
ISBN 978-952-60-5501-5 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896
ISSN 1799-490X (pdf)

Aalto University
School of Electrical Engineering
Department of Signal Processing and Acoustics
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 2
5
/2

013

Department of Signal Processing and Acoustics

Morfessor 2.0: Python
Implementation and
Extensions for Morfessor
Baseline
Sami Virpioja
Peter Smit
Stig-Arne Grönroos
Mikko Kurimo

TECHNICAL REPORT SCIENCE +
TECHNOLOGY

�������	
��
�
�������
���
�	���

���
����������	��
����
����������

����������	
���
���������������������
��������������������������������������

��������������
�����������
����������
��������
 �!!��"#�����

��$���%��&�����'�
�()��$��*��$�(���(�$�������������
+�����������*������$����(���������,��(�#���(��

�**�$��������
��
����
��������
��
�� �
	����� ���
���	�������������	
��
�
��!�
�
"���
���	�����#	��
���
�	��	 �$������
�%�
�	��&�%���������%�
�	��'�
%��
�(

�
�)��
*���
�%�
��+�	�
��"������
�����,�
-
����.�

���+�	�
��/������
�����,�
�
"���
���	�����%
0	���*
�����
	0��	 �������
��&�%���������1����

����1	0
	��

	0'�
*���
�%�
��+2�	��
��������	��
 �,�
%�
03�
	��4
5	
����
-
����.�

���+"������
�������	��
 �,�

�������	
��
�
�������
���
�	���

���
����������	��
����
����������

6�%��
�(

�
�)�&�*���
�%�
�&�%�
03�
	��4
5	
�����	 �-
����.�

���

#%7/�89:38��3;�3����3��+� �,�
#%%/3<��9883=:8;�
#%%/��9883=:8;�+�

	�� ,�
#%%/��9883=8�>�+� �,�
����'���
	!�
��?/'#%7/'89:38��3;�3����3��

�	
0
��
��@��
A���
	�
������

B
	��	 �

����
����
������
	0����������
�����������
���
�� ���	
	0��
�������1�
����	�$����	
�����%���	���
B
�����
��*
�0
�����+B*9����93����,��	 �
�0
�	���0
����	��	C�:9;9:��	 �������� �������B
	��	 �
�	 �
�����B
		
���$�	�
�����1D�����	���*
�0
�������3���9�+0
�	��	C����9�,��	 �����<�%���*
�0
�����
+0
�	��	C��;::9��	 ���88�=,!������D��

��	�����
����
��
�� ���
	0��������
�
����
�����
��
	�����������
�	
��
�
���%���������%�
�	���E%�
�	��3#�E��
�)���!�

�-����(��
��$���%��&�����'.��/�/�0�1�22333.�4��33356���$����777/��$��/*��

�#�)���
���������������
�������������� !"����#�$������������%%��&'�����
������*��)���#-$�(������
����������	
���
���

�#-$��)����(�����������(���(����� ������� �

%����)��������������� ����
��(����� �����"(�'���(��

�������"�����*��+��������',��(��������������-��.-��/�0�-1.232#4�	56	�78�

4��$,��*�������()�-���'���������������������(���(�������(������3�� '� �����(����� �

�-����(��
����������������������������,�,������(���(������������ �������������������������� �(���

�� ���������������9�������������'������� '� ���,�����������������9����������
�"�����������������
��������',��(���-��� �����!�"
������������
	��5���������+��,�(�������'��������'������(��������������(����� ��������� �(�����(�������
��� '� ������������(��������'(���������(����(� �������������(����������������
�0�����������
���(��,�������9��
�0�����9�+����������������
��������������������(����������������+��'������9�����,'���������(�'������(������������� �(���
������������'(���������!�'���+������������ ��9��(��(�����%��'���������������'�������
���'������� �������9����
�����������������'������������+����'������'�������
�������������������������������������� ���������:��������� �������������%�
�

"�'7��,������������� ������������������� �����'(������'��'���+������������ ������!
�'���+������������ ���������������(������������ �

��0��8������,9� ��0��8�,*9�;<=!;5	!>�!55�7!5�

�������7<;;!?=;>� �����8������,9�7<;;!?=;>� �����8�,*9�7<;;!?;�@�

��(�������*��#-$��)���1�����%�� ��(�������*����������1�����%�� �����	�78�

������8	� #��������66'��
�6*A.����.�;<=!;5	!>�!55�7!5�

Contents

1 Introduction . 2

1.1 Terminology . 3

1.2 Workflow . 4

2 Method . 4

2.1 Model and Cost Function 5

2.2 Training and Decoding Algorithms 8

3 Evaluation . 18

3.1 Boundary Precision and Recall Evaluation 18

3.2 Statistical Significance Testing 19

4 Experiments . 19

4.1 Comparison to Morfessor 1.0 20

4.2 Random Variation in Model Training 23

4.3 Random Split Initialization 23

4.4 Training Speed-up with Skips 23

4.5 Viterbi Training . 24

4.6 On-line Training . 25

4.7 Frequency Dampening 26

4.8 Weight Optimization . 27

4.9 Semi-supervised Training 27

5 Conclusions . 29

1

1 Introduction

Morfessor, originally developed by Creutz and Lagus (2002, 2004, 2005b,a,

2007), is a family of methods for unsupervised learning of morphological

segmentation. It is mostly targeted to languages with complex but concatena-

tive morphology, such as Finnish and Turkish, but is useful for any language

with compound words or non-fusional inflections. It has been widely used

in natural language processing applications such as speech recognition (e.g.

Hirsimäki et al., 2006; Creutz et al., 2007; Mihajlik et al., 2010; Gelas et al.,

2012), speech retrieval (e.g. Arisoy et al., 2009; Turunen and Kurimo, 2011),

and statistical machine translation (e.g. Virpioja et al., 2007; Luong et al., 2010;

Mermer and Akın, 2010; Clifton and Sarkar, 2011; Popović, 2011).

The most popular versions of Morfessor are Morfessor Baseline (Creutz

and Lagus, 2002, 2005b) and Morfessor Categories-MAP (Creutz and Lagus,

2005a, 2007). Both are based on probabilistic generative models that use

sparse priors inspired by the Minimum Description Length (MDL) principle

by Rissanen (1978). One reason for their popularity are the Perl implemen-

tations released under the GNU General Public Licence in 2005. Somewhat

outdated by now, the implementations do not support Unicode data, lack

library interfaces, and naturally do not include any of the more recent devel-

opments of method.

In this report, we present a new implementation of the Morfessor Baseline

method, called Morfessor 2.0. It is meant to replace the old Morfessor 1.0 soft-

ware (Creutz and Lagus, 2005b). The new features of Morfessor 2.0 compared

to Morfessor 1.0 are the following:

• Design

– Python source code compatible with Python 2.7, 3.2+ and PyPy

– Both command line and library interfaces

– Modular, easily extensible code

– Full Unicode support

– Direct support for related segmentation tasks such as chunking

– Possibility to train the model directly from corpus

• Algorithms

2

– Random split initialization for batch training

– On-line training

– Training speed-up with random skips

– Frequency threshold and dampening for words in training data (Virpioja

et al., 2011a)

– Semi-supervised learning from annotated training set (Kohonen et al.,

2010a)

– Possibility to weight training data likelihoods (Kohonen et al., 2010a; Vir-

pioja et al., 2011a)

– Optimization of data likelihood weight based on development set

– Viterbi training

– Forward algorithm and n-best Viterbi decoding

– Integrated boundary precision and recall evaluation and statistical signif-

icance testing with the Wilcoxon signed-rank test

1.1 Terminology

Morfessor 2.0 has been designed to be indifferent to the segmentation task

at hand. Thus, to describe the task, we will use general terms that are not

specific to the problem of morphological segmentation.

First, the smallest pieces of text that the algorithm processes are called

atoms. The input for the learning algorithm is a set of sequences of atoms

called compounds. The task of the algorithm is to find lexical units that are

something between atoms and compounds; they are called constructions. Start-

ing from the longest unit: compounds are sequences of constructions, which

are sequences of atoms. Note that the sequences can contain only one item:

for example, a compound can consist of only a single atom despite its name.

Table 1 shows how these terms relate to three common segmentation tasks:

morphological segmentation, word segmentation, and shallow parsing (chunk-

ing).

