomp.h. For tasking,
the gomp_task, gomp_taskgroup, gomp_thread and gomp_team structures
are most relevant. Task dependency structure has its hash table and other
definitions in hashtab.h. Task group is handled in a similar fashion as child
task relation, but was not used in the experiment of this thesis and not
studied in depth.

gomp_task structure holds data of the task and a pointer to a function
representing the program code of the function. In addition to these, the
task structure holds variables for its state, queue for child tasks and pointers
forward and backward for each queue the task is in. The state variables tell
if the task is tied, waiting in taskwait directive and if the task is final task,
meaning any new tasks need to be executed immediately.

gomp_thread structure holds information about a thread, such as a func-
tion pointer and data to the function the thread is to run upon launch, its
current task, pointer to a thread pool, a place where the thread is bound
to and state of its current thread team. The function of the thread is the
function resulting from converting the structured block of the current par-
allel region into function during preprocessing of the source code. Current
task of the thread can be either explicit, created with a task directive, or

CHAPTER 4. AN OPENMP RUNTIME SYSTEM 30

implicit, created by the runtime without a task directive. The thread pool
is the pthread thread pool in which this thread belongs to. The place of the
thread is zero if the thread is not bound anywhere and the bind position plus
one if the thread is bound. Finally, the thread has a state of its current team
as gomp_team_state structure. The thread can access the team it belongs
to either through the team state structure or through the thread pool.

gomp_team structure contain notably the number of threads in the team,
a task lock, queue of all tasks ready to be run and various counts of tasks.
The team contains the number of threads in the team, but no obvious way to
access the team. However, the team is always accessed through the current
thread, which can access the thread pool. The task lock of the team is
used to synchronise the access to the tasks of the team. Any time a task
that is not completely isolated is touched, the task lock is locked during the
operation. The head for the queue of all tasks of the team is located in the
team structure. The task counts stored in the team structure include number
of waiting or tied tasks in the team, number of waiting tasks in the team and
number of tasks being directly run from a barrier, which is always at most
the number of threads in the team.

4.8 Static Operation

During compile time, the compiler converts OpenMP pragmas into code.
The conversion is mostly a simple matter of converting the pragma into a
function call to a corresponding function in the runtime and possibly adding
some surrounding code or converting the structured block after the pragma
into a function, like task directive does.

The function calls resulting from the conversion of pragmas are the entry
points to the runtime for the program.

Because of the early conversion of pragmas into typical serial code in
the preprocessor of the compiler, parallel aware optimisation is not possible.
Also, at least most of the pragmas result in code that work as a barrier for
typical optimisations.

4.9 Dynamic Operation

This section explains what happens inside the GOMP runtime during pro-
gram execution.

CHAPTER 4. AN OPENMP RUNTIME SYSTEM 31

4.9.1 Objects

Parallel directive will start the parallel execution and create a gomp_team

structure. Creating and starting the team is implemented in team.c in func-
tions gomp_new_team and gomp_team_start. Team is the structure which
holds the parallelism together by representing the collection of threads and
containing queue for pending tasks.

When a team is created, number of threads are created. The original
thread starts the new threads from the gomp_team_start function and the
new threads start to execute gomp_thread_start function. This function
directs them to execute the body code of the parallel section. In a simple
tasking setup, one thread will create tasks in single section and the rest
will hit the barrier without doing much anything. The threads will wait in a
futex for the last thread and pick any tasks that get created for execution.

Tasks are created when there is a task directive in the code. The struc-
tured block following the directive is converted into a function in the compi-
lation process and the resulting task will call that function when run. The
creation is handled in task.c in GOMP_task function.

Task creation has four conditions for when a task would be executed
immediately instead of put into a queue waiting for later execution. Firstly, if
a task is created without having a team, it needs to be executed immediately,
as we don’t have any parallel context. Secondly, if a user defined if clause
for the task creation tells to execute immediately, the task will be executed
immediately. Third, if the task is created inside a final task, it is executed
immediately by the definition of final tasks [23]. Finally, if there are already
too many tasks waiting, any new tasks will be run immediately if able, where
too many is defined as 64 × numberofthreads .

If however the task had some unfulfilled dependencies, it is not possible
to execute immediately even if the above reasons would say so. In such case,
an entry to a dependency hash table will be added for the task. The entry of
the new task is marked to any task the new task depends on and a counter for
the number of those links added to the entry. Whenever a task gets finished,
it’ll reduce the counter of each linked entries by one. If such counter reaches
zero, it means that all dependencies for that task are fulfilled and it will be
moved from the dependency hash table to the task queues.

If a task didn’t have any unfulfilled dependencies or its dependencies got
fulfilled, it will be added to task queues. A task can exist in multiple of the
three available queues at the same time. First, it’ll be in a task queue under
team, which behaves in a first-in first-out manner. Whenever a thread picks
a task from implicit or explicit barrier, this queue is used. Second, the task
will be in a child queue of its parent task, if the task has a parent. This

CHAPTER 4. AN OPENMP RUNTIME SYSTEM 32

queue will be used when a thread picks a task from a taskwait directive and
behaves in first-in last-out manner. Additionally, in the case of GOMP, a
thread is only able to pick a direct child of the current task when in taskwait.
Specification allows and other runtimes implement picking any descendant.
Lastly, the task will be in a task group children queue if it is created from
inside a task group. This group behaves similarly to the children queue of a
parent task.

Chapter 5

Runtime Monitoring

In this chapter, we describe how the chosen OpenMP runtime, libgomp, was
instrumented for monitoring. The runtime was monitored for three different
aspects during the thesis: dependency graph of the tasks in the workload,
task lock congestion and time spent in the runtime.

There would be existing profiling tools for OpenMP, such as ompP [12].
However, using a ready made tool lacks the flexibility of an embedded mon-
itor created for the exact need, which was deemed important together with
gaining insight of the system while developing the monitor.

5.1 Current Operation of GOMP

Tasks are created with OpenMP task directive. This directive will result
in a call to GOMP_task, which will create a structure for the new task and
either add it to dependency structures, add it to task queues or execute it
immediately. The case of executing task immediately is chosen when the
number of existing tasks is getting too high or a condition defined by the
user specifies that the task needs to be executed immediately. However, if
the task has unfulfilled dependencies, it will never be executed immediately
and will always go to a structure for tasks with dependencies. If the task is
neither executed immediately nor depend on other tasks, it will go to normal
task queues to wait for execution.

