
Aalto University

School of Electrical Engineering

Jukka Saarelma

Finite-difference time-domain solver for
room acoustics using graphics process-
ing units

Master’s Thesis
Espoo, November 11, 2013

Supervisor: Professor Lauri Savioja
Instructor: Ph.D Jonathan Botts

Aalto University
School of Electrical Engineering ABSTRACT OF

MASTER’S THESIS

Author: Jukka Saarelma

Title:
Finite-difference time-domain solver for room acoustics using graphics processing
units

Date: November 11, 2013 Pages: 8 + 64

Department of Mediatechnology

Professorship: Mediatechnology Code: IL3011

Supervisor: Professor Lauri Savioja

Instructor: Ph.D Jonathan Botts

Several acoustic simulation methods have been introduced during the past
decades. Wave-based simulation methods have been one of the alternatives, but
their applicability for wideband acoustic simulation has been limited by the com-
puting power of available hardware. During recent years, the processing power
and programmability of graphics processing units have improved, and therefore
several wave-based simulation methods have become potential alternatives. In
this thesis, a finite-difference time-domain solver is implemented. The perfor-
mance of the solver is accelerated with the use of graphics processing units. Dif-
ferent performance considerations are reviewed and the system is evaluated by
comparing the simulated responses to known analytic solutions.

The resulting system is C++ software, which is interfaced with Matlab with the
use of a mex-function. It is found that the forward difference boundary formu-
lation is the most efficient for parallel implementation due to a lesser number of
operations. The usage of double precision data type in the simulation decreases
the performance significantly. The system is found to follow the analytical solu-
tions with accuracy expected of the method, apart from the reflection character-
istics of the forward difference boundary formulation that deviate slightly from
the analytical solution.

Keywords: acoustics, acoustic simulation, CUDA, finite-difference time-
domain method, parallel computing, visualization, wave equa-
tion

Language: English

ii

Aalto-yliopisto
Sähkötekniikan korkeakoulu DIPLOMITYÖN

TIIVISTELMÄ

Tekijä: Jukka Saarelma

Työn nimi:
Aaltoyhtälön numeerinen ratkaisija aika-alueen differenssimenetelmällä käyttäen
graffiikkaprosessoreja

Päiväys: 11. marraskuuta 2013 Sivumäärä: 8 + 64

Mediatekniikan laitos

Professuuri: Mediateknologia Koodi: IL3011

Valvoja: Professori Lauri Savioja

Ohjaaja: TkT Jonathan Botts

Erilaisia akustisia simulaatiomenetelmiä on kehitetty viime vuosikymmenien ai-
kana. Yhtenä vaihtoehtona on käytetty aaltopohjaisia ratkaisioita, mutta lasken-
nallinen tehokkuus on usein rajoittava tekijä niiden käytölle. Viimevuosina gra-
fiikkaprosessoreiden ja ohjelmistorajapintojen kehitys on mahdollistanut erilais-
ten aaltopohjaisten menetelmien käytön. Tässä työssä toteutetaan aaltoyhtälön
ratkaisija aika-alueen differenssimenetelmällä. Toteutuksen tehokkuutta paranne-
taan hyödyntämällä grafiikkaprosessoreita ja eri toteutusvaihtoehtoja verrataan.
Jäjestelmällä estimoituja vasteita verrataan tunnettuihin analyyttisiin ratkaisui-
hin.

Toteutettu järjestelmä on C++-ohjelma jota voidaan käyttää Matlab-
ympäristöstä hyödyntäen Matlab-ohjelmiston mex-rajapintaa. Päivitysyhtälö jos-
sa reunaehdot on toteutettu etenevällä differenssillä todetaan tehokkaimmaksi
vaihtoehdoki. Simulaation tehokkuus alenee huomattavasti käytettäessä kaksi-
kertaista laskentatarkuutta. Voidaan todeta, että järjestelmän estimoimat vas-
teet toteuttavat odotetulla tavalla analyyttiset ratkaisut, poislukien etenevällä
differenssillä toteutetun reunaehdon heijastusominaisuudet, jotka eroavat ana-
lyyttisestä mallista.

Asiasanat: akustiikka, akustinen simulaatio, CUDA, aika-alueen dif-
ferenssimenetelmä, rinnakkaislaskenta, visualisointi, aalto-
yhtälö

Kieli: Englanti

iii

Acknowledgements

I would like to offer my gratitude first of all to Professor Lauri Savioja who
offered this thesis position to me. Most probably I would not have had the
guts to pursue this topic without such straightforward encouragement. I
would like to thank my instructor Ph.D. Jonathan Botts for various helpful
discussion on topics concerning this thesis and acoustic simulation in general,
and M.Sc. Henrik Karlson for providing support and new features to the
voxelization libary when needed in a truely professional manner.

In addition I would like to thank my co-worker B.Sc Perttu “Liitto”
Laukkanen for making my tendencies to be unconcerned with attending con-
ferences during the spring and summer 2013 look ridiculous and overall for
keeping the morale high around the office. The conference visits during this
work were extremely motivational.

Research leading to these results has received funding from the Academy
of Finland project ’Efficient perceptually optimal simulation of room acous-
tics’ (No. 265824).

Espoo, November 11, 2013

Jukka Saarelma

iv

Contents

Symbols and abbreviations vii

1 Introduction 1
1.1 Problem statement . 2
1.2 Outline of this thesis . 2

2 Background 3
2.1 Fundamentals of Room Acoustics 3

2.1.1 Wave Equation . 3
2.1.2 Reflection and Scattering 5

2.2 Acoustic simulation methods 7
2.2.1 Geometric Methods . 8
2.2.2 Wave-based Methods 10

3 The Finite-Difference Time-Domain method 12
3.1 Compact explicit FDTD schemes for room acoustics 13
3.2 Boundary Conditions . 15

3.2.1 Boundary definition with forward difference operator . 18
3.3 Dispersion Error . 20
3.4 Source modeling . 21
3.5 Medium Viscosity . 23

4 CUDA architecture 24
4.1 From CPU to GPU . 24
4.2 Device . 25

4.2.1 Streaming multiprocessors and thread hierarchy 26
4.2.2 Memory . 27
4.2.3 Kepler Architecture . 29

4.3 Programming . 31
4.3.1 PTX instruction set architecture 31
4.3.2 Programming interfaces 32

v

5 Implementation 34
5.1 Previous Work . 34
5.2 System Architecture . 37
5.3 Voxelization . 38
5.4 FDTD Kernels . 39
5.5 Visualization . 41
5.6 Matlab Integration . 42

6 Evaluation 43
6.1 Analysis of simulated responses 43

6.1.1 Spectral analysis of a simulated room impulse response 43
6.1.2 Free field propagation 46
6.1.3 Reflectance magnitude analysis 47

6.2 Computational Performance 51

7 Conclusions 54
7.1 Future Work . 54

A Analytic and simulated free field propagation 62

vi

Symbols and abbreviations

Symbols

c Speed of sound
fs Sampling frequency
k Wavenumber
p Pressure
R Reflection coefficient
T Temperature of air
t Time
v Particle velocity
Z Surface impedance
α Absorption coefficient
λ Courant number
ω Angular frequency
ρ0 Air density
θ Angle of incidence
ξ Specific acoustic impedance

Operators

∇2 Laplacian
∂f
∂x

Partial derivative of f with respect to x

Abbreviations

2-D Two-Dimensional
3-D Three-Dimensional
API Application Programming Interface

vii

ARD Adaptive Rectangular Decomposition
ART Acoustic Radiance Transfer
BEM Boundary Element Method
BRDF Bidirectional Reflectance Transfer Function
CUDA Computer Unified Device Architecture
DWM Digital Waveguide Mesh
FDTD Finite-Difference Time-Domain
FEM Finite Element Method
FLOPS Floating-Point Operations Per Second
GDDR Graphics Double Data Rate
GPGPU General Purpose Graphics Processing Unit
GPU Graphics Processing Unit
HLSL High-Level Shader Language
ISA Instruction Set Architecture
IWB Interpolated Wideband
MEX Matlab Executable
OS Operating System
PBO Pixel Buffer Object
PTX Parallel Thread Execution
SLF Standard Leapfrog
SM Streaming Multiprocessor
SP Streaming Processor
SRL Standard Rectilinear
VBO Vertex Buffer Object

viii

Chapter 1

Introduction

Several different simulation methods have been introduced to predict acous-
tical characteristics of spaces. The methods are commonly divided into ge-
ometric and wave-based methods. Geometric methods estimate the propa-
gation of sound as rays whose propagation can be computed geometrically
from the orientations of the reflecting surfaces. Such methods can estimate
the propagation of sound in a wide bandwidth. However they do not take
into account the wave phenomena of sound. This leads to severe inaccuracies
at low frequencies. Wave-based methods are used to solve the wave equation
directly. Such methods can predict the wave phenomena of sound but they
are computationally expensive.

During the past decade, the physical limits of single processor cores have
become evident. This fact has lead processor manufacturers to develop multi
core processor architectures. Applications executing intense graphics process-
ing, such as games, have used the parallel hardware of graphics processing
units (GPUs) for real time rendering, and maintained a demand for parallel
processor architectures with more processing power. In 2007, Nvidia pub-
lished a parallel computing platform CUDA, which allowed programmers to
use GPUs for general purpose computing. The use of GPUs allows significant
performance improvements in data parallel applications.

The finite-difference time-domain (FDTD) method is a well-known method
to numerically solve partial differential equations. The method has been
used from the beginning of the 20th century when it was used to prove the
existence of the solutions of partial differential equations. For simulation
purposes, FDTD was first used in electromagnetic field problems but was
eventually adapted to acoustics. The method introduces severe direction-
and frequency-dependent dispersion to the simulated sound field. The least
dispersion occurs at low frequencies. To decrease the dispersion error, the
effective sampling frequency of the mesh must be increased by oversampling,

1

CHAPTER 1. INTRODUCTION 2

which increases the domain size and therefore leads to high computational
requirements. The advantage of the method is that the field update equation
can be formulated in a completely data parallel manner. This leads to the
problem statement of this thesis.

1.1 Problem statement

The FDTD method has inherently high computational requirements due to
large domain sizes. Estimating the propagation of sound in an enclosure
using FDTD with serial programming is possible, but significant speedups
are achievable by using GPUs and parallel programming. The advantage
over other wave-based methods is that the formulation is easily parallelize-
able, the update equation can be applied uniformly across the domain, and
it does not need precomputation. The aim of this thesis is to develop an
efficient FDTD solver for room acoustics using GPUs. As the method al-
lows the observation of the propagation of sound in the time domain, an
efficient visualization scheme taking advantage of the use of GPUs is imple-
mented. Different options regarding the design of the implemented system
are evaluated.

1.2 Outline of this thesis

This thesis is structured as follows. In Chapter 2, the physical background
relevant to the implementation is reviewed and a brief introduction to acous-
tic simulation methods is presented. In Chapter 3, a more detailed descrip-
tion of the FDTD method is given. In Chapter 4, the architecture of the
device family used in this work is reviewed and the programming model is
introduced. In Chapter 5, a general review of several similar systems is given
and the developed system is described in more detail. In Chapter 6, the
capabilities of the developed system are reviewed and the performance is
evaluated. In Chapter 7, concluding remarks are presented and the future
direction of the system development is discussed.

Chapter 2

Background

Room acoustic simulation is based on the physical principles of wave propaga-
tion. This work consists of implementing a system which effectively estimates
the progress of a sound field in the time-domain, therefore in order for the
reader to follow the derivation of the implementation, the theoretical formu-
lation of the propagation of sound is reviewed. As several different methods
for the same task have been proposed over time, to understand the prob-
lem this work seeks to solve, the principles and the limitations of existing
methods are discussed.

2.1 Fundamentals of Room Acoustics

2.1.1 Wave Equation

A sound wave is defined as the vibration of particles about their mean posi-
tion. Fluids such as air have mass density and volume elasticity and therefore
they have similar characteristics as a chain of masses and springs. Harmonic
motion is generated by two forces: the restoring force and the inertia of the
mass of the object. In the case of sound, the restoring force is caused by the
elasticity of air which resists it being compressed and the force causing the
motion is the inertia of the mass density of air. The vibration in a sound
wave is not uniform within the medium. Particles move in a different phase
in different points in a sound field. The variation between both pressure and
velocity is a function of time and position.