The operation of replacing a compound with its constructions is called to-

kenization and the reverse operation is called detokenization. Tokenization is

3

Table 1. Examples of segmentation tasks and terminology.

Task Compounds Constructions Atoms

Morphological segmentation word forms morphs letters

Chinese word segmentation sentences words letters

Chunking / shallow parsing sentences phrases words

performed by a decoding algorithm, that tries to find the most likely construc-

tions for the given compound. Finally, the set of constructions that the algo-

rithm finds from the input data is called simply a lexicon.

1.2 Workflow

As typical for machine learning methods, there are two phases when using

Morfessor. We call them training and decoding. Input for the training phase is

a set of compounds DW and optionally a set of annotated compounds DW→A,

and the output are the model parameters θ. The performance of the method is

evaluated on the decoding (tokenization) results A for a test data set, which

is separate and independent from the training data sets. This workflow is

illustrated by Figure 1. The cost function L(·) and tokenization function φ(·)
are described more thoroughly in the next section.

Training data

compounds DW

(1) Model training:

arg minθ L(DW , DW→A, θ)

Annotated train-

ing data DW→A

(2) Decoding:

A = φ(W; θ)

Test data

compounds

Test data

constructions

W

W, A

θ

W A

Figure 1. The standard workflow for Morfessor: The model is trained by selecting the model
parameters θ that minimize the cost function L(DW , DW→A, θ) with compounds W
in unannotated training data DW , and optionally compounds W and their construc-
tions A in annotated training data DW→A. The parameters of the trained model are
used to tokenize the new compounds in test data.

2 Method

Each version of Morfessor can be characterized by three components: model,

cost function, and training and decoding algorithms. In this section, we de-

scribe the components for the original Morfessor Baseline (Creutz and Lagus,

4

2005b) and introduce the changes implemented in the current version. The

mathematical notation used in this report is based on Kohonen et al. (2010a),

Virpioja et al. (2011a), and Virpioja (2012), and it is slightly different from the

one used in the original Morfessor articles. We will mostly follow the presen-

tation by Virpioja (2012, Section 6.4.1).

All Morfessor models consist of two parts: a lexicon and a grammar. The

lexicon stores the properties of the constructions and the grammar deter-

mines how the constructions can be combined to form compounds. The

grammar of Morfessor Baseline has two basic assumptions. The first is that

a compound consists of one or more constructions. The only upper limit

for the number of constructions in a compound is the number of atoms in

the compound. In morphological segmentation, this is important especially

for languages with many morphemes per word. The second assumption is

that the constructions of a compound occur independently. While this is ev-

idently a false assumption—and probably the most serious drawback of the

method—it enables very efficient training algorithms.

The cost function of Morfessor Baseline is derived from the maximum a pos-

teriori (MAP) estimate for the model. Thus it consists two parts, model like-

lihood and prior. The likelihood is derived directly from the model assump-

tions above. The prior, which determines the probability of the model lexicon,

draws inspiration from the Minimum Description Length (MDL) principle: it

is non-informative and based on efficient compression schemes.

The training algorithm of Morfessor Baseline can be characterized as greedy

and local search. It starts with an initial lexicon, which usually consists of

all the compound forms seen in the training data. Then it selects one com-

pound at a time and tries simultaneously find the optimal segmentation for

the compound and the optimal lexicon given the new segmentation and the

segmentations of all the other known compounds. The training is normally

done as a batch job; however, the new implementation supports also on-line

training.

For decoding—finding the optimal segmentations for new compound forms

without changing the model parameters—Morfessor Baseline applies a vari-

ation of the Viterbi algorithm. The Viterbi algorithm can be used for training,

too, although it has a few problems that hinder its usefulness.

2.1 Model and Cost Function

Formally, the models of the Morfessor family are generative probabilistic

models that predict compounds W and their analyses A given model param-

5

eters θ. That is, they define the joint probability distribution p(A, W | θ). The

analysis a of a compound w is specified by the tokenization function

a = φ(w; θ) (1)

In the case of segmentation, an analysis a is a list of non-overlapping seg-

ments (constructions) of the compounds: a = (m1, . . . , mn). A compound can

then be generated from an analysis by concatenating the segments: φ−1(a) =

m1 . . . mn = w. As the detokenization operation φ−1(·) is simply concatena-

tion, it does not depend on the model parameters.

The cost function of Morfessor Baseline is derived using maximum a poste-

riori estimation. That is, the goal is to find the most likely parameters θ given

the observed training data DW :

θMAP = arg max
θ

p(θ | DW) = arg max
θ

p(θ)p(DW | θ) (2)

Thus we are maximizing the product of the model prior p(θ) and the data

likelihood p(DW | θ). As usual, the cost function to minimize is set as the

minus logarithm of the product:

L(θ, DW) = − log p(θ)− log p(DW | θ). (3)

Data likelihood

Let DW be the training data that includes N compounds and the boundaries

(#w) between them. Assuming that the probabilities of the compounds are

independent, the log-likelihood of the data is

log p(DW | θ) =
N

∑
j=1

log p(W = wj | θ)

=
N

∑
j=1

log ∑
a∈Φ(wj)

p(A = a | θ), (4)

where Φ(w) = {a : φ−1(a) = w}. Instead of calculating the logarithm of

the sum over all possible analyses for each word, a hidden variable Y is in-

troduced. It assigns each compound wj in the training data to single analysis

in Φ(wj). Given the analyses for all words in the data, Y = (y1, . . . , yN),

log p(DW | θ, Y) =
N

∑
j=1

log p(yj | θ) =
N

∑
j=1

log p(mj1, . . . , mj|yj|, #w | θ) (5)

where mji is the ith construction of the jth compound. As Morfessor Baseline

assumes that the constructions occur independently, this simplifies to

log p(DW | θ, Y) =
N

∑
j=1

(
log p(#w | θ) +

|yj|
∑
i=1

log p(mji | θ)
)

. (6)

6

Changes from Morfessor 1.0. Morfessor 1.0 neglects the need to encode the

compound boundaries and calculates the log-likelihood directly as the sum

of construction log-probabilities log p(mji | θ).

Prior

In the general formulation of Morfessor (Creutz and Lagus, 2007), the model

parameters θ are divided into a lexicon L and grammar G. The lexicon in-

cludes the properties of the constructions, while the grammar determines

how the constructions can be combined to form compounds. Morfessor Base-

line has no grammar parameters, so that part of the prior is omitted and

p(θ) = p(L).
The prior in Morfessor assigns higher probabilities to lexicons that store

fewer and shorter constructions. The construction mi is considered to be

stored if p(mi | θ) > 0. The probability of the lexicon of μ constructions is

p(L) = p(μ)× p(properties(m1), . . . , properties(mμ))× μ!. (7)

The factorial term is explained by the fact that there are μ! possible ways to

order a set of μ items and the lexicon is equivalent for different orders of the

same set of constructions. The prior for the lexicon size μ has negligible effect

and is omitted. The properties of the constructions in Equation 7 are further

divided into those related to form and usage.

In Morfessor Baseline, the form of a construction is simply the atoms that it

is composed of. The forms are assumed to be independent. The probability

of the form of the construction mi is based on length distribution p(L) and

categorical distribution p(C) of the sequence of atoms σi:

p(σi) = p(L = |σi|)
|σi |
∏
j=1

p(C = σij) (8)

An implicit exponential length prior is obtained by removing p(L) and using

an end-of-construction marker #c as an additional atom in p(C) (Creutz and

Lagus, 2005b).

The usage properties include only the counts of the constructions τi ∈
{1, . . . ν}, where ν = ∑i τi is the total token count of the constructions. The

counts provide the maximum-likelihood estimates for the probabilities of the

constructions: p(mi | θ) = τi/(N + ν), where N is the number of compound

boundaries in the training data. Given μ and ν, a non-informative prior for

the construction counts is

p(τ1, . . . , τμ | μ, ν) = 1/
(

ν − 1
μ − 1

)
. (9)

7

This gives an equal probability to each possible combination of τis. The prior

for ν is omitted for its negligible effect.