As defined in the OpenMP specification [23], task depends on all previ-
ously created sibling tasks which have a variable as an output dependency
that the new task has as an input dependency. Tasks with dependencies are
stored into a hash table. Every time a dependency is fulfilled from a task,
its dependee count is decreased. When the count reaches zero, the task will
be added to the task queues the same way that tasks without dependencies

33

CHAPTER 5. RUNTIME MONITORING 34

were added during their creation.
Preprocessing for the tasks is done before the task is executed. The

preprocessing removes the task from task queues, marks the task to be in
the execution and checks if the parallel execution has been cancelled. After
the task has finished execution, some postprocessing is required to keep the
structures in correct state. Postprocessing checks if any tasks has their de-
pendencies finished requiring moving to the task queues and clears structures
that are not needed anymore.

Libgomp is mostly a run to completion system. At barrier, taskwait and
taskgroup end, the running thread will leave its current task to the stack and
pick another task to process. When the other task is finished, the original
task will be continued if possible. Additionally, taskwait and taskgroup end
will only pick tasks which are their immediate children and if all of them are
being executed on other threads, the thread will idle until they are finished.
This is not the case with libiomp5, which will pick also other tasks when in
those situations.

Barriers should not be used inside tasks, as threads continue from a barrier
when all threads have reached the barrier and the number of tasks might not
be divisible with the number of threads. Misusing the barriers by placing
them inside tasks may cause deadlocks.

Some synchronisation, like critical directive and locks, cause the thread
to wait for its turn. Libgomp will let the thread idle while waiting. Being
inside or outside of task will have no effect for this case. Having other threads
which the operating system can run while one thread is waiting can increase
the efficiency of CPU usage.

5.2 Monitoring System Overview

Runtime system

Embedded monitor

Frontend

Instrumentation

Backend

Figure 5.1: Structure of the embedded monitor.

CHAPTER 5. RUNTIME MONITORING 35

The structure of the implemented embedded monitor is pictured in Fig-
ure 5.1. The monitor is embedded into the runtime system under study,
libgomp. The embedded monitor consists of three parts: frontend, instru-
mentation and backend. Frontend initialises PAPI and sets any added vari-
ables to their initial values. Instrumentation does the actual measurements
and cooperates with backend to store the result into variables working as in-
termediate storage for the results. Latter half of the backend is run at the end
of the measured execution and outputs the results from their intermediate
storage.

5.2.1 Frontend

The frontend of the monitoring system is responsible for initialising PAPI
and setting initial values for variables added to the runtime for monitoring.
As the structure of the workload permits, the frontend is located at the team
initialisation of GOMP activated by parallel directive of OpenMP.

5.2.2 Backend

Backend is responsible for collecting the data of the measurements. First half
of the backend cooperates with the instrumentation and stores the results into
intermediate variables.

The latter half of the backend is run at the end of the parallel section
when all the work of the section is done and the runtime is uninitialising the
team of threads. Embedding the latter half of the backend in this location
was possible due to the workload using only a single parallel block and doing
all the actual work in that parallel section.

5.2.3 Monitoring Techniques

Measuring the duration of the whole execution in real time is done with high
resolution clock provided by C++11 standard library [3]. In Linux environ-
ment this gives the current time in nanoseconds. The time is measured before
and after the workload, which gives us fairly accurate measurement of the
total time used for the workload.

PAPI [15] is used for reading the values of performance monitor counters.
PAPI supports a long list of performance counters. PAPI library was used by
initialising the library and setting each thread to measure a set of counters,
running the workload in parallel and finally reading the resulting counter
values and summing them together. However, performance monitor counters
ended up with only minor role on the final measurements.

CHAPTER 5. RUNTIME MONITORING 36

5.2.4 Implementation

Finding the locations for instrumenting had three different approaches: start
from task.c, start from assembly conversion of the workload and start from
the implementation fo the OpenMP parallel pragma. task.c is the most rele-
vant file for task scheduling in GOMP, which makes it a good start for finding
where to place instrumentation code and understanding the task scheduling.
config/linux/bar.c contains code for barrier handling, which might not be
obvious when reading task.c, but is related to the task scheduling, as the
barrier is one location for executing remaining tasks.

Starting from the assembly conversion provides easily all the entry points
from the workload to the runtime by searching for GOMP functions. Finally,
starting from the implementation of the parallel pragma provides a view in
the order of execution and how the structures are initialised.

5.3 Runtime Instrumentation

This section concentrates on the instrumentation part of the structure de-
scribed in the Section 5.2. Multiple versions of the instrumentation was cre-
ated during the work. Main focuses of the versions were: dependency graph
collection, task lock performance and time spent in runtime. In addition,
the task lock performance measurements took three different approaches to
the measuring: basic counting of lock usage, measuring instructions spent
in the lock and measuring time spent in the lock. However, measuring in-
structions was noticed to be inefficient and less interesting than the other
two approaches and was not followed further.

5.3.1 Instrumenting for Dependency Graph

Task creation was instrumented to collect and output a graph of all tasks in
the workload and the relationships of those tasks.

A dependency graph of an execution was acquired with a modified lib-
gomp. The modifications assign each task an unique id and stores to an
array the task id, its start time, the parent task, thread that executed the
task and the memory addresses the task depends on. At the end of execution,
this array is written out for processing and visualising. Taskwaits were not
visualised in the result.

CHAPTER 5. RUNTIME MONITORING 37

5.3.2 Instrumenting the Task Lock

The function responsible for locking the task lock was found from mutex.h

in config/linux/ directory and the related function for waiting in the lock
from mutex.c from the same directory. After locating these functions, they
were instrumented to count the number of times the lock is locked, number of
times we need to wait for the lock and the amount of time we spend waiting.

The naive way of instrumenting the lock by incrementing a shared counter
with an atomic incrementation provided by GCC was noticed to be highly
inefficient. After the incrementation was done to a per thread variable and
summed together at barrier, the overhead was lowered to a reasonable level.
Similarly, measuring the waiting time in the lock was first done by reading
spent instructions from a performance counter, but the overhead was too
high. Changing the time measurement to be done in wall clock time with
PAPI_get_real_cyc again lowered the overhead to reasonable levels.

5.3.3 Instrumenting Runtime Entry and Exit

Entry and exit points of the runtime were instrumented to measure the time
spent in the runtime and time spent in the workload. Entry and exit points
relevant for the experiment were found by reading the runtime source and as-
sembly conversion of the workload. The entry points can be divided into two
types: calling runtime function and returning from call to task payload. The
exit points likewise divide into returning from the call to runtime function
and calling the task payload.

