
AALTO UNIVERSITY

School of Science

Department of Computer Science and Engineering

Sampo Kivirinta

Reducing Persisting Cognitive Dissonance
and Drop-out Rates in Computer Science 1
Using Visual Debugger Aid

Master's Thesis

Espoo, December 16th, 2014

Supervisor: Professor Lauri Malmi

Instructor: Juha Sorva D.Sc. (Tech.)

AALTO UNIVERSITY
School of Science ABSTRACT OF
Department of Computer Science and Engineering MASTER'S THESIS

Author: Sampo Kivirinta

Title: Reducing Persisting Cognitive Dissonance
and Computer Science 1 Drop-out Rates
Using Visual Debugger Aid

Date: Dec 16, 2014 Pages: 76

Professorship: Software Technology Code: T-106

Supervisor: Professor Lauri Malmi

Instructor: Juha Sorva D.Sc. (Tech.)

Constructivism provides an excellent learning model but its methods are associated with
high cognitive load, which is further increased by the inherent cognitive complexity of
introductory computing courses (CS1). On the other hand, the introductory nature of CS1
means high variation in existing skills. This variation combined with external limitations
and poor metacognitive skills can lead to unresolved conflicts and persisting cognitive
dissonance. Persisting cognitive dissonance harmfully interacts with high cognitive load by
further taxing working memory, preventing conflict resolution and leading into a vicious
circle of accumulating cognitive dissonance. This work identifies three harmful interations
through which persisting dissonance damages learning in CS1 and further escalates the
dissonance: resource depletion, excessive cognitive load and avoidance failure. The
resulting accumulation of dissonance is destructive and inevitably leads to avoidance
behavior that can culminate in the abandonment of the studies.

Fortunately cognitive dissonance can be reduced by several techniques including positive
framing and improving metacognitive skills. To demonstrate that many of these measures
could be mediated by supporting scaffolds in the learning environment, this work proposes
a prototype scaffold Eclipse DAPS (Debugging Assistant for Programming Students using
Eclipse Python). DAPS provides assistance in debugging, one of the most difficult tasks a
novice programmer must face. DAPS is a proof of concept intelligent tutoring system for
teaching CS1 Python and aims to maintain student motivation by providing visualizations,
metacognitive support and an integrated debugger. In addition, memorization techniques
and easy repetition are used to improve knowledge encoding.

Keywords: introductory programming, CS1, persisting cognitive dissonance,
cognitive dissonance, failure rate, debugging, python

Language: English

AALTO YLIOPISTO
Perustieteiden korkeakoulu DIPLOMITYÖN
Tietotekniikan laitos TIIVISTELMÄ

Tekijä: Sampo Kivirinta

Työn nimi: Persistoivan kognitiivisen dissonanssin
ja ensimmäisen ohjelmointikurssin keskeytysmäärien vähentäminen
käyttäen visuaalista debuggausassistenttia

Päiväys: 16.12.2014 Sivumäärä: 76

Professuuri: Ohjelmistotekniikka Koodi: T-106

Valvoja: Professori Lauri Malmi

Ohjaaja: TkT Juha Sorva

Konstruktivismi tarjoaa erinomaisen oppimismallin, mutta sen metodit liitetään korkeaan
kognitiiviseen taakkaan, jota lisää myös ohjelmoinnin alkeiskurssien korkea kognitiivinen
monimutkaisuus. Toisaalta ohjelmoinnin alkeiskursseilla opiskelijoiden taidot vaihtelevat
huomattavasti. Yhdistettynä sopeutumisrajoituksiin ja heikkoihin metakognitiivisiin
taitoihin tämä variaatio voi johtaa sevittämättömiin konflikteihin ja siten myös
persistoivaan kognitiiviseen dissonanssiin. Persistoiva kognitiivinen dissonanssi
vuorovaikuttaa vahingollisesti kognitiivisen taakan kanssa kuluttamalla työmuistia ja
estäen konfliktien ratkaisua ja johtaa lisääntyvän dissonanssin noidankehään. Tämä työ
tunnistaa kolme vahingollista vuorovaikutusta, joiden kautta persistoiva dissonanssi
heikentää aloittelevien ohjelmoijien oppimista ja edelleen lisää heidän dissonanssiaan:
resurssien loppuminen, liiallinen kognitiivinen taakka ja välttämisen epäonnistuminen.
Lopputuloksena syntyvä dissonanssin kertyminen on tuhoisaa ja johtaa väistämättä
välttämiskäyttäytymiseen, joka voi huipentua kurssin keskeyttämiseen.

Onneksi kognitiivista dissonanssia voidaan vähentää useilla tekniikoilla mukaan lukien
positiivinen kehystäminen ja metakognitiivisten taitojen kehittäminen. DAPS (Debugging
Assistant for Programming Students, debuggausassistentti ohjelmoinnin opiskelijoille) on
älykkään opastusjärjestelmän prototyyppi, joka pyrkii tarjoamaan demonstraation kyseisten
tekniikoiden ohjelmallisesta implementaatiosta. DAPS auttaa aloittelevia ohjelmoijia
Python-kielisten ohjelmien debuggauksessa ja ylläpitää motivaatiota visualisaatioilla ja
metakognitiivisella tuella. Lisäksi muistinnustekniikoita ja helppoa toistoa käytetään
tehostamaan informaation muistiin koodamista.

Avainsanat: ohjelmoinnin opettaminen, ensimmäinen ohjelmointikurssi,
persistoiva kognitiivinen dissonanssi, keskeyttäminen, debuggaus,
Python

Kieli: englanti

Acknowledgments

I would like to thank Lauri Malmi and Juha Sorva for their exemplary guidance. I would also
like to thank Lauri Kantola for several in-depth discussions in the field of cognitive
psychology.

In addition many other people within and outside Aalto University assisted in making this
work, including several members from LeTech1. Even when their input was lesser in quantity,
it still remains an equally crucial part of the whole process. I am deeply grateful to you all.

1 Learning + Technology Group, Department of Computer Science and Engineering, School of Science, Aalto
University

1

Table of Contents

Before You Begin..6

 1 Introduction...7
 1.1 Cognitive Psychology – The Solid Level Below..7
 1.2 Goals and Contribution of the Thesis..8
 1.3 What Is DAPS – Protection from Persisting Cognitive Dissonance...............................8

 2 Review of the Literature...9
 2.1 Sociological Perspective – Teaching Does Not Benefit All Students Equally................9
 2.2 Motivation – Why Do They Quit?...9

 2.2.1 Some Important Terms...10
 2.2.1.1 Goals – Should Always Be Reached..10
 2.2.1.2 Pull and Push..10
 2.2.1.3 Intrinsic and Instrumental Motives – Instrumental Can Be Harmful............10

 2.2.2 Behaviorism...10
 2.2.2.1 Pavlov – Old Behavior Is Extremely Persistent...11
 2.2.2.2 Instrumental Learning – Perception of Fear Leads to Avoidance..................11

 2.2.3 Cognitive Dissonance..12
 2.2.3.1 Cognitive Dissonance – Removes Inconsistencies from Cognition..............12
 2.2.3.2 New Information Causes Cognitive Dissonance...13
 2.2.3.3 A Person Actively Hides the Causes of Dissonance......................................14
 2.2.3.4 Dissonance Can Not Be Maintained..14
 2.2.3.5 Reducing Dissonance – Requires Resources...15
 2.2.3.6 The Cost of Reducing Dissonance Depends on the Person...........................15
 2.2.3.7 Persisting Dissonance Leads to Avoidance Behavior....................................16
 2.2.3.8 Avoidance Is a Useful but Dangerous Strategy – Can Lead to Entrapment. .16
 2.2.3.9 Focus to Process Instead of Results to Reduce Avoidance............................17
 2.2.3.10 Connecting Dissonance, Motivation, Goals and Positive Reinforcement.. .17

 2.2.4 Loss Aversion and Prospect Theory...18
 2.2.4.1 Perception of Risk Leads to Poor Performance...18
 2.2.4.2 Risk Taking Is a Serious Warning Sign..19
 2.2.4.3 Framing Effect – Positive Expressions Improve Motivation.........................19

 2.3 Memory...20
 2.3.1 Cognitive Load..20

 2.3.1.1 Working Memory – The Hard Limit for Complex Thought..........................20
 2.3.1.2 Chunks and Schemas – Circumvent Working Memory Capacity Limit........20
 2.3.1.3 Cognitive Load – Is Caused by Element Interactivity...................................20
 2.3.1.4 High Cognitive Load Increases Damage from Dissonance and Avoidance...21

 2.3.2 Levels of Processing Theory – Memorization Effectiveness................................22
 2.3.3 “All memory Is cue-driven”..22

 2.3.3.1 Cue-dependent Forgetting and Cue Overload – Limit the Number of Terms23
 2.3.3.2 CS1 Should Provide Good Cues – Information Comes Second....................23
 2.3.3.3 Skill Learning and Repetition Priming – Repeated Cues Recalled Faster.....24

 2.4 Learning...26
 2.4.1 Metacognition..26

2

 2.4.1.1 Metacognitive Instruction – Important In the Early Stages of Learning.......26
 2.4.1.2 Lack of Ability Does Not Affect Performance in Later Stages of Learning..26
 2.4.1.3 Metacognitive Instruction Improves Debugging (Problem-Solving)............26
 2.4.1.4 Metacognitive Skills – Can Be Improved by Intelligent Tutoring Systems. .27
 2.4.1.5 Help-Seeking – Is Prevented by Fear of Losing Face....................................27

 2.4.2 Bloom's Taxonomy..27
 2.4.2.1 Application of Revised Bloom's Taxonomy Is the Search of Synergy..........28
 2.4.2.2 CS1 Studies Align Poorly with Fixing Programming Errors.........................29
 2.4.2.3 Teachers Encourage – Compilers Do Not..29

 2.4.3 Helping Students Past Unique Problems...29
 2.4.3.1 A Mental Model Is Formed Regardless of Access to Correct Information....30
 2.4.3.2 Correct Mental Model Should Be Provided as Early as Possible..................30
 2.4.3.3 Learning Should Be Based on Understanding...30
 2.4.3.4 Threshold Concepts – Should Be Prerequisites for Coding?.........................31

 2.4.4 Errors Are Inevitable...32
 2.4.4.1 Bugs as Solutions Instead of Problems..32

 2.4.5 Dual-Coding – Improves Knowledge Encoding...33
 2.4.5.1 Visualization – How to Effectively Implement Dual-Coding........................34
 2.4.5.2 Obstacles in Adopting – A Tool Must Be Easy to Approach.........................34

 2.5 Designing Intelligent Tutoring Systems..35

 3 Conclusions from the Literature – DAPS Requirements..37
 3.1 Persisting Cognitive Dissonance Behind CS1 Drop-out Rates.....................................38

 3.1.1 Helping to Dissolve Cognitive Dissonance...39
 3.1.2 Deadlines in Inducing Beneficial Dissonance...39
 3.1.3 Persisting Dissonance – Considered Harmful in CS1...40
 3.1.4 Variation in Skill – Adaptation to Change Requires Time.....................................40
 3.1.5 Metacognitive Skills – Knowing What to Expect...42
 3.1.6 Facilitate Acquisition of “Missed” Prerequisites...42

 3.2 What Can DAPS Do? – A Numbered List of Requirements...43
 3.2.1 Motivate to Learn, Not to Pass Assignments and Tests...43
 3.2.2 Task Performance ≠ Learning – Time and Effort = Learning................................43
 3.2.3 Students Need Help in Evaluating Their Own Performance.................................44
 3.2.4 Deadlines for Large or Difficult Tasks Can Be Harmful.......................................44
 3.2.5 Repetition Is Vital..45

 3.2.5.1 Repetition Must Be Elaborative, Distinctive and Cue Invariant....................45
 3.2.5.2 Repetition Must Be Successful..46

 3.2.6 Easy Access to Relevant Information..46
 3.2.7 Avoidance – Prevent Avoiding and Complete Failure...47

 3.2.7.1 Prevent Avoiding – Prevent Avoidance Strengthening Through Repetition. .47
 3.2.7.2 Prevent Complete Failure – Replace with Graceful to Reduce Damage.......48

 3.2.8 Eliminate Deadlocks – By Always Providing a Fallback......................................48
 3.2.9 Repetitive Failure Is Dangerous..49

 3.2.9.1 Avoiding Dangerous Repetition...49
 3.2.9.2 The Perception of Failure and Success Can Be Influenced...........................50

 3.2.10 Reducing Extrinsic Cognitive Load..50
 3.2.11 High Cognitive Load Necessitates Metacognitive Skills....................................51
 3.2.12 Erroneous Perceptions Must Be Readily Corrected..51
 3.2.13 Key / Threshold Concept Understanding Needs Verification..............................52

3

 3.2.14 Visual Representations Can Improve Learning Efficiency..................................52
 3.2.15 Third Parties – Easy Access and Adoption, Hard to Let Go................................52
 3.2.16 Implementation Status Chart...54

 4 Eclipse DAPS – Specification and Implementation...57
 4.1 Platform – Eclipse...57
 4.2 Architecture...57

 4.2.1 Integrated Debugger – Jython Python Interpreter...57
 4.2.1.1 Program Dynamics and Flow – The Line Numbers of Executed Code.........58

 4.2.2 Student-Assistant Dialogue – Assistant Instead of a Tool.....................................58
 4.2.2.1 Unintrusive Initiation...58
 4.2.2.2 Minimize Negative Perceptions...59
 4.2.2.3 Prevent Deadlocks...59
 4.2.2.4 Provides Only Information – User Remains In Control................................59
 4.2.2.5 A Domain of Gains – Effort Guarantees Success..60
 4.2.2.6 Overly Positive Framing..60

 4.2.3 Additional Help Materials...61
 4.2.4 Eclipse Integration – Implementation Details...61

 5 Comparison to Other Tools...64
 5.1 ITS Evaluation Is Difficult – User Testing Might be Better..66

 6 Summary and Future Work...67
 6.1 Limitations...68
 6.2 Recommendations, Current state of DAPS and Future Work.......................................68

 7 References...69

4

 List of Figures and Tables

Illustration 1: Approach-avoidance conflict..11

Illustration 2: The revised Bloom's taxonomy..28

Illustration 3: A vicious circle of persisting cognitive dissonance..38

Illustration 4: DAPS dialog view in Eclipse PyDev perspective..58

Illustration 5: DAPS provides easy tasks for the user...59

Illustration 6: DAPS tests the user's understanding of program flow.......................................60

Illustration 7: DAPS provides easily accessible reference..61

Illustration 8: The taxonomy of Kelleher & Pausch 2005..64

Table 1: DAPS implementation status chart... 56

Table 2: DAPS packages...62

5

Before You Begin
It is strongly recommended to glance through the table of contents before reading further. The
titles are specifically written to provide a good overview of the contents by stating firstly the
domain of discussion and secondly the most important conclusion.

The three main parts of the work are chapters 2-4:

2. Literature review of cognitive psychology that investigates motivational etiology
behind CS1 drop-out rates and ways of alleviating these problems.

3. The formulation of the persisting dissonance behind CS1 drop-out rates (the leading
finding in this work) and the translation of found theories into design requirements for
Eclipse DAPS.

4. Specification and implementation of Eclipse DAPS.

6

 1 Introduction
Computing permeates our society like never before and processes are increasingly
implemented through programmed software. This has created a great need for efficient
education to create the needed programming professionals. One severe problem in the
education of programming are the drop-out rates in the elementary programming courses
(Computer Science 1, CS1). While the existence of the problem is easily verified by course
personnel, the solutions have been hard to find.

This thesis investigates the problem through cognitive psychology by concentrating on its
motivational foundations, identifying what support systems the student's motivational system
would need in order to persevere through CS1 and finally begins implementing a
programming assistant system that solidifies these theoretical findings into a functional tool –
Eclipse DAPS.

 1.1 Cognitive Psychology – The Solid Level Below

The thesis leans heavily towards cognitive psychology (or cognitive science) in its efforts to
help students in their difficult task of learning programming. One might ask, why cognitive
psychology? There certainly is a wast number established teaching and learning disciplines.
Still, while cognitive psychology is not a guidebook to teaching, the subjects it investigates
are of a sufficiently “low level” for being isolated and investigated with quantitative methods
yielding consistent and hard evidence. It is a good and sturdy foundation for building.

Cognitive psychology is the study of higher mental processes (Gerrig & Zimbardo 2002). It
investigates matters such as:

• attention (the selection of relevant over irrelevant)

• memory (the storage and timely retrieval of relevant information)

• perception (reception and interpretation of external stimuli)

• language

• metacognition (self-knowledge and self-regulation, planning, monitoring, evaluating).

While these processes are far from practicalities of teaching, they are extremely relevant to
the subject at hand. It is these processes that must be guided and nurtured to lead the students
to successful learning and understanding. The understanding of these mental processes, their
capabilities and their limitations, is therefore, important.

While from the perspective of cognitive psychology, mental processes such as attention and
memory are called higher mental processes, in some instances they can be referred as basic or
simple mental processes due to the different perspective. If we consider the information
layered as a hierarchy, this thesis considers these processes as the level below its focus and
aims to identify structures directly over them. The used terminology is, as natural languages
always are, context dependent.

7

 1.2 Goals and Contribution of the Thesis

• This work approaches CS1 teaching from the cognitive psychology's perspective,
reviews relevant theories, and investigates the motivational foundations behind CS1
drop-out rates.

• A new perspective of persisting dissonance behind CS1 drop-out rates is proposed,
where resource depletion, excessive cognitive load and avoidance failure are identified
as important components leading into a vicious circle of accumulating cognitive
dissonance. This high persisting dissonance degrades student's performance and
eventually enforces the student to abandon CS1 studies.

• Eclipse DAPS (Eclipse Debugging Assistant for Programming Students) is proposed.
DAPS is an automated tutoring system prototype that uses cognitive techniques to
teach CS1 programming in Eclipse Python environment. It aims to improve the
student's motivation with visualizations, encouragement and instruction in
metacognitive skills and attempts to protect the student from harmful repetition and
deadlocks. Memory theories are employed to ease memorization, improve recall and
reduce cue-dependent forgetting.

• DAPS design aims to create a basis for building a genuine resource for the curriculum
and to address the generally poor adopting of these tools through creating positive
experiences, and ease of use. DAPS does not fix problems but assists in their fixing
and encourages learning, provides zero delay feedback and can be extended to
information collection.

• The tool uses Eclipse IDE to reduce code base and maintenance costs, to ease future
development and to allow easy tapping into Eclipse ecosystem's constantly developing
resources.

 1.3 What Is DAPS – Protection from Persisting Cognitive
Dissonance

DAPS is an intelligent tutoring system (ITS) and has the following features and qualities:

• Main approach is to try to protect a CS1 student from circumstances that cause
persisting cognitive dissonance and to help the students in resolving it. It does this by
providing direction and metacognitive instruction.

• Main interaction in the form of approachable and familiar textual dialog that never
leaves the student without direction.

• Added value features (debugger and visualizations) are used to create a productive
interaction with the user. This motivates into using DAPS and provides the interaction
into which the motivational and dissonance relieving elements can be incorporated.

8

 2 Review of the Literature

 2.1 Sociological Perspective – Teaching Does Not Benefit All
Students Equally

The causality between teaching and learning is accepted with little criticism. Yet Coleman
Report 1966 (Coleman 1968), which is called as “the most important contribution by
sociologists to research on schooling” (Secada & Marrett 2000 p. 37), gives very little reason
to trust this hypothesis. Its proposal of changing educational context by moving students
between schools to improve learning results in weaker areas and reduce dispersion in
education results, tells us how little the perceived quality of teaching correlated to the learning
results obtained. When learning results were compared, the differences in teaching between
the schools where far inferior to the differences in learning between the students. In the study
pupil attitude factor had stronger impact on achievement than all school related factors
combined. Moreover, only 10-20% of the achievement was associated with school
differences.

The conflict is obvious. In one hand, teaching greatly improves learning results, one the other,
poor learning results can only be marginally improved through better teaching. This leads us
to ask a valid question: Are there factors that inhibit some students from benefiting from
the teaching?

 2.2 Motivation – Why Do They Quit?

Our society is ever more perforated by computing, but still CS1 students quit and turn away
from this promising future and drop-out rates of 20-40 percents are reported by many
institutes (Kinnunen & Malmi 2006) and a recent meta-analysis narrows this into a mean
worldwide failure rate of 33,3% (Watson & Li 2014). Why do they quit? To answer this
question we must investigate the system which is used in making these decisions – the
motivation.

Motivation: The process of starting, directing, and maintaining physical and
psychological activities; includes mechanisms involved in preferences for one activity
over another and the vigor and persistence of responses. (Gerrig & Zimbardo 2002)

The concept of motivation is used to answers following three questions (Pervin 2003 p. 105):

1. What activates the organism?

2. Why does the organism select or choose one response over another, one direction of
activity over another?

3. Given the same stimulus, why does the organism sometimes respond one way and
sometimes another?

While defining motivation gives us little insight into understanding it, the definition does
provide a crucial starting point to understanding. Motivation is an internal system of the
person.