Changes from Morfessor 1.0. Morfessor 2.0 supports only the implicit ex-

ponential length prior for the constructions. In Morfessor 1.0, the distribution

of atoms P(C) was estimated from the training data DW , while in Morfessor

2.0, it is determined based on their occurrences in the current lexicon. This

makes the coding of the lexicon more optimal. However, also the numbers of

occurrences have to be encoded. A non-informative prior equivalent to that

of the construction counts in Equation 9 is applied. Priors for the numbers

of atoms types and tokens is neglected, but a factorial term n! for different

permutations of the n atom types is included (cf. Equation 7).

2.2 Training and Decoding Algorithms

Next, we will provide an overview of the training and decoding algorithms

for Morfessor Baseline. Decoding algorithms are used in tokenization to se-

lect the most likely analysis for the given compound. This task is simpler

than training, because the model parameters are fixed.

There are two types of training schemes that we considered here: In batch

training, a fixed training data set is completely processed in one iteration of

the algorithm. In on-line training, the training data set is not known before-

hand, and new samples of compounds are processed one at a time. Regard-

ing the search algorithms for model parameters, we make a division to local

algorithms, that make small changes based on a single compound at a time,

and global algorithms, that update parameters based on estimates over the

full data set. We also consider the question of hyperparameter selection and

describe the semi-supervised training technique by Kohonen et al. (2010a).

The implemented unsupervised training algorithms for Morfessor Baseline

are listed in Table 2. In addition to the standard local recursive baseline al-

gorithm of Morfessor and the inherent training with global Viterbi segmen-

tation, Morfessor 2.0 implements a local Viterbi training algorithm.

Table 2. Training algorithms for Morfessor Baseline supported by the current implementa-
tions.

Search algorithm Morfessor 1.0 Morfessor 2.0

Recursive baseline batch batch / on-line

Viterbi, global (batch) (batch)

Viterbi, local – batch / on-line

8

Outline for Batch and On-Line Training Schemes

Before going into the specific training algorithms, we shortly show the out-

line of the supported training schemes as pseudocode with functional pro-

gramming style: batch training with a global search algorithm (Algorithm 1),

batch training with a local search algorithm (Algorithm 2), and on-line train-

ing with a local search algorithm (Algorithm 3).1

In batch training, ε is a threshold parameter for the convergence of the

model parameters. In the implementation, it is set as a fraction (default

0.005) of the number of compounds in the training data. The default ini-

tialization (INITMODEL) for the model parameters and compound segmenta-

tions is to set each compound as one construction. With a local search algo-

rithm, the compounds in the training data are processed in a random order

(RANDOMPERMUTATION).

Algorithm 1 Batch training with a global algorithm.
function GLOBALBATCHTRAIN(DW , ε)

θ, Y ← INITMODEL(DW)

Lold ← ∞

Lnew ← L(DW , θ, Y)

while Lnew < Lold − ε do

θ, Y ← GLOBALSEARCH(DW , θ, Y)

Lold ← Lnew

Lnew ← L(DW , θ, Y)

end while

return θ, Y

end function

1While on-line training with a global search algorithm is possible in theory, it is not
very practical: all the data samples seen so far would have to be processed after each
new sample.

9

Algorithm 2 Batch training with a local algorithm.
function LOCALBATCHTRAIN(DW , ε)

θ, Y ← INITMODEL(DW)

Lold ← ∞

Lnew ← L(DW , θ, Y)

while Lnew < Lold − ε do

J ← RANDOMPERMUTATION(1, . . . , N)

for j ∈ J do

θ, Y ← LOCALSEARCH(wj, DW , θ, Y)

end for

Lold ← Lnew

Lnew ← L(DW , θ, Y)

end while

return θ, Y

end function

The on-line training (Algorithm 3) stops when all the training samples in

DW are processed once. The already seen data samples (D), their segmenta-

tions, and the model parameters are by default initialized as empty sets or

sequences.

Algorithm 3 On-line training with a local algorithm.

function ONLINETRAIN(DW , D = (), θ = (), Y = [])

while w ∈ DW do

Append w to D

θ, Y ← LOCALSEARCH(w, D, θ, Y)

end while

return θ, Y

end function

Parameter Initialization

As mentioned above, the default initialization for the model parameters in

Morfessor Baseline is to include all the compounds in the training data to the

lexicon. This can be considered as a conservative initialization, and it may not

be the best option in all cases. In Morfessor 2.0, we have included a possibil-

ity to initialize the lexicon with shorter, randomly chosen constructions. All

compounds in the training data are split so that for each possible break point

(i.e., between every atom of every compound), the compound is split with

given probability psplit, and the resulting constructions are collected to the

lexicon (and Y is initialized correspondingly). If the probability is zero, the

initial constructions will be compounds, and if it is one, they will be atoms.

10

Forward-backward Algorithm

Theoretically appealing global training algorithm for the Morfessor Baseline

model would be the forward-backward algorithm for hidden Markov mod-

els (Baum, 1972). It is a special case of the expectation-maximization (EM)

algorithm. Given the old parameters θ(t−1), a new estimate of the parameters

are obtained by:

θ(t) = arg min
θ

EY
[
L(θ, DW , Y) | DW , θ(t−1)]

= arg min
θ

∑
Y

p(Y | DW , θ(t−1))L(θ, DW , Y), (10)

where Y gives the assignments of the compounds w in the training data to

their possible segmentations, and the MAP cost function is

L(θ, DW , Y) = − log p(θ)− log p(DW |Y, θ). (11)

However, there are two problems in this approach. The first one is that tak-

ing the expectation over all possible assignments Y in Equation 10 is compu-

tationally expensive: The assignments will be to all subsequences of atoms

in the training data. The second, more serious problem is that there is no

closed form solution to the maximization step, because the value of the cost

function changes discontinuously with the number of constructions that are

stored in the lexicon. Testing all possible lexicons—that is, all subsets of all

subsequences of atoms—is clearly infeasible. Another type of a prior distri-

bution might enable forward-backward training, but the current implemen-

tation supports only the MDL-style prior described in Section 2.1.

Global Viterbi Algorithm

A simple approximation to the forward-backward algorithm is to first take

the most probable analysis φbest(w; θ(t−1)) for each compound and then up-

date the parameters to minimize the cost function:

θ(t) = arg min
θ

{
− log p(θ)− log

|DW |
∏
j=1

p
(
φbest(wj; θ(t−1)) | θ

)}
, (12)

where

φbest(w; θ) = arg max
a

p(a |w, θ) = arg max
m1,...,mn :

w=m1...mn

p(m1, . . . , mn, #w | θ). (13)

The best segmentation can be solved by a generalization of the Viterbi al-

gorithm for hidden Markov models (Viterbi, 1967; Forney, 1973). Here, the

observation is the sequence of |w| atoms that form the compound w, and

the hidden states are the constructions of the compound. In contrast to the

11

standard Viterbi, one state (construction) can overlap several observations

(atoms). When selecting the best path to the ith observation, it is possible to

come from any observation between one and i − 1. This increases the time

complexity of the algorithm by a factor of |w|, thus giving complexity of

O(|w|2).
The main problem of the Viterbi algorithm is that it cannot assign a non-

zero probability to any construction that was not stored in the previous lexi-

con. As the construction lexicon can only be reduced, the initialization has a

huge impact on the results.

The Viterbi search for Equation 13 is used also as a tokenization algorithm.

That is, it finds the most likely analyses for new compounds after the model

parameters have been set in the actual training phase.

Viterbi tokenization is supported both in Morfessor 1.0 and 2.0. Given a

reasonably good initial segmentation, it can also be used to optimize the pa-

rameters: The parameters are first estimated from the known segmentation

of the training data. Then the training data is retokenized with the Viterbi

algorithm. These two steps can be repeated until there is no change in the

segmentation result.

In addition to the generalized Viterbi algorithm described above, Morfessor

2.0 includes the equivalent Forward algorithm, which calculates the proba-

bility of a compound given the model, and n-best Viterbi decoding, which

provides the n most likely tokenizations for a compound.

Local Viterbi Algorithm

Alternatively to updating the parameters globally in one step, the Viterbi al-

gorithm can also be applied locally to one compound at a time: First, the

optimal segmentation φbest(w; θ) is searched and then the parameters are up-

dated according to the new segmentation.