Entry points to the runtime were instrumented by taking current time
with PAPI_get_real_cyc and counting the preceding time towards time in
user code. The exit points were instrumented similarly, but the preceding
time was counted for time in the runtime. The code for instrumentation was
placed right at the beginning and right before the return from the called
runtime function and immediately around the call to the task payload. The
values were first stored per thread and summarised on a barrier, like was
done with the task lock instrumentation.

Chapter 6

OpenMP Test Workload

The experiment of the thesis aims to measure the overhead caused by mutual
exclusion towards the task management structures in GOMP. Managing these
structures is the main part of scheduling tasks.

The measurement was done by instrumenting the runtime, implementing
a workload using OpenMP tasks and running the workload with the said
instrumented runtime.

AES (Advanced Encryption Standard) is a symmetric block cipher based
on Rijndael algorithm. AES repeats rounds of operations on a block of 128
bits to encrypt the data. An encryption key can be 128, 192 or 256 bits.
Though, the implementation for the thesis only accepts 128 bit key. To
encrypt more data than just one block, AES needs to be used with some
block cipher mode, which defines how a stream of blocks can be encrypted.
Section 6.2 describes AES and some block cipher modes in more detail.

If the goal of the workload would not be to create large amount of de-
pendent tasks, the AES encryption could be done more efficiently on mod-
ern computer with a processor instruction made especially for AES encryp-
tion [21].

6.1 Overview

The experiment was run on an x86 computer with 10 gigabytes of memory
and Intel Core i7 970 with 6 cores at 3.20 GHz. The processor has hyper-
threading, so each core has two hardware threads. There is 32 kilobytes of
both L1 data and L1 instruction cache and 256 kilobytes of L2 cache.

Software environment for running the experiment consisted of Ubuntu
Linux version 12.04 with Linux kernel version 3.2.0 and without starting any
window managers or desktop environments. Instrumented GOMP was built

38

CHAPTER 6. OPENMP TEST WORKLOAD 39

from GCC release 4.9 found from GCC repository [5]. The workload was
compiled with GCC 4.9.2 with no optimisations enabled. PAPI version 5.3.2
was used for measurement in the instrumentation.

AES in CBC (Cipher-Block Chaining) mode with fragmentation and mes-
sage authentication code was implemented for the experiment. This corre-
sponds to one of the options in TLS (Transport Layer Security) [19] for
encrypting data. Some details are different, but the operations are the same
on high abstraction level.

The AES rounds were rearranged by moving the key adding step from
the end of a round to the beginning of the next round. This allows us to
wait for the dependency right when we need it. The OpenMP directives
for parallel computation was added to convert the rounds into tasks in two
different ways, which are described in more detail further in this section.

Monitoring the execution was done with PAPI [15] and C++11 high
performance clock. PAPI offers measuring of performance counters. Separate
of the performance monitoring, a graph of task dependencies was created by
modifying libgomp to store the dependencies of an execution.

Loosely following on the functioning of TLS, an AES implementation
was created with CBC mode and fragmentation of message and calculating
message authentication code was added around the AES implementation.
Message authentication was done using a library call, because the rest already
provided chances of parallelisation and hashing the message for the message
authentication code would not parallelise well. The message authentication
code was included, because it provided one large task as a whole. The rest
was self-implemented to be able to add parallelisation with OpenMP to them.

The nature of CBC prevents effective parallelisation, but most of the
CBC can be calculated parallel with message authentication code, which will
be added to the end of the message and encrypted at the end of CBC. The
message authentication code will be in the last two blocks of the message.
Thus, the last two blocks depend on both the message authentication code
and earlier part of CBC.

Fragmentation provides easy source of flat parallelism, as the encryption
of the fragments don’t depend on each other. To compare the effectiveness,
the workload was compiled with and without the parallelisation of fragments.
With parallelisation each fragment created its own task and without paral-
lelisation there was a taskwait after each fragment, so that all created tasks
were completed before starting the next fragment.

Two parallelisations of the AES itself was tried. The first parallelisation
had each round of encryption and each round of key expansion be their own
tasks resulting in 21 tasks per block encrypted with AES. The second paral-
lelisation tried to reduce the amount of tasks by grouping the rounds to tasks.

CHAPTER 6. OPENMP TEST WORKLOAD 40

The first encryption task had 1 round, the second 3 and the last 7. Similarly
the two key expansion tasks had 3 and 7 rounds. This resulted in 5 tasks per
encrypted block. The amounts of rounds per tasks were loosely measured
so that the key expansion should be slightly faster than the encryption task
that is executed at the same time. The second parallelisation was used in
the experiment to keep the amount of tasks slightly more reasonable level.

6.2 Advanced Encryption Standard

AES (Advanced Encryption Standard) is a symmetric block cipher based
on Rijndael algorithm, which won a competition by National Institute of
Standards and Technology (NIST) in 2001 [1].

AES has three different key sizes: 128 bits, 192 bits and 256 bits. The
key size will determine how many rounds of the algorithm will be run. The
number of rounds is 10, 12 or 14 respectively for the key sizes. The key will
be expanded and each round will use 128 bits from the expanded key.

One round contains four steps: S-Box, Shift Rows, Mix Columns and
Add Round Key steps. In addition, there is an initial round with only Add
Round Key step and a final round without Mix Columns step. However, for
parallelising, the Add Round Key should be at the beginning of the round, so
that we’ll wait when we need the key we are depending on instead of waiting
at the beginning of the original round structure. So, the round borders were
shifted by one step resulting in empty initial task and final task with two
Add Round Key steps.

A block cipher by itself is just for encrypting a single block, for example
128 bits of data. To do more than that, some mode of operation needs to be
used with the block cipher, such as ECB, CBC or CTR, which are explained
shortly below.

6.2.1 Block Cipher by Itself, ECB Mode

Just using the block cipher separately for each block of the message would be
exactly what is done in ECB (Electronic Codebook). This approach causes
security issues. For example, encrypting a bitmap image in ECB mode will
result in original shapes showing clearly in the encrypted data.

6.2.2 CBC Mode

CBC (Cipher-Block Chaining) mode takes an exclusive or from the first block
and an initialisation vector, which can be random bits, and encrypts that with

CHAPTER 6. OPENMP TEST WORKLOAD 41

the block cipher to get the first block of the encrypted data. All successive
blocks after the first block will depend on the previous block, as an exclusive
or will be taken from the new block of plain text and the encrypted previous
block.