But to maintain our own motivation in constructing a more general answer, let us consider one
“partial” solution: a subgoal.

9

 2.2.1 Some Important Terms

 2.2.1.1 Goals – Should Always Be Reached

In social cognitive theory, desired future events that motivate the person over extended
periods of time and enable the person to go beyond momentary influences. (Pervin
2003 p. 101) The definition for a goal.

While the motivational system is highly complex, some specific goals can be easily identified
and used for our benefit. These easily identifiable goals are our “partial solution” to the
problem of motivation. By providing good goals, that is, goals that are desirable, clearly
reachable and reachable with reasonable effort, we can increase the person's motivation with
each reached goal. This motivation can then be kept up by providing more goals that in time
will also be reached. Goals are not dreams. Once set, they must be reached, or
disappointment and loss of motivation will follow.

 2.2.1.2 Pull and Push

The several theories of motivation can be traditionally categorized into push and pull theories
(Kelly 1958). Push theories work with motivational elements that compel the organism into
activity or decision, through negative impulses of fear, pain, anxiety etc. Pull theories in turn
work with hedonistic elements that reward the organism with pleasure.

 2.2.1.3 Intrinsic and Instrumental Motives – Instrumental Can Be Harmful

Motivational elements can also be categorized into intrinsic and instrumental (same as
extrinsic). Intrinsic motives are directly involved with the task itself (for example a desire to
become better in the task or learn from it). Instrumental motives are related to the outcome of
the task (for example getting paid for the end result, getting into even better task afterward, or
getting a good grade). Of these motives, intrinsic correlate strongly with performance and
persistence in the task, but quite surprisingly even when instrumental motives can lead to
performing the task, instrumental motives reduce the positive effects of intrinsic motives
(Wrzesniewski et al. 2014). To prevent the harmful effects of instrumental motives
Wrzesniewski et al. recommend three organizational features to promote intrinsic motives:

1. Small but regular reminders of organizational purpose can keep internal motives
dominant and improve employee performance at the same time.

2. Promote benefits such as skill mastery or impact to others, instead of high salary.

3. Avoid rigid supervision, explain tasks well and allow autonomy and individual
approach.

 2.2.2 Behaviorism

Behaviorism is: a scientific approach that limits the study of psychology to measurable or
observable behavior (Gerrig & Zimbardo 2002). Behaviorism emerged to criticize the lack of
empirical testing and data in previous research of psychology. The foundations of behaviorism
are largely based on the work of Ivan Pavlov. In education, behaviorism is know by its widely
used learning theory, in which the source of behavioral changes is the extensive repetition that
is rapidly and constantly rewarded or discouraged based on the results.

10

 2.2.2.1 Pavlov – Old Behavior Is Extremely Persistent

As the saying goes: Old habits die hard. The difficulty of unlearning previous behavior is
evident. In the terms of behaviorism and its classical conditioning theory, this process of
unlearning can also be called as extinction, a gradual reduction of the behavior's intensity and
frequency after it has ceased to produce favorable outcome. However, extinction can not
completely eradicate conditioning (Pavlov 1927). In Pavlov's view the extinction was not so
much the weakening of the original behavior, but the formation of a new (and therefore much
weaker) inhibitory behavior. In addition to slow extinction of the old unwanted behavior, the
old behavior will rapidly recover (a process called relearning) if any positive feedback from it
is perceived. This extreme persistence and dominance of older behavior is basic knowledge in
psychology, but is often forgotten by the contemporary learning theories (Lamberts &
Goldstone 2005).

 2.2.2.2 Instrumental Learning – Perception of Fear Leads to Avoidance

Instrumental escape learning (Miller 1944) is a continuation of Clarke Hull's Instrumental
learning model. Miller studied how conflicting motivations interact in approach-avoid
conflicts. These conflicting motivations occur for example when the same goal (or the path
leading to it) is both desired and feared, causing the resulting motivational and behavioral
responses to act in opposite directions. A person who desires the goal, will try to approach it
as long as the drive to approach exists. However the way to the goal can contain something
that the person wants to avoid (for example due to fear). As the desire to approach the goal is
stronger further away, the goal is approached. As avoidance steps in, the speed is gradually
reduced until avoidance finally becomes dominant and completely stops the approach. If
staying put at (or near) the threshold can not be maintained, the person will then retreat further
away from the goal. While the behavior to approach and then give up by stopping or
retreating may seem futile or illogical, this same behavior can be seen both in animals and
humans. (Pervin 2003 pp. 110-113)

11

Illustration 1: Approach-avoidance conflict. Illustration based on (Dollard & Miller 1950 p.
356)

It is notable that the existence of problems does not prevent approaching the goal even when
the goal is clearly unattainable. This leads into an alarming conclusion that the progress made
in solving other difficulties, before being faced with the current problem, can not be used to
reliably predict success in solving the current problem. In the context of CS1 students, there
might be little or no warning, before approach-avoidance barrier is reached, and consequently
even less time to resolve the difficulty, before conclusion to quit is reached.

As we will later see in this chapter. The major difficulty is that the problem has developed
undetected and has already complicated into avoidance behavior. Its magnitude and
complexity are unknown and it has remained hidden from the course personnel until the point
where the student is powerless against it. It might even be that the student is already
convinced at the impossibility of the problem, has already decided to quit and is actually
seeking evidence in order to commit to the decision. In this case, the student would welcome
hitting the barrier, as it would stop the progress and provide that last piece of evidence. This
would allow the student to commit to quitting and to take the active steps needed. Clearly, at
this point any intervention would be futile.

 2.2.3 Cognitive Dissonance

 2.2.3.1 Cognitive Dissonance – Removes Inconsistencies from Cognition

Cognitive dissonance is based on the theory of Leon Festinger and presented in his book A
theory of Cognitive Dissonance (Festinger 1957). Festinger postulated that public statements
in contrary to private beliefs represented dissonant cognitions that induce tension within that
person and force the person to reduce the dissonance (Pervin 2003 p. 119). The theory is very
well founded in the research of psychology and has even been directly tied to corresponding
brain structures.

When our actions conflict with our prior attitudes, we often change our attitudes to be
more consistent with our actions. This phenomenon, known as cognitive dissonance, is
considered to be one of the most influential theories in psychology. However, the
neural basis of this phenomenon is unknown. Using a Solomon four-group design, we
scanned participants with functional MRI while they argued that the uncomfortable
scanner environment was nevertheless a pleasant experience. We found that cognitive
dissonance engaged the dorsal anterior cingulate cortex and anterior insula;
furthermore, we found that the activation of these regions tightly predicted
participants’ subsequent attitude change. These effects were not observed in a control
group. (Veen et al. 2009) (in an article of Nature Neuroscience)

The theory is quite general and states that all cognitions (ideas, beliefs and knowledge about
self and surrounding reality) and behaviors (actions) of the person should be in a consonant
(consistent) state with each other. Any dissonance (inconsistency) between these cognitions
will cause mental stress and discomfort to the person, forcing the person to find a new
consonant state by changing or adding new cognitions or behaviors. The removal of the
dissonance then allows the heightened stress and discomfort levels to return to normal.

The need for cognitive dissonance became from the apparent flaw in the reinforcement
theories. According to them, greater rewards should strengthen the rewarded behavior.

12

However in several conditions people seemed to act in the exact opposite. For example
persons receiving a large reward were less likely to change their views than persons receiving
smaller rewards. According to the dissonance theory, receiving rewards could be used by the
person to reduce the dissonance without accepting the differing view, where small reward
would leave the person without justification to the discrepancy and force the person to adjust
their private views to reduce the dissonance. (Pervin 2003 p. 119)

An another example would be the correlation of severe initiation to a group and loyalty to the
group. Where reinforcement would consider the severe initiation a negative outcome and as a
result would incorrectly predict it to inhibit the behavior (loyalty to the group). Cognitive
dissonance states that hardship (initiation) without good results (the group being worth the
endured effort) would be in dissonance with self-image. In other words, it would have been
stupid to endure the hardship unless the membership was something worth the hardship. In
order to not to have to devalue himself, the person needs to value the group's membership.
(Pervin 2003 p. 119)

The second example gives reason to further alarm, because it shows how the persons actively
change their perception to suit their needs and can even “falsify” this perception to escape
acknowledging the conflict. Effectively, the biased views can escalate by further rewriting the
perception of reality.

 2.2.3.2 New Information Causes Cognitive Dissonance

Dissonance can be created by new information that is inconsistent with the person's
cognitions. For an example, a plan to go to a picnic can be ruined by a weather report
forecasting rain. If the inconsistency (the mutual exclusiveness of expecting good weather and
high probability of bad weather) is recognized by the person, dissonance is created. (Festinger
1957 p. 4)

The severity of the created dissonance is a weighted proportion between the two dissonant
clusters of cognitions and increases with:

• Degree with which the mutually relevant cognitions are in conflict (how much they
exclude each other) (Festinger 1957 p. 13)

• Importance of the each individual cognition to the person (p. 16)

• Total number of dissonant cognitions (pp. 17-18).

Essentially all the different conflicting aspects of the new information are summed together.

The total amount of dissonance between this element and the remainder of the
person's cognition will depend on the proportion of relevant elements that are
dissonant with the one in question. (Festinger 1957 p. 17)

The previous statement is interesting also in the sense that it illustrates the formation of
persistence by showing how already formed and accepted misconceptions become more
resistant to change. As knowledge is built on top of older knowledge, the new cognitions will
be tied to the faulty cognitions and later on will carry their weight against changing the
underlying faulty ones. The longer the person can “fortify” any faulty piece of information,
the more difficult it will be to replace with a correct one.

13

The source of the information is also important, as information is evaluated in the context of
its source. If a positively evaluated source would give the person information that the person
evaluates as negative, this might change the person's evaluation of the source towards
negative or the evaluation of the information towards positive. In any case, the stronger the
attitude (positive or negative) towards the information's source, the stronger the change in
opinion. (Festinger 1957 p. 8)

Resource limitations favor teaching in groups and selection of subjects and pace is always a
compromise between many variables. In addition, it is difficult to estimate how much
difficulty a given person is having with the current topic (especially in groups), as the
difficulties are much more strongly tied to the learner, than to the teaching. As a result, it is
difficult to know when too much dissonance is created, and when this dissonance starts to
compromise the teacher's authority in the eyes of the weaker students.

 2.2.3.3 A Person Actively Hides the Causes of Dissonance

Another highly problematic quality of the inconsistencies is their elusiveness. Festinger states
that the person who has the inconsistency, will rarely, if ever, accept them as inconsistent, and
will instead avoid admission through the use of rationalizations (Festinger 1957 p. 2). These
rationalizations pose a problem for investigating the matter of CS1 students quitting, as the
students in question are shielding themselves from the too uncomfortable real reasons, and
instead readily present valid but less uncomfortable reasons. For example, it is clearly more
comfortable to state desiring something else, than to admit failure as the reason for quitting.
However, in these conditions, the “need for comfort” should be carefully considered. The
“real” problem has already caused severe enough dissonance to cause the student to turn away
from something that was previously (and possibly still is) considered valuable enough as a
future career, a highly valuable goal. Quitting is a major failure for the student and as such a
major source of additional dissonance, but this additional dissonance is forced on the student
in the circumstances of already high dissonance that originally compelled the decision to quit.
In these extreme conditions, strong avoidance behavior must exist to shield the student from
the equally high mental stress and discomfort. Giving up this protection, by openly admitting
to the real reasons, would be highly damaging and irrational.

As a result, the students would provide a much wider spectrum of reasons when questioned.
Fittingly, in a qualitative questioning survey (Kinnunen & Malmi 2006) CS1 students
presented a very wide array of reasons for dropping out. The writers concluded this variety as
a major obstacle. Among other problem sources, they also identified low comfort level and
accumulation of the dropping out reasons, both of which fit well to accumulating cognitive
dissonance.

 2.2.3.4 Dissonance Can Not Be Maintained

“The reality which impinges on a person will exert pressures in the direction of bringing the
appropriate cognitive elements into correspondence with that reality.” While this does not
mean that all cognitive elements do not correspond to reality, it does mean that if they do not
correspond, certain pressures must exist. (Festinger 1957 p. 11)

It is important to understand that the person is incapable of maintaining the dissonant state
without a very high cost. If the new cognitions are to be accepted as true, they must be crafted
consonant with the previous cognitions as soon as possible.

14

 2.2.3.5 Reducing Dissonance – Requires Resources

The presence of dissonance leads to the action to reduce it just as, for example, the
presence of hunger leads to action to reduce the hunger. (Festinger 1957 p. 18)

Festinger provides three methods for reducing dissonance:

1. Change own behavior

2. Change environment to validate own behavior

3. Change own cognitions

Dissonance can be reduced by changes. If own behavior contributes to dissonance, it could be
changed. For example learning that smoking is unhealthy, can be compensated by stopping
smoking. The environment could be changed to give a reason to justify or necessitate own
behavior, for example by participating to a smoking research, that requires participants to
smoke. The third way of eliminating dissonance is through changing or adding cognitive
elements. For example finding enough beneficial information, correct or incorrect, to reduce
the value or importance of the harmful information (or its source) into negligible. (Festinger
1957 pp. 6, 19-22)

The third way of eliminating dissonance through changing cognitive elements can be
troublesome. While incorrect information can be changed to correct, the reverse is also
possible. The direction of these changes is that of the least amount of dissonance. In the
circumstances of CS1 we clearly want the more correct information to be the less dissonant
one.

 2.2.3.6 The Cost of Reducing Dissonance Depends on the Person

The cost of reducing dissonance comes from the time and effort needed to process the new
cognitions consonant with existing ones. As a person's resources are limited, resisting costly
changes is clearly rational behavior and less costly options are naturally preferred.

However as the cost depends from the existing cognitions of the person, the cost of accepting
a specific piece of new information varies greatly between persons. In externally controlled
conditions (such as CS1) this variation of cost within finite resources creates an inevitable
limit to the successful adoption of the given cognitions. If the cost of the adaptation exceeds
the available resources, the information simply can not be accepted. The higher the cost, the
wider the variation or the lower the resources available, the lower the percentage of the
persons that can accept the new information. The rest must simply push it forward or ignore it
as incorrect.

Making the change may simply not be possible. It would be a mistake to imagine that
a person could consummate any change to his behavior if he wanted to badly enough.
(Festinger 1957 p. 26)

15

 2.2.3.7 Persisting Dissonance Leads to Avoidance Behavior

When dissonance is present, in addition to trying to reduce it, the person will actively
avoid situations and information which would likely increase the dissonance.
(Festinger 1957 p. 3)

Dissonance that can not be solved, is a continued burden on the person and forces ever poorer
reduction methods to be employed. If we consider the context of CS1, avoidance is a very
poor choice indeed. Reduction of exposure will directly translate into reduced opportunity to
find solutions to the problem, in addition to hampering the studies in general. The problem is
also intensified by the student's attempt to reduce the dissonance through searching
information that belittles the problem or the subject in general.

When the process of limiting exposure to correct (dissonant) information and increasing
exposure to “belittling” (but consonant) information progresses, the inconsistencies start to
mount in a vicious circle, requiring even more resources to be expended on handling the
escalating dissonance. Without rapid increase in student's resources or reduction of
responsibilities, the dissonance will soon overcome all remaining motivational elements and
enforce avoidance and escape form the unbearable circumstances.

The operation of a fear of dissonance may also lead to a reluctance to commit oneself
behaviorally. There is a large class of actions that, once taken, are difficult to change.
Hence, it is possible for dissonances to arise and to mount in intensity. (Festinger 1957
p. 30)

 2.2.3.8 Avoidance Is a Useful but Dangerous Strategy – Can Lead to
Entrapment

If the problem can not be solved but can be fully avoided, all is well. In fact, if the problem
never comes up again, avoidance can be a very good solution indeed, as the resources needed
for the solution are saved. Even if one must ultimately face the problem, this type of approach
might serve to push the resource expenditure until the needed resources are available.
However, there is a danger, that the problem is perceived as solved, when it (and the cost of
its solution) is only pushed forward.

Within CS1's highly interactive domain, avoidance becomes even more dangerous. In some
cases avoidance of a specific (but severe) problem might incorrectly seem preferable, as
general progress is still being made. Steady progress can provide additional confidence to
push through and demonstrates ability to get past insignificant problems. However, steady
progress can also mask the repeated failure in one specific problem and the subsequent
development of ever stronger avoidance behavior towards that specific area. In addition to
other harmful side-effects, this behavior can pile ever more resource costs into that specific
problem, causing the problem to become completely unsolvable without a very large focused
effort. Once developed, this aversion would manifest in an extraordinary strong dislike and
clearly disproportionate difficulty to perform a problem associated task. The longer the
“success through aversion”-strategy has prevailed, the more difficult it will be to break. In
addition, as with any dissonant cognition, the person also avoids admitting the problem's
existence or significance.

If the avoidance has been allowed to fully develop, it will similarly take much time and effort
to diffuse. Even more importantly it will also require corresponding motivational resources,

16

which might be very hard to come by if others consider the matter as “should already
understand”. For example, even when students know that they need help, asking or receiving
it might not be socially acceptable. Enabling help-seeking (chapter 2.4.1.5) not only requires
allowing help to be asked, but also providing the motivational resources for the work
required. In any case, stronger avoidance reduces chances of success when the next approach-
avoid barrier is confronted, each time forcing the student to recoil and to seek options for
further avoidance, possibly even to drop out.

 2.2.3.9 Focus to Process Instead of Results to Reduce Avoidance

The widely known phenomenon of selective exposure to information (preferring supporting
over conflicting information) is especially strong in settings that involve sequential
confrontation of new information. The resulting confirmation bias also becomes stronger over
time as the commitment to the decision increases. However, this bias may be reduced by
accountability in the decision making process instead of the accountability of decision
outcome. (Jonas et al. 2001)

 2.2.3.10 Connecting Dissonance, Motivation, Goals and Positive
Reinforcement

While cognitive dissonance theory would seem to conflict with reinforcement, it can also be
considered to deepen it. It adds the persistence of personality and self-image into the fold. The
problem herein comes from not knowing what happens inside the black box that is the person.
We can not exactly know which behavior the person is considering, and we can not exactly
know how the outcome is evaluated.

Let us consider a previous example of the severe initiation leading to a higher loyalty towards
the group. If the behavior considered would have been the decision to join the group and not
the act of initiation itself, the behavior evaluated would be the person's own, and for the
person's self evaluation, it would be favorable to be successful. If stated in these terms, the
reinforcement theory also holds. It not only holds, but it dictates the result. The result must be
good, because the results of own behavior must be desirable (or dissonance would be
created). The reinforcement is working, but instead of being the directing force, it is now used
for gaining the favorable outcome under the guiding persistence of the planning faculties of
the person's metacognition.

In essence the person plays their self-motivation (trust in oneself) against the more immediate
information perceived from their surroundings. The stronger the person's self-motivation is,
the more discrepancy (dissonance) between the circumstances can be endured, before yielding
to the outside constraints. However, the cost of persistence is the damage to the self-
motivation in the case of being forced to yield.

This interpretation suits well to our aims in understanding the behavior of the students. If
immediate positive feedback would be required and every hardship would instantly decimate
their desire to complete their studies, there would be very few graduates. But even when the
difficulties can be overcome with persistence of the metacognition, if sufficient reinforcement
with negative result accumulates, this will diminish the value of the behavior to the point
where even the metacognition's manipulation can not keep it viable. As the limit grows close,
the extinction will set in, first leading to a half-hearted behavior (reduction in frequency and
intensity), and ultimately to the abandonment of the behavior, admittance of failure, and the
weakening of self-motivation.

17

Self-motivation is best sustained through a series of proximal subgoals that are
hierarchically organized to ensure successive advances to superordinate goals...
Pursuit of a formidable goal can sustain a high level of motivation provided it is
broken down into subgoals that are challenging but clearly attainable through extra
effort. To strive for unreachable goals is to drive oneself to unrelenting failure.
(Bandura 1989 p. 44)

How is it that we are able to pursue goals over extended periods of time, often while
encountering periodic frustration? The pursuit of long-range goals involves the
elements already noted as well as some additional elements. In particular, such
longterm goal pursuit can be maintained through periodic accomplishment of
subgoals and through self-reinforcement in terms of emotions such as pride and
shame. (Pervin 2003 p. 314)

This means that the division of goals into subgoals is not merely for the efficient execution of
such tasks, but forms a vital source of reinforcement for the motivational system that provides
the persistence to carry through. This is especially important within a curriculum or a course
as the division of work into subgoals is done for the student, and can limit the student's
capabilities for selecting reachable and sufficiently rewarding subgoals.

Moreover the resource limitations in catering to students with different backgrounds will
inevitably leave some in poorer conditions as others. Previous incorrect or incompatible
cognitions will either force them to ignore matters that will be needed in the future or work
much harder than their classmates. Both of these options will drain their motivation, without
comparable increase in positive reinforcement to support it. Even worse, the need to work
harder than their peers can be incorrectly perceived as proof of inferiority and inevitable
failure in studies.