The Morfessor 2.0 implementation includes local Viterbi training. To allevi-

ate the problems non-zero probabilities, additive smoothing may be applied

to the probabilities used in Viterbi search. Given the smoothing constant

λ > 0, the probability of a construction mi that is already in the lexicon is

estimated by

pold(mi | θ) =
τi + λ

ν + λμ
. (14)

Moreover, for the probability of a construction m that is not in the lexicon is

set to

pnew(m | θ) ≈ λ

ν + λμ
× p(θ̃)p(DW | θ̃)

p(θ)p(DW | θ)
. (15)

12

Here p(θ̃) and p(DW | θ̃) are approximated prior and likelihood probabilities

in the case that m is added to the lexicon (Virpioja et al., 2010; Kohonen et al.,

2010a; Virpioja et al., 2011a). For example, if the proper noun matthew was

never observed in the training data, it would likely to be oversegmented by

the standard Viterbi (e.g. m+at+the+w). If pnew(matthew | θ) was higher

than the likelihood of the segmentation, the augmented Viterbi would leave

the compound intact.

While the smoothed Viterbi training is, in principle, able to introduce new

constructions, it is still a very conservative algorithm: It does not take into

account that adding a new construction to the lexicon is likely to increase

likelihoods of many compound forms, not just the current compound.

Recursive Baseline Algorithm

The standard training algorithm for Morfessor Baseline—described in detail

also by Creutz and Lagus (2005b)—applies a recursive, greedy search. At

each step, changes that modify only a small part of the parameters are con-

sidered, and the change that returns the minimal cost is selected. Similar to

the Viterbi approach, only one potential analysis yj ∈ Φ(wj) is set to be active

at a time. In consequence, a zero probability will be assigned to a large part

of the potential constructions. As they do not have to be stored in the lexicon,

this type of an algorithm is very memory-efficient.

In the simplest case, the local optimization algorithm considers one com-

pound wj at a time. First, the analysis that minimizes the cost function with

the optimal model parameters is selected:

y(t)
j = arg min

yj∈Yj

{
min

θ
L(θ, Y(t−1), DW)

}
. (16)

Then the parameters are updated:

θ(t) = arg min
θ

{
L(θ, Y(t), DW)

}
. (17)

As neither of the two steps can increase the cost function, the algorithm will

converge to a local optimum.

The training algorithm of Morfessor Baseline exploits the assumption that

the constructions occur independently. As the optimal analysis of a segment

is context-independent, one optimization step can modify segments shared

by multiple compounds and not only one as in Equations 16–17.

In order to efficiently exploit the context-independence, the analyses Y are

stored in a binary directed acyclic graph. The leaf nodes of the graph are

constructions. All other nodes can be considered as “virtual constructions”—

they are not stored by the model parameters, but help keeping track of the

13

un+matched (1, 1) match+boxes (1, 1)

match+ed (1, 2)un (0, 1) box+es (2, 3)

match (5, 8) ed (0, 2) box (7, 10) es (0, 3)

Figure 2. Example of an analysis graph in the recursive training algorithm for words un-

matched, matchboxes, matched, boxes, match, and box.

analyses and counts. The top nodes are always compounds, but also any

other node can be a compound.

Apart from its possible children, each node stores two counts: root count

and total count. The former gives how many times the node occurs as a com-

pound, and the latter gives the total count of references to the node. For any

node, the total count is the sum of its root count and the total counts of its

immediate parents, if any. Thus, for top nodes, the total count equals the root

count. The total count of a leaf node gives how many times the respective

construction in applied in the analyses of the training data (τi). For example,

in the analysis graph shown in Figure 2, match is applied eight times: once in

matchboxes, once in unmatched, once in matched, and five times in match.

In the recursive baseline search, the local optimization step modifies the

nodes of the graph: for the current node, it considers every possible split into

two constructions, as well as no split. If the node is split, the search is applied

recursively to its child nodes. Outline for the RECURSIVESEARCH procedure

is shown in Algorithm 4.

14

Algorithm 4 Recursive baseline algorithm for local search. w[i . . . j] denotes

the atoms of w from the ith to the jth atom. NODE(a, b) creates a new node

with children a and b and LEAFNODE() creates a new leaf node.
function RECURSIVESEARCH(w, D, θ, Y)

Y[w] ← LEAFNODE()

θ ← arg minθ L(DW , θ, Y)

lmin ← L(D, θ, Y) � Best cost so far

imin ← 0 � Best split point so far (0 = no split)

n ← |w|
for i ∈ {1, 2, . . . , n} do � Test possible split points

Y[w] ← NODE(w[1 . . . i], w[(i + 1) . . . n])

θ ← arg minθ L(DW , θ, Y)

if L(D, θ, Y) < lmin then

lmin ← L(D, θ, Y)

imin ← i

end if

end for

if imin = 0 then � No split: add as a leaf node

Y[w] ← LEAFNODE()

θ ← arg minθ L(DW , θ, Y)

else � Split at imin, add the node and recurse

Y[w] ← NODE(w[1 . . . imin], w[(imin + 1) . . . n])

θ ← arg minθ L(DW , θ, Y)

θ, Y ← RECURSIVESEARCH(w[1 . . . imin], DW , θ, Y)

if w[1 . . . imin] �= w[(imin + 1) . . . n] then

θ, Y ← RECURSIVESEARCH(w[(imin + 1) . . . n], DW , θ, Y)

end if

end if

return θ, Y

end function

In practice, the graph (Y) and the parameters (θ) are updated simultane-

ously by using the construction counts in the analysis graph. Constructions

are then added to or removed from the lexicon when their counts increase

above zero or decrease to zero, respectively. Moreover, as direct calculation

of the data likelihood is too slow to be done many times during each call of

RECURSIVESEARCH, the essential part of the log-likelihood value is kept up-

to-date when modifying the graph. Given the counts of the constructions τi,

15

we can write the log-likelihood as a sum over the construction types:

log p(DW | θ, Y) =
μ

∑
i=1

τi log
τi

N + ν
+ N log

N
N + ν

=
μ

∑
i=1

τi(log τi − log(N + ν)) + N(log N − log(N + ν))

=
μ

∑
i=1

τi log τi −
μ

∑
i=1

τi log(N + ν) + N log N − N log(N + ν)

=
μ

∑
i=1

τi log τi + N log N − (N + ν) log(N + ν) (18)

Thus, if we keep track of the first term (“log-token sum”) and ν, and update

them whenever the construction counts are modified, calculation of the log-

likelihood is very efficient.

Training Speed-Up with Skips

Because of its recursive nature, the standard training algorithm tests common

constructions—such as affix morphemes in morphological segmentation—

very frequently. Moreover, in on-line training scheme, the most frequent

compounds are observed repeatedly. Because the analysis of frequently seen

compounds and constructions is unlikely to change very often, a useful trick

is to collect statistics on how often each virtual construction is tested, and

skip the recursive search with a probability that decreases as a function of the

number of tests.

Let s(w) be the number of times w has been tested by RECURSIVESEARCH.

The implemented speed optimization skips w with the probability

p(skip |w) = 1 − 1
max(1, s(w))

. (19)

If w is skipped, the counter s(w) is not increased. Thus, if w has so far been

tested 100 times, it is likely to be tested at least once during the next 100 tries.

To ensure that the skips do not hinder the optimization task by making it

hard to change the analysis of frequent constructions, the counters are reset

periodically. In batch training, it is done after every training epoch. In on-line

training, it is done after processing a fixed amount of compounds (“epoch

interval”; the default value is set to 10 000).

Likelihood Weights and Semi-Supervised Training

Morfessor Baseline tends to undersegment when the model is trained for

morphological segmentation using a large corpus (Creutz and Lagus, 2005b,

2007). Oversegmentation or undersegmentation of the method are easy to

control heuristically by including a weight parameter α > 0 for the likeli-

16

hood in the cost function (Kohonen et al., 2010b; Virpioja et al., 2011a):

L(θ, DW) = − log p(θ)− α log p(DW | θ). (20)

A low α means that most of the cost comes from the prior, and thus small

construction lexicons are favored. A high α means that the cost is dominated

by the likelihood, and thus long constructions are favored.

In semi-supervised Morfessor (Kohonen et al., 2010b), the likelihood of an

annotated data set DW→A is added to the cost function. As the amount of

annotated data is typically much lower than the amount of unannotated data,

its effect on the cost function may be very small compared to the likelihood

of the unannotated data. To control the effect of the annotations, a separate

weight parameter β > 0 can be included for the annotated data likelihood:

L(θ, DW) = − log p(θ)− α log p(DW | θ)− β log p(DW→A | θ). (21)

If separate development data set is available for automatic evaluation of

the model, the likelihoods weights can be optimized to give the best output.