The detailed properties of the acoustic wave motion depend on whether
the air is in thermodynamic equilibrium or not, the ratio between the am-
plitude and frequency of the acoustic motion, the molecular mean-free-path
and the collision frequency [24, p. 227]. The behavior of wave motion in

3

CHAPTER 2. BACKGROUND 4

fluids is nonlinear because the pressure changes affect the temperature of
the medium and therefore the speed of sound. Generally, the effects result-
ing from inhomogeneities in the medium in room acoustics are considered so
small that they can be neglected [20] and therefore a simplified model can be
used. Common assumptions for a simplified model are that the medium is an
idealized fluid, its properties are uniform and continuous, and it is in thermo-
dynamical equilibrium. In such a homogeneous and isotropic medium, the
velocity of sound is constant with reference to space and time. The speed of
sound can be described with the equation

c = (331.4 + 0.6T)
m

s
, (2.1)

where T is the temperature of the air in degrees Celsius. The linear approx-
imation of sound propagation can be described by the first-order equations
defining the acceleration of the fluid produced by pressure gradient

ρ0
∂uuu

∂t
= −grad p, (2.2)

and the compression produced by the velocity gradient

κ
∂p

∂t
= −div vvv, (2.3)

where p is the sound pressure, vvv the vector particle velocity, t the time, ρ0

the gas density of air, c the speed of sound and κ the adiabatic exponent
defined by

κ = ρ0c
2. (2.4)

Combining these two equations by eliminating the particle velocity uuu, a dif-
ferential equation describing the propagation of sound waves in any lossless
fluid is achieved:

c2 ∇2p =
∂2p

∂2t
, (2.5)

where

c2 = κ
p0

ρ0

. (2.6)

CHAPTER 2. BACKGROUND 5

The operator ∇2 is given as

∇2p =
∂2p

∂2x2
, (2.7)

∇2p =
∂2p

∂2x2
+

∂2p

∂2y2
, (2.8)

∇2p =
∂2p

∂2x2
+

∂2p

∂2y2
+

∂2p

∂2z2
, (2.9)

in 1, 2 and 3-dimensional cartesian coordinates.

2.1.2 Reflection and Scattering

Room acoustics is by definition related to structures that reflect sound en-
ergy. How sound propagates inside an enclosed space is determined by the
geometry and the material properties of the boundaries, namely the surfaces,
floor, ceiling, and walls. Room boundaries reflect a fraction and transmit a
fraction of the sound energy that hits the surface. The combination of the
fractions of sound energy is what usually is considered the acoustics of a
room.

When a plane wave hits an unbounded and uniform surface, part of the
sound energy is reflected in a form which is differing in phase and amplitude.
The amplitude and phase change is expressed by the complex reflection factor

R = |R| eiω, (2.10)

that is a property of the surface. The magnitude and phase angle are fre-
quency and incident angle dependent. The intensity of the reflected wave
is smaller by a factor |R|2 and the energy lost during reflection is therefore
1− |R|2. This quantity is known as the absorption coefficient of the surface:

α = 1− |R|2. (2.11)

The reflection factor completely describes the properties of a locally reacting
surface in a room acoustical point of view for all angles of incidence and for all
frequencies. The reflection characteristics of a surface can be described based
on the normal particle velocity, which is generated by the sound pressure on
the surface. This is called the surface impedance and is given as

Z =
p

vn
, (2.12)

CHAPTER 2. BACKGROUND 6

where vn denotes the velocity component normal to the surface. Like the re-
flection factor, the surface impedance is generally complex. A frequently
used variant of the formulation is called the specific acoustic impedance,
which is defined by the ratio of the surface impedance and the character-
istic impedance of air:

ξ =
Z

ρ0c
. (2.13)

The reciprocal of the surface impedance is called the wall admittance, and
the reciprocal of ξ is the specific wall admittance.

Reflection at normal and oblique incidence

The reflection coefficient of a surface can be formulated from the equations
describing a progressive plane wave. In the case that the normal of the surface
is parallel to the direction that the incident wave is traveling, the following
formulation can be derived.

A plane wave traveling in a cartesian x-y coordinate system in the di-
rection of the x-axis can be defined with two equations, which describe the
pressure component

p(x, t) = p0e
i(ωt−kx), (2.14)

and the velocity component

v(x, t) =
p0

ρ0c
ei(ωt−kx), (2.15)

of the wave. The variable k = ω/c denotes the wavenumber. When such a
wave intersects a boundary at normal incidence, part of the wave is reflected
and part of it is transmitted into the boundary medium. The reflected part of
the wave changes the direction. The amplitude of the reflected part reduces
due to the boundary absorption, and the phase of the wave changes. Both
changes are fully defined by the reflection coefficient R. As the direction of
the reflected part of the wave is reversed, the sign of the velocity component
is inverted. Now the equations for the reflected wave can be defined as

p(x, t) = Rp0e
i(ωt+kx), (2.16)

v(x, t) = −R p0

ρ0c
ei(ωt+kx). (2.17)

CHAPTER 2. BACKGROUND 7

To solve the values of two components in the boundary plane, one can simply
assign x = 0 and sum the reflected and incident parts of the wave:

p(0, t) = p0(1 +R)ei(ωt+kx), (2.18)

v(0, t) = R(1−R)
p0

ρ0c
ej(ωt+kx). (2.19)

The wall impedance is obtained by dividing p(0, t) by v(0, t):

Z = ρ0c
1 +R

1−R
, (2.20)

and consequently the reflection coefficient can now be expressed with:

R =
Z − ρ0c

Z + ρ0c
. (2.21)

In a more general case, when the angle of incidence of the wave θ varies
between 0◦ and 90◦, the plane wave formula can be expressed with the use
of a coordinate rotation x′ = x cos θ + y sin θ. The solution for the rotated
plane wave is inserted into the pressure and velocity components (2.16) and
(2.17). Proceeding in similar manner as in the derivation of the reflection at
normal incidence as presented in [20, p. 43], a formulation for reflection at
oblique incidence is attained and has the form

Rθ =
ξw cos θ − 1

ξw cos θ + 1
, (2.22)

where θ is the angle of incidence, and ξw is the specific acoustics impedance
of the surface.

2.2 Acoustic simulation methods

Acoustic simulation of spaces has become a widely used tool in a variety of
applications. Primary use of modeling algorithms has been in room acoustic
prediction and auralization. All the methods are based on approximating
the wave equation with given boundary conditions on the surfaces of the
geometry.

Different methods of acoustic modeling have different computational re-
quirements and characteristics. The size, shape and properties of the room

CHAPTER 2. BACKGROUND 8

dictate which method is possible to use. Usually modeling methods are di-
vided into two main categories: geometric and wave-based methods. In this
section, an review of different methods is given.

2.2.1 Geometric Methods

The first main category is usually referred to as geometric methods. In ge-
ometric methods the propagation of sound is represented as rays describing
the path of the traveling sound energy. The path that the sound propa-
gates through is calculated using knowledge of the geometric structure of the
enclosure.

Specular reflections from the surfaces of the room can be estimated with
the use of the image source method [1]. When surfaces have diffuse charac-
teristics, they can be simulated by assigning a certain degree of randomness
to the ray path, or by prescribing the directional reflection characteristics of
the surfaces. In these cases the response of room can be estimated with ray
tracing or radiance transfer.

Image Source

The concept of the image source method is based on the principle that each
reflection from the boundaries of an enclosure can be represented as a source
radiating in free space. This is achieved by calculating the positions of such
sources from the geometry of the room by mirroring the physical source
according to the orientation of each reflecting surface. The image source
method can be described as sound field decomposition where the sound field
is represented as spherical waves in superposition.

The image source method results in an exact solution to the wave equa-
tion in a rectangular room with rigid boundaries [1]. In the case of arbitrary
geometries, the basic form of the method estimates efficiently only the spec-
ular reflections [4]. To take into account the wave phenomena of sound, the
image source method can be extended by estimating edge diffraction with
separate image sources [34].

A major drawback of the image source method is computational cost.
The total number of image sources which are calculated is ni = s(s − 1)n−1

where s is the number of surfaces and n is the chosen limit of reflection order.
Several other methods of searching the specular reflection paths have been
proposed to reduce the computational cost such as beam tracing [12].

CHAPTER 2. BACKGROUND 9

Ray Tracing

As stated previously, the drawbacks of the image source method are the ex-
ponential growth of number of image sources and that the method cannot
estimate diffuse reflections. In order to model diffuse reflections with geo-
metric methods, statistical boundary properties are assigned. In such case a
Monte Carlo method must be utilized. One of the most-used of such meth-
ods in acoustics is ray tracing [19]. In ray tracing a large number of rays is
emitted from a source position and the path which each ray travels between
the surfaces of the simulated geometry is traced. Each boundary reflection
is saved into the computer’s memory. After each ray has either traveled up
to a predefined reflection order or the ray has hit the receiver volume, the
impulse response of the room is constructed from the generated ray path
information.

The advantage of ray tracing is that the late part of the room response
which is stochastic in nature can be estimated in a feasible way. The downside
of the method is that possible paths contributing to the early reflections
might not be traced at all because the method launches a discrete number
of rays with a given angular distribution. The method is found to be able
to estimate acoustic parameters with useable accuracy, and it is used in
commercial software jointly with the image source method.

Radiosity Methods

Radiosity methods are closely related to ray tracing. In radiosity methods the
surfaces of the model are divided into elements. Every element is considered
as a potential emitter and reflector of radiosity. Between each element pair
a form factor is calculated which defines the fraction of radiosity which is
carried between the elements. The characteristics of the emitter are usually
defined by the scattering coefficient of the surface.[26]

A general form of such methods, or to be exact, a generalization of all
geometric methods, the acoustic radiance transfer function (ART) was in-
troduced by Siltanen [43]. In ART the energy exchange of each surface is
defined with bidirectional reflectance transfer function (BRDF). BRDF maps
each incoming angle of incidence into a distinct reflection angle and ampli-
tude. The method has high memory requirements due to the high number
of energy exchanges between the elements, but it is capable of estimating
the late part of the impulse response efficiently with the complex diffusing
properties o.

Another method that is similar to radiosity methods is the prediction
of sound propagation with the diffusion equation [33]. In this method, the

CHAPTER 2. BACKGROUND 10

propagation of sound is presented as a statistical measure describing the
probability that a particle is localized in a certain position with a certain
velocity. The goal is to prescribe the progress of the sound field statistically.
The method can be derived from the ART method [25] which, as was noted
previously, is proposed as a general theory for geometric acoustics.

2.2.2 Wave-based Methods

The second main category of acoustic simulation methods is wave-based
methods. In wave-based methods, the propagation of sound is described
with different forms of the wave equation. All wave-based methods need a
discrete representation of the geometry. The geometry is either discretized
into volume or surface elements. Element methods are commonly used to
solve the wave equation in the frequency domain. Time domain solvers are
used for specific forms of the wave equation. Such methods are computation-
ally expensive, but can be formulated in data parallel manner.

Element methods

Element methods are commonly divided into the finite element method (FEM)
and the boundary element method (BEM). The functional difference between
these two methods is that in FEM, the propagation is estimated with vol-
umetric elements and in BEM the propagation is estimated with the use of
surface elements.

In FEM, the geometry is represented with a volumetric grid of elements
which can be either uniform or non-uniform. The sound field in each volume
is represented with an analytical shape function which describes the behavior
of the material. In the case of air, the calculation involves forcing the pressure
to be continuous between the elements and force the sound field inside the
element to fulfill the wave equation [49].

In BEM, the surfaces of the geometry are subdivided into elements and
the contribution of particle velocity and the sound pressure on each surface
element describes the sound field inside or outside the given geometry. The
method is a numerical solver of the Kirchhoff-Helmholtz equation [49]. The
main benefit in such technique is that the sound field can be described in
continuous medium without discretization.

Time-domain solvers

Instead of solving the sound field with integral equations solely in the spatial
domain, it is also possible to simulate the propagation of sound in the time

CHAPTER 2. BACKGROUND 11

domain. In such methods, the wave equation is first solved in general manner
with the use of a suitable discretization. One of the most used method is
the FDTD method, which is the method used in this work. A review of the
FDTD is presented in the next chapter.

Another formulation of discretized wave propagation used in room acous-
tics and sound synthesis is through traveling wave solution. Such formulation
is used in digital waveguides [44], also referred to as digital waveguide meshes
(DWMs) [50] in multiple dimensions. The DWM is a mesh of bidirectional
delay units which are connected with scattering conjunctions. DWMs and
finite-difference schemes have high degree of functional equivalence. The fun-
damental difference between the two methods is that finite-difference meth-
ods process signals and DWMs the wave decompositions of signals.

A different approach to solve the sound field in the time domain is using
discrete cosine transform in the spatial domain. On such method as described
by Ranghuvanshi et al.[35], the volume is divided into rectangular decom-
positions which allows to describe the sound field with cosine terms. This
formulation leads to more efficient algorithms because the need for over-
sampling is significantly smaller when the sound field is prescribed in the
frequency domain. The downside of the method is that the handling of the
interfaces between the different rectangular domains is a fairly complex task
and reduces the efficiency of the method. Additionally, with a lower spatial
sampling rate the volumetric representation of the geometry is less accurate.

