
Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

Svitlana Chaplinska

A Purple Team Approach to Attack Au-
tomation in the Cloud Native Environ-
ment

Master’s Thesis
Espoo, July 29, 2022

Supervisors Prof. Pontus Johnson, KTH Royal Institute of Technology
Prof. Mario Di Francesco, Aalto University

Advisors Professor Mathias Ekstedt, KTH Royal Institute of Technology
Tuomo Makkonen, M.Sc. (Tech.), Fraktal Oy

Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

ABSTRACT OF
MASTER’S THESIS

Author: Svitlana Chaplinska
Title:
A Purple Team Approach to Attack Automation in the Cloud Native Environ-
ment
Date: July 29, 2022 Pages: 68
Major: Security and Cloud Computing Code: SCI3113
Supervisors: Professor Pontus Johnson

Professor Mario Di Francesco
Advisors: Professor Mathias Ekstedt

Tuomo Makkonen, M.Sc. (Tech.)
The threat landscape is changing with the increased popularity of cloud native
systems. Adversaries are adopting new ways to attack systems. Therefore, se-
curity specialists have to adopt new approaches to their security practices. This
thesis explores a purple team approach to attack automation in a cloud native
environment. There are two thesis goals. The first goal is to investigate cyber
threats encountered in cloud native environments. The second goal is build an
attack automation tool to improve a purple team evaluation of the cloud native
environments. As a result, we create a more comprehensive resource of cloud
native threats that we refer to as the Cloud Native Threat Matrix. Based on
this matrix, we build a tool for attack automation. The tool follows the assume
breach approach, providing defense-in-depth security testing. As a final step, we
propose an improvement to the purple team evaluation of the cloud native envi-
ronments, that combines created Cloud Native Threat Matrix with an automated
attack techniques execution and active collaboration as a fundamental concept of
purple team evaluations.

A Cloud Native Threat Matrix solves the problem of scattered threat data, pro-
viding a coherent and easy-to-use platform. In addition, the automation provides
a possibility for rerunning security evaluations and making sure that security
weaknesses are not re-introduced during major changes. A purple team approach
allows improving system defense and response capabilities.
Keywords: Automation, cloud native, security, threat
Language: English

2

Aalto-universitetet
Högskolan för teknikvetenskaper
Magisterprogrammet i data-, kommunikations- och infor-
mationsteknik

SAMMANDRAG AV
DIPLOMARBETET

Utfört av: Svitlana Chaplinska
Arbetets namn:
Integritetsförbättrande datarapporteringssystem för deltagande avkänning
Datum: Den 29 juli 2022 Sidantal: 68
Huvudämne: Säkerhet och Cloud Computing Kod: SCI3113
Övervakare: Professor Pontus Johnson

Professor Mario Di Francesco
Handledare: Professor Mathias Ekstedt

Diplomingenjör Tuomo Makkonen
Angriparna förändrar sina attacker för dessa system. Därför måste även
säkerhetsspecialister ta till nya metoder i sitt säkerhetsutövande. Den här av-
handlingen utforskar en purple team-strategi för automatiserade attacker i en
molnbaserad miljö. Avhandlingen har tv̊a mål. Det första är att utforska de cy-
berhot som molnbaserade miljöer möts av. Det andra är att skapa ett ramverk
som kan användas för purple team-övningar med stöd av de automatiserade at-
tackerna, som i sin tur är baserade p̊a den hotmatrisen för molnbaserade miljöer.
Resultatet av detta är att vi har skapat en hotmatris - en mer omfattande resurs
av molnbaserade hot. Baserat p̊a den här matrisen har vi byggt ett verktyg för
automatiserade attacker. Verktyget bygger p̊a antagandet att intr̊ang redan har
skett och bidrar med djupförsvarsbaserad säkerhetstestning av en molnbaserad
miljö. Slutligen s̊a föresl̊ar vi även en förbättring till hur utvärderingen av pp-
urple teams"i en molnbaserad miljö kan utföras. Denna utvärdering kombinerar
v̊ar molnbaserade matris med en automatiserad attack exekvering samt aktivt
samarbete som ett fundementalt koncept i utvärdering av purple teaming".

Löser en molnbaserad matris problemet med oorganiserad data ang̊aende hot
genom att tillhandah̊alla en sammanhängande och lättanvänd plattform. Au-
tomatiseringen till̊ater en möjlighet att utföra säkerhetsutvärderingarna regres-
sivt och säkerställer att kända svagether inte blir återintroducerade under större
systemförändringar. Ett purple teamtillvägag̊angsätt möjliggör förbättring av
systemförsvar och incidenthantering.
Nyckelord: Automation, molnbaserat, säkerhet, hot
Spr̊ak: Engelska

3

Copyright © 2022 Svitlana Chaplinska

4

Acknowledgements

To Ukrainian people for showing the whole world what it means to be
brave!