This can be done by brute force using a grid search. However, Morfessor 2.0

implementation includes a simple method for automatically tuning the value

of α during the training.

Let us assume that our evaluation metric provides precision P and recall R

such that P > R indicates undersegmentation and R > P indicates over-

segmentation.2 Between each training epoch, we calculate P and R. Let

d = sign(R − P) if the difference between P and R is larger than a given

threshold or d = 0 otherwise. We set

α → α × (1 + 2/e)d, (22)

where e is the number of epochs passed so far. Thus, α can either be multi-

plied or divided by 3 after the first epoch, by 2 after the second epoch, and so

forth.

As updating the value of α changes the value of the cost function, con-

vergence testing is skipped until two training epochs have passed without

changes to α.

Tuning both α and β between the training epochs is difficult, as they may

interact. For β, we use by default a simple heuristic and set β = α |DW |
|DW→A| , so

that the both data sets will have a similar contribution to the cost function

regardless of their size.

2Apart from simply calculating the precision and recall of the boundary positions,
there are also more indirect evaluation measures that have this property (Virpioja
et al., 2011b).

17

Forced Splitting and Joining

Finally, Morfessor 2.0 includes two options for manually controlling the seg-

mentation behavior. First, the user can list a set of atoms that will always be

split to constructions of their own. In the default setting, intended for mor-

phological segmentation, this list includes the hyphen. Other useful charac-

ters may be apostrophes and colons, depending on the target language. In

chunking, it may be useful to always split at punctuation characters such as

comma and semicolon.

Second, the user can provide a regular expression that prevents segmenta-

tion for any position for which the regular expression matches the two sur-

rounding characters. This option is valid only if the atoms are characters. It

can be used, for example, to force that all non-alphabetic characters are joined

together.

3 Evaluation

A new feature of Morfessor 2.0 is the integration of the standard evalua-

tion and model comparison methods. In particular, we have implemented

micro-average segmentation boundary precision/recall evaluation on a gold-

standard data set for evaluation and the Wilcoxon signed-rank test for statis-

tical significance testing.

3.1 Boundary Precision and Recall Evaluation

For evaluating a segmentation task, we have implemented an algorithm for

calculating the micro-average segmentation boundary precision, recall, and

F-score measures.

The precision and recall metrics are applied to the boundary predictions,

with a gold-standard file for reference. This makes the definitions:

precision =
number of correct boundaries found

total number of boundaries found
(23)

recall =
number of correct boundaries found
total number of correct boundaries

(24)

The F-score is the harmonic mean of the precision and the recall:

F-score = 2 · precision · recall
precision + recall

(25)

The algorithm is equivalent to the “BPR” evaluation described in Virpioja

et al. (2011b) except for how the alternative tokenizations for the same com-

pound are handled. We expect only one tokenization per compound from

18

the evaluated model. In the case of alternative tokenizations for the same

compound in the gold standard, we select the one that provides the highest

precision or recall. An earlier BPR implementation that includes more eval-

uation options is available from http://research.ics.aalto.fi/events/

morphochallenge/.

3.2 Statistical Significance Testing

To test whether the performance of two models differ significantly the Wil-

coxon signed-rank test (Wilcoxon, 1945) has been implemented. This method

is a non-parametric, paired difference test. In order for it to be in line with

modern standards, the ranking method has been updated with the treatment

from Pratt (1959) and a correction of 0.5 towards the mean value is applied.

The p-value is reported for interpretation by the user.

4 Experiments

We present a set of experimental results for Morfessor 2.0 in English and

Finnish morphological segmentation tasks. First, we show how the new im-

plementation compares to the Morfessor Baseline 1.0 implementation. Then

we show how the additional features of the Morfessor 2.0 implementation

change the results compared to the baseline results.

Data Sets

As the data, we use the English and Finnish data sets from Morpho Chal-

lenge 2010 (Kurimo et al., 2010). Table 3 shows the number of samples in the

data sets. Except for the test sets, the data sets are available from http://

research.ics.aalto.fi/events/morphochallenge2010/datasets.shtml.

Table 3. The numbers of word types in the English and Finnish Morpho Challenge 2010 data
sets Kurimo et al. (2010).

English Finnish

Unannoted training set 878 036 2 928 030

Annotated training set 1 000 1 000

Annotated development set 694 835

Test sets 10×1 000 10×1 000

For the experiments with on-line training, we use the unannotated training

corpora from Challenge 2007, available from http://research.ics.aalto.

fi/events/morphochallenge2007/datasets.shtml. We filter out all tokens

19

of the corpus that are not included in the corresponding word list. The cleaned

corpora contain in 62 385 521 tokens for English and 36 440 171 tokens for

Finnish. These smaller data sets are also used in the semi-supervised training

experiments.

Evaluation

As the evaluation metric, we use the micro-average segmentation boundary

F-score as described in Section 3.1. The scores are calculated over the word

types in the evaluation sets.

We report development set results for all the experiments and the test set

results only for those cases where the development set is used for hyperpa-

rameter optimization. The words in the evaluation sets are tokenized with

the Viterbi algorithm after training the model.

4.1 Comparison to Morfessor 1.0

We compare Morfessor 2.0 to Morfessor 1.0 on a number of different aspects.

Besides formal final results in segmentation quality we also evaluate runtime

and convergence speed.

Runtime comparison between Morfessor 1.0 and Morfessor 2.0

On a modern 64-bit Linux system we have tested the runtime speed for a full

unsupervised, type based, training of the Finnish and English datasets. As

there are three compatible Python interpreters available for this platform we

evaluated Morfessor 2.0 with all three.

In Table 4 the runtime in seconds is reported for all configurations. For

the English training with the standard Python interpreters for Morfessor 2.0

the training is 2–8% slower than the Perl 1.0 version. Analysis show that

this small degradation is caused by the full unicode implementation, which

causes a double in memory usage and slower memory access times.3 Looking

to the same results for Finnish confirms this theory, as the bigger Finnish

dataset causes a 104% slowdown.

However, there are also alternative Python interpreters available. Morfes-

sor 2.0 is compatible with the PyPy interpreter4, which includes an integrated

just-in-time compiler that optimizes the code runtime. With PyPy, training is

3Python version 3.3 includes a feature that reduces the memory usage for unicode
strings if only a specific subset is used, e.g. ansi or latin-1 (http://www.python.org/
dev/peps/pep-0393/). This version will most likely speed up the training, but was
not yet available on our platform for testing.
4http://pypy.org

20

Table 4. Training speed comparison Morfessor 1.0 and Morfessor 2.0 with default settings.

Version Interpreter Eng/Time (s) Fin/Time (s)

1.0 Perl 4339 18720

2.0 Python 2.7 4410 35160

2.0 Python 3.2 4680 38160

2.0 Pypy 1.9 810 5700

Table 5. Difference in result between Morfessor 1.0 and Morfessor 2.0 (fs = forced splitting of
hyphens, nfs = no forced splits).

Run Epochs Time (s) Cost (nats) Pre. (%) Rec. (%) F-s. (%)

English

1.0 6 4339 20861267 0.89 0.67 0.76

2.0, fs 5 810 21281230 0.89 0.67 0.76

2.0, nfs 6 1385 20861747 0.90 0.64 0.74

Finnish

1.0 5 18730 73964660 0.86 0.43 0.57

2.0, fs 5 5700 74360279 0.87 0.42 0.57

2.0, nofs 5 6300 73951063 0.87 0.41 0.56

much faster—81% for English and 70% for Finnish—than with the Morfessor

1.0 implementation.

Comparing the final results of Morfessor 1.0 and Morfessor 2.0

As some details of the algorithm and default settings have changed between

Morfessor 1.0 and Morfessor 2.0, we first compare their results in unsuper-

vised, type-based training.

The results for English and Finnish are shown in Table 5. Morfessor 2.0

was tested on two different configurations, with and without the forced split

option. The default configuration is to use forced splitting for the hyphen

character. Morfessor 1.0 does not support forced splitting.

There is no significant difference in results between Morfessor 1.0 and 2.0.