After encryption, both the encrypted message and the initialisation vector
will be sent to the recipient and together with the key, the original message
can be acquired.

CBC mode doesn’t parallelise that well, but together with hash-based
message authentication code offers a bit of parallelism and a bit of interesting
dependencies between tasks.

6.2.3 CTR Mode

CTR (Counter) mode relies on encrypting an ever increasing counter to-
gether with a static nonce and taking exclusive or with the result and the
message to be sent. The nonce should not be reused for different messages
and the counter should be long enough to not overflow. This ensures that
no two blocks given to the block cipher are the same and that the result is
unpredictable and seemingly random.

The functionality of CTR mode resembles that of a one-time-pad, but
the pad in CTR mode is generated from the relatively short key, which gives
it an obvious theoretical weakness when compared to one-time-pad, but that
is true for any algorithm besides the one-time-pad.

CTR mode would allow every block to be encrypted in parallel, but as the
thesis is also interested in dependencies between tasks, CBC mode is more
suited for the purpose.

6.2.4 Fragmentation

TLS protocol is defined to fragment messages which are too long into smaller
pieces and encrypt and send them separately [19]. As the fragments are han-
dled separately, the fragmentation allows for large amounts of parallelisation.
Although, without dependencies between the tasks. One fragment can con-
tain at most 214 bytes of data according to RFC5246 [19].

6.2.5 HMAC-SHA1

HMAC-SHA1 is a hash based message authentication code, which is calcu-
lated with SHA1 algorithm. The message is hashed with the cryptographic
hashing algorithm and the resulting hash is appended to the end of the
message. After the MAC (Message Authentication Code) is appended, the

CHAPTER 6. OPENMP TEST WORKLOAD 42

message is encrypted and sent. However, as the MAC is only needed at the
end of the encryption, most of the message can be encrypted in parallel with
the HMAC calculation [18].

6.2.6 Parallelism

On the highest level is the fragmentation, which provides almost arbitrarily
high parallelisation for large messages. If the TLS specification for fragment
size is ignored, the fragment size can be used to control the amount of flat
parallelism in the workload.

The next level of parallelism is provided by the combination of CBC and
HMAC, in this case HMAC-SHA1, but the hash algorithm has no effect. As
mentioned in earlier section, most of CBC and HMAC can be calculated in
parallel and only the end of the CBC requires the results of both of them. If
we make a rough guess that HMAC takes 50% of the time that CBC takes,
this level of parallelism would offer work for 1.5 threads and couple simple
dependencies. In reality, the HMAC takes less time than estimated here.

Parallelism between AES rounds and key expansion would be next in the
scale. Each round depends on the previous round and the round key for that
round. Round key for a round only depends on the round key of the previous
round. If we make another guess that the key expansion takes 50% of the
time that the rounds take, this offers again work for 1.5 threads, but this
time there are lots of dependencies.

For finer granularity of tasks, AES rounds could be further partitioned to
tasks in the S-Box and Mix Columns steps [24], which would allow fork-join
kind of parallelism to four threads, but without hardware implementation,
the workload would very likely be too fine grained to have any benefit.

Chapter 7

Results and Discussion

The plots in this chapter show the performance of three variants of paralleli-
sation and that of the serial execution. The AES only parallel variant (AES
o.p. in the plots) has AES block encryption parallelised, but waits after each
fragment to complete before starting the next fragment. This variant has
only little room for parallel execution and with more than couple threads,
the threads are waiting for tasks most of the time.

The fully parallel variant (fully p. in the plots) has fragments parallelised
in addition to the AES block encryption. This results in a mix of depen-
dencies between tasks due to the AES blocks being parallelised and large
number of potential for parallelisation due to the possibility to calculate the
fragments in parallel. Both, this and the AES only parallel variant, have the
problem of there being roughly 16 million very light tasks to execute for the
50 megabytes of data to encrypt that was used as load for the performance
measurements.

The fragment only parallel variant (frag.o.p. in the plots) has only the
fragments parallelised and the contents of one fragment are executed in serial
by the thread that picked that fragment. This avoids the problem of having
too many tasks and retains the benefit of potential parallelisation through
the fragments, but does not have any dependencies and does not represent
what we wanted to test. However, this variant gives perspective of how the
runtime behaves with more favourable properties of tasks.

7.1 Dependency Graph

Dependency graph shown in Figure 7.1 was derived by instrumenting libgomp
for the purpose and running the workload with the instrumented runtime.
The figure shows only an excerpt from the end of the full recorded graph

43

CHAPTER 7. RESULTS AND DISCUSSION 44

Figure 7.1: Excerpt of a dependency graph of the workload.

due to size constraints. The recording of the dependency graph was highly
disruptive for the performance of the runtime and the instrumentation for
the dependency graph was thus kept separate from the performance mea-
suring instrumentations. The dependency graph recording also encrypted
only one megabyte of data whereas the performance measuring worked on 50
megabytes. This was to reduce the size of the resulting dependency graph.
The resulting dependency graph should be similar in form to the one with
larger workload data. The only difference with the dependency graphs of
smaller and larger input data is the number of dependency trees represent-
ing fragments in the encryption.

Each node in the graph represents a task. The letter in the node tells
which thread executed the task in question and range from A to D, as the
measurement was done with four threads. The number after the letter is an
incrementing id for the task. Each task was assigned unique incrementing
id. The task at the bottom left is the last task of the execution, which tells
us that the encryption of one megabyte used 328575 tasks. The last number
in the node is the time of when the task was started in seconds relative to
the start of the program.

Edges in the dependency graph show the dependencies between different
tasks. Black arrow between two nodes means that the pointed task depends
on the pointing task because of an OpenMP depend clause. Gray arrow
between two nodes means that the pointing task is a parent task to the
pointed task.

The execution has a taskwait at the end of each five task blocks branching

CHAPTER 7. RESULTS AND DISCUSSION 45

from the four CBC related tasks, due to the next block in CBC requiring
the result of the previous one. This restricts the parallelism of the workload.
However, because of fragmentation, there are many more of these trees one
of which is partially pictured in the Figure 7.1.