I want to thank you, SECCLO consortium, for giving me this opportunity
and Eija Kujanpää, Kiviharju Anne for the administrative support.

I want to express my appreciation to my examiner Pontus Johnson and
my supervisors Mario Di Francesco and Mathias Ekstedt for sharing
feedback, comments and ideas to improve the quality of this thesis work.

I want to express my gratitude to Fraktal Oy and its employees. Tuomo
Makkonen for supervising this thesis work and always bringing bright ideas
to the table, Jarno Virtanen for knowledge sharing and proofreading this
thesis work and Mikhael Weckstén for an excellent translation of the ab-
stract.

I also want to thank you Joseph Attieh and Juha Kai Mattila for
providing insightful feedback and ideas.

A special thank you to my boyfriend and to my friends all over the globe!
My biggest thank you to my mother and grandmother. Without them, I

would not be writing this thesis.
Слава Українi!
Дякую! Kiitos! Tack s̊a mycket! Thank you!

Espoo, July 29, 2022

Svitlana Chaplinska

5

Contents

1 Introduction 10
1.1 Problem Statement . 11
1.2 Goals . 11
1.3 Research Questions . 12
1.4 Sustainability and Ethics . 12
1.5 Structure of the Report . 12

2 Background 13
2.1 Cloud Native . 13
2.2 Contemporary Attack Environment – MITRE ATT&CK . . . 19
2.3 Security Operation Teams . 20
2.4 Test/Attack Automation . 22

3 Cloud Native Threat Matrix 24
3.1 Methodology . 24
3.2 Cloud Native Threats . 27
3.3 Cloud Native Threat Matrix 28
3.4 Implementation . 38
3.5 Background work . 38

4 Attack automation 42
4.1 Methodology . 42
4.2 Tool for the Techniques Automation 43
4.3 Laboratory Environment . 45
4.4 Implemented Techniques . 46
4.5 Combining Techniques into Attacks 55

5 Discussion 57
5.1 Research Process . 57
5.2 Cloud Native Threat Matrix 58
5.3 Automation Tool . 58

6

5.4 The Performance Improvement of the Purple Team Evaluation
Process . 59

6 Conclusions 60
6.1 Limitations . 61
6.2 Improvements . 61
6.3 Future Work . 61

7

List of Acronyms and Abbreviations

Amazon EC2 Amazon Elastic Compute Cloud.

API Application Programming Interface.

AWS Amazon Web Services.

C2 Command Control.

CI/CD Continuous Integration and Continuous Delivery/Deployment.

CLI Command-Line Interface.

CPU Central Processing Unit.

DoS Denial-of-Service.

ECR Elastic Container Registry.

GCP Google Cloud Platform.

IaaS Infrastructure-As-a-Service.

ICS Industrial Control System.

JSON JavaScript Object Notation.

MITRE ATT&CK MITRE Adversarial Tactics, Techniques and Common
Knowledge.

nmap Network Mapper.

OS Operating System.

8

List of Acronyms and Abbreviations 9

RBAC Role-Based Access Control.

SaaS Software-As-a-Service.

SIEM Security Information and Event Management.

SOC Security Operation Center.

TTPs Tactics, Techniques, Procedures.

UI User Interface.

VM Virtual Machine.

Chapter 1

Introduction

The rate of technological change is increasing. Therefore, the methods used
to produce software have changed. The need to have more efficient and more
advanced systems requires a major shift in the approaches used to create
these systems. This shift can be seen in development processes that switched
from waterfall to Agile and DevOps. In application architecture it changed
from monolithic to microservices. Deployment and packaging switched from
physical servers to virtual ones and to container-based deployments. Ap-
plication infrastructures have migrated from on-premise data centers to the
cloud. Combining all these methods in one approach introduced us to the
cloud native mindset. Cloud native are technologies that help businesses to
create scalable applications in dynamic environments [1]. Some examples of
these technologies are containers, microservices and declarative Application
Programming Interface (API). Together with automation, cloud native helps
engineers make significant changes in a modular, scalable and distributed
way.

However, technological progress also brings new attack vectors and vul-
nerabilities. The number of cyber-attacks is rising every year. According to
the survey conducted in [2], 93% of the more than 300 DevOps, security and
engineering professionals had experienced a security incident in 2021. Now
that the industry has been adopting the cloud native approach, adversaries
have to adapt their attacks to new environments and exploit cloud native
applications via cloud, containers, Continuous Integration and Continuous
Delivery/Deployment (CI/CD) and other.

10

CHAPTER 1. INTRODUCTION 11

1.1 Problem Statement

As cloud native solutions are gaining more popularity, the number of adver-
saries targeting these is also rising. Therefore, there is a need for tools that
perform security testing in such environments. The top common incidents
are disabled encryption of SQL databases, firewall rules allowing all traffic to
the Kubernetes cluster and instances directly exposed to the internet [3]. In
these rapidly changing conditions, companies have to adopt new approaches
to their security practices.