The slightly lower recall of Morfessor 2.0 without forced splits is an effect of

the changes in handling the word boundaries (see Section 2.1). The costs of

the models are almost equal. With forced splits, the F-scores of Morfessor

2.0 increase to the same level as Morfessor 1.0, but the costs are somewhat

higher.

Convergence

The results in Table 5 show a difference in the number of training epochs

for English and the final cost between Morfessor 2.0 with forced splits and

Morfessor 1.0 and 2.0 without forced splits. By looking at the convergence

21

we show that the general behavior is still the same and the stopping criterion

reasonable.

Figure 3 shows the convergence results for the model cost. For both English

and Finnish, the cost of the models start to stabilize after the third iteration.

However, they do not fully converge even after 10 iterations. The forced split-

ting prevents obtaining as low cost as without it. Without forced splitting,

Morfessor 2.0 reaches a similar level of model cost as Morfessor 1.0.

The convergence of the F-score is shown in Figure 4. For English, the F-

scores converge after 4–5 epochs for all runs. The stopping criterion inter-

rupts the algorithm after 5 epochs and thus its default threshold parameter

is, in this case, optimal. For Finnish, the F-scores converge after 3–4 epochs.

The final number of epochs of 5 is more than necessary, so the convergence

criterion could even be slightly relaxed.

Figure 3. Convergence of model cost for Morfessor 1.0 (m1), Morfessor 2.0 (m1.fs) and Mor-
fessor 2.0 without force-splitting the hyphen character (m1.nfs).

(a) English

1 2 3 4 5 6 7
2.08

2.10

2.12

2.14

2.16

2.18

2.20

2.22

N
a
t
s

1e7

m1

m2.fs

m2.nfs

(b) Finnish

1 2 3 4 5 6 7
7.35

7.40

7.45

7.50

7.55

7.60

7.65

N
a
t
s

1e7

m1

m2.fs

m2.nfs

Figure 4. Convergence of F-scores for Morfessor 1.0 (m1), Morfessor 2.0 (m1.fs) and Morfessor
2.0 without force-splitting the hyphen character (m1.nfs).

(a) English

1 2 3 4 5 6 7
0.72

0.73

0.74

0.75

0.76

F
-s
c
o
r
e

m1

m2.fs

m2.nfs

(b) Finnish

1 2 3 4 5 6 7
0.540

0.545

0.550

0.555

0.560

0.565

0.570

0.575

F
-s

c
o
r
e

m1

m2.fs

m2.nfs

22

4.2 Random Variation in Model Training

In order to observe the effect of random variation in the standard recursive

training algorithm, we ran the training with ten different random seeds for

both English and Finnish. The mean and standard deviation of the training

times, cost function values, and boundary evaluation scores are shown in

Table 6. The absolute standard deviation of F-score was similar, 0.34%, for

both languages. The deviation of the cost function was about 0.3% relative

for both languages.

Table 6. Random variation in model training. (PyPy 1.8 interpreter, Morpho Challenge 2010
training data, development set scores.)

Run Epochs Time (s) Cost (nats) Pre. (%) Rec. (%) F-s. (%)

English

mean 5 558 21281456 89.95 66.38 76.39

st. dev 0 28 651 0.45 0.29 0.33

Finnish

mean 5 3613 74357060 86.25 41.97 56.46

st. dev 0 91 2307 0.46 0.27 0.33

4.3 Random Split Initialization

We tested the random split initialization with a few values between 0.1 and

1.0. It had only minor effect to the segmentation results (Table 7). A low, non-

zero probability of splitting works actually worse than no splitting: training

time is increased, but there is no gain in cost function or scores. In contrast,

for p ≥ 0.5, the cost function had always lower value than for p = 0, which

indicates that random initialization helps finding better local optimums. The

downside is about 20% increased training time.

4.4 Training Speed-up with Skips

Table 8 compares the batch training results with random skipping of frequent

constructions. Skipping provided around 30% decrease in training times for

both English and Finnish task. Difference to the original F-score is smaller

than the standard deviation due to the random initialization of the training

algorithm, so the speed-up comes with no practical cost.

In on-line training, the random skipping is even more useful, because fre-

quent words are encountered all over again. The speed-up is 34% for English

and 29% for Finnish and the evaluation scores only increase, when the skip

23

Table 7. The effect of random split initialization. (PyPy 1.8 interpreter, Morpho Challenge
2010 training data, development set scores.)

Run Epochs Time (s) Cost (nats) Pre. (%) Rec. (%) F-s. (%)

English

p = 0.0 5 536 21281287 89.55 66.47 76.30

p = 0.1 5 541 21295993 86.79 66.01 74.99

p = 0.2 5 592 21283454 86.02 67.10 75.39

p = 0.5 5 653 21267223 87.15 67.08 75.81

p = 0.8 5 619 21272590 88.14 68.24 76.93

p = 0.9 5 591 21273485 89.12 68.53 77.48

p = 1.0 5 651 21276437 88.45 67.10 76.31

Finnish

p = 0.0 5 3810 74351550 86.47 41.79 56.34

p = 0.1 6 4616 74591670 81.46 40.37 53.99

p = 0.2 6 6743 74447555 82.48 41.18 54.93

p = 0.5 5 4075 74322825 85.29 42.09 56.37

p = 0.8 5 4248 74281444 84.43 41.55 55.69

p = 0.9 5 4211 74289057 84.49 41.65 55.80

p = 1.0 5 4513 74286697 84.85 41.78 55.99

Table 8. The effect of random skipping in batch training. (PyPy 1.8 interpreter, Morpho Chal-
lenge 2010 training data, development set scores.)

Run Epochs Time (s) Cost (nats) Pre. (%) Rec. (%) F-s. (%)

English

no skips 5 536 21281287 89.55 66.47 76.30

skips 5 358 21282049 88.88 65.91 75.69

Finnish

no skips 5 3810 74351550 86.47 41.79 56.34

skips 5 2674 74362175 86.23 41.75 56.26

counters were reset after each 10 000 words (Table 8). Larger values of the

interval parameter increase the speed further, as reported later in Section 4.6.

4.5 Viterbi Training

Due to the conservative nature of local Viterbi training, it is not very useful

as such. Initializing the model lexicon with words results in high precision

but low recall (Table 10). With random split initialization, more balanced

precision and recall can be obtained, but the scores are much worse than

those obtained from the recursive baseline algorithm. Increasing the additive

smoothing constant λ (Equation 14) had only negligible effect to the results.

When applied after the recursive training algorithm, the Viterbi algorithm

24

Table 9. The effect of random skipping in on-line training with the default epoch interval
parameter (10 000). (PyPy 1.8 interpreter, Morpho Challenge 2007 training data, de-
velopment set scores.)

Run Epochs Time (s) Cost (nats) Pre. (%) Rec. (%) F-s. (%)

English

no skips N
104 3472 9063019 78.65 73.41 75.94

skips N
104 2279 9063313 79.43 74.52 76.90

Finnish

no skips N
104 4871 55982728 81.46 43.63 56.83

skips N
104 3477 55985301 82.30 44.10 57.42

was able to decrease the cost function slightly (0.1%). This does not show in

the boundary scores—probably because the test set is in any case segmented

with the Viterbi algorithm.

Training times for the local Viterbi are less than half of the times for the

recursive algorithm.

Table 10. Results of local Viterbi training. (PyPy 1.8 interpreter, Morpho Challenge 2010 train-
ing data, development set scores.)

Run Epochs Time (s) Cost (nats) Pre. (%) Rec. (%) F-s. (%)

English

recursive 5 536 21281287 89.55 66.47 76.30

rec.+Viterbi 5+2 619 21256231 89.55 66.47 76.30

Viterbi 2 76 25978025 99.57 23.49 38.01

Viterbi, p = 0.1 4 171 25683288 76.20 42.56 54.62

Viterbi, p = 0.2 4 188 25498304 52.12 47.59 49.75

Viterbi, p = 0.5 3 136 26067407 22.34 60.91 32.69

Finnish

recursive 5 3810 74351550 86.47 41.79 56.34

rec.+Viterbi 5+2 4263 74273417 86.47 41.79 56.34

Viterbi 2 356 130269229 99.96 5.03 9.58

Viterbi, p = 0.1 6 1437 103684416 64.09 23.64 34.54

Viterbi, p = 0.2 6 1471 94803114 39.03 24.78 30.31

Viterbi, p = 0.5 5 3861 95284200 26.94 39.67 32.09

4.6 On-line Training

Next, we compare on-line training, batch training, and their combination, in

which batch training is applied after the on-line training has processed the

whole training corpus. We use random skipping in the training regardless of

the training scheme.