Chapter 3

The Finite-Difference Time-Domain
method

Finite-difference methods have been popular among researchers for several
decades. The method is used in several fields of science to numerically solve
partial differential equations of different types. The origins of the method
date back to 1928 when Courant, Friedrichs and Lewy used difference schemes
to prove the existence of solutions of partial difference equations [7]. The
finite-difference time-domain method is a finite-difference method where the
partial difference equation of interest is discretized in the time domain. The
method was introduced to engineering by Yee [55] to solve electro magnetic
field problems. The scheme introduced is known as the staggered or inter-
leaved grid where the magnetic and electric fields are solved separately in
an interleaved manner. Yee’s staggered grid approach was adapted for room
acoustics by Botteldooren [5] where the field components used were pressure
and particle velocity. A finite-difference scheme using pressure-only grids
instead of interleaved grids in the form of DWG was introduced by Savioja
[37]. Bilbao formulated a group of schemes using a pressure-only grids [2]
which were further refined by Kowalczyk [18] to a family of compact explicit
FDTD schemes with a general formulation for the boundary conditions. The
pressure-only formulation has then been shown to have functional equivalence
to Yee’s staggered grid approach [6]. The digital waveguide approach [44],
which can be categorized as a finite-difference method, has been researched
extensively in the field of sound synthesis.

There are several issues regarding the computational efficiency of different
schemes which include the density of the grid points, the spectral response,
the possibility to decompose a given scheme into more computationally effi-
cient form, the operation count, the maximum value of the time step and the
simplicity of the implementation of the boundary conditions [3, p. 303]. The

12

CHAPTER 3. THE FDTD METHOD 13

question, which scheme is useful and which is not for the problem at hand is
an important aspect in finite-difference methods.

Finite difference schemes can be categorized according to several aspects.
If the scheme uses only nodes which are directly adjacent to it, it is stated as
a compact scheme. The number and direction of neighboring nodes which are
used in the update equation is referred to as stencil. The update equations
can be divided into explicit and implicit. In explicit schemes, the new value
of the current element is derived from the previous values of the elements
adjacent to it, or depending on the scheme, from the previous values of several
non-adjacent elements. In implicit schemes, the equation used for the update
of a given element require solving a system of linear equation at the new time
step [18].

In this chapter the basic principles of the FDTD method for room acous-
tics are introduced and more detailed description of the family of compact,
explicit schemes is given. The schemes considered in this thesis are limited
to compact explicit schemes due to their applicability to parallel implemen-
tation. The compact explicit schemes are solved incrementally in time and
their memory requirements for a single update are relatively modest due to
the use of only the directly adjacent nodes.

3.1 Compact explicit FDTD schemes for room

acoustics

In this section the general form of compact explicit FDTD schemes is re-
viewed following the formulation of Kowalczyk [18]. This general formulation
of the compact, explicit schemes captures several existing schemes introduced
in other studies such as standard rectilinear [47], the 3-D interpolated waveg-
uide mesh [38] and the octahedral scheme [3, p. 317] with the use of several
free parameters in the formulation.

For room acoustic simulation the partial differential equation of interest is
the linear wave equation (2.5). A standard second order accurate difference
scheme for the wave equation is given as [47, p. 158]:

∂2p

∂2t
=
pn+1
i,j,k − 2pni,j,k + pn−1

i,j,k

∆t2
+O(∆t2), (3.1)

∂2p

∂2x
=
pni+1,j,k − 2pni,j,k + pni−1,j,k

∆x2
+O(∆x2), (3.2)

∂2p

∂2y
=
pni,j+1,k − 2pni,j,k + pni,j−1,k

∆y2
+O(∆y2), (3.3)

CHAPTER 3. THE FDTD METHOD 14

∂2p

∂2z
=
pni,j,k+1 − 2pni,j,k + pni,j,k−1

∆z2
+O(∆z2), (3.4)

where ∆t is the chosen time step and ∆x denotes the spacing of the grid. The
subscrips i, j and k indicate the location indices in 3-D cartesian coordinates.
The family of compact explicit schemes can be described with the use of
centered finite difference operators,

δ2
t p
n
i,j,k ≡ pn+1

i,j,k − 2pni,j,k + pn−1
i,j,k , (3.5)

δ2
xp

n
i,j,k ≡ pni+1,j,k − 2pni,j,k + pni−1,j,k, (3.6)

δ2
yp
n
i,j,k ≡ pni,j+1,k − 2pni,j,k + pni,j−1,k, (3.7)

δ2
zp
n
i,j,k ≡ pni,j,k+1 − 2pni,j,k + pni,j,k−1, (3.8)

in 2-D,
δ2
t p
n
i,j,k = λ2

[
(δ2
x + δ2

y) + b(δ2
xδ

2
y)
]
pni,j, (3.9)

and in 3-D,

δ2
t p
n
i,j,k = λ2

[
(δ2
x + δ2

y + δ2
z)

+ a(δ2
xδ

2
y + δ2

yδ
2
z + δ2

xδ
2
z)

+ bδ2
xδ

2
yδ

2
z] pni,j,k,

(3.10)

with two free parameters a and b. λ denotes the Courant number, which
defines the relationship between the spacing of the grid and the time dis-
cretization defined by the sampling frequency, and is given as

λ =
c∆t

∆x
, (3.11)

where c is the speed of sound. The value of the Courant number has a range
of values for stable time-stepping for each scheme, which are derived in [18]
and not included here. By substituting the center difference operators into
equations (3.9) and (3.10) the update equations for the explicit schemes are
achieved in the form that they can be used in computational simulation. Up-
date equations are given in 2-D by

pn+1
i,j,k = d1(pni+1,j, + pni−1,j, + pni,j+1 + pi,j−1,)

+ d2(pni+1,j+1 + pni+1,j−1 + pni−1,j+1 + pni−1,j−1)

+ d3p
n
i,j − pn−1

i,j ,

(3.12)

CHAPTER 3. THE FDTD METHOD 15

and in 3-D,

pn+1
i,j,k = d1 (pni+1,j,k + pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+ d2 (pni+1,j+1,k + pni+1,j−1,k + pni+1,j,k+1 + pni+1,j,k−1

+ pni,j+1,k+1 + pni,j+1,k−1 + pni,j−1,k+1 + pni−1,j,k−1)

+ d3 (pni+1,j+1,k+1 + pni+1,j−1,k+1 + pni+1,j+1,k−1 + pni+1,j−1,k−1

+ pni−1,j+1,k+1 + pni−1,j−1,k+1 + pni−1,j+11,k−1 + pni−1,j−1,k−1)

+ d4p
n
i,j,k − pn−1

i,j,k .

(3.13)

The free parameters in equations (3.12) and (3.13) determine which of the
scheme the equation reduces to. In the case of the standard rectilinear (SRL),
in 2-D the parameters d1, d2, d3 take values 1

2
, 0 and 2(1− 2λ), respectively.

In 3-D, d1, d2, d3, and d4 take values 1
3
, 0, 0, and 2(1−3λ), respectively. The

update equations with these substitutions are

pn+1
i,j = λ2(pni+1,j + pni−1,j + pni,j+1 + pni,j−1)

+ 2(1− 2λ)pni,j − pn−1
i,j ,

(3.14)

and

pn+1
i,j,k = λ2(pni+1,j,k + pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+ 2(1− 3λ)pni,j,k − pn−1
i,j,k .

(3.15)

The update equations for interpolated wideband scheme (IWB) and several
other schemes are achieved by substitutions. The parameters for different
FDTD schemes are presented in [18, p. 72] and [18, p. 90]. The fundamental
difference between different schemes is the number of adjacent nodes used in
the update, namely the stencil of the scheme. The stencils used in SRL and
IWB update are presented in Figure 3.1.

3.2 Boundary Conditions

In simulation of room acoustics, the boundaries are typically assumed to be
locally reacting. By this it is meant that no waves propagate in the boundary
itself. For a complete physical model the transmission of sound along the
surfaces should be taken into account, but in this work it is ignored due to
computational complexity and cost. In this section, a method of describing

CHAPTER 3. THE FDTD METHOD 16

Figure 3.1: Stencils representing the nodes used in the update equation of a)
SRL scheme and b) IWB scheme.

boundaries in the SRL FDTD scheme is reviewed as presented in [18]. For
the sake of simplicity, the derivation of a 2-D wall and corner boundary are
given. The same principle is used to formulate boundary conditions in 3-D.

In the case of 2-D SRL schemes, for a boundary node that has a wall
on the right side, a single grid point is lying outside the modeled space.
These points outside the geometry are referred to as ghost points. The ghost
points of a 2-D SRL scheme are presented in Figure 3.2. The discrete bound-
ary condition is combined with the update equation to eliminate the ghost
points and solve the pressure value at the boundary node. The boundaries
of rectilinear FDTD scheme can be derived by approximating the first-order
derivatives of the continuous boundary conditions with centered operations.
The continuous boundary conditions in 2-D are given

∂p

∂t
= −c ξ ∂p

∂x
,

∂p

∂t
= −c ξ ∂p

∂y
, (3.16)

where c is the speed of sound and ξ the specific acoustic impedance. The
centered difference operators for the first order derivatives of the boundary
condition are given

∂p

∂t
=
pn+1
i,j − pn−1

i,j

2∆t
+O(∆t2), (3.17)

∂p

∂x
=
pni+1,j − pni−1,j

2∆x
+O(∆x2), (3.18)

∂p

∂y
=
pni,j+1 − pni,j−1

2∆y
+O(∆y2). (3.19)

CHAPTER 3. THE FDTD METHOD 17

Figure 3.2: Ghost nodes in the case of 2-D boundaries. Each ghost node is
substituted with a boundary condition in the update equation.

The equation for a point lying outside a wall on the side of the positive x-
axis of the space can be now expressed with the difference operator and the
specific acoustic impedance in the direction of x-axis:

pni+1,j = pni−1,j +
1

λξx
(pn−1
i,j − pn+1

i,j), (3.20)

where λ = c∆t
∆x

. Now by eliminating the ghost point from the update equation
(3.14) an update equation for the boundary node is formulated as

pn+1
i,j =

[
2(1− 2λ2) + λ2(pni,j+1 + pni,j−1)

+2λ2pni−1,j + (
λ

ξ
− 1)pn−1

i,j

]
/
λ

ξ
.

(3.21)

In the case of a corner node, both boundary conditions for the x- and y-
dimension must be met simultaneously, so both of the ghost points lying out-
side the space normal to x- and y-axes must be eliminated with the boundary
conditions in their respective directions. The equation for the point outside

CHAPTER 3. THE FDTD METHOD 18

the space in the direction of the x-axis is given in (3.20), and in a similar
manner the equation for the point lying outside the space in the direction of
the y-axis is

pni,j+1 = pni,j−1 +
1

λξy
(pn−1
i,j − pn+1

i,j), (3.22)

where ξy is the specific acoustic impedance of the boundary normal to y-axis.
The update equation for the corner node is derived from the 2-D update
equation (3.14) with substituted boundary conditiond, and is given by

pn+1
i,j =

[
2(1− 2λ2)pni,j + 2λ2(pni−1,j + pni,j−1)

+(
λ

ξx
+
λ

ξy
− 1)pn−1

i,j

]
/(1 +

λ

ξx
+
λ

ξy
).

(3.23)

Inner corners do not have ghost points to eliminate, so the node can be up-
dated with the 2-D update equation (3.14). The specific acoustic impedance
at the boundary can be expressed with the reflection coefficient data by re-
arranging the equation (2.21)

ξw =
1 +R

1−R
. (3.24)

3.2.1 Boundary definition with forward difference op-
erator

One formulation of the update equation, which is specifically useful for par-
allelization, uses a different method to derive the boundary condition. The
method that was introduced by Webb and Bilbao [52] presumably defines
the discretized boundary condition with a forward difference instead of cen-
tered difference as in equation (3.18). The referred paper does not show the
derivation of the boundary condition, but the resulting update equation is
similar to update equation presented here. The forward difference operation
is given by

∂p

∂x
=
pni+1 − pni

∆x
+O(∆x2). (3.25)

Using the centered difference formulation (3.17) of the partial derivative in
time domain and the forward difference formulation in the spatial domain,
the continuous boundary condition (3.16) can be expressed with

CHAPTER 3. THE FDTD METHOD 19

Figure 3.3: Ghost nodes in the case of 3-D boundaries. Each ghost node is
substituted with a boundary condition in the update equation. It is notable
that inner corners do not have boundary conditions introduced in the update
equation in the SRL scheme.

pn+1
i,j − pn−1

i,j

2∆t
= −c ξ

pni+1,j − pni,j
∆x

. (3.26)

The ghost point pni+1,j takes the form

pni+1,j = pni,j +
1

2λξ
(pn−1
i,j − pn+1

i,j). (3.27)

By substituting the ghost node into the 2-D SRL update equation (3.14), the

CHAPTER 3. THE FDTD METHOD 20

following update equation for a wall boundary in 2-D is achieved:

pn+1
i,j =

1

1 + λβ
[(2− 3λ2)pni,j + (λβ − 1)pn−1

i,j

+ λ2(pni−1,j, + pni,j−1 + pni,j+1)],

(3.28)

where β = (1
2ξ

) and ξ is the specific acoustic impedance of the boundary. It

can be noticed from the boundary condition (3.27) that the value which is
introduced to the equation by the boundary condition is the current pres-
sure node pni,j which leads to the fact that no additional direction dependent
memory fetches must be made in the computation.