 2.2.4 Loss Aversion and Prospect Theory

The psychophysics of value induce risk aversion in the domain of gains and risk
seeking in the domain of losses. (Kahneman & Tversky 1984).

 2.2.4.1 Perception of Risk Leads to Poor Performance

An another behavioral economics way of approaching motivation behind the CS1 drop-out
rates could be through the Prospect Theory (Kahneman & Tversky 1979). According to the
theory, people are inclined to avoid losses, even if that results in less gains. However, if there
is no certain way of avoiding the loss, a dangerous behavior is taken, where avoiding loss is
attempted by risking even greater loss. Risk seeking in the domain of losses (monetary, pain
or human lives) is also widely confirmed by other researches. Unfortunately this risk taking
leads into even higher losses and results in better performance in the domain of gains and
poorer performance in the domain of losses. (Kahneman & Tversky 1984)

As taking risks in the domain of losses increases the losses even further and reduces the
overall value, it is paramount that the CS1 students, who are exploring the new and unfamiliar
circumstances which inherently contain much uncertainty, would consider themselves to act
in the domain of gains. In essence they should always feel that there are ways which do not
result in loss. This allows them to a retreat into safe and productive behaviors, if attempts of
further gains should fail. The perception of being in the domain of losses would in turn

18

promote choices the students know to be bad, damaging or even immoral, but which could
work with less work, for example favoring “quick and dirty” fixes over proper solutions. As
persisting dissonance pushes the students in to the domain of losses, it will also promote these
toxic behaviors.

 2.2.4.2 Risk Taking Is a Serious Warning Sign

“A large majority of people express a preference for the gamble over the sure loss.”
(Kahneman & Tversky 1984). As no loss is preferred over a gamble and the gamble is
preferred over a sure loss, the presence of gambling indicates the presence of the sure loss. In
other words, the emergence of gambling tells us that the student considers the sure loss as a
realistic outcome for the situation. Clearly this type of activity should not be present in any
important tasks and should merit immediate intervention to prevent the imminent catastrophe.
Any task in CS1 that is associated with risk taking behavior should be considered for
removal or change.

 2.2.4.3 Framing Effect – Positive Expressions Improve Motivation

The difference in behavior between domain of gains and domain of losses is made very
interesting especially through the framing effect (a cognitive bias), which demonstrates how
greatly a decision is affected based merely on its presentation. This framing effect can be used
to manipulate loss aversion behavior, through altering the perception of gain or loss simply by
stating the same decision positively of negatively (for example, of 600 hundred people, 200
will live, or 400 will die). Exactly as stated by the prospect theory, people will strongly favor
the decision that does not contain the explicit negative outcome. Moreover, this effect is not
affected by level of education nor from being confronted by the seeming illogicality of the
choice. (Kahneman & Tversky 1984)

The bias that results from framing has been shown to be one of the most robust biases
in human decision making. (Thomas & Millar 2012)

While framing has its limits, it allows us to set the stage for learning in a positive way. In
many circumstances a domain of gains can be created simply by using a suitable wording. For
example an assignment might be be graded with 100 - errors (a domain of losses), or 50
points + bonus points (a domain or gains). In this example, a result of less than 50 points
would still be deemed a failure, but the perception of results from 51-100 would be altered.
Instead of avoiding penalty, the perception of superior accomplishment is created.

Framing research may also provide an another benefit as easier access to unbiased
information reduces the framing effect (Thomas & Millar 2012). The erroneous negative
perceptions can therefore be lessened simply by providing more unbiased information. As an
example, if students incorrectly perceive some task too difficult to master, this faulty
perception can be altered and the dissonance producing conflict solved by simply giving more
information. Care should however be taken that the framing is not mixed up with “sugar
coating” future difficulties, which could lead into entrapment by committing into unrealistic
goals.

19

 2.3 Memory

 2.3.1 Cognitive Load

 2.3.1.1 Working Memory – The Hard Limit for Complex Thought

One of the most founding limitations to cognitive processes is the working memory capacity.
It limits the number of individual pieces of information that can be considered at any given
moment, and while the exact number varies due to many different circumstances, its capacity
is widely recognized to be about 7 (+/- 2) as stated by Miller (Miller 1994) in one of the most
highly cited papers in psychology.

 2.3.1.2 Chunks and Schemas – Circumvent Working Memory Capacity Limit

The concept of chunks (Chase & Simon 1973) aims to understand, how reasoning can still
manage within working memory limitations against the near infinite variation of the real
world. The concept is similar to using objects in Object-oriented programming (OOP), in
which a previously constructed object template allows the relevant information to be
automatically processed as one object without having to process each individual data field
separately. Instead of many individual data items, only one chunk needs to be retained in the
working memory. This effectively extends working memory capacity, but as with OOP the
creation of these chunks requires previous work in constructing the object template.

Cognitive load theory uses schemas to describe the chunking process. To use our example in
OOP, schemas are analogous to object temples.“Schemas: General conceptual frameworks,
or clusters of knowledge, regarding objects, people, and situations; knowledge packages that
encode generalizations about the structure of the environment.” (Gerrig & Zimbardo 2002)

 2.3.1.3 Cognitive Load – Is Caused by Element Interactivity

Cognitive load theory (Sweller 1988) continued by investigating the sources and management
of under and over taxing the limited capacity of the working memory during learning. In
short, high cognitive load prevents proper reasoning as working memory can not contain all of
the required information elements, and required elements are constantly dropped to
accommodate added elements.

The three types of cognitive load are:

• Intrinsic – Unavoidable complexity of the subject being learned

• Extraneous – Changeable conditions in which the learning happens

• Germane – Beneficial effort to create schemas

Intrinsic cognitive load is defined as constant and can not be manipulated, instead Sweller
concentrated into finding effective management strategies and instruction designs for
extraneous cognitive load.

It is pointed out that cognitive load theory deals with learning and problem solving
difficulty that is artificial in that it can be manipulated by instructional design.
Intrinsic cognitive load in contrast, is constant for a given area because it is a basic
component of the material. Intrinsic cognitive load is characterized in terms of
element interactivity. The elements of most schemas must be learned simultaneously

20

because they interact and it is the interaction that is critical. If, as in some areas,
interactions between many elements must be learned, then intrinsic cognitive load will
be high. In contrast, in different areas, if elements can be learned successively rather
than simultaneously because they do not interact, intrinsic cognitive load will be low.
It is suggested that extraneous cognitive load that interferes with learning only is a
problem under conditions of high cognitive load caused by high element interactivity.
Under conditions of low element interactivity, re-designing instruction to reduce
extraneous cognitive load may have no appreciable consequences. In addition, the
concept of element interactivity can be used to explain not only why some material is
difficult to learn but also, why it can be difficult to understand. Understanding
becomes relevant when high element interactivity material with a naturally high
cognitive load must be learned. (Sweller 1994)

In CS1 there clearly is a high degree of interconnectivity. Not only in programming itself, but
in supporting systems such as IDEs and compilers as well. This high intrinsic cognitive load
necessitates good management of extraneous cognitive load.

 2.3.1.4 High Cognitive Load Increases Damage from Dissonance and
Avoidance

We must also consider the interactions of high cognitive load and accumulating cognitive
dissonance. As we remember, dissonance that can not be handled immediately, leads to
avoidance behavior. While avoidance in a domain with little to no interconnectivity could
succeed fairly well, this does not hold for a domain of high interconnectivity. The avoided
problem will resurface constantly and increase dissonance by drawing attention to the conflict
and by increasing its importance. In addition, while understanding the avoided concept would
provide additional help in learning the connected concept, it is instead damaging the learning.
In the best case the new concept solves the avoided problem, but in the worst case the
avoidance is extended to the connected concept. In both cases, the high level of
interconnectivity enforces confrontation of conflicts and expenditure of resources to their
resolution limiting the student's ability to manage their resource usage.

As a result, in this type of domain, the positive effects of avoidance (among its capability to
reduce dissonance) are lost. In addition, the attempt can spawn other sources of dissonance
and avoidance in an escalating fashion. This is even more unfortunate as we remember that
avoidance is a defensive strategy. Further more, it is employed when other better strategies
have already failed, and strong avoidance would therefore suggests absence of further fall
back strategies. The severe weakening of this “last line of defense” is clearly dangerous. In
CS1 circumstances, if the student is forced into avoidance behavior by whatever reason, the
consequences are significantly worse, than in a domain of lower interconnectivity.

This conclusion gains support from experiments (Martinie et al. 2010) that found cognitive
dissonance to increase performance in simple tasks, but damage performance on complex
tasks involving working memory. They propose that dissonance interferes with working
memory intensive tasks by expending working memory slots and thereby effectively reducing
working memory size. This is further supported by Engle et al. who concluded that working
memory is responsible for keeping mental representations active particularly in face of
distraction (Engle et al. 1999).

21

One phenomenon that can explain this reduction in working memory capacity is that
dissonance creates intrusive thoughts that are irrelevant to the task in hand but are
related to the management or reduction of this discomfort. (Martinie et al. 2010 p. 11)

 2.3.2 Levels of Processing Theory – Memorization
Effectiveness

Memory retention is greatly affected by the way the information is processed at the time of
learning. Semantic processing (e.g. popularity) of words produced 51-83% better recall
compared to words with only non-semantic processing (e.g. whether a word fits a sentence)
(Hyde & Jenkins 1973). Surprisingly, telling the subjects that their recall would be later tested
(intentional memorization), provided only minor benefits compared to subjects who had not
been preinformed (incidental memorization), and only if the words were associatively related
to each other.

In more broader terms Craik & Lockhart proposed a framework named Levels of Processing
(Craik & Lockhart 1972). The key proposal is that the deeper the level of the processing is,
the stronger the created memory traces are. A clear distinction is made between repetition by
rote (maintenance rehearsal) that involves only repeating previous analysis and deeper more
semantic analysis (elaborative rehearsal).

Eysenck & Keane sum up several other works that have refined the theory to investigate the
type of beneficial elaboration. Single elaboration is superior to several. Simple is superior to
complicated. Distinctive is superior to common. (Eysenck & Keane 2005 p. 207)2

 2.3.3 “All memory Is cue-driven”

A cue (i.e. a recall cue) is any form of stimulus that promotes the recall of a memory.
Successful application of any knowledge is dependent on its successful and timely retrieval
from memory, and as stated by Lamberts & Goldstone:“All memory is cue-driven” (Lamberts
& Goldstone 2005 p. 226). If the given context does not provide suitable cues for the student,
then the relevant information is not remembered and will not be considered regardless of any
other consideration. It is important to note that while there is a significant effectiveness
difference between different cues in promoting the recalling specific memories, cue
effectiveness also varies between students. If a problems provides a recall cue to to its
solution, then only those who “get the cue” can benefit from it.

It is crucial to understand that cues are distinct from information. Cues are only memory
devices needed for the functioning of the recollection process. A cue does not contain
information, it only provides a reference through which the actual information can be
accessed. Because of this, different rules apply to cues and information.

2 The superiority of a single elaboration over several seems counter intuitive, as several examples clearly
allow better understanding of the item itself. However the understanding of the item can not come before the
item itself is identified with a handle (the cue) and the handle is anchored into memory with a crude description
(the elaboration) to provide the location for storing the information. For this purpose, the elaboration should be
single (one definition), simple (short) and distinctive (descriptions should not remind each other). This provides
superior circumstances for memorization and recollection of the cue-elaboration pair, which is essential in
preventing the associated information from becoming inaccessible and lost. Once the recollection of the cue is
assured, the concept can be connected to other concepts and expanded through a multitude of views and
examples that provide the actual understanding.

22

 2.3.3.1 Cue-dependent Forgetting and Cue Overload – Limit the Number of
Terms

The failure to recall is forgetting, which can be divided into trace-dependent forgetting (the
information itself is lost) and cue-dependent forgetting (information is in memory, but
inaccessible). Of these two cue-dependent forgetting seems dominant. The cues can be
internal (such as mood) or external (such as smells, lighting or sounds). The cue's most
important quality is the distinctiveness i.e. the cue's capability to discriminate between correct
and incorrect responses. If the same cue maps to several items, its capability for successful
recall is reduced. The same applies even when the mapping is unintentional i.e. the cue is
mapped to an incorrect target. This phenomena of decreasing recollection effectiveness with
increasing number of referred items, is called as cue overload (Watkins & Watkins 1975)
(Lamberts & Goldstone 2005). While seemingly obvious, it is also important that the same
cues are used in memorization and recall, as recall is lowered with any change in cues, even
from weak cues to stronger ones. This means that if strong cues (that map to exactly one item)
can be given to each item to be memorized, and these cues are again provided with recall, a
very high recall rate can be achieved. (Eysenck & Keane 2005 pp. 220-228)

For our CS1 context, these findings provide significant insight. Cue distinctiveness,
prevention of cue overload and repetition of the used cues could all be combined into one
technique: Use a limited list of preselected key terms. Other terms can be used, but their
relation to the key terms must first be provided. This allows us to reduce the student's
exposure to the plethora of “redundant” terminology that is present in modern day computing.
For example terms namespace and scope are essentially different perspectives to the same
concept. This redundancy is useful for a professional as the differing nuances can provide
more accuracy and expressiveness in informed discussion. However, in the context of CS1,
the benefits of these nuances are dwarfed by the new term inhibiting the student from
recalling any useful information. If already familiar, albeit less accurate, term would have
been used, the recall would have had significantly higher change of success, and the term
dependent transfer of information could have been successful. The initial repetition should
therefore use exactly the same cues, at least until the concepts become strong enough to be
retrieved from memory also though other cues.

The rate of recall is reduced with time. At first the loss is very fast, but slows down as the
time passes. Initially the memories are clear and fragile and slowly become faded and robust.
This process can be explained as consolidation failures. To improve retention, the
consolidation process can be enhanced by sleeping and sleeping between memorization and
recall, improves recall results. The improvement is higher the earlier the sleep period occurs
after memorization. (Eysenck & Keane 2005 pp. 225-228)

As stress damages sleep, damaging the consolidation of new memories is one of the ways
with which persisting cognitive dissonance can inhibit learning.

 2.3.3.2 CS1 Should Provide Good Cues – Information Comes Second

Cue-elaboration pairs form the foundation on which the information is built by forming the
access points into the information and provide the superstructure through which the
information is organized into the student's existing memory. If the multitude of examples is
presented before the organizing structure of cue-elaboration pairs has been provided, the
given information has no clear memory location to attach itself. It would remain loosely
attached to various other memories and cues, each competing against the other in working

23

memory. In addition, the learner would have to choose the cues and elaborations by
themselves. While this might provide unique perspectives in researching unexplored domain,
in the case of thoroughly understood basics it would only lead into unnecessary confusion and
wasted resources. In addition, any information presented before the selection of the cues is
complete, would have to wait in limited working memory and would therefore have a very
high chance of being lost before memorization can occur.

Cue-elaboration pairs can be provided with simple dictionary type listing of important
concepts or more advanced techniques such as mind maps can be used to create or strengthen
the organization of information and to provide visual aid in memorization of concept
interactions. If the material is accessible, both of these techniques inhibit cue-dependent
forgetting and prevent cues (and their associated information) from being lost.

A good example of a cue-elaboration pair would be: Ferrari is the king of cars. A bad
example: Ferrari is an expensive red sports car and a men's cologne. The first is single, but the
second example overloads the cue with additional meaning of cologne, which weakens the
already weak new cue. “the king of cars” is short and simple (no lists), and while the red color
is iconic, it can be added later. Lastly “the king of” is much more distinctive as “expensive”,
“sports car” or “red”. Notice also that the concept of king shares the connotation of luxury,
which is an example of even emotion eliciting deep processing that creates strong memory
traces. The cue-elaboration pairs are only the pointers to the data, not the actual data records
themselves. Their purpose is to simply facilitate memorization and recall, not to provide
understanding of the subject.

Another example of using deep processing to connect abstract concepts to existing memories
it to use a metaphor for physical world. This is one of the reasons for the wide success of
object oriented programming. For example: A namespace is the home of the name. If oven is
defined in the namespace, the home has it. If you use an oven, you would mean using the one
in your current namespace. If you put something in the oven, you clearly must access it from
the same namespace, as the food does not magically move to your friend's oven, just because
you went there for a visit. The namespaces might also be nested (nest inside a nest) as you
might have an oven in your nest (your shared student apartment) and a smaller oven in your
nested own room. There is no magical connection between these ovens either, and you must
remember which oven you are using, or terrible loss of food, overcooking or burnt food bugs
will occur. Using the same namespace for everything is also doomed, as it would be
impossible to remember which oven is whose with 5000 different people having heir 2000
identical ovens in the same huge apartment. Dividing people and ovens into smaller
namespaces removes this burden.

 2.3.3.3 Skill Learning and Repetition Priming – Repeated Cues Recalled Faster

Skill learning refers to the gradual improvement of performance with practice that
generalizes to a range of stimuli within a domain of processing. (Poldrack & Selco
1999 p. 208)

One example of repetition's capability to enhance cues that can be seen in skill learning, is
repetition priming. This refers to the improvement that happens if a person is exposed to the
same stimulus successively. With each successive exposure, the stimulus is processed faster
and identified more accurately. Moreover functional MRI results suggest that skill learning
and (both short- and long-term) repetition priming are neurally connected and are merely

24

different facets of the same learning system (Poldrack & Gabrieli 2001). This view is further
supported by theoretical and computational analysis (Gupta & Cohen 2002).

25

 2.4 Learning

 2.4.1 Metacognition

The definition of metacognition is very diffuse and definitions vary especially between
different fields of research. The used definition (Schraw 1998) is motivated by educational
psychology and divides metacognition components into two main categories between
knowledge and regulation:

Knowledge of cognition

Declarative knowledge: Knowledge of self as a learner and how factors affect own
performance.

Procedural knowledge: How to do things (heuristics, strategies, categorizations)

Conditional knowledge: When and why to use declarative or procedural knowledge.

Regulation of cognition

Planning: Selection of strategy and resource management.

Monitoring: Maintaining awareness of current comprehension and progress.

Evaluation: Appraising results and task efficiency.

 2.4.1.1 Metacognitive Instruction – Important In the Early Stages of Learning

Metacognition is a multidimensional, domain-general (improvements carry over into other
domains at least partially) and can be improved through education. Significant improvement
in learning can be gained by improving students' metacognitive regulation skills. Especially,
metacognitive knowledge may compensate for low ability and lack of knowledge, which both
are problems in the early stages of learning. (Schraw 1998)

 2.4.1.2 Lack of Ability Does Not Affect Performance in Later Stages of Learning

The lack of knowledge is naturally removed in later stages of learning. The differences in
performance caused by lack in ability (or IQ) converge during learning (Ackerman 1987).
Swanson in addition found (Swanson 1990) that:“Regardless of aptitude, higher
metacognitive children performed better than lower metacognitive children.”As the skill
performance in later stages of learning will not depend on lack of knowledge and low ability
will have no effect or only partial effect, the difficulties focus only on the initial stages of
learning, not the end performance. This creates a compelling argument to compensate these
early difficulties.

 2.4.1.3 Metacognitive Instruction Improves Debugging (Problem-Solving)

If we consider the problem of drop-out rates in CS1, instruction in metacognitive knowledge
should reduce the problems encountered during CS1 and through reduction of adversity, we
should also see a comparable reduction in drop-out rates. Moreover, this reduction should
come without reduction in end course skill level. If we in addition consider the difficulties in
surviving from programming errors which are among the most difficult problem-solving
circumstances encountered in CS1, Swanson makes a highly interesting claim (Swanson
1990):”Thus, one may argue that measures of metacognition and general aptitude in the

26

present study are tapping different forms of knowledge, and that high performance on the
problem-solving tasks is more closely related to higher performance on the metacognitive
measures than on the aptitude measures.”

 2.4.1.4 Metacognitive Skills – Can Be Improved by Intelligent Tutoring Systems

Roll et al. experimented with a system that provided “immediate feedback on help seeking
errors, general help-seeking instruction, and self-assessment episodes” in geometry and
concluded that the tutoring system can unintrusively assess a student's learning behavior, can
improve the student's behavior in help-seeking, and the improvement in behavior extends to
unassisted subjects (Roll et al. 2011).

 2.4.1.5 Help-Seeking – Is Prevented by Fear of Losing Face

Help-seeking is an adaptive strategy used when encountered problems are perceived as too
difficult to be solved independently. It is encouraged by a perception that help-seeking
improves learning and hindered by fear of lower self-worth as a result of acknowledging the
need for assistance and not being able to perform independently. (Roussel et al. 2011) They
also concluded that goals such as mastery-approach (“learn as much as possible”) and
friendship-approach (“try to deepen relationships with my friends”) correlate positively to
help-seeking behavior which mediates achievement and social motivation. In addition goals
such as mastery-avoidance (“try to avoid learning less than other students”) and friendship-
avoidance (“try to avoid conflict with friends”) correlated inversely.