When communicating attacks, the industry standard is to use the MITRE
Adversarial Tactics, Techniques and Common Knowledge (MITRE ATT&CK)
as a structured and coherent adversary behavior data source. MITRE ATT&CK
is a knowledge base of adversary tactics and techniques based on real-world
observations in various environments [4]. The knowledge base is used for
building tools and methodologies in both private and governmental sectors
for the red, blue and purple teams. Security teams are conventionally divided
to offensive (red), defensive/response (blue) and mixed (purple). Security
teams can benefit from introducing the purple team by improving the effi-
cacy of threat detection and mitigation. Thus, a tool for executing attack
techniques that combines purple team approaches and MITRE-like matrix
can be built to improve security operations.

This thesis work is focused on building a more comprehensive table that
consists of attack techniques relevant to the cloud native environments, re-
ferred to as a Cloud Native Threat Matrix. These attack techniques target
distinct phases of the attack lifecycle. Another vector of focus is to provide
an automatic execution framework of attack techniques as part of the purple
team cloud native security evaluation tool. The focus area of this attack
automation is Amazon Web Services (AWS) and Kubernetes.

This research assignment has been conducted as part of the industrial
collaboration with Fraktal Oy [5].

1.2 Goals

This thesis has two goals. The first one is to create a more comprehensive
Cloud Native Threat Matrix. The matrix has to include various attack tac-
tics and cover techniques related to cloud, containers and CI/CD pipeline.
The second goal of the thesis is to develop a framework for automating the
execution of the attacks using the aforementioned matrix. This framework
should be customizable to allow the easy addition of new techniques.

CHAPTER 1. INTRODUCTION 12

1.3 Research Questions

• What type of new cyber threats do cloud native environments face?

• How to effectively utilize the automated purple team approach for at-
tack automation in cloud native environments?

1.4 Sustainability and Ethics

This work has a limited direct influence on sustainability issues. However,
utilizing created framework helps increase the security and availability of
systems. Furthermore, defining security gaps helps mitigate risks before ad-
versaries exploit the systems. Thus, the framework increases the operational
sustainability of systems.

From the ethical perspective, we tested the framework in a restricted
laboratory environment, thus, not violating access limitations of the real
systems. However, for future usage, the framework can only be used after
the prior agreement with the system owner. The work does not infringe any
copyrights or disclose confidential information of the company that assigned
the research.

We gathered all attack information from public resources. Thus, the
adversary can access the same information directly from the openly available
sources. On the other hand, the automation framework implementation is
not public. Therefore, it cannot be used with a wrong intention by the
adversary.

1.5 Structure of the Report

The rest of this thesis is organized as follows. Chapter 2 presents the back-
ground. Then chapter 3 contains an overview of the created Cloud Native
Threat Matrix. Chapter 4 provides an overview of the attack automation.
Chapter 5 discusses the research process, created artifacts, improvement to
the purple team evaluation approach, limitations, possible improvements and
future work. Lastly, chapter 6 gives a conclusion of the thesis work.

Chapter 2

Background

In this chapter, we present an overview of technologies relevant to the thesis
work. First, we define cloud native technologies and its building blocks.
Next, we discuss approaches to attack analysis. Then, we define different
security operation teams. Finally, we discuss automation as part of security
testing.

2.1 Cloud Native

Cloud native is a new mindset adopted to build and deploy applications that
are easier to maintain in a cloud infrastructure, allowing these applications
to scale effectively and remain highly available. Building cloud native appli-
cations usually require the use of a plethora of technologies. Thus, a cloud
native application can be defined as a combination of different technologies,
such as virtualization, containerization, microservices, CI/CD. Cloud native
gained popularity amongst development teams for its ability to reduce oper-
ational overhead, automate deployment, reduce the time to deploy, scale and
update software.

Virtual Machines and Containers

One of the main technologies in cloud native environments is virtualization.
Virtualization builds a layer of abstraction over the hardware of the com-
puter. It allows dividing processors, memory, storage and other hardware
elements into several virtual instances. Virtual computer is called Virtual
Machine (VM) and is the main component of the virtualization. A VM is a
computational resource that utilizes software instead of hardware to deploy
and run application [6]. Multiple VMs can run on a single physical server,

13

CHAPTER 2. BACKGROUND 14

Figure 2.1: Division of physical infrastructure into the virtual machines.

also called a host machine. A “host” machine provides all resources to a VM,
such as Central Processing Unit (CPU), memory and storage [7]. Virtual
machines running on the same server can be isolated from each other, where
each VM can have different functions and run different Operating System
(OS).