To include this position information in the equation, a variable K is
introduced. Variable K defines how many ghost nodes are present in the
current node. K is formulated as dimensions× 2−number of ghost nodes.
For example, a wall node in 2-D is evaluated as: K = 2 × 2 − 1 = 3, and
a corner node in 3-D K = 2 × 3 − 3 = 3. To ignore the ghost nodes from
the update equation, the pressure values outside the geometry are assigned
to zero during each update. By deriving the update equations for different
node positions a general solution for node update can be presented in 2-D as

pn+1
i,j =

1

1 + λβ2d

[(2−Kλ2)pni,j + (λβ2d − 1)pn−1
i,j

+ λ2(pni+1,j + pni−1,j + pni,j−1 + pni,j+1)],

(3.29)

where β2d = (4−K
2ξ

) and in 3-D

pn+1
i,j =

1

1 + λβ3d

[(2−Kλ2)pni,j,k + (λβ3d − 1)pn−1
i,j,k

+ λ2(pni−1,j,k + pni,j−1,k + pni,j+1,k + pni,j,k−1 + pni,j,k+1)],

(3.30)

where β3d = (6−K
2ξ

) and ξ is the specific acoustic impedance of the boundary
node.

3.3 Dispersion Error

The phenomenon of the waves of different frequencies traveling with different
speeds is called dispersion [47, p. 103]. In the air, the speed of sound is
constant for all frequencies and in all propagation directions. When the
acoustic system is discretized, the velocity of the traveling wave of a given
frequency called phase speed differs from the theoretical phase velocity. It is

CHAPTER 3. THE FDTD METHOD 21

common for all FDTD schemes that the numerical phase velocity approaches
the theoretical phase velocity at low frequencies, but the wave speed at high
frequencies is lower than the theoretical one. The error is direction dependent
and varies between different schemes. The dispersion errors of SRL and IWB
schemes in 2-D domain are presented as a function of direction and frequency
in Figure 3.4.

It can be noticed that the wave speed error in SRL scheme is the highest
in the axial direction whereas in IWB scheme the error is the highest in the
diagonal direction. The band limit up to which SRL scheme can estimate the
propagation of sound with a dispersion error lower than 2 % is approximately
0.1fs whereas with the IWB the band limit is approximately 0.22fs where fs
denotes the spatial sampling frequency.

Figure 3.4: Relative phase velocity as a function of frequency from [18, p.
82]. The radius of the polar plot indicates the frequency and the angle
the propagation direction. Each dotted circle indicates a frequency f =
(1

8
, 1

4
, 3

8
, 1

2
)fs from the innermost circle to the outermost respectively. The

variable fs denotes the spatial sampling frequency.

3.4 Source modeling

In acoustic simulation the source energy is usually embedded within the
FDTD grid. The most common way to excite the mesh is to use one or
several pointwise sources. The types of single pointwise source found in
literature can be divided into three categories: hard, soft and transparent,
where transparent can be considered a special case of a soft source.

CHAPTER 3. THE FDTD METHOD 22

A hard source is set up by simply assigning a value of a desired time
function fn to a specific element in the mesh. The index n denotes the
current time step. The function can be written as fn = f(n∆t), where ∆t is
the length of the time step. The problem in a such source definition is that
the direct assignment of the element value overrides the update equation,
and such a source will therefore effectively scatter any incident field. If the
location of the source and the number of time-steps is such that no incident
fields will reach the source position during the simulation, a hard source can
be efficiently used. A hard source is assigned to the mesh with equation:

pnsrc = fn, (3.31)

where fn is the source function, and pnsrc the pressure node where the source
is positioned. A soft source is set up by adding the value of the desired
time function to the pressure value of the source position in the mesh. This
method does implement a source which does not introduce scattering, but
the problem which arises is that the actual excitation does not match the
time function fn [39]. A soft source is assigned to the mesh with equation:

pnsrc = pnmesh + fn. (3.32)

To overcome the limitation of the scattering of the hard source and the
deviation from the source function of soft source a transparent source was
introduced by Schneider [39]. A transparent source is defined as a source
which radiates the same field as a hard source but does not act as a scatterer.
The simplest way to implement a transparent source is to record the impulse
response of the mesh with a single simulation using a hard source. This
is achieved by using an impulse-like source function where f 1 = 1, fn =
0 when n 6= 1 and recording the response at the source node position. A
transparent source sample is created by convolving the source function with
the impulse response of the mesh. The source update of a transparent source
is formulated with the impulse response and the time function of the source:

pn+1
src = pn+1

mesh + fn+1 −
n∑

m=0

hn−m+1fm. (3.33)

The first source update is done in with the soft source update and therefore
the step index n is incremented in the equation.

CHAPTER 3. THE FDTD METHOD 23

3.5 Medium Viscosity

The propagation of sound in the air introduces frequency dependent viscous
losses to the signal transmitted. The effect has been compensated in FDTD
simulation with different approaches.

Webb and Bilbao suggest the usage of a form of the wave equation which
takes it into account. The equation is given as

∂2p

∂2t2
= c2∇2p+ cα∇2∂p

∂t
, (3.34)

where α is derived from the linearized Navier Stokes equations [52]. The
downside of such formulation is that in order to calculate the Laplacian of
the time derivative, the knowledge of the past and current pressure value in
each neighboring node must be present at the same time, which leads to a
need for additional data storage.

Another approach is to run the simulation assuming lossless medium and
post process the simulated response with a specific air absorption filter. The
method used by Southern et al. [46] uses an overlap-add convolution to apply
time varying filtering to the simulated response. This method is extremely
efficient when calculating room impulse responses, but in case of continuous
simulation such method is not applicable.

Chapter 4

CUDA architecture

General purpose graphics processing unit (GPGPU) programming has be-
come popular in a variety of fields in science. Compute unified device archi-
tecture (CUDA) is one of the first device architectures designed for GPGPU
programming. The system developed as a part of this thesis is implemented
usign GPGPU programming with CUDA. Therefore an introduction to par-
allel programming and the device architecture is necessary for the reader in
order to understand the motivation for this work and the considerations con-
cerning the implementation. The organization of the chapter is as follows:
first, the progression from sequential central process unit (CPU) computing
to large scale GPU computing is discussed; then, the general architecture of
CUDA capable computing devices is specified; and last, the programming
interfaces of CUDA are described in more detail.

4.1 From CPU to GPU

For the past several decades microprocessor manufacturers have introduced
performance improvements and cost reduction on single CPU microproces-
sors. This drive had led most developers to rely on the advances in hardware
to increase the speed of applications, as Kirk states: “..The same software
simply runs faster as each new generation of processors is introduced”[17, p.
1]. As the physical limits such as heat-dissipation and energy consumption
have become evident to single microprocessors, practically all microprocessor
manufacturers have switched to models with several processor cores on each
chip. This development has led to the change in programming practices since
traditional sequential programming does not introduce performance improve-
ments. Application software that uses parallel programming is able to take
advantage of each new processor generation. This new incentive for parallel

24

CHAPTER 4. CUDA ARCHITECTURE 25

programming has been referred to as the concurrency revolution [48].
Microprocessor design has led to two distinguished trajectories. The mul-

ticore trajectory is putting effort to maximize the speed of sequential pro-
grams with several cores. The many-core trajectory focuses on the execution
throughput of a parallel program, which is achieved with a large number of
much smaller cores compared to the multicore trajectory. A group of devices
which is currently following the multi-core design trajectory are GPUs. The
fast progress of the computational performance of GPUs has been influenced
by the demand from the video game industry [17]. GPUs are utilizing hun-
dreds of small cores in highly parallel manner that allows them to achieve a
large throughput of floating-point operation. What should be noted is that
they do not perform well in tasks which can not be formulated in parallel
manner. Therefore it is practical to use both CPUs and GPUs utilizing the
GPU in the computationally intense parts. One of the programming plat-
forms allowing such a joint execution of applications is CUDA, which was
released in 2007 by Nvidia. With CUDA and other GPGPU programming
platforms introduced later, it is possible to significantly increase the per-
formance of applications that have distinct numerically intensive and data
parallel parts, such as the explicit FDTD update.

4.2 Device

CUDA capable devices have gone through several device generations. Device
generations are prescribed with a specifier called compute capability, which
consists of major and minor revision numbers. The major revision number
ranges from 1 to 3 and defines the core architecture of the device, 1 being
the oldest architecture called Tesla, 2 the following called Fermi and 3 the
most recent, Kepler. The minor version number corresponds to incremen-
tal improvements on the core architecture. Each of the device generations
has similar functionalities and they can all be programmed with the same
application programming interfaces (APIs). The differences between device
generations are mainly the number of floating point operations that the de-
vice can perform per time unit, the size of the memory available on the device,
memory bandwidth which the device can achieve between the registers of the
processors, and the device memory and the caching mechanisms.

In this section, the general architecture of a CUDA devices is reviewed
in the following order: first, the processor architecture and threading mech-
anism is reviewed; second, the types of memory are introduced; and third,
the architecture which is used in the development of the system is reviewed
in more detail.

CHAPTER 4. CUDA ARCHITECTURE 26

4.2.1 Streaming multiprocessors and thread hierarchy

Typical CUDA-capable GPU is build around a scalable array of highly threaded
streaming multiprocessors (SMs). Streaming multiprocessors contain a num-
ber of streaming processors (SPs) that share control logic and instruction
cache. A single SM is designed to execute hundreds of threads concur-
rently. The architecture of a single SP is called single instruction multiple
data (SIMD). This means that the SPs, which a single SM controls, run the
same instruction, but each SP uses different data. The GPGPU device as a
whole is not classified as SIMD machine because it consists of multiple SMs
which can all run different instructions on SPs they control. Therefore the
device itself is classified as single instruction multiple thread (SIMT) [10].
The number of cores in each SM varies between device generations.

A CUDA program which is launched from the host CPU is called a kernel.
A kernel defines the code which is to be executed by all threads assigned for
the task. A kernel invokes a grid of threads which is further divided into
blocks. Threads of a single thread block are executed on one SM and the
blocks are scheduled between the SMs. As a block terminates, a new block
will be launched on the specific SM.

Figure 4.1: CUDA grid organization. Kernels are launched from the host
code. Each kernel invokes a grid of threads which is further subdivided into
blocks. Each block contains threads which are organized either into 1, 2, or
3 dimensions.

Each thread of a grid executing the same kernel function has unique
thread coordinates. Threads are organized into a two-level hierarchy using

CHAPTER 4. CUDA ARCHITECTURE 27

coordinates for blocks (blockIdx) and threads (threadIdx). Both blockIdx
and threadIdx can be either one, two, or three dimensional. Organization of
threads into multiple dimensions helps assigning threads to multidimensional
data. The thread hierarchy is presented in Figure 4.1. The number of threads
per block is limited because all threads of a block share the limited memory
of the SM executing it.

SMs create, manage, schedule and execute threads in groups of 32 parallel
threads. These groups are called warps. Each thread block is partitioned into
warps and each warp is scheduled by a warp scheduler. Threads of a single
warp execute one common instruction at a time. SM which has more than
one warp scheduler [28] can issue and execute as many warps as there are
schedulers concurrently. In the case of conditional branching within a warp,
each branch is serially executed. When each branch is completed, the threads
converge back to the same execution path. As a warp is the smallest partition
of threads, it is beneficial to use a block size which is a multiple of warp size.
If the block size is not a multiple of the warp size, the reminder will be
padded with idle threads.

Table 4.1: Differences between computing capabilities of CUDA devices.
Compute Capability 1.x 2.0 2.1 3.0 3.5

Number of cores per SM 8 32 48 192 192
Maximum dimensionality of

grid of thread blocks
2 3 3 3 3

Maximum number of
threads per block

512 1024 1024 1024 1024

Number of warp schedulers 1 2 2 4 4
Maximum number of

blocks per grid dimension
216 − 1 216 − 1 216 − 1 216 − 1 216 − 1

From the table 4.1 it can be observed that the most significant difference
between device generation is the number of cores per SM. The number of cores
translates to the throughput of floating point operations. The number of SMs
per device varies between different devices of the same device generation.

4.2.2 Memory

CUDA devices have several different types of memories. Memory types can be
roughly divided into three categories: off-chip memory which is the largest of
the memory areas, on-chip memories which reside in the SMs include registers

CHAPTER 4. CUDA ARCHITECTURE 28

and shared memories and cache memories which are utilized depending on
the declaration of variables used in the code.