The topmost task with id 75 is a task generated to encrypt one fragment.
The left one of its children starts to calculate a hash for the message. The
hash calculation is not parallelised in any way, as it seemed to be short in
relation to the encryption and not necessary for the topic of this thesis. The
right one, with id 312900, starts to encrypt most of the load of the fragment.
There are 128 blocks with five tasks under this task, most of which are not
pictured in the excerpt. After both of the children of the top task have
finished, the task 312904, that depends on both of them, can be started and
it will encrypt the two blocks of hash that was generated to the end of the
message.

There might be bias in the excerpt concerning how often the threads
switch between tasks of the same tree, because the part shown in the excerpt
is at the end of the execution and all the other work is likely already done.

7.2 Challenges with Runtime Instrumentation

Figure 7.2 shows the execution time of different attempts for instrumenting
the runtime for measurements with uninstrumented execution and serial exe-
cution for comparison. Parallel 1 in the plot is an attempt to instrument the
task lock by reading performance counter each time it is locked. Parallel 2 in
the plot is instrumentation using PAPI_get_real_cyc(). The measurements
are from the fully parallel variant of the workload.

The parallel 1 line in Figure 7.2 shows an execution with reading the
count of executed instructions on both sides of locking the GOMP task lock.
Overhead is clearly unreasonable with anything more than two threads and
the resulting graph doesn’t resemble that of the uninstrumented execution.

The parallel 2 line shows an execution with a different approach. This
version uses PAPI_get_real_cyc() to measure time in the lock instead of
using a performance counter for the job. This also has the benefit of counting
time spent in the lock instead of counting instructions used, thus getting the
overhead even if the threads are not doing anything while waiting.

Getting the locking counts also had a similar performance issue for using
a sequentially consistent atomic access to a global variable for storing the
count. This was solved by storing the values first to the current thread and
summing the results in barriers. However, the performance issue with this
only showed on a development machine and not on the machine where final

CHAPTER 7. RESULTS AND DISCUSSION 46

0 2 4 6 8 10 12
Threads

0

10000

20000

30000

40000

50000

60000

E
x
e
cu

ti
o
n
 t

im
e
 (

m
s)

serial
Uninstrumented parallel
parallel 1
parallel 2

Figure 7.2: Execution time of two different attempts of instrumentation with
uninstrumented and serial executions for reference.

measurements were taken.
The main difficulty of measuring the task lock is the huge amount of tasks

in the execution of the chosen workload. At best, the runtime executes the
16 million tasks of the workload in roughly 10 seconds.

It would have been possible to further improve the instrumentation perfor-
mance by implementing some kind of sampling and only take measurements
from part of the times the lock is requested. However, the overhead was
already in reasonable level and this was not deemed necessary.

7.3 Speedup of the Workload

Speedup of the workload was measured by measuring the time around the
only OpenMP parallel section in the workload which does the fragmentation
and encryption. Allocating the memory and preparing data to encrypt was
done before starting the measurement. Average measurement from the serial
version of the workload was then divided with a time measurement to acquire
the speedup. Figure 7.3 shows the speedup for different variations of the

CHAPTER 7. RESULTS AND DISCUSSION 47

0 2 4 6 8 10 12
threads

0

1

2

3

4

5

6

7

8
sp

e
e
d
u
p

serial
fully p.
AES o.p.
frag.o.p.
ideal

Figure 7.3: Speedup of the different variants of the workload.

workload and different number of threads.
As seen in Figure 7.3, the fully parallel variant of the workload speeds up

to four threads after which the performance starts to deteriorate. The peak
performance for the fully parallel variant of the workload is roughly double
that of the serial version. The deterioration is likely due to the high amount
of tasks generated during the execution, which is roughly 16 million tasks
during 10 seconds of execution at the performance peak of the fully parallel
variant of the workload.

The fragment parallel variant of the workload scales really well up to
6 threads after which the performance gain lessens creating an angle in-
stead of smooth deterioration. The point with six threads coincides with the
amount of actual cores in the measurement machine. More than 6 threads
are achieved with hyper threading, which allows the number of hardware
threads to be up to double the number of actual cores. Fragment size was
16 kilobytes, as mentioned in RFC about TLS [19], which was coincidentally
half of the L1 cache, so that two fragments would not fit into the L1 cache
at the same time, but reducing or increasing the fragment size did not affect
the forming of the angle. Likewise, measuring L1 cache misses showed no

CHAPTER 7. RESULTS AND DISCUSSION 48

unusual behaviour around six threads.
The performance of AES only parallel variant stays below the serial, keeps

its performance about the same for two to four threads and starts to dete-
riorate more when the number of threads is further increased. As the AES
only parallel variant has shortage of tasks and too many threads, the threads
need to compete for the tasks causing increasing amount of overhead.

7.4 Task Lock Congestion

0 2 4 6 8 10 12
Threads

0.0

0.2

0.4

0.6

0.8

1.0

T
a
sk

 l
o
ck

 w
a
it

 f
re

q
u
e
n
cy

fully p.

AES o.p.

frag.o.p.

0 2 4 6 8 10 12
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
a
sk

 l
o
ck

 o
v
e
rh

e
a
d

fully p.

AES o.p.

frag.o.p.

0 2 4 6 8 10 12
threads

0.95

1.00

1.05

1.10

1.15

1.20

C
o
n
g
e
st

io
n
 m

e
a
su

re
m

e
n
t

o
v
e
rh

e
a
d baseline

fully p.

AES o.p.

frag.o.p.

Figure 7.4: Task lock wait frequency, task lock wait time and the overhead
from measuring these.

Task lock congestion was measured by instrumenting a lock function used
to lock the task lock. A count for the number of lockings was increased before
locking the lock and a count for the number of longer waits was increased if
the lock was not acquired immediately. These counts were first increased to
per thread counter and syncronised to a global counter when encountering a
barrier, which there was only couple in the workload implementation. The
time for waiting in the lock was measured with PAPI_get_real_cyc(), a

CHAPTER 7. RESULTS AND DISCUSSION 49

PAPI function for getting current real time in clock cycles. The time was
measured before and after the wait and the difference stored. Time spent
outside of the lock wait was gained by taking the difference of the start
wait measurement of the current lock wait and end wait measurement of the
previous time the thread was waiting for the lock.

The Figure 7.4 shows measurement results from measuring the congestion
of the task lock. The first image of the figure shows the frequency of how often
threads need to wait for the lock instead of acquiring the lock immediately
when needed. The fully parallel variant can be seen to rapidly increase to
roughly 0.8, which means that 80% of the time when the lock is needed,
some other thread has the lock locked and the current thread needs to wait
to acquire the lock. The AES only parallel variant increases slightly slower,
which could be partly because of the lower tasks per second rate. Finally,
the fragment only parallel variant stays close to zero, as most of the time is
spent in the task workload. Slight increase to the wait frequency can be seen
at the end side of the scale.