While the study was performed for high school students it should apply for CS1 as well. Also
the similarity with Prospect theory's domains of gains and losses are evident, as with effects
of intrinsic and instrumental motivations. Clearly there are many benefits in promotion of
beneficial goals. It is also important to protect the students from harmful goals, such as
maintaining face at the cost of not seeking help.

 2.4.2 Bloom's Taxonomy

Bloom's taxonomy originates to The Taxonomy of Educational Objectives, The Classification
of Educational Goals, Handbook I: Cognitive Domain (Bloom et al. 1956) and remains to be
highly influential in the domain of teaching. A more recent version of the taxonomy
(Anderson & Krathwohl 2001) is called here as revised Bloom's taxonomy following the
nomenclature used by Sorva (Sorva 2012).

The original Bloom's taxonomy was one-dimensional and contained only cognitive dimension.
This represents the increasing cognitive complexity of the tasks (Anderson & Krathwohl
2001). The revision added a second dimension, the knowledge dimension, which represents
the increasing abstraction of the knowledge. In addition to the taxonomy itself Anderson &
Krathwohl give detailed instructions in how to apply taxonomy into curriculum design.

Greatly simplified instructions would be along these lines:

1. Identify Education Objectives

2. Categorize Objectives according to the taxonomy

3. Choose teaching methods that align well with the objectives

4. Design tests that test chosen objectives with depth and/or breadth.

27

While using the taxonomy can be difficult and even the categorization of education objectives
and methods requires experience its use in programming education can be beneficial and has
been increasing (Sorva 2012 p. 20).

 2.4.2.1 Application of Revised Bloom's Taxonomy Is the Search of Synergy

The taxonomy is an analysis tool for the structure of curriculum or a course and discusses
many subjects, special focus is put on alignment.

Alignment refers to the degree of correspondence among the objectives, instruction,
and assessment (Anderson & Krathwohl 2001 p. 10)

While taxonomy leaves the choice of methods to the teachers by necessity, one possible way
of avoiding the misalignment would be the usage of assignments that closely resemble the
real life tasks in programming. Unfortunately this is much like throwing a swimming school
pupil into deep water and seeing if they stay afloat. In this extremely complex environment
the cognitive overload is extreme, as is the probability of failure. Even worse, the failure is
highly uncomfortable to the student, which translates into a high cost in terms of student's
motivation.

28

Illustration 2: The category names of cognitive dimension (remember - create) and knowledge
dimension (factual - meta-cognitive) are directly taken from the revised Bloom's taxonomy.

To be able to use these highly aligned assignments, without equally high cost in cognitive
overload and risk of failure, scaffolds can be used to provide safety nets and prevent failure
and the perception of “drowning”.

 2.4.2.2 CS1 Studies Align Poorly with Fixing Programming Errors

What makes this taxonomy so interesting in terms of resolving bugs, can already be seen in
the taxonomy table. A CS1 student is most likely working his way to remember and
understand factual and conceptual information which are in the lower end of cognitive
complexity and abstraction (such as trying to remember the basic syntax of the used
programming language). However, tasks relating to detecting, locating and fixing bugs are in
the opposite end of the taxonomy. Detecting or locating bugs requires skills of analysis.
Locating bugs in any effective way, requires self-analysis, planning and strategy (skills
located in the metacognitive category). Fixing a bug that is not simply a typing error (e.g.
control flow bug), could easily require creativity. Evidently there is a large and clear
dissociation between student capability and error recovery difficulty.

In simpler terms, performing a programming assignment requires much less skills, than fixing
the student's ill fated first attempt. Those that are lucky to thread the right way at their first
attempt can get through relatively easily, but those who happen to take a step in a wrong
direction, can get trapped without any possibility of escape.

 2.4.2.3 Teachers Encourage – Compilers Do Not

A significant difference in evaluating student's work is also evident. In the usual case, the
student's learning is evaluated by the teacher. Regardless whether this means evaluation of
verbal answers during class or written answers from an examination, the evaluation process
includes a highly trained professional, or at least an assistant, both of which can adapt and
circumvent many of the failings in the student's answer, and even correct the student's error
with immediate feedback. In many programming assignments this is contrasted with the
compiler's (or any other automated evaluation system's) inherent inflexibility. Where the
human will seek correctness, the machine will seek error. A very bleak and dangerous
environment indeed.

 2.4.3 Helping Students Past Unique Problems

Constructivism provides excellent theoretical backing to describe the learning phenomena, but
it also works on a very high level of abstraction and provides little in form of tools to
facilitating the learning itself. One of the views associated in constructivism is the
requirement for knowledge to be viable (i.e. useful) in the context and task at hand. Even
more so, it emphasizes the uniqueness of each solution for each combination of context,
learner and piece of knowledge being learned. The requirement of usefulness in a largely
unknown context creates a large variation that makes our efforts for focused problem
localization and solving inherently problematic.

Lectures can be used to cover subjects which are poorly known by most students. However
the exact “holes” in understanding are unique and student specific. Clearly circumstances
must be provided, in which the students can (and will) individually learn the missing
elements. Moreover, as noted previously, imperfections in previous knowledge cause a
strengthening confirmation bias and can damage further learning.

29

 2.4.3.1 A Mental Model Is Formed Regardless of Access to Correct Information

One of the basic principles of constructivism is that the learner will inevitably construct a
mental model of encountered phenomena and the construction of this model is done for the
purpose of viability i.e. the model provides utility for some currently desired purpose.

Ben-Ari argued (Ben-Ari 2001 p. 56) that the two following arguments do not appear in
natural sciences and must be taken into account in CS1:

1. A (beginning) computer science student has no effective model of a computer.

2. The computer forms an accessible ontological reality

A computer can not be understood, if no accurate model of its operation is known. While it is
clearly possible to learn a correct mode, if no accurate model is presented the student will
never the less require and create one. As the characteristics of this model are the basis of
further knowledge, all inaccuracies of the model will inevitably lead to confusion and
problems. Even more problems are created as the faulty model forces all further knowledge to
be adapted to its faults, effectively twisting all later learned information into a partially
erroneous form.

 2.4.3.2 Correct Mental Model Should Be Provided as Early as Possible

Sorva (Sorva 2012) interprets Ben-Ari and makes a solid conclusion that to prevent this
unfortunate process from proceeding the underlying model should be presented early in the
education. Clearly this pattern of providing a foundation, before building is constructed is
superior to trying to build the building first and trying to correct the broken foundation
afterward. Moreover the computer is a data processing device and its model is a model of a
process. This suggests using methods that suit to the specific purpose of teaching processes.
Doing is learning.

 2.4.3.3 Learning Should Be Based on Understanding

Carpenter and Lehrer (Carpenter & Lehrer 1999) state that learning should be based on
understanding: “The overriding goal of the classrooms should be the development of
understanding.” (p. 31), “A mounting body of evidence supports the importance of learning
with understanding from the beginning.” (p. 32). This means that the students should not be
required to master any level of skill, before starting to understand. Students who do not
understand the subject perceive topics as separate entities and can only solve problems that
have been explicitly presented and solved for them. Moreover Carpenter and Lehrer claim
that once a subject has been learned through rote without understanding, it will hinder the
student from developing this understanding later on. The reverse also holds true. Students
who construct the knowledge through reflection and articulation, e.g. through their own
activities, will develop a personal investment in building knowledge.

While Carpenter and Lehrer are discussing the teaching of mathematics and not programming,
the two subjects share much in common, suggesting their work to be directly applicable to
teaching programming. They focus heavily in understanding, which is described as playing a
critical role in solving any complex problem and is a generative process of 5 parts:

30

1. Constructing relationships

2. Extending and applying mathematical knowledge

3. Reflecting about experiences

4. Articulating what one knows

5. Making mathematical knowledge one's own

There is a clear relevance to cue-dependent forgetting and excessive cognitive load. The
problem is the complexity. In programming and mathematics, you need to be aware of a vast
number of things that are happening “under the hood”. As an example, a division requires the
divisor to be verified as non-zero. If one would physically write the zero on paper, the
strength of the cue would make forgetting the rule very difficult, yet when variables hide the
actual values, this very basic rule is still easily forgotten. In programming, program dynamics
takes this one step forward with it's mutable variables that rapidly change in value and in
complex patters. In essence, knowledge that is known becomes unavailable through added
layer of complexity. Understanding the interactions between the concepts allows the more
efficient management of working memory. Strategies can be used to retrieve relevant cues
robustly from memory instead of allowing them to clutter the working memory and chunks
allow vast amounts of data to be retrieved with each request.

 2.4.3.4 Threshold Concepts – Should Be Prerequisites for Coding?

The persistence of old behavior and savings (a behaviorism term for the faster learning speed
associated in learning new knowledge that is connected to older knowledge, even if the older
knowledge might even be already unlearned) can lead us to speculate on larger or more
complex knowledge structures underneath the surface. One approach to this, is the exploration
of threshold concepts.

The definition of threshold concepts is still developing, but they are likely to have the
following 5 qualities (Meyer & Land 2006 pp. 7-9):

a) Transformative – Understanding changes the way the subject is perceived

b) Irreversible – Forgetting or unlearning the concept is unlikely and difficult

c) Integrative – Exposes previously hidden interrelations

d) Bounded – Forms boundaries between conceptual domains such as academic
disciplines

e) Troublesome – Difficult to learn (appears counter intuitive, alien or incoherent)

It is easy to accept that if an abstract piece of knowledge is highly connected to many other
subjects, its correct understanding would not only speed up learning the surrounding
knowledge, but that its incorrect understanding would also delay or corrupt any such learning
process. It would certainly help to explain the extreme learning variation between students in
CS1 courses (Sorva 2012 p. 111).

If we accept that a skill should be understood before it can be used, clearly threshold concepts
should be on the list of “required to understand“, before any (but the most simplest) programs
should be written.

31

 2.4.4 Errors Are Inevitable

Errors can be described as: “some knowledge structures are overly general (and hence
become active inappropriately) and that decision making is a probabilistic choice among all
active structures. These assumptions imply that displacement errors will necessarily occur.”
(Ohlsson 1996) (Displacement error in this context is the erroneous usage of the overly
general knowledge.)

In the case of a novice, the usage of this overly general information is necessitated by the
obvious lack of specific knowledge, on which to base more valid reasoning. Even if the
required knowledge has been acquired, its usage might be lacking, i.e. previous (faulty)
knowledge might sometimes be preferred because it has not been fully displaced by the new
knowledge. As a result the debugging skills of a beginning programming student are very
poor (Fitzgerald & Lewandowski 2008).

 2.4.4.1 Bugs as Solutions Instead of Problems

CS1 students inevitably have poor and outright incorrect information on which they base their
actions. To mend the flaws in their mental models, the flaws must first be located. One way
for this is to put the students into positions in which their flawed information leads to a clearly
erroneous result (i.e. a cognitive conflict). This cognitive conflict can result in a process of
reflection and critical thinking (Ginat 2013) (Borasi 1996).

While the bugs are a serious problem in learning to program, it is beneficial to investigate the
reverse statement. The severity of the problems tells us that a fundamental skill or a set of
skills might have been missed in the teaching and / or learning process. While the bugs can be
used to guide us to the problem at hand, they might take us even further in providing custom
teaching opportunities that focus to the individual needs of that particular student. In essence,
can we turn the table and transform programming errors from a difficulty, into a tool for more
effective and easier teaching?

Ginat provides a demonstration of using error examples in teaching (Ginat 2013). Their
approach was not to focus on problem solving (i.e. assignment completion or operational
view), but on understanding programming language features and to a lesser extent computer
model comprehension (declarative view). This was performed by presenting short example
Java program code, which had been written with erroneous understanding of some vital
programming concept.

One such example used object reference (i.e. address) comparison with “==” operator to
compare if two objects' data are equal. Here are the most relevant lines of the example.

Point p1=new Point(1,2);
Point p2=new Point(1,2);
if (p1==p2)
 System.out.println("equal");
else
 System.out.println("not equal");

Their approach was to present the example program to the students, ask what the output
would be, discuss both answers and explain both answers. Fittingly the number of discussed
errors was lowered and the understanding of the related programming language concepts
increased, compared to the control group, but the course attitude questionnaire also showed
highly positive reaction from the students.

32

In conclusion, we offer some suggestions for tutors, based on our experience: 1.
Identify erroneous conceptions of your students; 2. Address these conceptions with a
constructivist approach, while trying to reduce knowledge gaps; 3. Develop activities
such as those illustrated here; 4. Embed the activities in selected places in your CS1
teaching; 5. The activities may involve self-explanation, working in pairs, and class
discussion; 6. The class discussions will involve a process of error attribution and
reflection on both erroneous and correct solutions; 7. The discussion will conclude
with accurate declarative specifications of the studied terms and notions; and 8.
Throughout the activities and the discussion, try to raise the students' enthusiasm so
they will feel they are both learning and having fun. (Ginat 2013)

Clearly there is difference in presentation between using an example, which is the focus of
discussion and for the student to come across the problem while trying to complete a
programming assignment. The context is much more favorable to the investigation of the
error, when it is the task itself and not an interference to a task you are trying to perform.

However, evaluation of assignment success or failure offers practical value. The correctness
of a structured answer can be evaluated more easily and can even be automated. It is much
more time consuming to evaluate if a student's perception is based on understanding the
concept deeply (declarative view) or just performing the required steps (operative view)
without particularly understanding their meaning.

Moreover, going through problematic subjects is time consuming. If the problems are selected
for the whole class at a time, students who have no problems with the selected problems, will
possibly benefit very little.

 2.4.5 Dual-Coding – Improves Knowledge Encoding

Dual-coding theory as first proposed by Allan Paivio (Paivio 1971) and has been described as
“one of the most influential theories of cognition this [20th] century” (Marks 1997 p. 433)
(Thomas 2013). In short, dual-coding theory is an effort to explain, how addition of visual
memories can significantly increase the learning and retaining of verbal memories, a
phenomenon known already at the time of Cicero as the Method of Loci.

Dual-coding theory focuses on identifying two distinct, but highly interconnected main
classes of mental representation3, verbal representations and visual representations. These
systems are independent and complete in the sense that they can perform all basic functions of
memory (form, retain and retrieve memory traces) by themselves. However, the systems can
also form associations into to the representations within the other systems and activate those
external representations. The memories that can be evoked through both systems have much
higher chance of being retained and retrieved, than representations that rely on only one of
these systems. (Thomas 2013)

The theory has been contested by an array of theories that are commonly called as Common-
coding theory, some of which also seem to be conversing with computational models of brain
and thought. Common-coding theories bring more types of systems of mental representation
or combine them all to just one, which undoubtedly has its merits, but also dilute the dual-

3 While dual-coding calls these representations as “codes”, this work refrains from using the term, as the
word's already high and differing usage in Computing might result in unnecessary ambiguity. For the purposes of
dual-coding theory, the word representation is used instead.

33

coding theory's core achievement of identifying visual representations in addition to verbal as
the two capital types of information exchange and processing.

 2.4.5.1 Visualization – How to Effectively Implement Dual-Coding

While dual-coding provides clear benefits in knowledge encoding, these benefits have been
difficult to procure in CS1 context. Work done in algorithm visualization research provides us
with tools on how to implement dual-coding in an effective way.

A meta-study of algorithm visualization effectiveness concluded that studies into algorithm
visualization effectiveness are mixed, but the mixed results are due to differing success in
application, instead of mixed effectiveness of visualization techniques in general
(Hundhausen et al. 2002). If employed in a proper way, the algorithm visualization is
therefore a highly effective catalyst for learning. “Our most significant finding is that how
students use AV technology has a greater impact on effectiveness than what AV technology
shows them.” They also noted that the visual quality of the visualizations mattered little and
that the results of plain viewing compared to those of conventional learning materials.
Significant benefits were gained only through engaging students in interactive usage of the
visualizations such as: what-if analyzes of the algorithm behavior, prediction exercises and
programming exercises. “Notice that, in such cases, rather than being an instrument for the
transfer of knowledge, AV technology serves as catalyst for learning.”

 2.4.5.2 Obstacles in Adopting – A Tool Must Be Easy to Approach

In addition to being efficient, a tool must naturally be adopted and employed before any
benefits can be gained. Why educators do not employ AV technology (Hundhausen et al.
2002):

• They feel they do not have time to learn about it.

• They feel that using it would take away time needed for other class activities.

• They feel that creating visualizations for classroom use requires too much time and
effort.

• They feel that it is simply not educationally effective

When we combine these with problems of the visualization effectiveness, it means that
teachers must find tools approachable and useful to use them, and students must find tools
approachable and useful to interact with them. While separating these two requirements
between the groups might seem redundant, the two groups (teachers and students) are clearly
very different in both goals and methods of operation. As a result, all the four requirements
must be satisfied before significant results can be expected.

To provide a more concrete approach, these three steps need to be considered for all user
groups:

1. The features must be desirable by the user. This is clearly the hardest requirement
as the desirability of the features depends on many dynamic factors, is difficult to
predict, and should optimally be based on continuous user testing and feedback.

34

2. The features and their benefits must be presented in an easy and attractive way.
This creates the goals and motivation required for expending resources in trying out
the tool. Possible ways include attractive presentations showing usage, benefits and
features. Instructions for Installation and usage can also be made simple and attractive.
Naturally all provided goals must be reachable i.e. the promises made to provide the
initial motivation must be kept.

3. The resources needed for reaching the goals must be minimized. This can be
accomplished by clear instructions and minimizing the required steps through design
and user case testing. Unexpected events in installation can require significant effort,
can be displeasing and therefore should not exist. The user should know all required
steps, and these steps should be easy and fast. Clearly detailed up-to-date step-by-step
instructions are needed. Installation should be automated and should not contain
questions. Options can be provided, but only when explicitly desired by the user.
Prerequisites should be as few as possible. Once the installation is complete, the same
pattern should continue. During the first usage experience, the user should be guided
and should not encounter unexpected events. Experimentation should be encouraged
by providing an easy way of undoing the unwanted steps (a domain of gains). To
avoid surprises, help should be provided within the software and not require
potentially unavailable external materials.

 2.5 Designing Intelligent Tutoring Systems

The design of ITS (intelligent tutoring systems) has been a long ongoing effort and has much
to offer in terms of design principles. Anderson et al. provide one such list of eight principles
(Anderson et al. 1997 p. 871):

1. Represent student competence as a production set.
The decomposition of these production rules allows the student to understand what is
needed or must be taken into account before the step can be taken.

2. Communicate the goal structure underlying the problem solving.

3. Provide instruction in the problem solving context.

4. Promote an abstract understanding of the problem-solving knowledge.

5. Minimize working memory load.

6. Provide immediate feedback on errors.

7. Adjust the grain size of instruction with learning.
Small steps for beginners, larger for more experienced.

8. Facilitate successive approximations to the target skill.
The student's problem solving skills gradually grow up to real-world problem solving
requirements and the need and availability for scaffolds should gradually go down.

They also focus on the pedagogical importance of the type of feedback given to the student
and its timing:

1. Feedback should be provided at a time when the relevant information (problem state
and action consequences) can be communicated effectively to the student.

2. Feedback should not change the requirements of the task.

35

3. Feedback should not disrupt performance of the task.

4. To optimize learning of the target skill, as measured in elapsed time rather than in
elapsed problem solving exercises, feedback should be presented as early as possible.

As expected, the design principles and pedagogical advice presented here fit well with our
own conclusions on design principles drawn directly from cognitive psychology. They also
present guidelines on how errors should be informed to the users and how the student should
be reteached on the topic instead of just the particular misconception: The correct analysis
should be administered in at least three or four stages:

1. a reminder of the problem solving goal

2. a description of relevant features of the current problem state and the desired goal
state

3. a description of the rule for moving from the current state to the desired state

4. a description of a concrete action to take

36

 3 Conclusions from the Literature – DAPS
Requirements

This chapter first formulates the persisting dissonance behind CS1 drop-out rates, the leading
finding in this work. The rest of the chapter then proceeds into translating the found theories
into design requirements for Eclipse DAPS.

As mentioned in chapter 1.3 DAPS is a proof of concept ITS that aims to reduce persisting
cognitive dissonance among CS1 students. It does this by first establishing productive
interaction with the user through an easy and familiar text based dialog that imitates
conversation. The productivity of the interaction (the added value) to the student is provided
by the debugger and visualization features. During this interaction DAPS helps the student to
maintain motivation and to avoid high dissonance traps that could derail the learning process
or even push the student to abandon the course.

37

 3.1 Persisting Cognitive Dissonance Behind CS1 Drop-out Rates

Conflicts such as bugs are an inevitable part of the natural learning process. Cognitive
dissonance is the invaluable drive to find solutions for resolving those conflicts and it does
this with a strong push type motivational force. Especially in less working memory intensive
tasks that have relatively easy solutions, dissonance can be a purely beneficial motivator.
However, the disruptive dissonant or irrelevant thoughts (e.g. noise, closing time limit,
disagreeable lunch) created by dissonance claim some of the working memory capacity
(chapter 2.3.1.4) and can prevent recollection of required task relevant memories. This results
in a reduced performance in complex working memory intensive tasks. With every additional
difficulty encountered by the student, the performance is further degraded.