Off-chip memory, is a graphics double data rate (GDDR) memory chip
that ranges in size from 128 MB to 6 GB depending on the device. This
memory area is accessible from both the host and device code and is used
to store most of the data used in the processing due to its capacity. The
off-chip memory can be declared as global, or constant in the program code.
Different declaration of the memory affects the caching mechanisms used for
the allocated variables.

Figure 4.2: CUDA Memory organization. Global and constant memories
reside in the off-chip GDDR memory. Shared memory and registers are
located in the SMs. The thread unit processed by each part of the device is
noted in the figure. Figure adopted from [17].

On-chip memories are memories that reside in the SMs of the device.
On-chip memory includes shared memory and registers. Shared memory
can be accessed by all threads of a single block. Registers of a SM are
assigned for each thread separately. The bandwidths of these memories are
fast compared to the off-chip memory. Volkov [51] states, that in most cases
the access to per thread registers is much faster than to shared memory.
The memory organization of a typical CUDA device is presented in Figure

CHAPTER 4. CUDA ARCHITECTURE 29

4.2. The relationship between the device and the thread organization is
presented with the notion of the thread unit which is processed by each part
of the device.

Cache memories are small memory units that are used to store recently
loaded and stored variables to increase the speed of consecutive memory
accesses. Cache memories which appear in all device generations are texture
and constant caches. The texture cache is utilized when a kernel is fetching
data from a texture object that is allocated in the global memory. The
memory area which is allocated for texture objects is commonly referred
to as texture memory. The constant cache is utilized for variables which
are allocated in global memory and declared as constant. Additional L1
and L2 cache memories were introduced with the Fermi architecture [28].
These two memories form a two-level cache hierarchy. L2 is a large cache
which is accessible by all SMs. L1 caches are located in each SM. A specific
read-only cache was introduced with the Kepler architecture [31] that uses
the caching mechanism of the texture cache without the need of declaring a
specific texture object.

4.2.3 Kepler Architecture

The device used in the development and benchamarking of the system was
Nvidia Geforce GTX 690. The device has a Kepler architecture and its the
computing capability is 3.0. The different components of the Kepler archi-
tecture are illustrated in Figure 4.3. The device contains two independent
GPUs which can be used concurrently. The specification for the device is
presented in table 4.2.

The Kepler architecture has several technical differences in comparison
to older device generations. The number of CUDA cores per SM is 192,
which translates to the number of floating point operations the device can
perform per second. The number of warp schedulers is increased to four
which allows the device to assign four warps for each multiprocessor to be
executed concurrently [31]. As mentioned in the previous section, the Kepler
architecture has a two level cache hierarchy, which consists of 1,536 KB L2
cache and configurable L1 cache which ranges from 16 to 48 KB depending
on the configuration. In addition, a 48 KB read-only cache is introduced
into the architecture. The variables with which the read-only cache is used
is controlled in the code with a const __restrict keyword.

The data transfer from the host to the off-chip memory is bounded by
the PCI express interface. The memory clock rate and the bus width define
the memory bandwidth from the off-chip memory to the SMs. The speed
of the PCI express version 3.0 [29] is 15.75 GB/s. The theoretical memory

CHAPTER 4. CUDA ARCHITECTURE 30

Figure 4.3: Overview of the Keppler architecture.

Table 4.2: Device spesification for the Nvidia Geforce GTX 690.
Memory

GB
Core

clock (MHz)
Memory

clock (MHz)
Memory

bandwidth (bit)
SM

count
Registers

/ SM
2 x 2048 915 6008 256 2x8 216

bandwidth from the off-chip memory to the SMs can be determined with the
following formula:

bandwidth(bytes/s) = memory clock(Hz) × bus width (bytes) × 2. (4.1)

In the case of the GTX 690, by substituting the values from table 4.2 the
equation (4.1) a theoretical memory bandwidth of 384 GB/s per device can
be determined. The multiplication of 2 is added because of the double data
rate of the memory. The number of cores of each device can be again derived
from values introduced in tables 4.1 and 4.2 which leads to a total number of
1536 cores per device. The theoretical maximum of floating point operations
per second (FLOPS) that the device can achieve can be calculated with the

CHAPTER 4. CUDA ARCHITECTURE 31

formula:

peak(FLOPS) = core clock(Hz) × number of cores×2 (operations), (4.2)

which in case of the GTX 690 leads to 2,810 GFLOPS per device. It is
notable that the peak FLOPS of the device is approximately 7 times larger
than the memory bandwidth of the off-chip memory and 178 times larger than
the memory bandwidth of the PCI express interface. Therefore in order to
achieve optimal perfromance, a minimization of memory transfers between
the host and the device should be conducted. The method to minimize the
memory traffic between the off-chip memory and the SMs is a question which
should be assessed separately for each device generation.

4.3 Programming

As it has been reviewed in the past sections, CUDA devices have distinct de-
vice architecture and threading model. The programming of CUDA capable
device can be done with several different APIs. The level of control that can
be achieved on the device depends much on the chosen API. In this section,
the programming model of CUDA is reviewed as shown in Figure 4.4. First
a brief description of the instruction set architecture (ISA) is given. Then
the programming interfaces of different levels are reviewed.

4.3.1 PTX instruction set architecture

Instruction set architecture (ISA) is the part of hardware which is visible to
the programmer or compiler writer. ISA serves as a boundary between the
software and the hardware. In general, ISA defines the native data types,
instructions, registers, addressing modes, memory architecture, and inter-
ruption and exception handling. In the case of CUDA there are several
different devices which have different capabilities. In such cases, the compi-
lation would have to be targeted to the machine in use in order to produce
working hardware instructions. This can be avoided with the use of parallel
thread execution virtual machine (PTX) [32]. When a CUDA program is
compiled it is targeted to PTX instructions instead of hardware instructions.
The PTX instructions are translated to native device code in run time. This
method is referred to as just-in-time compilation. It increases the application
load time, but allows the code to benefit from new compiler improvements,
updated device drivers and it makes possible for the code to work on devices
which did not exist when the application was compiled [30].

CHAPTER 4. CUDA ARCHITECTURE 32

Figure 4.4: Components of a CUDA architecture: 1: the parallel computing
engines inside the GPU, namely the hardware, 2. OS kernel-level support
for hardware initialization and configuration, 3. User-mode driver, which
provides a device-level API for developers and 4. Parallel Thread Execution
(PTX) instruction set architecture (ISA) which is translated for each device
during runtime [27].

4.3.2 Programming interfaces

The programming interfaces of CUDA are divided into two categories: Device-
level interfaces and language integration interfaces. The fundamental differ-
ence between these two is that with the device-level interfaces the actual
configuration of the GPU device is made by the developer and with the
language integration interface the configuration is handled by the CUDA
automatically. Which API to use depends solely on how much control the
developer wishes to have over the GPU and in which language the host ap-
plication is written. First an overview of Device-level interfaces including
DirectX compute, OpenCL and CUDA Driver API is given. Then the lan-
guage integration programming interface is described.

Device-level programming interface

Device-level programming interfaces include DirectX compute, Open CL and
CUDA driver API. DirectX compute is Microsoft’s API for GPGPU program-

CHAPTER 4. CUDA ARCHITECTURE 33

ming for applications using DirectX. DirextX is a graphics programming API
for Windows platform. In DirectX compute programs are written in high-
level shader language (HLSL). A shader is a similar concept as the kernel is
in CUDA, a function which is run with a group of threads in parallel. As
can be seen from Figure 4.4, DirectX does not use the CUDA driver, so it
is solely working on top of the operating system (OS). DirectX compute was
not considered as an option for this work because it is OS specific.

OpenCL (Open Computing Language) is an open standard for cross-
platform parallel programming of GPGPUs. Open CL makes it possible to
use other GPGPUs than the devices of NVIDA. The programs are written in
OpenCL C, which has similar syntax to C. Several performance comparison
of Open CL and CUDA have been conducted [9][13] concluding that CUDA
has slightly better performance for the cost that it can only be utilized with
Nvidias devices.

CUDA driver API is a low-level C programming interface for CUDA ca-
pable devices. Driver API gives the programmer more control over the device
on the cost that the developer must take care of more complex device func-
tionalities such as CUDA contexts, which are analogous to host processes,
and modules which are analogous to dynamically loaded libraries on the host
[30]. Such control might be necessary with a multi-threaded host application
using several device contexts per device. The driver API was not utilized in
this work due to the off-line nature of the solver.

Language integration programming interface

Language integration programming interfaces are namely abstractions of the
device-level API. A CUDA native language integration programming inter-
face is the CUDA Runtime API that is built on top of the CUDA driver API.
The runtime API automatically creates a CUDA context for each device in
the system and this context is shared by all of the host threads of the appli-
cation. The API provides a core set of functionalities to allocate and transfer
memory between the host and the devices, select devices, and run computing
kernels. The runtime API was utilized in this work due to its functional con-
venience. There are other language integration programming interfaces that
interface different programming languages such as Fortran, Python or Java
with CUDA. These APIs were not considered because there was no existing
code which would have needed to be integrated into the system.

Chapter 5

Implementation

The aim of this thesis is to develop an efficient parallel implementation of
a FDTD solver for room acoustics. The method has already been used in
several fields of science, and it has been found applictions for room acoustics
especially with the use parallel processing with GPUs. In this chapter the
developed system is described. Considerations concerning the parallel imple-
mentation of FDTD have been studied in numerous publications, so first an
overview of previous implementations is given. Second, the overall architec-
ture of the developed system is presented following with the description of
several more detailed implementation considerations.

5.1 Previous Work

Several different implementations of parallel room acoustic FDTD solvers
have been suggested. All of the published implementations for the use of
room acoustic simulation are developed using CUDA.

A real-time implementation for low frequency simulation was introduced
by Savioja [36]. Savioja’s solution uses Kowalczyk’s general formulation of
compact explicit schemes and extends the functionality to frequency depen-
dent boundaries. Southern et al. [45] describes an implementation of a 2-D
solver with special attention on the handling of the boundary nodes of the
mesh by dividing the mesh into distinguished tile types.

Webb and Bilbao have suggested a compact explicit scheme which is
particularly suited for parallel computation by using a forward difference
boundary definition [52]. Webb extends the functionality of the previously
suggested solver for multiple GPUs [53] and reports major improvements
on the possible mesh sizes and solver speed. Webb also reviews different
optimization paradigms for CUDA kernels with the most recent device ar-

34

CHAPTER 5. IMPLEMENTATION 35

chitectures [54] Lopez et al. overview several different methods to optimize
FDTD simulation on two different device architectures [21]. Sheaffer reviews
basic programming paradigms concerning the parallelization of FDTD [42]
and recently released an open source FDTD solver for room acoustics [41].

Suggested methods

Two solutions to efficiently process a 3-D volume have been suggested: the
tiling method and the slicing method which are both benchmarked by differ-
ent authors [21][42][54]. In the tiling method, the whole mesh is represented
as a large 2-D tile where the 3-D location of each node is calculated either
with the use of modulo operations when using 2-D kernel grids, or from the
thread indices when using a 3-D grid. The method allows to process the
whole mesh in such a way that each thread operates on one element at a
time. The method is presented in Figure 5.1. The downside of this method
is that the modulo operation is computationally expensive and that memory
reuse with the help of shared memory is not possible. A method of avoiding
modulo operations has been presented by Scheaffer [42] which is reported to
increase the efficiency substantially. The modulo operations are not needed
in the case that the dimensions of the mesh are a multiple of the block size
used in the kernels.

Figure 5.1: The tiled method for processing a 3-D mesh. Each node is
processed by a single thread. Each neighboring node of the node being
updated is fetched from the linear memory independently. No conditional
statements have to be applied.

In the slicing method, each thread does not operate only on one element.
The mesh is divided into slices and each thread goes through all the elements
of single positions in all slices. The slicing method allows efficient memory
reuse since each slice is used in three occasions during the progress of the

CHAPTER 5. IMPLEMENTATION 36

simulation. The downside of the method is that each thread block requires
data from the memory which the thread block adjacent to it is processing.
Therefore conditional statements have to be used to control the memory
loads at the thread block boundary. The method is presented in Figure 5.2.

Figure 5.2: The slicing method for processing a 3-D mesh. Two shared
memory areas with the size of the thread block are allocated. Each thread
loads the node above the current node (z+1) to the register. After the
update the z+1 slice is transferred from the registers to the z slice in the
shared memory, and the z slice from the shared memory is transferred to z-1
slice in the shared memory.