The second image of the Figure 7.4 shows the overhead from the time
spent waiting for the lock. The overhead is plotted so that value 1.0 has no
overhead and anything above that is extra time used. The plot shows that
the overhead from waiting for the task lock in fully parallel variant increases
slower at the beginning and starts to increase steeper at around 4 threads.
At 4 threads the overhead is 23% and at 6 threads it is 95%. The AES only
parallel variant waits for the task lock considerably less and is still only 46%
with 12 threads. However, this is likely due to the lower task throughput
of the AES only parallel variant and the threads are spending their time in
some other overhead. Most likely they are sleeping in a condition variable
for new tasks to appear. The fragment only parallel variant is again close to
the optimal value due to having larger tasks and thus less frequent locking
for the task lock. Time spent for waiting the lock in this variant is around 8
millionths for a measurement with 12 threads.

The third image of the Figure 7.4 shows the disruptiveness of the measure-
ment by showing the overhead caused by the measurement itself. This was
done by comparing the execution times of instrumented and non-instrumented
versions of the runtime. Scale shows the execution time relative to the ex-
ecution time of the non-instrumented version. The image shows that the
fully parallel variant of the workload has roughly 15% overhead from the
measurement and a bit less with small or large thread counts. The AES
only parallel variant has no noticeable overhead from the measurement until
6 threads from where the overhead from the measurement starts to increase
to the 10% overhead at 12 threads. The measurements for the fragment only
parallel variant shows overhead from the measurement to be close to the

CHAPTER 7. RESULTS AND DISCUSSION 50

baseline, which means there was next to no interference from the measure-
ment for the fragment only variant. The interference for the other variants
is noticeable, but still on a reasonable level.

7.5 Time Spent in Runtime

0 2 4 6 8 10 12
Threads

0

1

2

3

4

5

6

7

O
v
e
rh

e
a
d
 o

f
th

e
 r

u
n
ti

m
e

fully p.

AES o.p.

frag.o.p.

0 2 4 6 8 10 12
Threads

0.95

1.00

1.05

1.10

1.15

1.20

M
e
a
su

re
m

e
n
t

o
v
e
rh

e
a
d

Baseline

fully p.

AES o.p.

frag.o.p.

Figure 7.5: Overhead from the time spent in runtime code.

Time spent in the runtime and in the user code of the workload was
measured by instrumenting locations in the runtime code where the execution
either leaves or enters the runtime code. When the execution leaves the
runtime code, the time since last measurement is added to a variable holding
the total runtime time. Likewise, when the execution enters the runtime
code, the time is added to total usercode time. The time measurement is
done with the PAPI_get_real_cyc() function like with the measurement
with the lock. Also similarly, the variables are stored first per thread and
summed together on barriers.

Assembler conversion of the workload was used to find the locations for
instrumenting the runtime. As the OpenMP pragmas have relatively simple
conversion into code and include a function call to the runtime, the entry
points were easily tracked by finding those calls to runtime functions. Such
functions would then have an entry point at the beginning and exit point at
thee end. The rest entry and exit points in the workload in question were
executing task workloads. These were found by reading task.c from GOMP
source. Task function call has an exit point before the call and an entry point
after the call is complete.

In Figure 7.5 is pictured overhead from the time spent in the runtime and
overhead from measuring the runtime and usercode times. The first image
of the figure shows the overhead from time spent in the runtime. The fully

CHAPTER 7. RESULTS AND DISCUSSION 51

parallel variant and the AES only parallel variant both behave in a similar
manner. Both of them increase steadily and with five threads use over half of
the time in the runtime. If this graph is compared to the results in Section 7.4,
we notice that most of the time in runtime for the fully parallel variant is
spent waiting for the task lock. AES only variant on the other hand can be
explained by the threads waiting for available tasks. Fragment only variant
of the workload stays close to the baseline meaning almost all time was spent
in the usercode.

In the second image of Figure 7.5 we can see the overhead from the
measurement. The overhead of this measurement is on similar level to the
overhead of the task lock measurement. So, the overhead is around 15% for
the fully parallel variant of the workload, increases to 10% on 12 threads for
the AES only parallel variant and stays close to the baseline for the fragment
only parallel variant.

7.6 Discussion

This section talks about what future research could provide interesting re-
sults. These ideas are basically: comparing time spent on dependencies and
time spent on queues, modifying the task scheduling, experimenting with
work stealing and dependencies, modifying the GOMP taskwait behaviour
and creating dedicated scheduling thread.

Measuring time spent on dependency tree and time on task queues could
tell which of them is more responsible for the task lock congestion.

Another possibility for future work would be modifying the task schedul-
ing and to see how that affects the performance of the runtime. Modify-
ing thread scheduling could have performance effect as well, but the thread
scheduling is done in the kernel of the operating system instead of the
OpenMP runtime and is not as such related to the task scheduling.

Creating a queue of tasks for each thread and implementing work steal-
ing between the queues could be done and is done in some other runtimes.
Figuring out how to parallelise the task dependency handling and how well it
would work with work stealing could yield interesting results. The result of
such modification could then be compared to the performance of the current
behaviour.

Comparing tied and untied tasks would require implementation of the
untied tasks. Experimenting with taskyield would also make more sense
with untied tasks implemented. However, the GOMP habit of only taking
a direct children for executing in taskwait could be experimented with and
figured if it can affect any real world application. A specifically built test

CHAPTER 7. RESULTS AND DISCUSSION 52

program that performs work between creation of tasks and the taskwait will
show this effect.

As the task lock gets heavily congested with small tasks and high number
of threads, a thread dedicated for scheduling could ease the burden on the
task lock or remove the need altogether. The idea may deviate somewhat
from OpenMP specification and makes sense only for task parallelism, but
if the scheduling won’t take too much time or can partly be delegated to
others, it could improve the performance with small tasks. However, with
small tasks the danger is that the scheduling does take too much time.

Chapter 8

Conclusion

The thesis focuses on the performance properties of the OpenMP task schedul-
ing model. The original contribution of the thesis is in designing and evalu-
ating an embedded monitoring system for an OpenMP runtime.