In addition to dissonance the high interconnectivity of CS1 prevents dissonance management
through avoidance (chapter 2.2.3.8) and can lead into a vicious cycle of constantly increasing
persisting cognitive dissonance. Tragically the reasons behind the escalation are most likely
temporary in nature. In other words, the problem is a local aggregation of stochastic
disruptions that by chance manage to reach critical strength and to become a self sustaining

38

Illustration 3: A vicious circle formed by accumulating dissonance consisting of three
harmful feedbacks: Resource depletion, Excessive cognitive load and Avoidance failure.
Notice that two of these feedbacks are caused by interaction between high interconnectivity
and persisting dissonance.

Dissonance

Resolution
fails

Dissonance
persists

Avoid
source

Conflict

Resolution

Learning

New information

External scheduling and
poor metacognitive skills Resource depletion

Variation in new
information quantity

(previous skills)
High

interconnectivity
Avoidance

fails

Excessive
cognitive load

Mental stress

vicious cycle of harmful feedbacks, essentially forming an ever strengthening trap for the
unfortunate CS1 students. If this conclusion is accurate, a large portion of those students
could be rescued back to the normal curriculum flow with relatively few but carefully
considered interventions.

 3.1.1 Helping to Dissolve Cognitive Dissonance

Cognitive dissonance is created by conflicting information. As many parts of the student's
knowledge are flawed by necessity, allowing the student to rectify dissonant errors as easily as
possible will reduce both erroneous knowledge and the resulting dissonance. Even if
dissonance is used to motivate the student in the form of presented challenges, it should never
be allowed to persist. As we have concluded before, persisting cognitive dissonance is highly
destructive.

For example providing context dependent help topics allows a student to focus information
searches to relevant subjects regardless of poor understanding of the overall picture and
avoids both the wasteful brute force search and the associated motivational cost. The reduced
dissonance allows better concentration on the task at hand and reduced mental stress level,
both of which enhance the encoding process in acquiring and storing (maintaining) new
cognitions.

Moreover, when information is provided based on the student's own learning process, the
student can focus on dissolving the most dissonant problems first, without having to endure
their burden until externally defined schedule provides the information needed for properly
dissolving the dissonant conflict. This does not necessarily mean that the student would
benefit from choosing the order in which subjects are taught, as teachers clearly have superior
overall picture, but it does mean that within this externally designed superstructure the student
still needs to maintain fairly dissonance free understanding of the subject. As a simplification,
one could say that the states with too high dissonance automatically lead to escaping from
the state and avoiding the circumstances that imposed such a destructive state on the
person. One way of conceptualizing this would be running the two processes side by side: the
first process which teaches selected subjects in superior learning order (curriculum and course
teaching), and a second process that maintains student's consonant mental state throughout the
process by clearing out dissonant conflicts and preventing them from accumulating
(assistance in encountered problems). This second process is where assistance tools can make
their impact in guiding the student past pitfalls, while in the same time allowing the student to
choose the direction and the problems to be fixed.

This preventive approach gives additional benefits in reducing the need for unlearning
incorrect information. Dissonance is extremely uncomfortable and as such its resolution is
non-voluntary but is forced by the person's own cognitive processes. If no proper way is
available, poorer methods are used by necessity. Timely resolution will therefore liberate the
student from having to fabricate temporary “quick fixes” that could further derail the learning
process.

 3.1.2 Deadlines in Inducing Beneficial Dissonance

Deadlines are excellent sources of dissonance, which also explains their efficiency in
motivating action. In case of a complex or a large task, deadline poses the compelling push
motivation, but the student must independently develop the metacognitive management skills

39

that are needed for the organization of resources and the performing of the required tasks to
succeed. As these skills are vital, students must also increasingly demonstrate them as their
studies progress. However, in the case of introductory courses such as CS1, the focus should
clearly be on instruction instead of requiring demonstration from the student. An example of
easier management would be a requirement of spending a fixed amount of time instead of
requiring a fixed end result.

Explicit induction of dissonance (such as a deadline) is least harmful with easy tasks that can
be guaranteed to succeed (such as participation to an exam or lecture). For example, the
participation to an exam is most likely easy, even when passing it might be hard. Examples of
metacognitive instruction would be requiring plans and self designed schedules to be
submitted before actual work can start, and gaining evaluation and feedback on the quality of
the submitted plans. Another example would be to identify dissonance as the factor behind
poor performance and subsequently employ active cognitive techniques to reduce dissonance.

 3.1.3 Persisting Dissonance – Considered Harmful in CS1

Cognitive dissonance creates a powerful push motivator for solving problems. However, as
this motivator is negative in nature, a conflict that remains unresolved can lead to problems
far greater than the simple failure of the affected task. Cognitive dissonance leads directly to
higher mental stress and discomfort, which continues until the conflict is solved in a
satisfactory way. If sufficient resources are not available, the conflict will continue taxing
these mental resources and causing problems for the student, resulting in a degraded learning
results.

What makes cognitive dissonance especially difficult is its unpredictable nature:

• High variation between persons: It is directly dependent from previous cognitions,
social contacts and supporting networks. For example whose opinion is valued and
consulted in case of problems.

• Problems are actively concealed: In order to reduce dissonance, the person is actively
belittling the true source of the problem and is reluctant to acknowledge the existence
of the problem.

• Persisting dissonance will lead to strengthening avoidance behavior, reducing
opportunities for finding the solution.

• Sufficiently strong dissonance forces the person to retreat from seeking “correct”
views, into seeking views that reduce dissonance (strengthen own view regardless of
own view's correctness), and devalue persons who promote the “correct” view.

All of these factors increase the risk of problems rapidly escalating into abandoning studies.
The risk of rapid escalation would also imply that only preventive or early interventions are
possible (or at least cost effective), further limiting available methods and their effective time
window.

 3.1.4 Variation in Skill – Adaptation to Change Requires Time

Motivation can increase expenditure of resources to the current task, but regardless of its
nature (positive pull or negative push) the resources are still expended. Hence the person's
limited resources dictate the upper limit to the benefits of motivation.

40

The cause of cognitive dissonance is the introduction of conflicting new information and
regardless how well these conflicts can be cleared out, those who have already worked on the
subjects clearly have less work ahead of them. Differences in initial skill level (as well as
differences in other resources), lead to differences in dissonance. Those that are behind, are
pushed harder by the dissonance, and while the dissonance provides them with strong
motivation, the work still needs to be done. As sources of dissonance variate between
students, better resource management can help in preventing local maximums from
developing, but in the end, if the same time and other constraints are presented to all subjects
and same results are required, there will always be a fraction for whom the task is simply
impossible.

This leads to two conclusions:

Firstly, if all (or nearly all) students are supposed to manage through CS1 and preferably even
have a positive reaction to the subject in the end, the teaching, the skill requirements or the
timetables can not all be equal between the students. The initial variation between the students
necessitates stronger support, longer time or lesser skill requirements for initially less skilled
students.

Secondly, in some cases (such as entrance exams), this variation is intentionally left without
compensation, as the goal is to weed out those who have less chances of managing through.
However, was this difficulty intentional or not, being prepared for the chance of failure is
important, and this preparation should be made possible (for example by providing statistics
of drop-out rates). Students should be informed of difficult exams or exercises, so they can
prepare for the high failure rate and understand that the task is harsh and demands previous
skills or high devotion. Otherwise there is a clear risk of students entering without any real
chance of passing, but with full expectations of doing so, leading to a clearly damaging
outcome for the student and into a waste of course's resources. This is especially important for
young students, as their undeveloped metacognitive skills are challenged by the new
environment and can not yet provide protection against unfavorable outcomes. Preferably,
easier (higher rate of success) options should be provided and promoted to those that are
doubting their chances beforehand and to those who are too late in realizing the difficulties
and want to switch into a slower schedule.

One might also argue that as CS1 is an introductory course, it naturally has a very high
variance in initial student skill and instead of trying to provide efficient teaching in the
subject, it should concentrate into reducing the high variance by filling the most severe gaps
in student skill. The more efficient teaching could then proceed on later courses when the
initial skill variation has been reduced to manageable levels. While this would make the
course “too easy” for most of the students, it would also not “crush” those that want to try
CS1 without any previous skills. However, while course demand reductions would clearly
reduce sources of dissonance, they are outside the scope of this work. Moreover the necessity
of such decisions is also in question, if the same learning results could be obtained simply by
better individual management of dissonance. Instead of posing additional restrictions to the
course design, DAPS aims to address these problems with as little interference to the
curriculum or course decisions as possible.

41

 3.1.5 Metacognitive Skills – Knowing What to Expect

Better metacognitive knowledge and skills (planning, monitoring, evaluating), can help in
alleviating some of the cost in cognitive dissonance through rationalizations and strategies
such as “I don't need to understand this matter yet, I have time scheduled for learning it
later.”, but these skills are also at their weakest among the CS1 students. These same skills are
much more developed in the course personnel side, making the estimation of student's
difficulties even harder, and possibly undervaluing the perceived problems that the students
encounter. Self-regulated learning (metacognitive) skills help in understanding your own
circumstances and positioning yourself accordingly, the assistant tools can remind the student
of the reasonable self-evaluation. This allows the student to reduce damage from ordinary
failures, by understanding their near non-existent effect to the whole course/degree.

 3.1.6 Facilitate Acquisition of “Missed” Prerequisites

While the consideration of prerequisites seems to fall more on the context of curriculum
design than DAPS, this need not to be so. As understanding is a generative process, it has no
fixed state and develops constantly in a fluid fashion. What is “missed” depends heavily on
purely stochastic factors, such as having a flue on a particular day. Moreover the meaning of
“prerequisite” is relative in a network of interactive concepts. The incorrect prior knowledge
could be corrected at the first moment it is used to limit its detrimental effects on learning.

Encouragement to understanding the relevant subjects can be provided in any situation in
which the student has the required resources, most notably the time. Whenever a flaw or a
hole is detected, DAPS can ease its investigation with easy referencing and encourage
developing understanding over immediate solution to the problem. Each time the student
returns to past materials, the same information is considered from a more mature perspective
and additional understanding can be gained, even when the referred text remains the same.

Most importantly this approach alleviates the need for prior identifying of the problems.
While prior identification and direct instruction would be more effective, it is not always
possible. For example, the definition of threshold concepts (chapter 2.4.3.4) remains elusive.
DAPS would in any case need to evolve to cover most basic subjects. As the threshold
concepts are highly connected, they would undoubtedly be covered as well, but in the context
of DAPS, explicit knowledge of their identity is not needed. Concepts can be added simply
because the students perceive them as puzzling. The inherent complexity in threshold
concepts suggests that without explicit provisions in the curriculum, they would take longer to
understand. Because of this, threshold concepts would be likely to enrich into the group
of “missed” concepts. In essence, by easing the acquisition of “missed” prerequisites, DAPS
would directly improve the understanding of threshold concepts.

42

 3.2 What Can DAPS Do? – A Numbered List of Requirements

The rest of this chapter contains requirements for DAPS. They are first presented with
detailed rationales and finally listed as a chart (chapter 3.2.16). Each requirement is numbered
and end with a tag that tells the current implementation status of the requirement:

- unimplemented

+ partially implemented

++ fully implemented

Many higher end features would require individual student's working to be monitored (and
profiled). Currently most of the presented requirements such as monitoring, visualization and
assignment packages are unimplemented. This list aims to propose as many viable future
feature options as possible, and DAPS could be used productively with only a fraction of the
presented requirements.

 3.2.1 Motivate to Learn, Not to Pass Assignments and Tests

Success in assignment or test can be motivating, but presents an extrinsic and as such a
dangerous and volatile form of motivation (chapter 2.2.1.3). It is directly tied to external
evaluation to which the student has relatively weak control, and will backfire the very
moment these good evaluations stop coming. As motivation is a constantly needed resource, it
is needed also when difficulties are encountered. Because of this motivational sources should
persist during adversity and in CS1 should preferably be guided towards learning and
excelling in the programming itself. Encouragement to get good grades is already strong, as
grades are used in important decisions concerning the student. DAPS should ignore or replace
the extrinsic motivations and focus on strengthening intrinsic motivations.

1. Dialog should promote improving skills and discourage to worry about grades.
Concentrate on improvements in skill, not the absolute skill level. Encourage to find
problems and solve them. +

2. The focus should be on the proper procedure, not the end result. This can be done for
example by task design by breaking tasks down into smaller tasks or by asking the
student for a plan on how to tackle the problem, instead of the end result. -

3. Metacognitive instruction and knowledge can be included. An example of this would
be information of intrinsic motivation's superiority over extrinsic. -

4. If student is frustrated due to assignment not progressing, DAPS can remind that the
only reason for the assignment is to allow the student to learn. Passing or failing is
meaningless for the end result and only provides procedural information. -

 3.2.2 Task Performance ≠ Learning – Time and Effort =
Learning

Failure in a task is unfortunate as it most likely drains the student's motivation, but much
might still have been learned. Equally, success in a task does not mean any learning has
happened. Effectively evaluation has two parts: 1) it can estimate student's skill or 2) it can
estimate student's effort. The students inevitably ignore the first (due to their poor
metacognitive skills) and considers evaluation only as the evaluation of themselves and their
effort. This means that from the student's point of view, if the students consider themselves
capable for the course, the evaluation is fair only if it depends from the resources invested on

43

it. Large effort should therefore bring good evaluation regardless of other concerns.

5. DAPS never evaluates student skill, but needs to track student's effort. -

6. Track the time the student uses with each task. (Data remains local.) Periods of
inactivity need to be ignored without troubling the student. -

7. Time and effort correlate to learning and should be evaluated and rewarded
accordingly. -

8. Rewarding can be as simple as complementing the student through dialog. Discrete
social rewarding schemes could also be employed. +

9. After sufficient amount of time has elapsed, DAPS should remind the student not to
overexert themselves. This can be considered as both encouragement and supporting
student's time management skills. Regardless of progress, overexertion reduces
learning and drains motivation. Student could also be stuck and wasting both time and
motivation. -

 3.2.3 Students Need Help in Evaluating Their Own
Performance

Students should know what is expected of them and which expectations are reasonable and
which are not. Programming involves a highly complex and broad set of abstract skills. A
glance at Bloom's taxonomy and the discrepancy between realistic and fictional CS1
expectations should emerge. Students should understand that their variation in success during
CS1 is much more credited to their past than their present efforts. They should understand that
the ones “who have been coding since seven” have an edge that can not be cached up in just
few months or even years. Those who are new to the concepts of programming, have much
more to study than the simple syntax of their first language. Studying your first programming
language has very little to do with that first language. This can clearly be seen from for
examples how an experienced programmer can “learn” a new language in just one day.
Something that would not be possible if the actual semantics of the language were the difficult
aspects of the task.

10. Short before and after tests can be used to display the student how progress is being
made. Ready made assignments or bigger tutoring paths can include this type of short
quiz sections. -

11. Monitor students' overall time usage across the whole course. (Requires user
identification, time tracking and central data collection). -

12. Allow the student and course personnel to access this tracking information. Motivate
the student by showing how much progress has been done. Implementation could be a
pop-up accomplishments window accessed through a trophy shaped button in the
interface. -

13. Discourage speed competition. Speed comes from already knowing the subject.
Learning comes from spending time. -

 3.2.4 Deadlines for Large or Difficult Tasks Can Be Harmful

14. Allow student time usage to be used as course requirements. (This could allow
removing some assignment deadlines.) -

44

15. Create a ready made CS1 package of assignments that can be employed by a course or
an independent student, in which the schedule monitor tracks and informs the student
of the time expended and progress made. -

16. A failed deadline, as any other severe failure, is a warning sign. The student should
be asked, why the deadline was missed (and assisted to complete it). If progress
monitoring is implemented, the tool should inform this to the course personnel
immediately. -

 3.2.5 Repetition Is Vital

From Behaviorism's classical conditioning (chapter 2.2.2.1) we learned that while extinction
of learned behavior does happen and “bad habits” can fade, they are extremely persistent. Any
perceived benefit from the extinct old behavior can immediately bring it back to its full
strength. The old behavior is much stronger, and if conflict between the two should emerge, in
the absence of strong support to the new behavior, the old (as flawed as it might be) will
prevail. Still behaviorism's strongly backed up finding is that any behavior will become
stronger through repetition. Enough repetition will end the “tyranny” of the old behavior and
set the student free from the persistent error, but only with sufficiently large number of
repetition. Repetition is the key.

17. Do not automate or automatically assist any steps the student takes or needs to take.
Automation can disrupt flow and needlessly complicate matters, in addition of robbing
the student from the learning experience. As the steps needed are in our case quite
small, no practical need for automation exists. However next steps can be suggested. +

 3.2.5.1 Repetition Must Be Elaborative, Distinctive and Cue Invariant

The quality of repetition is also important as shown by the Levels of Processing theory
(chapter 2.3.2). Repetition must not follow the exactly same path every time, but variation in
its surroundings, or in the way it is processed, must exist or benefits of the repetition remain
negligible. Short, clear and distinctive processing of the subject in question provides time
efficient and lasting memorization. The used cues (for example the terminology) must be
reused or chances of recall drop dramatically (chapter 2.3.3).

While variation is important to understanding, same reference materials can still be used
repeatedly. Here the variation comes from the changes in context and the student's
development. Each time the same materials open up in a different way and are considered
from a different perspective and can therefore provide additional understanding.

18. Same cues must be repeated across all DAPS material. This uniformity would be
extremely beneficial also across the whole course (or even multiple courses) and
DAPS should encourage uniform nomenclature by providing easy access to this
dictionary (or use an external shared dictionary). This would for example allow a
lecturer to just cut and paste relevant cue-elaboration pairs and put them on a side
display for the duration of the lecture. This could ease lecture preparation, provide
common nomenclature, perception of security to the student (as the reference stays
there) and improve comprehension and memorization. +

45

19. The used dictionary (cue-elaboration pairs) must be easily and constantly accessible.
After the cue and elaboration, a separate additional information section can be
provided that can be extended to contain as much information as wanted. However,
the compactness does not matter, as later on the student becomes more familiar in
using external (more extensive) sources. -

20. The elaboration must be clear (short), single (no lists) and distinct (should not remind
each other). -

21. The cue itself should be as distinct as possible. This inhibits cue-dependent forgetting
and prevents cues from being mixed with each other. Indistinct cues can be detected
from high number of cues, from cues being mixed with each other or from the poor
retention (forgetting) of the cues. Quizzes or tests can be used to assess cue quality in
addition to providing repetition and tracking information. -

 3.2.5.2 Repetition Must Be Successful

Repetitive success is also vital in maintaining motivation, which allows the learner to push
through obstacles even when failures and unwanted results sporadically occur. Confident
perception of the task's success will increase motivation and allow more resources to be used
in completing the task. Thus, a steady supply of successful subgoals can maintain higher
working intensity (more resources committed) and longer time spent (before giving up).

For the students that have little or no prior positive experiences in programming (and are
hence less committed), CS1 is in critical position, as it is among the first times the student
encounters programming. If a high motivation can be built during CS1, the resulting
commitment, can become a strong motivational resource in the following studies.

22. All presented goals must be reached. Tasks should be easy and any obstacle should be
clearly achievable at most with reasonable extra effort. -

23. Each student's success in tasks should be monitored and intervention made if failures
start to accrue. -

24. Individual tasks should also be monitored. If a task has high failure rate, it must be
fixed or removed. -

 3.2.6 Easy Access to Relevant Information

Easy access to relevant information is vital for repetition, memorization and understanding
(chapters 2.2.4.3 and 2.3.3). While this can be achieved with separate materials, the
dissociation between them will increase cost of acquiring relevant knowledge and hence
reduce the frequency in referring to such material. Also the student is able to rapidly
experiment and learn the difference between possibilities, when lacking or incorrect
information can be easily remedied. Ease of access also promotes verification of already
understood subjects and hence prunes out hidden problems.

While the tool can not help in all problems, the most frequent problems can be addressed and
solved more easily. This reduces interruptions to repetition cycle and contributes directly to
completing more subgoals and increases motivation. This increased motivation can then be
reserved to combating the problems in which the assistance system is not able to provide
assistance.

46

25. All needed materials should be easily accessible (for example through hyperlinks).
This also provides a fallback strategy to the student in the form of going through the
list. -

26. Good external sources of information can be linked or suggested. -

 3.2.7 Avoidance – Prevent Avoiding and Complete Failure

Just as a deadlock will prevent a thread from performing any useful action, similar deadlocks
can occur in people. Approach-avoid conflicts (chapter 2.2.2.2) demonstrate how there can
exist show-stopping problems regardless of steady progress being made. Allowing complete
failure can effectively hide a growing problem in one specific area or task. The problem
grows, as avoidance forms into its dominant solution (chapter 2.2.3.7). This leads to the
inevitable conclusion that if avoidance can not succeed in solving a particular problem, the
attempt should be prevented from the start. However, as avoidance is also a resource
management strategy, avoidance prevention must be done in a way that still allows the
students to successfully manage their resources.