Lopez et al. [21] utilizes the texture memory of CUDA. Texture memory
allows the use of the texture cache that allows efficient caching of memory
which is located spatially in close proximity. It is concluded that the us-
age of the texture memory does not increase performance over the sliced
method. Webb [54] discusses different memory optimization techniques and
their applicability to both Fermi and Kepler architectures. It is concluded
that the two-level cache increases the performance of a kernel using solely
global memory fetches to such level that it is only marginally slower than
the kernel using shared memory. The slicing method used by Webb differs
slightly from the one used in this thesis and it is reported to have better
performance opposed to the method used in this system.

There has been much research done on the parallel execution of FDTD
simulation in room acoustics. Most of the suggested programming paradigms
have been independently benchmarked by several authors. It is important
to note that some of the benchmarks have been done with rigid boundaries
[21] [54] which decrease the amount of memory traffic during the simulation
and hence the performance metrics may not be comparable in all cases.

CHAPTER 5. IMPLEMENTATION 37

5.2 System Architecture

The system can be divided into five distinct sections: data input, voxeliza-
tion, memory partition, FDTD solver and data output. The system includes
visualization and capturing functionalities which use a different execution
path where several conditional statements and functions are done between
every solver step. The flow diagram of the system is presented in Figure 5.3.

Figure 5.3: Overview of the system architecture.

Data input is handled through Matlab with the use of a MEX func-
tion. The input arguments of the MEX function include vertex coordinates,
triangle indices, material parameters, visualization selection, update type se-
lection, source and receiver definitions. Separate functions are used to load
and validate the geometry in Matlab.

Voxelization of the surface model is done with an external library which
is reviewed in section 5.3. The voxelizer outputs a rectangular mesh of nodes
which contains the orientation information and material indices of each ele-
ment.

The voxelized geometry is then inserted into a data structure which han-
dles the allocation and partition of material and position indices, pressure
meshes, source data and simulation parameters across the devices selected
to use.

CHAPTER 5. IMPLEMENTATION 38

The actual FDTD update is done with a launch function which first
assigns pressure values to each source position, then launches the FDTD
update kernel for each device in use, and last, collect pressure values from
the receiver positions. Output data is passed back to the Matlab workspace
through the MEX-function which was used to start the simulation.

5.3 Voxelization

Voxelization of the surface geometry is done with an external GPU voxeliza-
tion library implemented by Karlsson [14]. The implementation is based
on a tile-based parallel solid voxelization algorithm [40]. The base of the
voxelization is a rectangular grid of voxels which size is determined by the
spatial sampling frequency of the simulation. The grid is divided into 4x4
voxel columns in a chosen coordinate plane. Each triangle is assigned to tiles
it overlaps, yielding a work queue of tile/triangle pairs. The tiles are then
processed in parallel with one warp processing each tile and its associated
triangles. Considerations in the performance of the library are reviewed in
more detail by Karlsson [14].

Figure 5.4: Bits of a single boundary node byte with a) forward difference
boundary b) centered difference boundary.

CHAPTER 5. IMPLEMENTATION 39

Four meshes are needed to run a simulation: a position/orientation mesh
that contains the information about whether the node is air, edge, corner
or outside node, a material index mesh that contains the information on
which material from a material list the node has and two pressure meshes
for the current and past pressure values. The voxelization library produces
the position/orientation and material index meshes. Pressure meshes are
allocated during the memory partition, either with single or double precision
data type. Mesh dimensions include additional padding which makes the
dimensions of the mesh multiples of the block size dimensions used in the
voxelizer kernels. A single layer of padding is left at the beginning of each
coordinate plane as suggested by Webb [52] to avoid indexing out of bounds
when the FDTD update kernel reads the neighboring values of nodes located
at the boundary of the geometry.

The position mesh is further processed depending on the FDTD scheme
selected. The format of the position mesh differs depending on the type of
the boundary formulation. If a forward difference boundary is used, only the
number of surrounding solid nodes is needed. If a centered difference bound-
ary is used, the information on which side of the node the solid neighbors
are located is also needed. The position bytes are presented in the Figure
5.4. The reason for two distinct byte types is that for the forward difference
boundary a single type conversion is sufficient to decode the node type in
the update equation instead of decoding the neighbor switches of the center
difference byte.

5.4 FDTD Kernels

Several guidelines are given across literature and publications to optimize
the performance of GPGPU kernels [29] [51]. The most important general
principles that one comes across are:

• Minimize memory traffic between the host and the device

• When transferring memory from global memory to the kernels, ensure
coalescent memory access

• Avoid conditional statements inside warps. Conditional statements
inside a warp lead to branching and sequential execution of the code

• Minimize memory traffic between the off-chip memory of the device
and the shared memory and the registers of the the SMs

CHAPTER 5. IMPLEMENTATION 40

Minimizing memory traffic between the host and the device can be en-
sured by allocating and partitioning all needed memory on the device before
the simulation. The data used in the simulation such as simulation parame-
ters, material information and pressures meshes are allocated and transferred
to the device before the actual simulation steps. The maximum size of the
mesh is limited by the size of the device memory.

The coalescent memory access means that all threads of a half-warp access
off-chip memory at the same time. This is achieved with the selection of
thread block size so that it is a multiple of the warps size, and having a
uniform update kernel without conditional branching.

To avoid conditional statements inside the kernels, a uniform update
equation for the whole mesh is formulated. For the SRL scheme a uniform
update equation can be achieved for both forward difference and center dif-
ference boundaries. With the IWB scheme, such formulation is inefficient to
implement since the boundary conditions for inner corners have numerous
special cases. In the reference kernel such cases are ignored. Formulation of
a position uniform update equation is achieved with the forward difference
operator as presented in section 3.2.1. In a similar manner it is possible to
formulate the update equation for SRL with centered difference boundaries
with the use of bits indicating the dimension where the current node has a
solid neighbor and the sign of the vector indicating on which side of each
dimension the solid neighbor lies.

The methods for minimizing the memory traffic between the SMs and the
off-chip memory are a question which is under investigation in this thesis.
As discussed in section 4.2.2 and 4.2.3, CUDA devices have several different
memory types which can be used to optimize the performance of the kernel.
With older device generations significant speedups could be achieved with
the use of shared memory and texture cache as was reviewed in section 5.1.
As the read-only data cache was introduced with the Kepler architecture, it
is not as evident that complex optimization techniques will work as efficiently
compared with the built-in caching mechanisms.

The performance of two-level cache has been reported improving the com-
putational efficiency significantly, so a comparison to a shared memory im-
plementation is made. The effect of increased memory traffic is evaluated
with an IWB kernel that uses all the 26 adjacent nodes in the update. The
IWB kernel does not include all special cases of node positions, and hence
is not fully functioning with complex geometries. It is included only for the-
oretical performance comparison. A total number of four different kernels
were developed for evaluation:

• SRL update with centered difference boundary

CHAPTER 5. IMPLEMENTATION 41

• IWB update with centered difference boundary

• SRL update with forward difference boundary

• SRL update with forward difference boundary and with the use of
shared memory

All the variables that are not modified during the update equation are
declared with a const __restrict keywords to utilize the read-only cache.
The kernel utilizing the shared memory of the device is implemented with
the slicing method. The other kernels use direct memory fetches from the
off-chip memory.

5.5 Visualization

When investigating the propagation of sound in an enclosed space, an infor-
mative tool for the end user is to be able to visualize the sound field. The
FDTD method is an iterative method where the progress of the field is sim-
ulated in a time-marching loop, so the visualization of the sound field in the
time-domain is inherently simple to implement.

When the FDTD simulation is implemented in platforms such as MAT-
LAB, visualization can be done with built-in functions. In the case of a C /
C++ application, such visualization tools must be implemented with sepa-
rate libraries. A potential choice for rendering graphics is Open GL via GLUT
[16] open source library because Open GL functionality can be coupled with
CUDA using existing library functions. The GLUT library is utilized in the
developed system.

The visualization scheme in the developed system is implemented with
the use of CUDA-GL interoperability in the similar manner described by
Demir et al. [8]. CUDA-GL interoperability allows a mapping of pixel and
vertex buffer objects (PBO, VBO) initialized in the GL context to CUDA
memory. This way it is possible to update PBOs and VBOs without first
transferring the data to host memory. For 2-D visualization each coordinate
plane of the 3-D geometry, x-y, x-z and y-z, is given a separate pixel buffers,
which are updated according to the controls of the visualization and the
pressure values of the mesh. In addition a functionality to capture the data
from a single slice or from the whole mesh was implemented, so that the
whole sound field or a single slice at predefined time steps can be analyzed
after the simulation.

CHAPTER 5. IMPLEMENTATION 42

5.6 Matlab Integration

The integration of C and C++ functions into Matlab is made possible with
the use of Matlab executables or in short, MEX-files [22]. A MEX file can be
defined in several different ways including source MEX-files, binary MEX-
files, MEX function libraries and MEX-build scripts. Source MEX-file is a C,
C++ or Fortran source file which contains the subroutine definition. Binary
MEX-files are dynamically-linked binary files, which the Matlab loads and
executes. The binary MEX-file is created with MEX-build script from the
source MEX-file. MEX function libraries are C/C++ and Fortran libraries
which can be used inside source MEX-files. An example of such a library is is
MX Matrix library, which can be used with Matlab’s matrix datastructure.

The entry point to external C or C++ code is done in the source MEX-
file. The source MEX-file is essentially acting as a main function of a given
program with the difference that the input argument list of a regular C-
program is replaced with a specific argument list which interfaces variables
from the Matlab workspace to the function.

The source MEX-file can be compiled to a binary MEX-file with a com-
mand "mex" in Matlab. If the source MEX-file contains dependencies to ex-
ternal libraries or object files, the files and library locations are defined with
option arguments typed after the compilation command in similar manner as
with C / C++ compilers. When the compilation is done, the MEX-function
can be called with the source MEX-file name. In this work, the Matlab inte-
gration is made by first compiling the C++ code into object files with Visual
Studio, and then compiling a source MEX-file in Matlab containing the ini-
tialization of the solver with the arguments given from Matlab workspace.

Chapter 6

Evaluation

In this chapter, the functionality of the implemented system is evaluated.
The evaluation is divided into two distinct parts. First, the responses of each
scheme are analyzed in spectral and time domains. Second, the computa-
tional performance of the software is evaluated.

6.1 Analysis of simulated responses

To evaluate the results of a physical model, the most straightforward way is
to compare the results of the simulation with analytical solutions. An exact
analytical solution is either difficult or even impossible to derive in general
form, hence simple test cases are used where the analytical solution is known
and relatively easy to formulate. The test cases cover the most important
parts of sound propagation. First, the spectral analysis of a room response of
a rectangular room is compared with the analytic mode frequencies. Second,
the correctness of the solver is validated by showing that the error in the
estimated sound field reduces at an expected rate as the spatial resolution
of the mesh is increased. Finally, the magnitudes of boundary reflections
at different angles of incidence are compared with the analytic reflection
coefficients values.

6.1.1 Spectral analysis of a simulated room impulse
response

A convenient way to evaluate the simulated room impulse response is to com-
pare the theoretical room modes with the magnitude spectrum of the simu-
lated impulse response. It is possible to solve the theoretical room modes for
a rectangular enclosure with rigid boundaries by solving the eigenfrequencies

43

CHAPTER 6. EVALUATION 44

of the wave equation. The formula for the eigenfrequencies for a rectangular
room with rigid boundaries is given by [20]

knx,ny ,nz =
c

2

[(
nx
Lx

)2

+

(
ny
Ly

)2

+

(
nz
Lz

)2
] 1

2

, (6.1)

where c is the speed of sound, nx, ny and nz indicate the number of nodal
planes in the direction of the subscript and Lx, Ly, and Lz are the dimensions
of the room respectively.

A simulation for each scheme implemented was carried out with a model
of cubic room with an edge dimension of 1 m. A source and a receiver were
positioned at the opposite corners of the room. The reflection coefficient at
the boundaries is set to 1. A hard source was used because the usage of a soft
source introduced instability to the simulation due to high reflection order.
The spatial sampling frequency was chosen so that the node dimensions are
close to a fraction of room dimensions in order to match the mesh as close
as possible to the geometry. Spatial sampling frequency is 59,583 Hz in the
case of SRL schemes and 34,400 Hz with IWB scheme. Speed of sound in
the simulation was set at 344 m

s
. Sampling frequencies corresponds to a node

size of 1 cm. The resulting impulse response was filtered with a DC-blocking
IIR filter with a cut-off frequency at 0.0003× fs.

Figure 6.1: The magnitude spectrum of an impulse response simulated using
the SRL update with center difference boundary formulation.

It can bee seen from Figures 6.1, 6.2 and 6.3 that the peaks in the spec-
trum of the simulated room response show significant correspondence to the
analytic eigenfrequencies. With the forward difference boundary formulation,
the peaks in the spectrum are located in slightly lower frequencies than the

CHAPTER 6. EVALUATION 45

Figure 6.2: The magnitude spectrum of an impulse response simulated using
the SRL update with forward difference boundary formulation.