We measured performance qualities of OpenMP task scheduling model by
developing an embedded monitoring system in GOMP, which is described in
more detail in Chapter 5. The monitoring system was tested and evaluated by
implementing a parallel cryptographic algorithm with couple variants, which
is explained in Chapter 6. The main variant of the workload has really fine
grained tasks, but still gained some speedup from the parallelisation.

Overhead caused by the monitor was found to be on a reasonably low
level. The overhead from the measurement was around 15% and didn’t show
signs of growing with more threads. This makes the monitoring system we
developed to be feasible for measuring the runtime performance. This finding
is made in two different variations of the embedded monitor in Chapter 7.

Task lock that GOMP uses to protect task related data structures was
found to be heavily congested when the individual tasks are tiny. In our
measurements, the runtime spent roughly half the time waiting for the task
lock when the amount of threads was increased to six for the main variant
of the workload. Task lock congestion is further explained in Section 7.4.

One approach for continuing the research would be modifying the embed-
ded monitoring system to measure in which parts of the runtime the time is
spent while holding the task lock. First interest on this approach could be
comparing time spent for managing dependency structures and time spent
for managing task queues.

Another approach would be to modify the runtime. Some discussion of
possible modifications can be found in Section 7.6. Additionally, using a lock-
less data structures could be possible, but would require deep understanding
of how to implement such data structures.

53

CHAPTER 8. CONCLUSION 54

The contribution of the thesis, designing and evaluating an embedded
monitoring system for an OpenMP runtime, is significant for future research,
as it gives a base to build up on and shows how experimental changes to the
runtime can be evaluated and compared.

Bibliography

[1] Advanced encryption standard. URL http://en.wikipedia.org/wiki/

Advanced_Encryption_Standard.

[2] Intel Cilk Plus. URL https://software.intel.com/en-us/intel-cilk-

plus.

[3] High resolution clock. URL http://en.cppreference.com/w/cpp/

chrono/high_resolution_clock.

[4] Installing GCC, . URL https://gcc.gnu.org/install/.

[5] GCC: Anonymous read-only SVN access, . URL https://gcc.gnu.org/

svn.html.

[6] GDB: The GNU project debugger. URL http://www.gnu.org/software/

gdb/.

[7] GNU gprof. URL https://sourceware.org/binutils/docs/gprof/.

[8] Intel OpenMP runtime library. URL https://www.openmprtl.org/.

[9] An introduction to kprobes. URL http://lwn.net/Articles/132196/.

[10] LTTng. URL http://lttng.org/features/.

[11] The multicore association. URL http://www.multicore-association.

org/.

[12] ompP / MADAME. URL http://www.ompp-tool.com/.

[13] OpenEM.org, . URL https://www.openem.org/.

[14] OpenMP frequently asked questions, . URL http://openmp.org/openmp-

faq.html.

55

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://software.intel.com/en-us/intel-cilk-plus
https://software.intel.com/en-us/intel-cilk-plus
http://en.cppreference.com/w/cpp/chrono/high_resolution_clock
http://en.cppreference.com/w/cpp/chrono/high_resolution_clock
https://gcc.gnu.org/install/
https://gcc.gnu.org/svn.html
https://gcc.gnu.org/svn.html
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
https://sourceware.org/binutils/docs/gprof/
https://www.openmprtl.org/
http://lwn.net/Articles/132196/
http://lttng.org/features/
http://www.multicore-association.org/
http://www.multicore-association.org/
http://www.ompp-tool.com/
https://www.openem.org/
http://openmp.org/openmp-faq.html
http://openmp.org/openmp-faq.html

BIBLIOGRAPHY 56

[15] Performance application programming interface. URL http://icl.cs.

utk.edu/papi/.

[16] perf: Linux profiling with performance counters. URL https://perf.

wiki.kernel.org/index.php/Main_Page.

[17] Thread Building Blocks. URL https://www.threadingbuildingblocks.

org/.

[18] Enhancing security performance with parallel crypto operations in SSL
bulk data transfer phase, 2007. URL http://ieeexplore.ieee.org/

stamp/stamp.jsp?tp=&arnumber=4448620&tag=1.

[19] The transport layer security (TLS) protocol version 1.2, 2008. URL
http://www.ietf.org/rfc/rfc5246.txt.

[20] OpenMP Application Program Interface - version 3.0, May 2008. URL
http://www.openmp.org/mp-documents/spec30.pdf.

[21] Intel Advanced Encryption Standard (AES) Instruction Set - Rev
3.01, August 2012. URL https://software.intel.com/en-us/articles/

intel-advanced-encryption-standard-aes-instructions-set.

[22] OpenMP 4.0 specification released, July 2013. URL http://openmp.

org/wp/2013/07/openmp-40/.

[23] OpenMP application program interface - version 4.0, July 2013. URL
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[24] Parallel AES encryption with modified mix-columns for many core pro-
cessor arrays, 2014. URL http://www.ijesit.com/Volume%203/Issue%

203/IJESIT201403_23.pdf.

[25] GCC 4.9 release series, July 2014. URL https://gcc.gnu.org/gcc-4.9/.

[26] GCC wiki / OpenMP, July 2014. URL https://gcc.gnu.org/wiki/

openmp.

[27] GNU libgomp documentation, 2014. URL https://gcc.gnu.org/

onlinedocs/libgomp/index.html.

[28] Intel’s ”Knights Landing” Xeon Phi Coprocessor Detailed, June 2014.
URL http://www.anandtech.com/show/8217/intels-knights-landing-

coprocessor-detailed.

http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4448620&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4448620&tag=1
http://www.ietf.org/rfc/rfc5246.txt
http://www.openmp.org/mp-documents/spec30.pdf
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
http://openmp.org/wp/2013/07/openmp-40/
http://openmp.org/wp/2013/07/openmp-40/
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.ijesit.com/Volume%203/Issue%203/IJESIT201403_23.pdf
http://www.ijesit.com/Volume%203/Issue%203/IJESIT201403_23.pdf
https://gcc.gnu.org/gcc-4.9/
https://gcc.gnu.org/wiki/openmp
https://gcc.gnu.org/wiki/openmp
https://gcc.gnu.org/onlinedocs/libgomp/index.html
https://gcc.gnu.org/onlinedocs/libgomp/index.html
http://www.anandtech.com/show/8217/intels-knights-landing-coprocessor-detailed
http://www.anandtech.com/show/8217/intels-knights-landing-coprocessor-detailed

BIBLIOGRAPHY 57

[29] OpenMP / Clang, September 2014. URL http://clang-omp.github.

io/.