While demanding perfect performance in a test would be unreasonable, programming tasks
can be rigid and can have little ground between perfect performance and complete failure. To
avoid complete failure, there should be no failed assignments, only assignments that require
more assistance. The failure in an assignment should be a clear indication that help in that
area is needed, and progress should not be demanded before this broken foundation is
corrected. Successful results should naturally reward the student with congratulations on the
success to uphold their motivation, but failure should require much more attention. While
there are many more reasons to an occasional failed assignment than hitting an approach-
avoid conflict avoidance behavior, these seemingly random failures can be the only warning
about the formation of this danger. To prevent developing avoidance from hiding behind other
random occurrences, all of these failures must be treated as potential signs of the danger. After
the behavior is formed, the student will not only try to actively hide it, but will also actively
resist any attempt at correcting the problem.

While a programming assistance tool can not replace human intervention, it can help in
limiting the amount of these complete failure situations encountered by the students. As an
additional benefit, reduced failure rates release resources into dealing with the more severe
problems and could lower the bar in seeking help and assistance.

The tool can also provide some assistance in seeking this help or reduce the damage caused
by the failure by maintaining positive feedback even when the assignment subgoal itself is
doomed to fail.

To prevent avoidance from forming, the students should not be able to avoid or completely
fail in any problems presented to them i.e. all problems must be faced and an option of
graceful failure must be provided.

 3.2.7.1 Prevent Avoiding – Prevent Avoidance Strengthening Through
Repetition

This avoidance can be anything that removes the immediate need to complete the task.
Examples could include: doing it later, doing something more important first or just simply
failing. If at all possible, the problem should be solved as it is encountered and other matters

47

should be pushed forward.

However, while avoidance is a poor behavior choice (chapter 2.2.3.8), other realistic (as
perceived by the person) choices must be present, or the removal of avoidance strategy, can
lead to even poorer choice of behavior. In addition, care must be taken not to introduce rigid
supervision or loss of freedom in the learning tasks, or motivation can suffer. While there is
some contradiction between preventing avoidance and maintaining individual freedom, there
are also non-contradictory methods available, such as providing assistance in completing
tasks that otherwise would have been accepted as failed and hence not required to complete.

27. All tasks that are given to the student by DAPS, should also be completed. Ultimately
personal assistance by course personnel can solve practically any problem. +

 3.2.7.2 Prevent Complete Failure – Replace with Graceful to Reduce Damage

When a problem can not be completely failed, there is much less benefit in avoiding it.
Graceful failure (lesser extent of the failure) also reduces the damage inflicted to the person.

Focusing to the process instead of the result may also provide protection from failure, by
reducing its importance. It will shift the motivation from extrinsic to intrinsic to provide
better motivation. Accountability is also moved from the result to the process, which
should reduce selective exposure to information (avoidance of conflicting information).4

28. A long and hard effort should never result in failure. The damage caused by a failure is
proportional to the effort (and motivation) expended and the failure after a hard
motivated effort is highly damaging. This requirement is general in nature and
methods used in other requirements (such as interrupting before too much effort can
be expended or directing to ask for help) can be used limit the damage. +

 3.2.8 Eliminate Deadlocks – By Always Providing a Fallback

If the invaluable repetition is prevented by problems (for example bugs), there can be no
effective extinction of the old flawed behavior, nor effective absorption of the new superior
techniques. The elimination of being stuck is a prime design requirement. Constant progress
in the task itself is not necessary and being forced to search ways forward can provide a
powerful motivator for learning. Still, when a problem prevents progress in the task, some
way of action should always be available that can believably result in solving the problem
and allowing further progress.

This also means that while success in the programming task can be a motivation providing
goal, the assistant does not need to know how to solve the exact problem. It needs to provide a
plausible way forward by providing the prime candidates for problems in the current
conditions. While more abstract and therefore somewhat more difficult, this task is also less
dependent on exact circumstances, and the exclusion of these exact circumstances allows us
to limit the required interaction tree (dialog tree / network) into a manageable size. We can
also get beneficial repetition without direct progress in the programming task itself, giving the
assistant a much larger and easier environment to work in.

29. When a student gets stuck, there must always be a way forward: a list of links to
reference material, guidance in finding the bug, etc. +

4 The requirements are redundant with Motivational requirements, and are therefore skipped, but even when
the requirements are redundant, this rational is not.

48

30. Remind the students, that if a problem bothers them and can not be solved even after
several hours of trying, they should always contact course personnel for help before
giving up and trying to forget it. -

31. “A panic button” in the interface to provide advice when all seems to fail. This should
provide motivational support (encouragement), metacognitive knowledge (to defuse
the mounting negative cognitions) and finally guide the student to seek course
personnel assistance. -

 3.2.9 Repetitive Failure Is Dangerous

Repetition is only beneficial, if the activity that is repeated, is beneficial. There is little benefit
in repeating activity that associates harmful qualities to the work at hand. Even a successfully
completed programming assignment might not be successful in teaching the associated
concepts, or might even teach some incorrect or harmful ones, such as: “I got through, but I
have no idea why this works. I am just glad to be rid of it.” Especially the sentiment: “I am
just glad to be rid of it.”, is a clear example of the dangerous avoidance behavior.

If the problems lead to repetitive trying that too often leads to a failure instead of a success,
the act of coding can be perceived as the behavior with negative result. As repetition provides
a powerful learning method, this cycle of perceived unfavorable outcome from trying to code,
can lead to the extinction of the attempt itself, and thus to the abandonment of the studies that
contain such activity.

In teaching CS1 students to code, it should be paramount, that we do not teach them to
quit.

The key to solving this problem of repetitive failure lies in its definition: The perception of
the outcome. Conflicts will arise, and there will be bugs, but the outcome need not be
unfavorable. We can remove some of the unfavorable outcomes by “softening the blow” and
some can even be turned it into successes by guiding the student past the deadlock in a
rewarding way.

 3.2.9.1 Avoiding Dangerous Repetition

Avoiding unwanted behavior being strengthened, should be important in any learning activity.
Providing assistance before encountered programming problem starts damaging motivation
and causing frustration, is preventive in nature. While investigating these dangerous
circumstances would be worthy for more detailed analysis, we can easily identify several
symptoms of such situations, which are visible to the tool:

• Continuous recompiling with little to no changes to the code

• Continuous undoing of changes made

• Solving problems by always consulting someone else (no trust in own problem solving
skills)

• Long pauses after unsuccessful test (for example compilation)

• Long pauses in general

• Long time in completing an assignment

• Failure in completing an assignment

49

Some of these examples describe situations where unsuccessful attempts are made one after
another. Some describe situations, where problem has left the student with no idea how to
proceed in its correction. The latter case is more difficult to analyze. It could be that the
student is still searching other sources for information, but the progress of that activity
remains unknown.

In short, any activity that is not producing beneficial repetition (i.e. constant successful
completion of desirable subgoals) has the potential for providing harmful repetition. It should
be noted however that the definition of a subgoal in this case is broader and not limited to
curriculum subgoals. For example, telling one's friends about own success in a task and
gaining positive feedback is highly motivating to the person, even when this activity clearly
completes no assignment or other curriculum subgoal. However, as motivation is required for
reaching curriculum subgoals, maintaining motivation it is actually a far superior subgoal to
the person than those provided by the curriculum. Therefore the lack or failure in these
diverse motivational subgoals is quite dangerous.

Once identified, these harmful circumstances should be interrupted by a clear but unintrusive
offer of assistance and encouragement. This early prevention also reduces the risk of problems
escalating into “deadlocks”. Care must be taken that, as the user is probably frustrated at the
time, intervening has the danger of guiding the user's anger towards DAPS.

32. Identify harmful repetition and try to interrupt it in an unintrusive and considerate
way. The dialog should for example contain a one-click option for “never bother me
again”. -

 3.2.9.2 The Perception of Failure and Success Can Be Influenced

Prospect theory (chapter 2.2.4) tells us that the perception of domain of losses reduces
productivity by favoring improbable and unproductive solutions, where as perception of
domain of gains allows these risky or poor solutions to be avoided. By simply approaching
the same task from the perspective of gains, higher value can be achieved.

Framing effect tells us that we can create a perception of gains simply with a suitable
wording. For example an assignment might be be graded with 100 - errors, or 50 points +
bonus points. Instead of struggling to avoiding penalty, the perception of superior
accomplishment can be created.

33. DAPS responses should be overly positive and encouraging. (But not silly.) +

34. DAPS responses should be honest. A clearly negative matter can not be stated
positively, without being false. Instead of focusing on the negative matter, seek a valid
and relevant positive matter. -

35. If negative outcome is clear, it must be handled. In this case, the user can be reminded
of the insignificance of the failure and that regardless of the failure many other goals
were achieved. -

36. DAPS responses should not contain negative connotations. +

 3.2.10 Reducing Extrinsic Cognitive Load

Cognitive load is likely to increase harmful effects form dissonance and avoidance behavior.
Moreover, CS1 has a high intrinsic cognitive load which by definition can not be reduced.
This increases the need to reduce the extrinsic cognitive load.

50

37. Instead of referring to a code line number (indirectly), refer to it with color change or
arrow (direct reference). -

38. Prevent split-attention by keeping all DAPS related information in dialog window.
Referenced material can be displayed in other windows and kept connected with a
single line of text in dialog window that contains hyperlinks or with arrows that are
shown when the pointer comes over the referring text. +

39. DAPS handles assisting through a large number of easy small steps. This allows
concentration to one problem at a time. +

 3.2.11 High Cognitive Load Necessitates Metacognitive Skills

The resource restrictions for the student come from many sources. One of the most severe
ones, is the working memory. This limitation restricts the number of memories that can be
simultaneously processed and by necessity subjects all remembering to push a previous
memory out of consideration. So while new information is known, its application is subject to
competition between other memories relating to that particular learning context. If the
resulting high cognitive load (unavailability of working memory space) prevents concurrent
recollection of some necessary piece of information, all required information can not be
processed and correct conclusion will be hard or impossible to reach. In this case, schema
construction is necessary, before problem solving can continue. While schemas can be used to
lift this restriction, they are domain specific and hence schema construction requires
considerable processing and understanding of the domain to provide this agility.

40. DAPS eases cognitive load by facilitating schema construction. Tell this to the student
as metacognitive knowledge. Essentially, promote the importance of knowing the
prerequisite information before attempting to go forward. Ask questions and allow the
student to choose the direction, but offer references and tasks relating to prerequisites
easily and often. -

41. To divide resource costs uniformly, DAPS can encourage user to work every day and
for reasonable hours at a time. This could be implemented for example as a tip. More
involved implementation could track the actual used time. Little effort every day is
better than focused effort once a week. -

 3.2.12 Erroneous Perceptions Must Be Readily Corrected

Constructivism tells us that all new experiences are built over the old ones. The new
experiences are understood in the context of the old and the old experiences define the
“vocabulary” that is used in understanding the new experiences. The tyranny of the old
experience, can radically alter the new experience making it fit into the confines defined by
the old experiences, thus twisting it into an erroneous form. Correct model should be provided
and reached as early as possible (chapter 2.4.3.2).

42. DAPS must provide easy way of changing previous incorrect perceptions. (This is a
general requirement that should be considered with all features.) Make finding the
errors and misconception a positive goal. -

43. Old material must be easily accessible (previous exercises or explanations). -

44. Explanations must be easily accessible (hyperlinks). -

45. Previous steps must be easily accessible (undo/redo). -

51

 3.2.13 Key / Threshold Concept Understanding Needs
Verification

The difficult aspects are beneath the surface, such as program dynamics, which is a candidate
for a threshold concept (Sorva 2012) (chapter 2.4.3.4). Understanding these underlying highly
abstract and difficult concepts, transforms the thinking of the student in a profound way. This
transformation is by definition a non-trivial endeavor, which takes much time and effort. As
some students have already breached some of these difficult thresholds before they set their
foot on the CS1, these students clearly have much easier time in performing tasks in subjects
they already master. Direct comparison between these groups is clearly unfair, and represents
more the amount of studying spent on the subject prior to CS1 than a good estimate for
performance in the field of computing. The students, however perceive only the end result
(the circumstances on the CS1) and as they are unaware of the difficulties beneath, could
easily credit the success or failure to their own CS1 performance, and as a result, incorrectly
judge themselves unfit for the task. This incorrect self-evaluation is an example of failure in
students' metacognitive skills, which can lead to the perception of failure even when fast
progress is being made.

46. When student has severe difficulties, tell that the cause might be in not understanding
key concepts. Ask questions to test this. If the student can not answer the questions
even with DAPS's help, instruct the student to ask course personnel's assistance. This
contacting should be as easy as possible. -

 3.2.14 Visual Representations Can Improve Learning Efficiency

Visualizations and dual-coding (chapter 2.4.5) provide us an easy way of improving teaching
and learning efficiency. By employing two complementing memory representations we can
increase the chance of recollection and the correctness of the recollected information and thus
increasing the chance the student will employ the new (and still “weak”) information. The
increased recollection will also improve the quality of the recollected information and
increase the chance of successful application, which in turn can start the repetition and the
positive reinforcement of the new and improved behavior. Visual components (of known
syntax) can be faster to examine, than textual representations, and can ease interaction
through easier testing of hypothesis'.

47. Create or use external debugger to gain access to dynamic runtime information, which
can be provided to the user as easily accessible visualizations. +

48. The added visual information should be very fast to examine. No complex encoding. -

49. The syntax of additional visual components must be intuitive, but also be clearly
textually explained (for example by tooltips) and preferably their efficient usage
should be instructed by an accessible tutorial. -

50. Add numbering or arrows into the code display to visualize program flow, for example
into an additional column. Loops can be facilitated by adding columns and circular
arrows. -

51. Add variable data into the code display, for example into an additional column. -

 3.2.15 Third Parties – Easy Access and Adoption, Hard to Let
Go

Algorithm visualization research tells us how very important the ease of use is (chapter
2.4.5.2). The provided tools must be easily adoptable and have a minimal learning curve.

52

These tools have no funds for extensive marketing campaigns, so the tools will need to
provide maximal positive and minimal negative experiences, to ensure their acceptance and
application.

The time spent with the visualization correlates to the benefits gained. Similarly intention to
learn has only very minor benefits to the learning process, the exposure itself is vastly more
important. Therefore the tools should be designed in a way that increases the usage frequency
and duration. Help should be provided fast, easily and unintrusively to increase the frequency
of usage. Information about the possible solution should be available immediately, but a direct
solution (i.e. correcting the problem for the user) should never be granted without at least a
minimal investment in understanding the problem itself. These opportunities for learning must
not be given up too easily.

Usability engineering promotes the importance of consistence. Our knowledge of cues gives
strong support to this approach, as changing cues reduces recall, even when the newer cues
were superior in strength. This also holds within learning materials provided, and while
synonyms should be listed, only one set of terminology should be dominant. The CS1 student
should not be faced with five different terms for each new concept even when a more skilled
professional would benefit from the additional nuances provided by the larger vocabulary.

52. Interface design must be consistent (inhibits cue-dependent forgetting). +

53. User feedback should be encouraged. -

54. To promote adopting, features and their benefits should be presented in an easy an
attractive way. For example You-Tube usage examples / tutorials can be distributed as
simple links. -

55. Promises made to the user must be kept. +

56. Present clear and desirable goals to the user and offer an easy way for reaching them. -

57. Prevent fear of errors by allowing easy undo in all circumstances (using, installation
etc.). -

58. React rapidly to negative feedback. Most users will not report negative feedback, but
will just stop using DAPS. Negative feedback is invaluable in detecting problems. -

59. Easy and clearly instructed step-by-step installation. -

60. Uninstalling should be very easy. -

61. Easy and tutored step-by-step first usage experience. -

62. Provide help (or links to them) from within DAPS to prevent potential unavailability
of external materials. (Integrate to course materials.) -

63. Do not force the user to answer questions (use defaults), but allow changing defaults if
specifically desired. -

64. DAPS's ease of use should be tested with user tests. -

53

 3.2.16 Implementation Status Chart

This chart summarizes the design requirements for DAPS and their current state of
implementation. The notation is the same as in chapter 3.2 (- unimplemented, + partially
implemented, ++ fully implemented).

Promote Intrinsic Motives

1. Dialog should promote improving skills and discourage to worry about grades. +

2. The focus should be on the proper procedure, not the end result. -

3. Metacognitive instruction and knowledge can be included. -

4. If student is frustrated due to assignment not progressing, DAPS can remind that
the only reason for the assignment is to allow the student to learn.

-

Effort Is Learning

5. DAPS never evaluates student skill, but needs to track student's effort. -

6. Track the time the student uses with each task. -

7. Time and effort correlate to learning and should be evaluated and rewarded. -

8. Rewarding can be as simple as complementing the student through dialog. +

9. After sufficient amount of time, remind the student not to overexert themselves. -

Provide Objective Assessment

10. Short quizzes before and after tests demonstrate progress to the student. -

11. Monitor student's overall time usage. -

12. Allow the student and course personnel to access this tracking information. -

13. Discourage speed competition. -

No Deadlines for Large of Difficult Tasks

14. Allow student time usage to be used as course requirements. -

15. Create a ready made CS1 package of assignments. -

16. A failed deadline, as any other severe failure, is a warning sign. -

Repetition Is Necessary

17. Do not automate or automatically assist any steps the student takes. +

Improve Memorization

18. Same cues must be repeated across all DAPS material. +

19. The used dictionary (cue-elaboration pairs) is easily and constantly accessible. -

20. The elaboration must be clear, single and distinct. -

21. The cue itself should be as distinct as possible. -

54

Repetition Must Be Successful

22. All presented CS1 goals must be reached. -

23. Each student should be monitored and intervened if failures start to accrue. -

24. Individual tasks should be monitored. Tasks with high failure rate should be fixed
or removed.

-

Easy Access to Relevant Information

25. All needed materials should be easily accessible (for example through
hyperlinks).

-

26. Good external sources of information can be linked or suggested. -

Prevent Avoidance

27. All tasks that are given to the student by DAPS, should also be completed. +

28. A long and hard effort should never result in failure. +

Eliminate Deadlocks

29. When a student gets stuck, there must always be a way forward. +

30. Remind the students, that if a problem bothers them and can not be solved even
after several hours of trying, they should always contact course personnel for
help before giving up and trying to forget it.

-

31. “A panic button” in the interface to provide advice when all seems to fail. -

Avoid Dangerous Repetition

32. Identify harmful repetition and interrupt it in an unintrusive and considerate way. -

Maintain Domain of Gains

33. DAPS responses should be overly positive and encouraging. (But not silly.) +

34. DAPS responses should be honest. -

35. If negative outcome is clear, it must be handled. -

36. DAPS responses should not contain negative connotations. +

Reduce Extrinsic Cognitive Load

37. Instead of referring to a code line number (indirectly), refer to it with color
change or arrow (direct reference).

-

38. Prevent split-attention by keeping all DAPS information in DAPS dialog
window.

+

39. DAPS handles assisting through a large number of easy small steps. +

Metacognitive Instruction

40. DAPS eases cognitive load by facilitating schema construction. -

41. To divide resource costs uniformly, DAPS can encourage users to work every day
and for reasonable hours at a time.

-

55

Actively Correct Erroneous Perceptions

42. DAPS must provide easy way of changing previous incorrect perceptions. -

43. Old material must be easily accessible (previous exercises or explanations). -

44. Explanations must be easily accessible (hyperlinks). -

45. Previous steps must be easily accessible (undo/redo). -

Key / Threshold Concept Verification

46. In severe difficulties, tell that the cause might be in not understanding key
concepts.

-

Visualizations

47. Create or use external debugger to gain access to dynamic runtime information. +

48. The added visual information should be very fast to examine. -

49. The syntax of additional visual components must be intuitive, clearly textually
explained and preferably instructed in tutorial.

-

50. Add numbering or arrows into the code display to visualize program flow. -

51. Add variable data into the code display. -

Ease Third Party Adoption of DAPS

52. Adopting: Interface design must be consistent (inhibits cue-dependent forgetting). +

53. Adopting: User feedback should be encouraged. -

54. Adopting: Attractive presentation of features (outside Eclipse). -

55. Adopting: Promises made to the user must be kept. +

56. Adopting: Present clear and desirable goals to the user and offer an easy way for
reaching them.

-

57. Adopting: Prevent fear of errors by allowing easy undo in all circumstances
(using, installation etc.).

-

58. Adopting: React rapidly to negative feedback. -

59. Adopting: Easy and clearly instructed step-by-step installation. -

60. Adopting: Uninstalling should be very easy. -

61. Adopting: Easy and tutored step-by-step first usage experience. -

62. Adopting: Provide help (or links to them) from within DAPS to prevent potential
unavailability of external materials.