The results are shown in Table 11. In on-line training, the training time is

25

affected by the number of tokens, not types. Accordingly, on-line training is

relatively quicker on the Finnish data set, which has a lower token-to-type

ratio than the English data set. With large enough epoch interval, the on-line

training with skips is in fact quicker than the batch training.

On-line training alone does not provide as low a model cost as batch train-

ing, but their combination always gives lower cost than using only batch

training. However, the lower cost does not lead to higher F-scores. For

English, recall scores are higher but precision scores lower than with batch

training. For Finnish, even the recall scores do not clearly improve.

Table 11. The results of on-line training. Random skipping was used for all runs. (PyPy 1.8
interpreter, Morpho Challenge 2007 training data, development set scores.)

Type Epochs Time (s) Cost (nats) Pre. (%) Rec. (%) F-s. (%)

English

batch - / 6 217 9026845 82.46 71.44 76.55

online N
104 / - 2279 9063313 79.43 74.52 76.90

online+batch N
104 / 3 2334 9018151 79.43 74.34 76.80

online N
105 / - 1219 9062868 78.75 73.50 76.03

online+batch N
105 / 3 1408 9018035 78.67 73.65 76.08

online N
106 / - 670 9063684 78.53 73.60 75.99

online+batch N
106 / 3 823 9017490 78.73 73.34 75.94

online N
107 / - 452 9069958 78.54 74.77 76.61

online+batch N
107 / 3 546 9017458 78.64 74.03 76.27

online N
108 / - 413 9201149 75.72 76.13 75.92

online+batch N
108 / 4 538 9017652 78.87 74.16 76.44

Finnish

batch - / 5 1870 55591891 85.11 44.44 58.39

online N
104 / - 3477 55985301 82.30 44.10 57.42

online+batch N
104 / 3 4463 55557045 82.59 43.67 57.13

online N
105 / - 2583 55987962 82.42 43.93 57.31

online+batch N
105 / 3 3716 55552566 82.71 43.70 57.18

online N
106 / - 1673 55995437 82.71 44.21 57.62

online+batch N
106 / 3 2728 55551577 83.03 43.83 57.37

online N
107 / - 1039 56064939 81.76 43.58 56.86

online+batch N
107 / 4 2544 55548172 82.38 43.09 56.58

online N
108 / - 789 56688964 78.88 44.48 56.88

online+batch N
108 / 4 2208 55542310 82.02 43.03 56.44

4.7 Frequency Dampening

The frequency dampening effects (cf. Virpioja et al., 2011a) are shown in

Table 12. If the word frequencies affect the likelihood, the recall decreases

26

and the precision increases, as common strings are left unsegmented. When

trained with word tokens, the number of epochs needed for convergence is

about 50% less than that are needed with dampened frequencies.

Table 12. The effect of frequency dampening. (PyPy 1.8 interpreter, Morpho Challenge 2010
training data, development set scores.)

Data Epochs Time (s) Cost (nats) Pre. (%) Rec. (%) F-s. (%)

English

types 5 536 21281287 89.55 66.47 76.30

logarithmic 5 527 41599429 97.84 50.55 66.66

tokens 2 221 2025408238 97.19 39.23 55.90

Finnish

types 5 3810 74351550 86.47 41.79 56.34

logarithmic 5 3505 122245184 90.72 36.87 52.43

tokens 3 2157 800405681 93.41 29.69 45.06

4.8 Weight Optimization

Changing of the likelihood weight makes it possible to optimize the balance

between precision and recall. Typically the precision is higher and recall is

lower the larger the unannotated training data is, so the weighting can com-

pensate for training corpora that do not happen to be of optimal size for the

desired target. The weighting is even more useful if the word frequencies are

not dampened Virpioja et al. (2011a).

Table 13 shows the result for optimizing the weight automatically for the

annotated development data set as described in Section 2.2. We have trained

the models with word types, first from the full Morpho Challenge 2010 data

sets and then from subsets of 100 000 sentences. For the full English data

set, the default weight (1.0) is already near the optimum, and the automatic

balancing actually degrades the test set F-score. For the smaller data set, opti-

mization increases F-score 2.6% absolute. For Finnish, 4.2% absolute increase

is obtained for the full data set and 1.6% for the smaller data set.

4.9 Semi-supervised Training

Semi-supervised training for Morfessor (Kohonen et al., 2010a,b) has various

options considering how the likelihood weights are selected. The results are

shown in Table 14. Without weighting, the effect of the small annotated data

set is very small. However, already the heuristic value for β improves the

situation remarkably, providing over 10% increase in F-score for English and

27

Table 13. The effect of weight optimization. (PyPy 1.8 interpreter, Morpho Challenge 2010
training data, development set and test set scores.)

Run Epochs Time (s) α Pre. (%) Rec. (%) F-s. (%)

English, full data (878 000 word types)

unsupervised 5 590 1.000 89.67/87.82 66.05/66.64 76.07/75.77

optimized 7 942 0.298 73.97/70.63 75.59/75.59 74.77/73.02

English, subset (73 000 word types)

unsupervised 7 62 1.000 70.50/65.80 79.33/77.97 74.65/71.37

optimized 11 97 1.331 75.68/71.40 76.79/76.75 76.23/73.98

Finnish, full data (2 928 000 word types)

unsupervised 5 4071 1.000 86.37/83.42 42.51/41.17 56.97/55.12

optimized 14 13968 0.013 62.60/58.13 64.96/60.51 63.76/59.29

Finnish, subset (243 000 word types)

unsupervised 6 343 1.000 74.23/70.46 52.71/48.96 61.64/57.77

optimized 8 510 0.158 62.30/58.88 63.34/59.80 62.81/59.33

24% for Finnish. On-line optimization of α provides some further improve-

ment for Finnish but not for English. The final rows in Table 14 show the

optimal values of α and β found using a manual grid search. The results

show that there is room for improvements for the automatic selection of the

weights. Especially for Finnish, the heuristic value of β is much smaller than

the optimal value. Thus testing a few values manually is recommended.

Table 14. Semi-supervised training. (PyPy 1.8 interpreter, Morpho Challenge 2010 training
data, development set and test set scores.)

Run Epochs Time (s) α β Pre. (%) Rec. (%) F-s. (%)

English

no supervision 5 590 1.000 1 89.67/87.82 66.05/66.64 76.07/75.77

no weighting 5 636 1.000 1 89.89/87.98 66.48/66.76 76.43/75.90

heuristic β 5 710 1.000 878 89.00/86.97 81.88/80.98 85.29/83.86

opt. α, heur. β 5 739 0.667 585 83.32/81.51 83.66/83.64 83.49/82.56

grid search 4 592 1.000 3000 85.91/83.37 85.50/85.10 85.71/84.22

Finnish

no supervision 5 4071 1.000 1 86.37/83.42 42.51/41.17 56.97/55.12

no weighting 5 4107 1.000 1 86.67/83.56 42.66/41.27 57.17/55.25

heuristic β 2 2195 1.000 2928 86.64/84.00 59.20/57.60 70.34/68.33

opt. α, heur. β 10 11415 0.022 65 71.76/67.42 74.05/71.33 72.89/69.32

grid search 2 2490 0.200 15000 78.68/76.06 78.42/77.03 78.55/76.53

28

5 Conclusions

In this report, we have described a number of corrections, improvements and

extensions for the Morfessor Baseline method and verified their effects on

English and Finnish morphological segmentation tasks. All new features are

available in our Python implementation, Morfessor 2.0. We have aimed for

a software package that is as simple to use as the original Perl implemen-

tation of Morfessor Baseline, but more robust, efficient and easier to extend

further. We hope that it serves both those who want to integrate Morfessor to

their natural language processing applications and those who are interested

in developing the methodology further.

Morfessor 2.0 software package is available under a permissive FreeBSD-

style license at http://www.cis.hut.fi/projects/morpho/ or from GitHub

repository at https://github.com/aalto-speech/morfessor.