Figure 6.3: The magnitude spectrum of an impulse response simulated using
the IWB update with center difference boundary formulation.

analytic eigenfrequencies. This might be due to the effect of the boundary
formulation on the domain size. If the dimensions of the room are incre-
mented with one ∆x, the eigenfrequencies match up in a similar accuracy as
in the case of the center difference boundary.

The peaks in both IWB and SRL are slightly tuned up. This is most
probably due to the use of a hard source. The source node acts as a scatterer
at the corner node and hence reduces the domain size. It can be concluded
that these methods can estimate room modes of a cubic geometry with good
accuracy. In the case of complex geometries, a more detailed evaluation
should be carried out, for example against measurement results.

CHAPTER 6. EVALUATION 46

6.1.2 Free field propagation

To validate the free field propagation in the mesh, it can be shown that
the result of the numerical solution approaches the analytical solution at a
given rate as the resolution of the mesh is increased respectively. Namely
this procedure ensures that the implemented scheme is consistent with the
partial differential equation for any smooth function [47, p. 20].

The analytical solution for a simple pressure point source is

p(x, t) =
1

4π||x||
s(t− x/c), (6.2)

where s is the source function. A smooth function which is easily scaled to
different pulse widths which is used in the evaluations is

s(t) =
d

dt
sinα(kmct), (6.3)

where km is the wavenumber, c the speed of sound and α a fixed variable. A
single period of the source function is used.

The procedure consists of running three different simulations in different
mesh densities with a cubic geometry with an edge width of 1 m. Simulation
was run in 3-D with the source located in the center of the room. Simulation
time was chosen so that the wavefront does not reach any of the boundaries of
the geometry and that the source excitation reaches the end of the pulse. The
chosen time instance was 1.4 ms, which corresponds approximately to 48 cm
of waves travel. The value of the fixed variable α was set to 6. Resolution of
the mesh used are 50, 100 and 200 elements per dimension which resulted in
the total mesh sizes of 125,000, 1,000,000 and 8,000,000 elements respectively.
The value of ∆t varies between different resolutions and is dependent on the
Courant number λ of the scheme used.

The solution estimated with the FDTD solver was found to match the
analytical solution with a delay of ∆t assigned to the source signal of the
FDTD simulation. The reason for this is arguable and needs more investiga-
tion. The delay might be due to the order in which the update is done, which
is exciting the mesh with the source function at step n and then updating
the mesh to step n + 1. The analytical solution used in the evaluation is
for simple point source with no radius. Variables for different simulations
are presented in table 6.1. The wavefronts in each case and the difference
between the analytical and simulated wave fields are visualized in Figures
A.1 and A.2.

The analytical solution is evaluated in the element positions of each mesh
with the formula 6.2. A convergence rate is calculated from the absolute value

CHAPTER 6. EVALUATION 47

Table 6.1: Simulation setup for the evaluation of free field propagation.

Scheme Number of Elements λ dx (m) dt (ms) pulse width (time steps)
SRL 125,000 1√

3
0.02 0.0033 35

SRL 1,000,000 1√
3

0.01 0.0017 69

SRL 8,000,000 1√
3

0.005 0.0008 139

IWB 125,000 1 0.02 0.0058 20
IWB 1,000,000 1 0.01 0.0029 40
IWB 8,000,000 1 0.005 0.0015 80

of the maximum error ε of the numerical solution of different mesh densities
with the formula

r = log(
εN
ε2N

)/ log(2), (6.4)

where the subscript 2N indicates the doubling of the resolution. The error
of the scheme is proportional to the squared error of the spatial difference in
equations (3.2), (3.3), and (3.4). Therefore the expected convergence rate is
log((2∆x)2)/∆x2)/ log(2) = 2.

Table 6.2: Convergence rates of the two schemes when the resolution of the
mesh is doubled.

Resolution difference Convergence rate SRL Convergence rate IWB
50 → 100 1.9424 1.9635
100 → 200 2.0261 2.0017

It can be seen from Figures A.1 and A.2 that the error decreases signif-
icantly when the resolution of the simulation is increased. As can be seen
at table 6.2 the implemented solution follows the analytically expected con-
vergence, and therefore it can be concluded that the solver can estimate free
field propagation within the limits of the method.

6.1.3 Reflectance magnitude analysis

An important part of room acoustic simulation is the boundary conditions.
To evaluate the reflection characteristics at the boundary of the model, it
is possible to approach the problem in similar manner as when measuring
boundary conditions in a real-world situation. One such method is described

CHAPTER 6. EVALUATION 48

Figure 6.4: Layout of the simulation setup for measuring the reflection mag-
nitude of a FDTD boundary condition.

by Mommertz [23]. In the method the first reflection from the surface is
isolated and compared with an ”ideal” reflection from a rigid boundary. An
ideal reflection can be generated with a source propagating in free space at
a distance which corresponds to the distance of the reflected signal, namely
with the image source principle [1]. This approach has been previously used
with finite-difference methods by Kelloniemi [15] and Haapaniemi [11].

The procedure consists of running three separate simulations for each
reflection coefficient. The simulation is run with one receiver per angle of
incidence and one source. The configuration is presented in Figure 6.4. the
first simulation is run with the receivers located at close distance of the
reflecting surface. The second simulation is run with the same source/receiver
setup as with the first one but in a free field to attain the isolated direct sound.
The third simulation is run in the free field so that the source is located in
similar manner as an image source would be located behind the reflecting
surface in the first simulation. In this way, the response of an ideal reflection
signal is achieved.

The response from the second simulation is subtracted from the first
which results in an isolated reflection from the surface. The energy of the
surface reflection is then compared with the energy of the ideal reflection. A
reflection coefficient estimate is achieved by taking the square root of this
fraction. The results of the reflection coefficient estimates are presented in
Figures 6.5, 6.6 and 6.7. The analytic reflection coefficient for each angle of
incidence is calculated from equation (2.22).

CHAPTER 6. EVALUATION 49

Figure 6.5: Reflection coefficient estimates for each angle of incidence cal-
culated from the magnitude of the reflected impulse. The estimates are
presented as red dots and analytic reflection coefficients as a solid blue line.
The simulation is run using the SRL scheme with the centered difference
boundary

Figure 6.7: Reflection coefficient estimates for each angle of incidence cal-
culated from the magnitude of the reflected impulse. The estimates are
presented as red dots and analytic reflection coefficients as a solid blue line.
The simulation is run using the SRL scheme with the forward difference
boundary.

CHAPTER 6. EVALUATION 50

Figure 6.6: Reflection coefficient estimates for each angle of incidence cal-
culated from the magnitude of the reflected impulse. The estimates are
presented as red dots and analytic reflection coefficients as a solid blue line.
The simulation is run using the IWB scheme with the centered difference
boundary

The reflectance magnitude follows the analytical solution of the reflection
fairly well when the center difference boundary is utilized. In the case of the
forward difference boundary, the magnitude response values do not follow the
analytical solution in similar accuracy. It can be observed from the Figure 6.7
that the reflection characteristics of the forward difference boundary intro-
duces more reflected energy at the low values of the reflection coefficient. In
each of the cases there is a severe step around the reflection coefficient values
around zero. This is due to the fact that a simple admittance boundary is
in fact frequency dependent as presented by Kowalczyk [18] and therefore to
achieve a perfectly absorbing boundary, a simple admittance formulation is
not sufficient. It can be concluded that the implemented boundary conditions
follow the analytical characteristics of a boundary reflection with accuracy
that can be expected from the method and therefore the implementation is
valid.

CHAPTER 6. EVALUATION 51

6.2 Computational Performance

In this section, the performance of the different schemes is evaluated. Four
different kernels are evaluated which are, as reviewed in section 5.4, SRL
update with a centered difference boundary and read-only cache (SRL cen-
tered), SRL update with a forward difference boundary and read-only cache
(SRL forward), SRL update with a forward difference boundary with shared
memory (SRL shared) and IWB with a centered difference boundary and
read-only cache (IWB). The implementation of the IWB kernel can not han-
dle geometries with inner corners and is included here as a reference. All
of the kernels are implemented with frequency independent boundary condi-
tions with the value of the admitance fetched for each update. Evaluation
is performed with four different mesh densities of a rectangular enclosure.
Results of the performance test are presented in Figure 6.8.

Figure 6.8: Throughput of different schemes in a) single precision and b)
double precision. Different symbols stand for different block sizes. • refers
to a block size of [32, 4, 1], � to [32, 8,1] and ◦ to [64, 8, 1]. Different colors
refer to different schemes as presented in the legend. The number of devices
used is two with the two larger mesh sizes.

Notable for the results is that the performance difference between the
forward difference boundary and the center difference boundary is significant
even with the same memory load. SRL centered uses more operations when
decoding the boundary update. This indicates that the kernels are not mem-

CHAPTER 6. EVALUATION 52

ory bound but operation bound. The reference implementation of IWB kernel
has significantly lower throughput which is due to the increased number of
nodes which have to be fetched from the global memory for each update, and
the higher number of arithmetic operations needed for the update.

The throughput with double precision is significantly lower in comparison
with the throughput with single precision. This is due to lower throughput
of arithmetic operations. The number of add, multiply and multiply-add
operations in one clock cycle with single precision with the compute capa-
bility of 3.0 is 192 whereas with double precision it is only 8. The increased
memory traffic due to the doubled size of each pressure value increases the
load on the memory bus. It can be observed that the kernels tend to become
less sensitive to the operation count when using double precision, which can
be seen from the effect of similar throughputs of the SRL centered and SRL
forward.

Table 6.3: Results of reported implemetations of FDTD solvers using CUDA.
The notion (double) indicates if the benchmark is carried out in double pre-
cision.

Stencil
size

GPU
Computing
capability

Memory
Number

of
cores

Reported
performance
Mvoxels/s

Savioja SRL [36] 6 Quatro FX 5800 1.3 4 GB 240 1310
Savioja IWB [36] 26 Quatro FX 5800 1.3 4 GB 240 753
Webb [52] 6 Tesla C1060 1.3 4 GB 240 818
Webb [52] 6 Tesla C2050 2.0 3 GB 448 2044
Webb [54] (double) 6 Tesla K20 3.5 5 GB 2490 4698
Lopez et al. [21] 6 GTX 260 1.3 896 MB 192 2808
Lopez et al. [21] 6 GTX 480 2.0 1.5 GB 448 7279
Sheaffer[42] 6 Tesla T10 1.3 4 GB 240 1064
The developed system,

single device (float)
6 GTX 690 3.0 2 GB 1536 5500

The developed system,
two devices (float)

6 GTX 690 3.0 4 GB 3072 9700

The developed system,
single device (double)

6 GTX 690 3.0 2 GB 1536 2200

The developed system,
two devices (double)

6 GTX 690 3.0 4 GB 3072 3400

The implementation of the sliced method using shared memory does not
introduce similar performance gains as presented by Lopez et al. [21]. This
might be due to the reported sensitivity of the sliced method to different
boundary formulations [42].

In comparison to previously suggested methods, the developed system
performs well. The reported performance of each implementation is trans-

CHAPTER 6. EVALUATION 53

formed into the units / second format, which in this case is millions of voxels
the implementation is capable of processing in second. The throughput in
single precision with a single device is the second highest. The throughput
of the kernel developed by Lopez et al. [21] is the highest, which can be
dues to the use of fixed admittance value that reduces the memory traffic.
The throughput with double precision is not as large as in [54], which would
indicate that several optimizations could be carried out to increase the per-
formance. It can be concluded that the performance of the developed system
is comparable to the most recent publications.

Chapter 7

Conclusions

The aim of this thesis was to develop an efficient FDTD solver for the use of
room acoustics simulation. The main design principles of the system were to
make the concurrent use of multiple GPU devices possible, interface the sys-
tem through Matlab to allow an efficient usage of the solver through scripting
and maintain an approachable code base for later development and bench-
marking of kernels.

The implemented system was evaluated against the analytical solutions of
different aspects of room acoustics. The system was proven to estimate modal
frequencies in a simple box geometry, estimate the reflection characteristics
of a simple admittance boundary, and simulate the free field propagation of
sound with accuracy expected of the method. The reflection characteristics
of different boundary formulation deviate slightly. The computationally most
efficient boundary formulation does introduce higher reflection energy at low
reflection coefficient values.

The computational performance of the system is similar in compari-
son with other published systems. The further optimization of the kernels
could introduce better performance. The performance in double precision is
severely lower than with single precision which was expected. The results
indicate that the double precision kernels become memory bound opposed to
single precision where the operation count affects the performance.