-

63. Adopting: Do not force users to answer questions (use defaults), but allow
changes.

-

64. Adopting: DAPS's ease of use should be tested with user tests. -

Table 1: DAPS implementation status chart

56

 4 Eclipse DAPS – Specification and Implementation

 4.1 Platform – Eclipse

For the project resources perspective, implementation and maintenance are the highest
singular costs. Using an already made and maintained platform provides almost all required
components and drastically reduces both implementation and maintenance costs. Eclipse's
wide utilization in the programming community and industry provide a more familiar
interface, and contribute to the ease of adopting the tool. In addition Eclipse ecosystem
already contains many features that ease the adoption of new software, such as Eclipse's
plugin architecture and automated over the network installation and updating features. Eclipse
is also already used on many Aalto university CS courses.

Negative qualities include Eclipse's high complexity that increases extrinsic cognitive load by
providing large amount of irrelevant features that split student's attention needlessly. The
power provided by rapid development is not needed in CS1 and also results in many
unfinished, confusing or conflicting details. While the students can benefit greatly later on,
the high learning curve clearly presents a problematic challenge in the beginning of the
studies. As Eclipse's modular design is also geared towards using Eclipse as a software
platform and allows easy removal of features, further work could include using a feature
stripped Eclipse, which could significantly reduce initial difficulties. However, even without
these modifications, Eclipse presents a highly valuable and excellent platform for CS1 and
DAPS.

 4.2 Architecture

Currently DAPS has four main architectural parts:

• Integrated debugger, which analyzes the student's code to identify problems to which
help can be provided.

• Student-Assistant Dialogue, which guides the student in learning and solving bugs.

• Additional help materials, which consists of linked textual, www, course etc. materials
relevant to the task or student's interests.

• Eclipse integration, which packages DAPS into an Eclipse plugin and implements the
user interface.

 4.2.1 Integrated Debugger – Jython Python Interpreter

Integrated debugger is implemented through encapsulated and unexposed Jython module.
Tight integration was chosen partially from necessity as obtaining detailed debugging
information dives deep into compiler/interpreter implementation. High level of
interconnectivity reduces the possibility of using exposed interfaces and increases side effect
risks from updates to external Jython. While this protects DAPS from internal errors, it can
potentially cause user perceivable inconsistencies in behavior, as the self contained Jython is
decoupled from the compiler used in the actual compilation of the code (for example Python
with PyDev interface). The side effects of this decision are therefore the increased
maintenance cost and possible inconsistencies from slower update speed compared to using
independent Jython.

57

 4.2.1.1 Program Dynamics and Flow – The Line Numbers of Executed Code

One benefit from debugger, is the execution order of the program's lines. Many errors stem
from inability to correctly predict the execution order, and within the restricted confines of
CS1, program flow remains simple enough to be simply displayed. While debuggers or simple
print commands can be used for much of the same benefits, debuggers can be dauntingly
complex and debugging skills in general are poor.

 4.2.2 Student-Assistant Dialogue – Assistant Instead of a Tool5

One of the most difficult tasks in providing the assistance is having to rely on a
preprogrammed dialog. Only very few eventualities can be considered and much less can be
implemented. While the language definition is finite, the mental processes of the student are
not, and there is no limit to the different types of errors or misconception the student might
make or have. This problem is partially solved by providing assistance on most frequent types
of errors and remaining encouraging even when no solutions are in sight. However, many of
the problems can be avoided by giving up on trying to fix the problems with infinite variation
for the student. Instead, we focus on providing additional information, motivation and
metacognitive skills that let the student solve the problems by themselves.

 4.2.2.1 Unintrusive Initiation

The initiation of dialog should be unintrusive, but noticeable enough to be found. DAPS
implement this by adding its icon to PyDev perspective's toolbar and promoting the icon at
selected times, when the student could benefit from DAPS assistance. The promotions are
small, visual and do not hide other interface components or alter the interface permanently. To
add the view into PyDev perspective, the student must click the DAPS icon in the toolbar.

5 Most of the python code that is visible in pictures demonstrating DAPS was provided by Teemu Sirkiä
(Aalto University, School of Science and Technology)

58

 4.2.2.2 Minimize Negative Perceptions

The assistant never “takes over” the interface or displays pop-ups that grab focus, so ignoring
it is easy and disruptions to the user's thought processes is minimal. Using DAPS always
comes from the user's own initiative. If DAPS is perceived as bothersome or useless, the user
can ignore or close the view at any time, regardless of the dialog or debugger state. This
should also help to minimize the duration of any negative perception from DAPS. Even if
DAPS is perceived useless for any given problem, the interaction can still be as pleasant as
possible. The lack of animosity can increase the chances of DAPS being used again, and the
“less productive” time is still spent on learning about the domain, even when the most
pressing piece of information remains elusive.

 4.2.2.3 Prevent Deadlocks

Additionally, as DAPS also aims to improve the user's metacognitive skills, the user's
perception of uselessness does not necessarily mean, the user did not enjoy or benefit from the
experience. The tool may simply provide a way for the user to regain motivation and self
appreciation after battling with a difficult problem without success. When a problem can not
fixed immediately DAPS tries to delay the direct confrontation, and meanwhile provide
something else to do. While this does not further the immediate task, it can remove
dissonance, reduce damage from previous failure and build motivational and information
resources to carry on.

 4.2.2.4 Provides Only Information – User Remains In Control

Assistance is provided in the form of information and advice. Nothing is done for the user.
This reduces the amount of side-effects that might confuse the user, but more importantly the
user needs these small easy tasks for amassing repetition. Here is a typical example:

59

Illustration 5: DAPS provides easy tasks for the user

Here DAPS has found a bug using its debugger on the user's code. It gives clues to the source
of the problem, and provides links to additional information on the possible source. DAPS
attempts to steer the user's interest into programming concepts (intrinsic motivation) and away
from completing the program (instrumental motivation). Figuring out the real reason behind
the error is difficult or impossible for DAPS, but as DAPS only helps the user in exploring the
error sources, the exact source does not matter. In this example, even when the source is the
forgotten use of self, the user starts to explore the possibility of program flow error:

To explore the user's understanding of program flow, little general information and simple
questions are used to engage the user before providing the information from the debugger.
Still concrete benefits can be given (such as the execution order of program lines).

 4.2.2.5 A Domain of Gains – Effort Guarantees Success

To provide repetitive success, the tasks and goals that are given to the user can be solved
without too much work. This is implemented by asking multiple choice questions that always
provide information needed for solving them. If the problem is understood, answering is
trivial and takes little time, but still provides the vital repetition for important cues and terms.
Where possible, randomization is used to prevent memorization and to enforce the semantic
processing of the problem.

 4.2.2.6 Overly Positive Framing

If the user makes an error in answering to a question, the response encourages to think a bit
and try some other solution. Progress is rewarded by positive feedback, and failures are
simply ignored. This is to create a domain of gains and to promote using new information and
skills. This overly positive feedback might be perceived even silly, but this perception would
actually be welcome, as relaxation improves memorization of new information. It would also
help to offset any mental stress of persisting dissonance.

60

 4.2.3 Additional Help Materials

Internet community surrounding Eclipse provides an enormous support for practically any
conceivable usage problem. The difficulty here is that CS1 student's skills in navigating this
endless sea of information are quite poor (at least in the domain of programming). As general
knowledge structures of the domain are not understood, even answers to basic problems can
be hard-pressed to find, increasing the cost for even the most basic interaction tasks, and
unnecessarily hindering the student in obtaining coherent understanding and reducing
dissonance. Assistant can alleviate some of these problems by providing a plethora of context
dependent help materials. Used programming terms can be linked to explanations or guides to
obtaining the information elsewhere. This not only provides help on demand, but introduces
valuable information sources that can be utilized later on. The guiding principle here is to
prevent dead-ends. In any state, there should always be a way forward, which is both
encouraging and a reasonably “good” choice for the student to head for.

There is no need to avoid redundancy in providing basic information, quite the opposite, as
the repetition is the key to behavioral development. These simple tasks and the associated
cues need to be fired again and again to make them dominant and to weed out the partially
correct but still erroneous misconceptions used in the early stages of learning.

 4.2.4 Eclipse Integration – Implementation Details

A view taken from the DAPS javadoc provides an overall picture of the current
implementation. More detailed explanations are provided in the javadoc itself, as it is the only
official and up-to-date documentation for DAPS.

61

Package Description

daps DAPS - Debugging Assistant for Programming Students

daps.actions
MVC controller implementations for this plugin's Eclipse GUI
embedded controls.

daps.engine Provides the MVC model.

daps.engine.debugger Compiler and debugger classes and interfaces.

daps.engine.dialog Contains the all dialog content classes and nothing else.

org.eclipse.wb.swt

util
Table 2: DAPS packages

Eclipse integration (Eclipse specific) code consists of all packages excluding daps.engine and
those under it. These parts implement various hooks for Eclipse to start and interact with
DAPS plugin. In particular daps.AssistantView implements most of the graphical UI of the
DAPS's dialog view (the singular view that presents the interactive dialog to the user).

daps.engine is responsible from the model part of the model-view-controller design pattern. It
is independent from Eclipse. The daps.engine.Coordinator controls the rest of the engine and
is responsible of initialization and organization of the data structures and governs interaction
between modules. As the environment is multithreaded, Coordinator also forms the root of a
DAG (directed acyclic graph) that provides a strict hierarchy for synchronization and
deadlock prevention by allowing direct function calls to only own and child functions.
References to parents or other branches are WeakReferences (for proper garbage collection)
and their functions can only be called through delayed execution.

daps.engine.dialog.AssistantDialog is the master class for the user interaction and currently
provides a crude prototype dialog with which to collect and provide information. Dialog is
responsible for most of the decision making, which will only increase with additional features
such as user behavior analysis (to identify dissonance) and activity monitoring. In addition the
actual tutoring scenarios and complex dialog trees will be implemented here. Dialog is also
responsible for inserting hyperlinks and other reference tokens into the view, even when the
visual implementation and rendering of these features rests on daps.AssistantView.

daps.engine.debugger.Debugger provides the debugger integration with Jython. Debugger
collects information from the user written code, stores it and provides it for the dialog.

Eclipse stores much control data outside the classes and files such as MANIFEST.MF,
plugin.xml and build.properties contain important information. Visual inspection of these files
provides much information even when their modification is practically always done through
GUI. Version control is currently done with Git.

In terms of future development and task management, the development environment contains
a listing of future options in a text file that currently serves as the project's scheduler
(DAPS_TODO.txt). As many design requirements are fairly general in nature and require to be
taken into account when implementing any single feature, it is preferable to be familiar with
this document and chapter 37 from Handbook of Human-Computer Interaction (Anderson et
al. 1997). The recommended chapter also contains good guidance in implementing the

62

DAPS's currently most lacking feature (the dialog tree). Also the rule system needs a clear and
extensible implementation, which allows easy addition of dialog material.

63

 5 Comparison to Other Tools
A taxonomy of programming environments
and languages for novice programmers
(Kelleher & Pausch 2005) provides a
glimpse of the high number of tools and
approaches used in making programming
easier to learn. “The systems are organized
by their primary goal, either to teach
programming or to use programming to
empower their users, and then, by each
system’s authors’ approach, to making
learning to program easier for novice
programmers.”

To find the DAPS's peers to facilitate the
comparison, DAPS's main features (some
are still unimplemented) and qualities are
needed (chapter 1.3):

• Main approach is to protect user
from circumstances that cause
persisting cognitive dissonance.

• Main interaction in the form of
continual textual dialog.

• Added value features (debugger
and visualizations) motivate to use
DAPS and provide the necessary
interaction for dissonance relieving
elements.

In the taxonomy DAPS would most likely
fall under Teaching Systems → Learning
Support → Providing a Motivating
Context. However the tools under that
category are essentially games that
incorporate programming elements or
logic as a part of gameplay, and while the
main approach for all tools is to affect the
motivation, they bear little resemblance
with DAPS. As DAPS shares qualities
with several tools in different categories of
the taxonomy the definition of DAPS's
peer-tools is difficult.

The variation in features, supported work
flows and target user groups pose a
significant challenge in comparing the

available tools. If individual features are compared, already very simple tools (such as
python's pdb module) allow setting breakpoints to access dynamic variable data, and the data
can even be tracked without any tools by simply adding printing expressions into the code. An
example of a more extensive freely available visual debugger could be Winpdb (Aides 2014).

IDEs (integrated development environments) naturally offer debugging facilities and there are
many heavy weight commercial ides that contain visual debugging tools such as Komodo IDE
(ActiveState 2014), IntelliJ IDEA (JetBrains 2104), PyCharm (JetBrains 2014) and Visual
studio (Microsoft 2014), but are directed towards professional software development and
hence offer more power instead of low learning curve. Still the chosen platform for DAPS is
Eclipse IDE, which is equally directed towards professional software development.

However, there are also interesting examples of IDEs that are targeted towards teaching
programming. BlueJ (Barnes & Kölling 2014) is a Java IDE to support the learning and
teaching of object oriented programming (Kölling 2008). In contrast to previous IDE
examples BlueJ is vastly simplified. It contains tools such as visual debugger, setting
breakpoints, independent instance creation, access of variables through inspection and direct
interface access to methods. DAPS also aims to contain similar debugging features, but in
contrast to DAPS BlueJ does not provide dialog or other methods to instruct the student
where to go next, but leaves those decisions to the user or course instruction.

If we consider the accessibility of information, tutorials such as the official python tutorial
(Python Software Foundation 2014) or the learnpython.org's excellent tutorial with in-browser
interpreter (LearnPython.org 2014) offer accessible language reference, but leave the
resolution of encountered problems to the user. While tutorials are clearly far away from tools
such as DAPS, the learning tasks have several distinct aspects and these aspects do not
necessarily need to be presented by the same source. This also means that the lack of an
important feature does not necessarily reduce the value of a tool, if such a feature can be
concurrently provided by another source in the learning environment. For example, DAPS can
ease referencing by inserting hyperlinks into its dialog, but if a suitable dictionary were open
in a web browser, writing the name in a search field and clicking search would not be
difficult. This dictionary could then be referenced even for terms DAPS had not hyperlinks
associated. A more prominent problem would be the reduced linkage, which could result in
terminological discrepancies, increase extrinsic cognitive load and hamper memorization by
reduced repetition of cues, but there are also clear benefits in a modular learning environment
which allows dynamic composition of multiple tools.

When we further include the conclusion, that the programming language is merely irrelevant
syntax and the language independent features such as loops, functions and variables are the
real learning tasks, the comparison can no longer be limited to any single language. As
programming can be expressed through visual or even physical objects, the limitation to
textual representation becomes more linked to the productivity requirements of professional
programming than the CS1 level learning tasks. For example Lego NXT robots (Markham &
King 2010) have been used in teaching CS1.

As the type of interaction is the most important property of the tools used (Hundhausen et al.
2002), it remains unclear how relevant any comparison of features can be, when taken out of
teaching context that clearly defines the validity of each feature. In the end, the tool must
viably support the specific user's learning process within the specific learning context. The
lack of a vital component or its failed usage would probably be far more detrimental to

65

learning than the quality of all other components combined. This is also the conclusion
hypothesized in chapter 2.1.

 5.1 ITS Evaluation Is Difficult – User Testing Might be Better

The chosen context of DAPS, the Eclipse IDE with PyDev plugin, already contains many
tools including debugging tools, which if understood and used, offer many superior features
compared to DAPS (if tutoring specific features are excluded from the comparison). In fact
the only “new” features that DAPS provides into Eclipse PyDev environment are the tutoring
specific features, such as the dialog interface. The main function of DAPS is to provide
direction for the user.

ITS systems are complex specialized systems requiring large development effort and as such
are far fewer than general programming tools. They are also far more integrated to their
environment and therefore less accessible. As a result their evaluation and comparison is
laborious and difficult. While providing a far more informed and complete rational Anderson
et al. note: In short, the evaluation process is somewhat more complex than for most software
environments (Anderson et al. 1997).The conclusion taken here is that while familiarity with
ITS systems is beneficial and features can be individually scrutinized for implementation in
DAPS, such as using Bayesian networks for modeling the student's learning in BITS (a web-
based bayesian intelligent tutoring system for computer programming) (Butz et al. 2006), the
comparison of the whole tool should be based on empirical student learning results, and is
deferred as future work after minimum viability is reached.

66

 6 Summary and Future Work
As the effects of lack of skills and variation in ability (IQ) become negligible in the later
stages of learning (chapter 2.4.1.2), all the students have “what it takes”. Consequently the
vicious cycle to quit develops based greatly on temporary or outright false perception of poor
success. Even more disheartening is that this perception forms regardless of the course
personnel's goal to help students learn and share their passion for computing. While much of
the students' negative view seems out of place, still this bleak perception and commitment
into dropping out is formed for 20-40 percent of the CS1 students (chapter 2.2).

Cognitive dissonance (chapter 2.2.3) is an established and well founded theory and explains
well the phenomena of changing cognitions (thoughts) and behaviors in response to gaining
new information from one's surroundings. It maintains our thoughts and actions consonant
(consistent) and prevents conflicting and self defeating processes endangering functionality
and in this way maintains productivity. The ever increasing discomfort of accumulating
dissonance forces change even when the cost for the change is high and allows even difficult
barriers to be overcome if the need is dire. Also the reasons given by dropped out CS1
students and their mounting discomfort suit well to the accumulation of dissonance (chapter
2.2.3.3).

While dissonance creates a very powerful motivator, it is harmful in the context of complex
learning tasks. Dissonance drains working memory capacity and reduces performance in
working memory intensive tasks (chapter 2.3.1.4). While simple tasks benefit from the
additional motivational momentum, in the context of CS1's high intrinsic cognitive load, the
students who are faced with problems find their performance degrade when it is most needed.
The high interconnectivity of CS1 will also prevent pushing through by avoiding the unsolved
problems, a solution that would provide momentary relief in many other contexts. These
harmful feedbacks can result in an entrapment by escalating dissonance, where dissonance
pushes the student ever harder forward, but in the same time drains the very means needed for
the progress. If this continues too long and the dissonance rises too high, avoiding it becomes
mandatory (chapter 2.2.3.7). Unfortunately the student's only way to avoid the interconnected
sources of the dissonance is to avoid the whole interconnected domain, hence leading to the
abandonment of the studies.

Also other factors significantly contribute to this negative outcome. While CS1 skills can be
mastered by all students the different backgrounds (and differing programming related skills,
especially the understanding of abstract entities such as threshold concepts) mean that the
required workload can vary considerably between students, making the course demands
simply impossible for some of them. This discrepancy is not likely to be understood or
detected by the students and in combination to the following successive failures, leads to
unfair, harsh and incorrectly negative self evaluation, partly due to poor metacognitive skills
(chapter 2.4.1) such as planning and self knowledge. In addition the poor metacognitive skills
combined to fixed outside constraints can lead to resource depletion leaving the student
defenseless against unforeseen future difficulties. As a result, the perception of the course
changes into a domain of losses (chapter 2.2.4), which derails the student from proper process,
encourages unwise risk taking and short term gain over long term investment and further
damages learning and productivity.

67

Rapid intervention and preferably preventative measures are needed, as the negative
feedbacks of resource depletion, excessive cognitive load and avoidance failure (chapter 3.1)
will soon galvanize the students against any attempts that are perceived to prevent avoidance
or other forms of dissonance reduction. At this point intervention will be very difficult as the
fear of additional dissonance prevents the students from committing, and dissonance
reduction enforces course personnel to be viewed in negative light (chapter 2.2.3.2).

Still there are ways for prevention and intervention. Maintaining domain on gains, using
positive framing, instruction in metacognitive skills and promotion of intrinsic motivation are
some of the preventive methods. Different monitoring methods might also provide early
enough opportunity for intervention, when the student is still seeking help in succeeding,
instead of seeking help in avoiding. As the student's perception of own performance is a major
factor, sufficient intervention might be as little as few encouraging words, if the intervention
is done early enough. While social interaction is far stronger source for this encouragement,
DAPS has the potential of proving it more frequently.

The time consumption in terms of course resource expenditure is a major benefit for
automated tutoring systems such as DAPS. With the tool the normally limited time
consumption becomes near irrelevant, need for rapid progress is relaxed and the domain of
gains can be maintained with constant stream of easy tasks, providing easy gratification and
perception of progress and success. In these surroundings the needed repetition for
memorization and behavioral changes (i.e. learning) becomes easily reachable. As
memorization benefits little or none from the intent of memorization, the circumstances for
this time intensive task can be made as pleasant as possible.

 6.1 Limitations

The author has no experience in running a class and only a very modest amount of experience
in teaching a small group (3-6) of students. This kind of experience would undoubtedly be
useful or even vital.

 6.2 Recommendations, Current state of DAPS and Future Work

The harmful interaction between high cognitive load and persisting cognitive dissonance may
have been overlooked previously and should warrant more detailed study. Techniques such as
instruction on metacognitive skills, positive framing and focus on intrinsic motivation should
provide benefits beyond reducing CS1 drop-out rates and should contain little risk. Progress
monitoring could help in identifying students that benefit from additional help in dissonance
reduction.