[30] Gregory R Andrews. Concurrent programming: principles and practice.
Benjamin/Cummings Publishing Company, 1991.

[31] Evgenij Belikov, Pantazis Deligiannis, Prabhat Totoo, Malak Aljabri,
and Hans-Wolfgang Loidl. A survey of high-level parallel program-
ming models. Technical report, Technical Report HW-MACS-TR-0103,
Heriot-Watt University, 2013.

[32] Mordechai Ben-Ari. Principles of concurrent and distributed program-
ming. Pearson Education, 2006.

[33] Lawrence Livermore National Laboratory Blaise Barney. POSIX
Threads Programming. URL https://computing.llnl.gov/tutorials/

pthreads/.

[34] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. Evaluation of
OpenMP task scheduling strategies. In Proceedings of the 4th Interna-
tional Conference on OpenMP in a New Era of Parallelism, IWOMP’08,
pages 100–110, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 3-540-
79560-X, 978-3-540-79560-5. doi: 10.1007/978-3-540-79561-2 9.

[35] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2012.

[36] Smith Jim Jr, Ravi Nair, James E Smith, and Heath Potter. Virtual ma-
chines: Versatile platforms for systems and processes, publisher morgan
kaufmann publishers, may 2005. Technical report, ISBN 1-55860-910-5.

[37] Patrick Kennedy. GCC 4.9 OpenMP code cannot be linked
with Intel OpenMP runtime, September 2014. URL https:

//software.intel.com/en-us/articles/gcc-49-openmp-code-cannot-

be-linked-with-intel-openmp-runtime.

[38] Monica Lam, Ravi Sethi, JD Ullman, and AV Aho. Compilers: Princi-
ples, techniques, and tools, 2006.

[39] Yuan Lin, Guansong Zhang, et al. The design of OpenMP tasks. IEEE
Transactions on Parallel and Distributed Systems, 20(3):404–418, 2009.
doi: 10.1109/TPDS.2008.105.

[40] Ananya Muddukrishna. Exploiting locality in OpenMP task scheduling.
page 76, 2010.

http://clang-omp.github.io/
http://clang-omp.github.io/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
https://software.intel.com/en-us/articles/gcc-49-openmp-code-cannot-be-linked-with-intel-openmp-runtime
https://software.intel.com/en-us/articles/gcc-49-openmp-code-cannot-be-linked-with-intel-openmp-runtime
https://software.intel.com/en-us/articles/gcc-49-openmp-code-cannot-be-linked-with-intel-openmp-runtime

BIBLIOGRAPHY 58

[41] Stephen L Olivier. Design issues in the semantics and scheduling of asyn-
chronous tasks. Technical report, Sandia National Laboratories (SNL-
NM), Albuquerque, NM (United States), 2013.

[42] Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael
Spiegel, and Jan F Prins. OpenMP task scheduling strategies for
multicore NUMA systems. International Journal of High Perfor-
mance Computing Applications, page 1094342011434065, 2012. doi:
10.1177/1094342011434065.

[43] StephenL. Olivier and JanF. Prins. Comparison of OpenMP 3.0 and
other task parallel frameworks on unbalanced task graphs. International
Journal of Parallel Programming, 38(5-6):341–360, 2010. ISSN 0885-
7458. doi: 10.1007/s10766-010-0140-7.

[44] Artur Podobas. Thermal-aware scheduling in OpenMP. page 90, 2010.

[45] Antoniu Pop and Albert Cohen. Preserving high-level semantics of par-
allel programming annotations through the compilation flow of opti-
mizing compilers. In Proceedings of the 15th Workshop on Compilers
for Parallel Computers (CPC’10), Vienna, Austria, July 2010. URL
https://hal.inria.fr/inria-00551518.

[46] Jaspal Subhlok, James M Stichnoth, David R O’hallaron, and Thomas
Gross. Exploiting task and data parallelism on a multicomputer. In
ACM SIGPLAN Notices, volume 28, pages 13–22. ACM, 1993. doi:
10.1145/173284.155334.

[47] Barry Wilkinson and Michael Allen. Parallel programming, volume 999.
Prentice hall New Jersey, 1999.

https://hal.inria.fr/inria-00551518

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem
	1.2 Method
	1.3 Results
	1.4 Structure of the Thesis

	2 Background
	2.1 Parallel Computers
	2.2 Parallel Computing
	2.3 Task Parallelism
	2.4 Runtime System for Parallel Programs

	3 Runtime System Support for Tasking
	3.1 Task Models
	3.2 OpenMP Task Model
	3.2.1 Threads
	3.2.2 Tasks
	3.2.3 Tied Versus Untied Tasks
	3.2.4 Dependencies
	3.2.5 Task Scheduling

	3.3 Runtime Support of Tasking
	3.3.1 Communication
	3.3.2 Resource Management
	3.3.3 Task Management

	3.4 Runtime Monitoring
	3.5 Task Scheduling

	4 An OpenMP Runtime System
	4.1 Platform Selection
	4.2 OpenMP as a Multicore Platform
	4.2.1 Coordination
	4.2.2 Memory Management
	4.2.3 Thread and Task Management

	4.3 Compiler
	4.4 Operating System
	4.5 Software Structure of GOMP
	4.6 Interfaces
	4.7 Data Structures
	4.8 Static Operation
	4.9 Dynamic Operation
	4.9.1 Objects

	5 Runtime Monitoring
	5.1 Current Operation of GOMP
	5.2 Monitoring System Overview
	5.2.1 Frontend
	5.2.2 Backend
	5.2.3 Monitoring Techniques
	5.2.4 Implementation

	5.3 Runtime Instrumentation
	5.3.1 Instrumenting for Dependency Graph
	5.3.2 Instrumenting the Task Lock
	5.3.3 Instrumenting Runtime Entry and Exit

	6 OpenMP Test Workload
	6.1 Overview
	6.2 Advanced Encryption Standard
	6.2.1 Block Cipher by Itself, ECB Mode
	6.2.2 CBC Mode
	6.2.3 CTR Mode
	6.2.4 Fragmentation
	6.2.5 HMAC-SHA1
	6.2.6 Parallelism

	7 Results and Discussion
	7.1 Dependency Graph
	7.2 Challenges with Runtime Instrumentation
	7.3 Speedup of the Workload
	7.4 Task Lock Congestion
	7.5 Time Spent in Runtime
	7.6 Discussion

	8 Conclusion