Acknowledgments

The research leading to these results has received funding from the European

Community’s Seventh Framework Programme (FP7/2007–2013) under grant

agreement n°287678 and the Academy of Finland under the Finnish Centre of

Excellence Program 2012–2017 (grant n°251170) and the LASTU Programme

(grants n°256887 and 259934). The experiments were performed using com-

puter resources within the Aalto University School of Science "Science-IT"

project. We are grateful to Oskar Kohonen for his help with the experi-

ments and the initial Python implementations of Morfessor. We also thank

Dr. Mathias Creutz, Dr. Krista Lagus, Matti Varjokallio, and Teemu Ruoko-

lainen for their comments and many valuable discussions.

29

Bibliography

Arisoy, E., Can, D., Parlak, S., Sak, H., and Saraclar, M. (2009). Turkish broadcast
news transcription and retrieval. Audio, Speech, and Language Processing, IEEE
Transactions on, 17(5):874–883.

Baum, L. E. (1972). An inequality and an associated maximization technique in statis-
tical estimation of probabilistic functions of a Markov process. Inequalities, 3(1):1–
8.

Clifton, A. and Sarkar, A. (2011). Combining morpheme-based machine translation
with post-processing morpheme prediction. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technologies,
pages 32–42, Portland, Oregon, USA. Association for Computational Linguistics.

Creutz, M., Hirsimäki, T., Kurimo, M., Puurula, A., Pylkkönen, J., Siivola, V., Var-
jokallio, M., Arisoy, E., Saraçlar, M., and Stolcke, A. (2007). Morph-based speech
recognition and modeling of out-of-vocabulary words across languages. ACM
Transactions on Speech and Language Processing, 5(1):3:1–3:29.

Creutz, M. and Lagus, K. (2002). Unsupervised discovery of morphemes. In
Maxwell, M., editor, Proceedings of the ACL-02 Workshop on Morphological and Phono-
logical Learning, pages 21–30, Philadelphia, PA, USA. Association for Computa-
tional Linguistics.

Creutz, M. and Lagus, K. (2004). Induction of a simple morphology for highly-
inflecting languages. In Proceedings of the Seventh Meeting of the ACL Special Interest
Group in Computational Phonology, pages 43–51, Barcelona, Spain. Association for
Computational Linguistics.

Creutz, M. and Lagus, K. (2005a). Inducing the morphological lexicon of a natu-
ral language from unannotated text. In Honkela, T., Könönen, V., Pöllä, M., and
Simula, O., editors, Proceedings of AKRR’05, International and Interdisciplinary Con-
ference on Adaptive Knowledge Representation and Reasoning, pages 106–113, Espoo,
Finland. Helsinki University of Technology, Laboratory of Computer and Infor-
mation Science.

Creutz, M. and Lagus, K. (2005b). Unsupervised morpheme segmentation and mor-
phology induction from text corpora using Morfessor 1.0. Technical Report A81,
Publications in Computer and Information Science, Helsinki University of Tech-
nology.

Creutz, M. and Lagus, K. (2007). Unsupervised models for morpheme segmentation
and morphology learning. ACM Transactions on Speech and Language Processing,
4(1):3:1–3:34.

Forney, Jr., G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3):268–278.

Gelas, H., Besacier, L., and Pellegrino, F. (2012). Developments of Swahili resources
for an automatic speech recognition system. In Proceedings of the Third International
Workshop on Spoken Languages Technologies for Under-resourced Languages (SLTU’12),
page 8, Cape Town, South Africa. International Research Center MICA.

Hirsimäki, T., Creutz, M., Siivola, V., Kurimo, M., Virpioja, S., and Pylkkönen, J.
(2006). Unlimited vocabulary speech recognition with morph language models
applied to Finnish. Computer Speech & Language, 20(4):515–541.

30

Kohonen, O., Virpioja, S., and Lagus, K. (2010a). Semi-supervised learning of con-
catenative morphology. In Proceedings of the 11th Meeting of the ACL Special Interest
Group on Computational Morphology and Phonology, pages 78–86, Uppsala, Sweden.
Association for Computational Linguistics.

Kohonen, O., Virpioja, S., Leppänen, L., and Lagus, K. (2010b). Semi-supervised ex-
tensions to Morfessor Baseline. In Kurimo, M., Virpioja, S., and Turunen, V. T.,
editors, Proceedings of the Morpho Challenge 2010 Workshop, pages 30–34, Espoo,
Finland. Aalto University School of Science and Technology, Department of Infor-
mation and Computer Science. Technical Report TKK-ICS-R37.

Kurimo, M., Virpioja, S., and Turunen, V. T. (2010). Overview and results of Morpho
Challenge 2010. In Proceedings of the Morpho Challenge 2010 Workshop, pages 7–24,
Espoo, Finland. Aalto University School of Science and Technology, Department
of Information and Computer Science. Technical Report TKK-ICS-R37.

Luong, M.-T., Nakov, P., and Kan, M.-Y. (2010). A hybrid morpheme-word represen-
tation for machine translation of morphologically rich languages. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing, pages
148–157, Cambridge, MA. Association for Computational Linguistics.

Mermer, C. and Akın, A. A. (2010). Unsupervised search for the optimal segmen-
tation for statistical machine translation. In Proceedings of the ACL 2010 Student
Research Workshop, pages 31–36, Uppsala, Sweden. Association for Computational
Linguistics.

Mihajlik, P., Tüske, Z., Tarján, B., Németh, B., and Fegyó, T. (2010). Improved recog-
nition of spontaneous Hungarian speech — morphological and acoustic modeling
techniques for a less resourced task. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 18(6):1588–1600.

Popović, M. (2011). Morphemes and pos tags for n-gram based evaluation metrics.
In Proceedings of the Sixth Workshop on Statistical Machine Translation, pages 104–107,
Edinburgh, Scotland. Association for Computational Linguistics.

Pratt, J. W. (1959). Remarks on zeros and ties in the wilcoxon signed rank procedures.
Journal of the American Statistical Association, 54(287):655–667.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14:465–471.

Turunen, V. T. and Kurimo, M. (2011). Speech retrieval from unsegmented Finnish
audio using statistical morpheme-like units for segmentation, recognition, and
retrieval. ACM Transactions on Speech and Language Processing, 8(1):1–25.

Virpioja, S. (2012). Learning Constructions of Natural Language: Statistical Models and
Evaluations. PhD thesis, Aalto University.

Virpioja, S., Kohonen, O., and Lagus, K. (2010). Unsupervised morpheme analysis
with Allomorfessor. In Multilingual Information Access Evaluation I. Text Retrieval
Experiments: 10th Workshop of the Cross-Language Evaluation Forum, CLEF 2009,
Corfu, Greece, September 30 – October 2, 2009, Revised Selected Papers, volume 6241
of Lecture Notes in Computer Science, pages 609–616. Springer Berlin / Heidelberg.

Virpioja, S., Kohonen, O., and Lagus, K. (2011a). Evaluating the effect of word fre-
quencies in a probabilistic generative model of morphology. In Pedersen, B. S.,
Nešpore, G., and Skadiņa, I., editors, Proceedings of the 18th Nordic Conference of

31

Computational Linguistics (NODALIDA 2011), volume 11 of NEALT Proceedings Se-
ries, pages 230–237. Northern European Association for Language Technology,
Riga, Latvia.

Virpioja, S., Turunen, V. T., Spiegler, S., Kohonen, O., and Kurimo, M. (2011b). Empir-
ical comparison of evaluation methods for unsupervised learning of morphology.
Traitement Automatique des Langues, 52(2):45–90.

Virpioja, S., Väyrynen, J. J., Creutz, M., and Sadeniemi, M. (2007). Morphology-
aware statistical machine translation based on morphs induced in an unsuper-
vised manner. In Proceedings of the Machine Translation Summit XI, pages 491–498,
Copenhagen, Denmark.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–
269.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics bulletin,
1(6):80–83.

32

ISBN 978-952-60-5501-5 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896
ISSN 1799-490X (pdf)

Aalto University
School of Electrical Engineering
Department of Signal Processing and Acoustics
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 2
5
/2

013

Department of Signal Processing and Acoustics

Morfessor 2.0: Python
Implementation and
Extensions for Morfessor
Baseline
Sami Virpioja
Peter Smit
Stig-Arne Grönroos
Mikko Kurimo

TECHNICAL REPORT SCIENCE +
TECHNOLOGY

	Blank Page
	Blank Page