DAPS is a proof of concept still at prototype stage, and requires several features before it
could be usefully utilized in a CS1 environment. However, only a fraction of the many
suggested features are required for viability, allowing DAPS to become a practical CS1
assistance tool with a reasonable amount of future work. While DAPS has not yet reached
utility, this work has also provided a novel perspective of persisting dissonance behind CS1
drop-out rates (chapter 3.1) and followed with several concrete strategies that can be
immediately employed to contain the harmful effects of persisting dissonance.

68

 7 References
Ackerman, P., 1987. Individual differences in skill learning: An integration of psychometric

and information processing perspectives. Psychological bulletin, 102(1), pp.3–27.
Available at: http://psycnet.apa.org/journals/bul/102/1/3/ [Accessed July 23, 2014].

ActiveState, 2014. Komodo IDE - Cross-Platform IDE for all your major languages. Available
at: http://komodoide.com/ [Accessed December 1, 2014].

Aides, N., 2014. Winpdb - A Platform Independent Python Debugger. Available at:
http://winpdb.org/ [Accessed December 1, 2014].

Anderson, J.R., Cobertt, A.T. & Koedinger, K.R., 1997. Intelligent Tutoring Systems. In M.
G. Helander, T. K. Landauer, & P. Prabhu, eds. Handbook of Human-Computer
Interaction. Amsterdam: Elsevier Science.

Anderson, L.W. & Krathwohl, D.R., 2001. A Taxonomy for Learning, Teaching, and
Assessing, A Revision of Bloom’s Taxonomy of Educational Objectives,

Bandura, A., 1989. Self-regulation of motivation and action through internal standards and
goal systems. In Goal concepts in personality and social psychology. pp. 19–85.

Barnes, D. & Kölling, M., 2014. BlueJ - A free Java Development Environment designed for
beginners, used by millions worldwide. Available at: http://bluej.org/ [Accessed
December 3, 2014].

Ben-Ari, M., 2001. Constructivism in computer science education. Journal of Computers in
Mathematics and Science Teaching, 20(1), pp.45–73. Available at:
http://dl.acm.org/citation.cfm?id=274308 [Accessed September 25, 2014].

Bloom, B.S. et al., 1956. Taxonomy of Educational Objectives, The Classification of
Educational Goals: Handbook I: Cognitive Domain, New York: David McKay.

Borasi, R., 1996. Reconceiving Mathematics Instruction: A Focus on Errors, Norwood, NJ:
Ablex Pub.

Butz, C.J., Hua, S. & Maguire, R.B., 2006. A Web-based Bayesian Intelligent Tutoring
System for Computer Programming. Web Intelli. and Agent Sys., 4(1), pp.77–97.
Available at: http://dl.acm.org/citation.cfm?id=1239784.1239789.

Carpenter, T. & Lehrer, R., 1999. Teaching and learning mathematics with understanding.
Mathematics classrooms that promote understanding, pp.22–33. Available at:
http://scholar.google.com/scholar?
hl=en&btnG=Search&q=intitle:Teaching+and+Learning+Mathematics+With+Understan
ding#0 [Accessed October 26, 2013].

Chase, W.G. & Simon, H.A., 1973. Perception in chess. Cognitive Psychology, 4(1), pp.55–
81.

69

Coleman, J., 1968. Equality of educational opportunity. Integrated Education. Available at:
http://www.tandfonline.com/doi/pdf/10.1080/0020486680060504 [Accessed October 26,
2013].

Craik, F.I.M. & Lockhart, R.S., 1972. Levels of Processing : A Framework for Memory
Research 1. Journal of Verbal Learning and Verbal Behavior, 684, pp.671–684.

Dollard, J. & Miller, N.E., 1950. Personality And Psychotherapy, New York: McGraw-Hill.

Engle, R.W. et al., 1999. Working memory, short-term memory, and general fluid intelligence:
a latent-variable approach. Journal of Experimental Psychology: General, 128(3),
pp.309–331. Available at: http://psycnet.apa.org/psycinfo/1999-11137-004 [Accessed
August 8, 2014].

Eysenck, M.W. & Keane, M.T., 2005. Cognitive Psychology : a Student’s Handbook 5th ed.,
Psychology Press Ltd.

Festinger, L., 1957. A Theory of Cognitive Dissonance, Stanford, California: Stanford
University Press.

Fitzgerald, S. & Lewandowski, G., 2008. Debugging: finding, fixing and flailing, a multi-
institutional study of novice debuggers. Computer Science Education, 18(2), pp.93–116.
Available at: http://www.tandfonline.com/doi/abs/10.1080/08993400802114508
[Accessed October 27, 2013].

Gerrig, R.J. & Zimbardo, P.G., 2002. American Psychological Association - Glossary of
Psychological Terms. Psychology And Life. Available at:
http://www.apa.org/research/action/glossary.aspx [Accessed February 6, 2014].

Ginat, D., 2013. Constructive use of errors in teaching CS1. ACM SIGCSE Bulletin, p.353.

Gupta, P. & Cohen, N.J., 2002. Theoretical and computational analysis of skill learning,
repetition priming, and procedural memory. Psychological Review, 109(2), pp.401–448.
Available at: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.109.2.401 [Accessed
July 15, 2014].

Hundhausen, C., Douglas, S. & Stasko, J., 2002. A meta-study of algorithm visualization
effectiveness. Journal of Visual Languages & Computing, 13(3), pp.259–290. Available
at: http://www.sciencedirect.com/science/article/pii/S1045926X02902375 [Accessed
October 26, 2013].

Hyde, T.S. & Jenkins, J.J., 1973. Recall for words as a function of semantic, graphic and
syntactic orienting tasks. Journal of Verbal Learning & Verbal Behavior, 12, pp.471–480.

JetBrains, 2104. IntelliJ IDEA - The Most Intelligent Java IDE. Available at:
https://www.jetbrains.com/idea/ [Accessed December 1, 2014].

JetBrains, 2014. PyCharm - The Most Intelligent Python IDE. Available at:
https://www.jetbrains.com/pycharm/ [Accessed December 1, 2014].

70

Jonas, E. et al., 2001. Confirmation bias in sequential information search after preliminary
decisions: an expansion of dissonance theoretical research on selective exposure to
information. Journal of personality and social psychology, 80(4), pp.557–71. Available
at: http://www.ncbi.nlm.nih.gov/pubmed/11316221.

Kahneman, D. & Tversky, A., 1984. Choices, values, and frames. American Psychologist,
39(4), pp.341–350. Available at: http://content.apa.org/journals/amp/39/4/341 [Accessed
July 21, 2014].

Kahneman, D. & Tversky, A., 1979. Prospect theory: An analysis of decision under risk.
Econometrica: Journal of the Econometric Society, 47(2), pp.263–292. Available at:
http://www.jstor.org/stable/1914185 [Accessed July 21, 2014].

Kelleher, C. & Pausch, R., 2005. Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Computing
Surveys (CSUR), 37(2), pp.83–137. Available at: http://dl.acm.org/citation.cfm?
id=1089734 [Accessed October 26, 2013].

Kelly, G.A., 1958. Man’s construction of his alternatives. In G. Lindzey, ed. Assessment of
Human Motives. New York: Holt, Rinehart and Winston, pp. 33–64.

Kinnunen, P. & Malmi, L., 2006. Why students drop out CS1 course? Computer Science
Education (2006), 24(7), pp.97–108. Available at: http://dl.acm.org/citation.cfm?
id=1151604 [Accessed April 2, 2014].

Kölling, M., 2008. Using bluej to introduce programming. In and M. K. J. Bennedsen, M. E.
Caspersen, ed. Reflections on the Teaching of Programming. pp. 98–115.

Lamberts, K. & Goldstone, R.L. eds., 2005. The Handbook of Cognition, SAGE Publications
Ltd.

LearnPython.org, 2014. LearnPython.org interactive Python tutorial. Available at:
http://www.learnpython.org/ [Accessed December 1, 2014].

Markham, S. & King, K., 2010. Using personal robots in CS1: experiences, outcomes, and
attitudinal influences. ITiCSE’10 - Proceedings of the 2010 ACM SIGCSE Annual
Conference on Innovation and Technology in Computer Science Education (2010),
pp.204–208. Available at: http://dl.acm.org/citation.cfm?id=1822148 [Accessed
December 2, 2014].

Marks, D.F., 1997. Biographical Dictionary of Psychology. In Biographical Dictionary of
Psychology.

Martinie, M., Olive, T. & Milland, L., 2010. Cognitive dissonance induced by writing a
counterattitudinal essay facilitates performance on simple tasks but not on complex tasks
that involve working memory. Journal of experimental social psychology, 33(0), pp.1–
14. Available at: http://www.sciencedirect.com/science/article/pii/S0022103109002716
[Accessed August 8, 2014].

71

Meyer, J. & Land, R., 2006. Overcoming Barriers to Student Understanding: Threshold
Concepts and Troublesome Knowledge, Routledge.

Microsoft, 2014. Visual Studio. Available at: http://www.visualstudio.com/ [Accessed
December 1, 2014].

Miller, G.A., 1994. The magical number seven, plus or minus two: some limits on our
capacity for processing information. 1956. Psychological review, 101(2), pp.343–352.

Miller, N.E., 1944. Experimental studies of conflict behavior. In J. M. Hunt, ed. Personality
and behavior disorders. New York: Ronald Press, pp. 431–465.

Ohlsson, S., 1996. 1996-Learning_from_Performance_Errors.pdf. American Psychological
Association, 103(2), pp.241–262.

Paivio, A., 1971. Imagery and Verbal Processes, New York, Holt, Rinehart and Winston.

Pavlov, I.P., 1927. Conditioned Reflexes: An Investigation of the Physiological Activity of the
Cerebral Cortex. Available at: http://psychclassics.yorku.ca/Pavlov/ [Accessed December
11, 2013].

Pervin, L.A., 2003. The Science of Personality 2nd ed., New York: Oxford University Press.

Poldrack, R. a & Gabrieli, J.D., 2001. Characterizing the neural mechanisms of skill learning
and repetition priming: evidence from mirror reading. Brain : a journal of neurology,
124(Pt 1), pp.67–82. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11133788.

Poldrack, R. & Selco, S., 1999. The relationship between skill learning and repetition
priming: Experimental and computational analyses. Journal of experimental psychology.
Learning, memory, and cognition, 25(1), pp.208–235. Available at:
http://psycnet.apa.org/journals/xlm/25/1/208/ [Accessed July 15, 2014].

Python Software Foundation, 2014. The Official Python Tutorial. Available at:
https://docs.python.org/3/tutorial/index.html [Accessed December 1, 2014].

Roll, I. et al., 2011. Improving students’ help-seeking skills using metacognitive feedback in
an intelligent tutoring system. Learning and Instruction, 21(2), pp.267–280. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0959475210000538 [Accessed July 14,
2014].

Roussel, P., Elliot, A.J. & Feltman, R., 2011. The influence of achievement goals and social
goals on help-seeking from peers in an academic context. Learning and Instruction,
21(3), pp.394–402. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0959475210000447 [Accessed July 30,
2014].

Schraw, G., 1998. Promoting general metacognitive awareness. Instructional science, 26(1-2),
pp.113–125. Available at: http://link.springer.com/article/10.1023/A:1003044231033
[Accessed July 22, 2014].

72

Secada, W.G. & Marrett, C.O.R.A.B., 2000. The Organizational Context of Teaching and
Learning Changing Theoretical Perspectives. In Handbook of the Sociology of
Education. pp. 37–64.

Sorva, J., 2012. Visual Program Simulation in Introductory Programming Education. Aalto
University. Available at: https://aaltodoc.aalto.fi/handle/123456789/3534.

Swanson, H.L., 1990. Influence of metacognitive knowledge and aptitude on problem
solving. Journal of Educational Psychology, 82(2), pp.306–314. Available at:
http://doi.apa.org/getdoi.cfm?doi=10.1037/0022-0663.82.2.306.

Sweller, J., 1988. Cognitive load during problem solving: Effects on learning. Cognitive
science, 12(2), pp.257–285. Available at: http://doi.wiley.com/10.1016/0364-
0213(88)90023-7 [Accessed July 17, 2014].

Sweller, J., 1994. Cognitive load theory, learning difficulty, and instructional design. Learning
and instruction, 4, pp.295–312. Available at:
http://www.sciencedirect.com/science/article/pii/0959475294900035 [Accessed July 17,
2014].

Thomas, A. & Millar, P., 2012. Reducing the framing effect in older and younger adults by
encouraging analytic processing. The journals of gerontology. Series B, Psychological
sciences and social sciences, 67B(2), pp.139–149. Available at:
http://http//psychsocgerontology.oxfordjournals.org/content/67B/2/139 [Accessed
August 19, 2014].

Thomas, N.J.T., 2013. Mental Imagery - (Dual Coding and Common Coding Theories of
Memory). In E. N. Zalta, ed. The Stanford Encyclopedia of Philosophy.

Watkins, O.C. & Watkins, M.J., 1975. Buildup of proactive inhibition as a cue-overload
effect. Journal of Experimental Psychology Human Learning and Memory, 1(4), pp.442–
452.

Watson, C. & Li, F.W.B., 2014. Failure rates in introductory programming revisited.
Proceedings of the 2014 conference on Innovation & technology in computer science
education - ITiCSE ’14, pp.39–44. Available at: http://dl.acm.org/citation.cfm?
doid=2591708.2591749.

Veen, V. van et al., 2009. Neural activity predicts attitude change in cognitive dissonance.
Nature Neuroscience, 12(11).

Wrzesniewski, A. et al., 2014. Multiple types of motives don ’ t multiply the motivation of
West Point cadets. In Proceedings of the National Academy of Sciences. pp. 1–6.

73

	Before You Begin
	1 Introduction
	1.1 Cognitive Psychology – The Solid Level Below
	1.2 Goals and Contribution of the Thesis
	1.3 What Is DAPS – Protection from Persisting Cognitive Dissonance

	2 Review of the Literature
	2.1 Sociological Perspective – Teaching Does Not Benefit All Students Equally
	2.2 Motivation – Why Do They Quit?
	2.2.1 Some Important Terms
	2.2.1.1 Goals – Should Always Be Reached
	2.2.1.2 Pull and Push
	2.2.1.3 Intrinsic and Instrumental Motives – Instrumental Can Be Harmful

	2.2.2 Behaviorism
	2.2.2.1 Pavlov – Old Behavior Is Extremely Persistent
	2.2.2.2 Instrumental Learning – Perception of Fear Leads to Avoidance

	2.2.3 Cognitive Dissonance
	2.2.3.1 Cognitive Dissonance – Removes Inconsistencies from Cognition
	2.2.3.2 New Information Causes Cognitive Dissonance
	2.2.3.3 A Person Actively Hides the Causes of Dissonance
	2.2.3.4 Dissonance Can Not Be Maintained
	2.2.3.5 Reducing Dissonance – Requires Resources
	2.2.3.6 The Cost of Reducing Dissonance Depends on the Person
	2.2.3.7 Persisting Dissonance Leads to Avoidance Behavior
	2.2.3.8 Avoidance Is a Useful but Dangerous Strategy – Can Lead to Entrapment
	2.2.3.9 Focus to Process Instead of Results to Reduce Avoidance
	2.2.3.10 Connecting Dissonance, Motivation, Goals and Positive Reinforcement

	2.2.4 Loss Aversion and Prospect Theory
	2.2.4.1 Perception of Risk Leads to Poor Performance
	2.2.4.2 Risk Taking Is a Serious Warning Sign
	2.2.4.3 Framing Effect – Positive Expressions Improve Motivation

	2.3 Memory
	2.3.1 Cognitive Load
	2.3.1.1 Working Memory – The Hard Limit for Complex Thought
	2.3.1.2 Chunks and Schemas – Circumvent Working Memory Capacity Limit
	2.3.1.3 Cognitive Load – Is Caused by Element Interactivity
	2.3.1.4 High Cognitive Load Increases Damage from Dissonance and Avoidance

	2.3.2 Levels of Processing Theory – Memorization Effectiveness
	2.3.3 “All memory Is cue-driven”
	2.3.3.1 Cue-dependent Forgetting and Cue Overload – Limit the Number of Terms
	2.3.3.2 CS1 Should Provide Good Cues – Information Comes Second
	2.3.3.3 Skill Learning and Repetition Priming – Repeated Cues Recalled Faster

	2.4 Learning
	2.4.1 Metacognition
	2.4.1.1 Metacognitive Instruction – Important In the Early Stages of Learning
	2.4.1.2 Lack of Ability Does Not Affect Performance in Later Stages of Learning
	2.4.1.3 Metacognitive Instruction Improves Debugging (Problem-Solving)
	2.4.1.4 Metacognitive Skills – Can Be Improved by Intelligent Tutoring Systems
	2.4.1.5 Help-Seeking – Is Prevented by Fear of Losing Face

	2.4.2 Bloom's Taxonomy
	2.4.2.1 Application of Revised Bloom's Taxonomy Is the Search of Synergy
	2.4.2.2 CS1 Studies Align Poorly with Fixing Programming Errors
	2.4.2.3 Teachers Encourage – Compilers Do Not

	2.4.3 Helping Students Past Unique Problems
	2.4.3.1 A Mental Model Is Formed Regardless of Access to Correct Information
	2.4.3.2 Correct Mental Model Should Be Provided as Early as Possible
	2.4.3.3 Learning Should Be Based on Understanding
	2.4.3.4 Threshold Concepts – Should Be Prerequisites for Coding?

	2.4.4 Errors Are Inevitable
	2.4.4.1 Bugs as Solutions Instead of Problems

	2.4.5 Dual-Coding – Improves Knowledge Encoding
	2.4.5.1 Visualization – How to Effectively Implement Dual-Coding
	2.4.5.2 Obstacles in Adopting – A Tool Must Be Easy to Approach

	2.5 Designing Intelligent Tutoring Systems

	3 Conclusions from the Literature – DAPS Requirements
	3.1 Persisting Cognitive Dissonance Behind CS1 Drop-out Rates
	3.1.1 Helping to Dissolve Cognitive Dissonance
	3.1.2 Deadlines in Inducing Beneficial Dissonance
	3.1.3 Persisting Dissonance – Considered Harmful in CS1
	3.1.4 Variation in Skill – Adaptation to Change Requires Time
	3.1.5 Metacognitive Skills – Knowing What to Expect
	3.1.6 Facilitate Acquisition of “Missed” Prerequisites

	3.2 What Can DAPS Do? – A Numbered List of Requirements
	3.2.1 Motivate to Learn, Not to Pass Assignments and Tests
	3.2.2 Task Performance ≠ Learning – Time and Effort = Learning
	3.2.3 Students Need Help in Evaluating Their Own Performance
	3.2.4 Deadlines for Large or Difficult Tasks Can Be Harmful
	3.2.5 Repetition Is Vital
	3.2.5.1 Repetition Must Be Elaborative, Distinctive and Cue Invariant
	3.2.5.2 Repetition Must Be Successful

	3.2.6 Easy Access to Relevant Information
	3.2.7 Avoidance – Prevent Avoiding and Complete Failure
	3.2.7.1 Prevent Avoiding – Prevent Avoidance Strengthening Through Repetition
	3.2.7.2 Prevent Complete Failure – Replace with Graceful to Reduce Damage

	3.2.8 Eliminate Deadlocks – By Always Providing a Fallback
	3.2.9 Repetitive Failure Is Dangerous
	3.2.9.1 Avoiding Dangerous Repetition
	3.2.9.2 The Perception of Failure and Success Can Be Influenced

	3.2.10 Reducing Extrinsic Cognitive Load
	3.2.11 High Cognitive Load Necessitates Metacognitive Skills
	3.2.12 Erroneous Perceptions Must Be Readily Corrected
	3.2.13 Key / Threshold Concept Understanding Needs Verification
	3.2.14 Visual Representations Can Improve Learning Efficiency
	3.2.15 Third Parties – Easy Access and Adoption, Hard to Let Go
	3.2.16 Implementation Status Chart

	4 Eclipse DAPS – Specification and Implementation
	4.1 Platform – Eclipse
	4.2 Architecture
	4.2.1 Integrated Debugger – Jython Python Interpreter
	4.2.1.1 Program Dynamics and Flow – The Line Numbers of Executed Code

	4.2.2 Student-Assistant Dialogue – Assistant Instead of a Tool
	4.2.2.1 Unintrusive Initiation
	4.2.2.2 Minimize Negative Perceptions
	4.2.2.3 Prevent Deadlocks
	4.2.2.4 Provides Only Information – User Remains In Control
	4.2.2.5 A Domain of Gains – Effort Guarantees Success
	4.2.2.6 Overly Positive Framing

	4.2.3 Additional Help Materials
	4.2.4 Eclipse Integration – Implementation Details

	5 Comparison to Other Tools
	5.1 ITS Evaluation Is Difficult – User Testing Might be Better

	6 Summary and Future Work
	6.1 Limitations
	6.2 Recommendations, Current state of DAPS and Future Work

	7 References