7.1 Future Work

As new GPU device generations are introduced, many of the problems con-
cerning the computational cost of FDTD in room acoustics can be overcome
with increased memory bandwidth and processing power. What can not yet
be said is whether the responses achieved with purely oversampled mesh are

54

CHAPTER 7. CONCLUSIONS 55

perceptually sufficient when used in collaboration with rendering techniques.
Several parts of the current system should be further developed in the

light of current research. The implementation of frequency-dependent bound-
ary conditions could be carried out and investigated further. A stable version
of the IWB scheme with attention given to the code optimization could result
in an efficient alternative for purely oversampled SRL scheme. Comparison
against spectral methods such as ARD should be made.

Validation of simulation results against measurements should be carried
out both numerically and perceptually to gain more insight on what the cur-
rent version of the system can explain. The integration of different simulation
algorithms, such as beam tracing, and tools for measuring room impulse re-
sponses in the system, would result in a powerful toolbox for gathering data
and evaluating the aspects of different methods and guide the way to more
accurate and useful acoustic simulation.

Bibliography

[1] Allen, J. B., and Berkley, D. A. Image method for efficiently
simulating small-room acoustics. The Journal of the Acoustical Society
of America 65 (1979), 943.

[2] Bilbao, S. Wave and scattering methods for the numerical integration
of partial differential equations. PhD thesis, Stanford University, 2001.

[3] Bilbao, S. Wave and scattering methods for numerical simulation.
Wiley, 2004.

[4] Borish, J. Extension of the image model to arbitrary polyhedra. The
Journal of the Acoustical Society of America 75 (1984), 1827.

[5] Botteldooren, D. Finite-difference time-domain simulation of low-
frequency room acoustic problems. The Journal of the Acoustical Society
of America 98 (1995), 3302.

[6] Botts, J., and Savioja, L. Integrating finite difference schemes for
scalar and vector wave equations. In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing (2013).

[7] Courant, R., Friedrichs, K., and Lewy, H. On the partial differ-
ence equations of mathematical physics. IBM Journal of Research and
Development 11, 2 (1967), 215–234.

[8] Demir, V., and Elsherbeni, A. CUDA-OpenGL interoperability
to visualize electromagnetic fields calculated by FDTD. Journal of the
Applied Computational Electromagnetics Society 27, 2 (2012).

[9] Fang, J., Varbanescu, A. L., and Sips, H. A comprehensive per-
formance comparison of CUDA and OpenCL. In Proceedings of the
International Conference on Parallel Processing (2011), IEEE, pp. 216–
225.

56

BIBLIOGRAPHY 57

[10] Farber, R. CUDA Application Design and Developement. Elsevier
Inc., 2011.

[11] Haapaniemi, A. Simulation of acoustic wall reflections using the finite-
difference time-domain method. Master’s thesis, Aalto University, Fin-
land, 2012.

[12] Heckbert, P. S., and Hanrahan, P. Beam tracing polygonal ob-
jects. ACM SIGGRAPH Computer Graphics 18, 3 (1984), 119–127.

[13] Karimi, K., Dickson, N. G., and Hamze, F. A performance com-
parison of CUDA and OpenCL. arXiv preprint arXiv:1005.2581 (2010).

[14] Karlsson, H. Solid voxelization algorithm for room acoustics. Master’s
thesis, Aalto University, Finland, 2013.

[15] Kelloniemi, A. Room Acoustic Modeling With The Digital Waveguide
Mesh - Boundary Structures and Approximation Methods. PhD thesis,
Aalto University, Finland, 2008.

[16] Kilgard, M. J. The OpenGL utility toolkit (GLUT) programming
interface, 1996.

[17] Kirk, D. B., and Hwu, W. Programming Massively Parallel Proces-
sors. Morgan Kaufmann Publishers, 2010.

[18] Kowalczyk, K. Boundary and medium modelling using compact finite
difference schemes in simulation of room acoustics for audio and archi-
tectural design applications. PhD thesis, School of Electorincs, Electrical
Engineering and Computer Science, Queen’s University Belfast, 2008.

[19] Krokstad, A., Strom, S., and Sørsdal, S. Calculating the acous-
tical room response by the use of a ray tracing technique. Journal of
Sound and Vibration 8, 1 (1968), 118–125.

[20] Kuttruff, H. Room acoustics, 5 ed. Taylor & Francis, 2009.

[21] López, J. J., Carnicero, D., Ferrando, N., and Escolano,
J. Parallelization of the finite-difference time-domain method for room
acoustics modelling based on CUDA. Mathematical and Computer Mod-
elling 57, 7-8 (2011), 1822–1831.

[22] Matlab. Introducing MEX-files, 2013. Online, accessed
May, 2013, http://www.mathworks.se/help/matlab/matlab_external/

introducing-mex-files.html.

http://www.mathworks.se/help/matlab/matlab_external/introducing-mex-files.html
http://www.mathworks.se/help/matlab/matlab_external/introducing-mex-files.html

BIBLIOGRAPHY 58

[23] Mommertz, E. Angle-dependent in-situ measurements of reflection co-
efficients using a subtraction technique. Applied Acoustics 46, 3 (1995),
251–263.

[24] Morse, P., and Ingard, K. Theoretical acoustics. Princeton Uni-
versity Press, 1987.

[25] Navarro, J. M. Discrete-time modelling of diffusion processes for room
acoustics simulation and analysis. PhD thesis, Technical University of
Valencia, 2012.

[26] Nosal, E.-M., Hodgson, M., and Ashdown, I. Improved algo-
rithms and methods for room sound-field prediction by acoustical ra-
diosity in arbitrary polyhedral rooms. The Journal of the Acoustical
Society of America 116 (2004), 970.

[27] NVIDIA corporation. NVIDIA CUDA Architecture, Intro-
duction & Overview, 2009. Online, accessed February, 2013,
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_

Architecture_Overview.pdf.

[28] NVIDIA corporation. NVIDIA’s Next Generation CUDA Com-
puter Architecture: Fermi, 2009. Online, accessed Match, 2013,
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_

Fermi_Compute_Architecture_Whitepaper.pdf.

[29] NVIDIA corporation. CUDA C Best practices guide, 2012.
Online, accessed August, 2013, http://docs.nvidia.com/cuda/

cuda-c-best-practices-guide/index.html.

[30] NVIDIA corporation. CUDA C Programming guide, 2012.
Online, accessed August 2013, http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html.

[31] NVIDIA corporation. NVIDIA’s Next Generation CUDA
Computer Architecture: Kepler GK110, 2012. Online, ac-
cessed August, 2013, http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[32] NVIDIA corporation. Parallel Thread Execution ISA Version 3.1,
2012. Online, accessed March, 2013, http://docs.nvidia.com/cuda/

parallel-thread-execution/index.html.

http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html

BIBLIOGRAPHY 59

[33] Picaut, J., Simon, L., and Polack, J. A mathematical model of
diffuse sound field based on a diffusion equation. Acta Acustica united
with Acustica 83, 4 (1997), 614–621.

[34] Pulkki, V., Lokki, T., and Savioja, L. Implementation and visu-
alization of edge diffraction with image-source method. In Proceedings
of the Audio Engineering Society Convention 112 (2002).

[35] Raghuvanshi, N., Narain, R., and Lin, M. Efficient and accurate
sound propagation using adaptive rectangular decomposition. IEEE
Transactions on Visualization and Computer Graphics 15, 5 (2009),
789–801.

[36] Savioja, L. Real-time 3D finite-difference time-domain simulation of
low-and mid-frequency room acoustics. In Proceedings of International
Conference on Digital Audio Effects (2010), vol. 1, p. 75.

[37] Savioja, L., Backman, J., Järvinen, A., and Takala, T. Waveg-
uide mesh method for low-frequency simulation of room acoustics. In
Proceedings of the International Computer Music Conference (1994),
pp. 463–466.

[38] Savioja, L., and Valimaki, V. Interpolated rectangular 3-D digital
waveguide mesh algorithms with frequency warping. IEEE Transactions
on Speech and Audio Processing 11, 6 (2003), 783–790.

[39] Schneider, J., Wagner, C., and Broschat, S. Implementation of
transparent sources embedded in acoustic finite-difference time-domain
grids. The Journal of the Acoustical Society of America 103 (1998), 136.

[40] Schwarz, M., and Seidel, H.-P. Fast parallel surface and solid
voxelization on GPUs. ACM Transactions on Graphics 29, 6 (2010),
179.

[41] Sheaffer, J. Wavecloud, accelerated acoustics FDTD, march 2013.
Online, accessed May, 2013 http://wavecloud.jonsh.net/.

[42] Sheaffer, J., and Fazenda, B. FDTD/K-DWM simulation of 3D
room acoustics on general purpose graphics hardware using compute uni-
fied device architecture (CUDA). Proceedings of the Institute of Acous-
tics 32, 5 (2010).

[43] Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. The room
acoustic rendering equation. The Journal of the Acoustical Society of
America 122 (2007), 1624.

http://wavecloud.jonsh.net/

BIBLIOGRAPHY 60

[44] Smith III, J. Physical modeling using digital waveguides. Computer
Music Journal (1992), 74–91.

[45] Southern, A., Murphy, D., Campos, G., and Dias, P. Finite
difference room acoustic modelling on a general purpose graphics pro-
cessing unit. In Proceedings of the Audio Engineering Society Convention
128 (2010).

[46] Southern, A., Siltanen, S., Murphy, D., and Savioja, L. Room
impulse response synthesis and validation using a hybrid acoustic model.
IEEE Transactions on Audio, Speech, and Language Processing 21, 9
(2013).

[47] Strikwerda, J. Finite difference schemes and partial differential equa-
tions. Wadsworth & Brooks, 1989.

[48] Sutter, H., and Larus, J. Software and the concurrency revolution.
Queue 3, 7 (2005), 54–62.

[49] Svensson, P., and Kristiansen, U. R. Computational modelling
and simulation of acoutic spaces. In Proceedings of the Audio Engineer-
ing Society Conference: Virtual, Synthetic, and Entertainment Audio
(2002).

[50] Van Duyne, S., and Smith, J. Physical modeling with the 2-D digital
waveguide mesh. In Proceedings of the International Computer Music
Conference (1993), pp. 40–40.

[51] Volkov, V. Better performance at lower occupancy. In Proceedings of
the GPU Technology Conference, GTC (2010), vol. 10.

[52] Webb, C., and Bilbao, S. Computing room acoustics with CUDA-
3D FDTD schemes with boundary losses and viscosity. In Proceedings
of IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (2011), pp. 317–320.

[53] Webb, C., and Gray, A. Large-scale virtual acoustics simulation
at audio rates using three dimensional finite difference time domain and
multiple graphics processing units. In Proceedings of Meetings on Acous-
tics (2013), vol. 19, p. 070092.

[54] Webb, C. J. Computing virtual acoustics using the 3D finite difference
time domain method and Kepler architecture GPUs. In Proceedings of
the Stockholm Musical Acoustics Conference (2013).

BIBLIOGRAPHY 61

[55] Yee, K. Numerical solution of initial boundary value problems in-
volving Maxwell’s equations in isotropic media. IEEE Transactions on
Antennas and Propagation 14, 3 (1966), 302–307.

Appendix A

Analytic and simulated free field
propagation

62

APPENDIX A. FREE FIELD PROPAGATION 63

Figure A.1: Analytic and simulated results using the SRL scheme inside a
cubic space with 1 m edge in different resolutions.

APPENDIX A. FREE FIELD PROPAGATION 64

Figure A.2: Analytic and simulated results using the IWB scheme inside a
cubic space with 1 m edge in different resolutions.

	Cover page
	Contents
	Symbols and abbreviations
	1 Introduction
	1.1 Problem statement
	1.2 Outline of this thesis

	2 Background
	2.1 Fundamentals of Room Acoustics
	2.1.1 Wave Equation
	2.1.2 Reflection and Scattering

	2.2 Acoustic simulation methods
	2.2.1 Geometric Methods
	2.2.2 Wave-based Methods

	3 The Finite-Difference Time-Domain method
	3.1 Compact explicit FDTD schemes for room acoustics
	3.2 Boundary Conditions
	3.2.1 Boundary definition with forward difference operator

	3.3 Dispersion Error
	3.4 Source modeling
	3.5 Medium Viscosity

	4 CUDA architecture
	4.1 From CPU to GPU
	4.2 Device
	4.2.1 Streaming multiprocessors and thread hierarchy
	4.2.2 Memory
	4.2.3 Kepler Architecture

	4.3 Programming
	4.3.1 PTX instruction set architecture
	4.3.2 Programming interfaces

	5 Implementation
	5.1 Previous Work
	5.2 System Architecture
	5.3 Voxelization
	5.4 FDTD Kernels
	5.5 Visualization
	5.6 Matlab Integration

	6 Evaluation
	6.1 Analysis of simulated responses
	6.1.1 Spectral analysis of a simulated room impulse response
	6.1.2 Free field propagation
	6.1.3 Reflectance magnitude analysis

	6.2 Computational Performance

	7 Conclusions
	7.1 Future Work

	A Analytic and simulated free field propagation