A critical component of systems that are using VMs is a hypervisor. A
hypervisor, also called VM Monitor, is a layer between a physical server and
a virtual machine responsible for creating, modifying and destroying VMs
[8]. For example, Figure 2.1 shows how virtualization divides a physical
infrastructure into virtual machines and a hypervisor as a layer in between.

Another unit of virtualization is a container. Containers are more lightweight,
less resource and time-consuming compared to virtual machines. A con-
tainer encapsulates code and all of its dependencies. It allows applications
to be transferred between other computing environments quickly and consci-
entiously [9]. One of the benefits of containerization is that a container has
everything required for running the application. Thus, running the applica-
tion in different server environments does not depend on the configurations
of the physical machine. The number of containers on one machine is only
limited by the computing resources of this physical machine [10].

Both containers and virtual machines run virtualized isolated environ-
ments, but they have important differences for building cloud native appli-
cations. Figure 2.2 shows the main differences in the architecture between
VMs and containers. In the case of virtual machines, the hypervisor vir-

CHAPTER 2. BACKGROUND 15

Figure 2.2: Comparison of the virtual machines and containers architecture.

tualizes physical hardware. Each virtual machine has a guest OS. A guest
OS is a virtual replica of the hardware with libraries and dependencies that
the operating system requires to function [11]. Different OSs can be run
on a single physical machine. Unlike VM, containers virtualize the operat-
ing system instead of virtualizing the hardware. They use the host machine
operating system, kernel and have some lightweight operating system API
in user mode. Each container has applications, libraries and dependencies.
Containers provide lightweight isolation of virtualized environments but do
not provide as strong security boundaries as VM do [11].

Containerization Platform – Docker

Container platforms are software solutions for managing containerized appli-
cations. Docker is one of the open-source containerization platforms used for
running, developing and shipping containers. Docker defines the specifica-
tion of container images and run time. A container image is a static file of
the executable code that can be executed in isolated environments, such as
a container [12].

The docker architecture follows the client-server model. Figure 2.3 shows
a Docker architecture and its main components:

• Docker Client is used for providing communication of users with
Docker. The daemon and the Docker client can both run on the same

CHAPTER 2. BACKGROUND 16

Figure 2.3: Docker architecture.

computer or connect to one running on a remote [13]. Communication
with Docker is done via commands to the Docker daemon. Typical
commands are docker run, docker build, docker pull.

• Docker Host contains an environment for running containers. It con-
tains Images, Containers, Networks, Storage and Docker daemon. The
Docker daemon is responsible for all the activities related to the con-
tainer, and it accepts commands from the REST API or the Host
Command-Line Interface (CLI) [13].

• Docker Registry / Hub is a storage registry for images. The central
repository is the Docker Hub, which is used to publicly share Docker
images [12].

Container Orchestration System – Kubernetes

Automation is at the core of cloud native systems. Thus, the orchestration
of containerized systems is needed. Orchestration is the process of schedul-
ing and controlling the work of containers in clusters. Orchestration involves
ensuring that all containers running different workloads are scheduled to op-
erate physical or virtual machines. One of the most popular container orches-
tration platforms is Kubernetes. Kubernetes is an open-source framework for
orchestrating containerized workloads [14].

Kubernetes is responsible for maintaining the system in the state defined
by the Kubernetes manifests. Kubernetes uses manifest specification files

CHAPTER 2. BACKGROUND 17

in the YAML or JavaScript Object Notation (JSON) format that describes
the required state of running Pods, ReplicaSets and their connection to other
objects. Thus, Kubernetes monitors all running containers and replaces those
that are dead, unresponsive, or otherwise unhealthy. If the current state
of the Pod or ReplicaSet is different from the defined in the Kubernetes
manifests, Kubernetes will try to change a state to match the desired.

The core element of Kubernetes is the control plane. It is responsible for
making global choices about the cluster and managing cluster events, such
as scheduling Pods creation, Pods removal and Pods restart. The main parts
of the control plane are the following [15]:

- kube-apiserver is the frontend module that exposes the Kubernetes
API.

- etcd is a Kubernetes cluster data key-value store.

- Kube scheduler is a process that monitors for recently created Pods
with no allocated Node and assigns them one.

- Kube controller manager is a runner of controller processes. Con-
troller processes include a node controller, a replication controller, a
service account and the token controller. The node controller is re-
sponsible for responding to changes in the Pod state, while the repli-
cation controller maintains a correct number of Pods. The endpoint
controller joins endpoint objects, and the token controller generates
default accounts and access tokens.

- Cloud controller manager (optional) embeds cloud-specific con-
trol logic by linking clusters to the API of a cloud provider and then
separating components that communicate with the cluster from com-
ponents that interact with that cloud platform. The cloud controller
manager does not exist in the control plane if the Kubernetes cluster
is run locally.

Pod

Pods are the smallest deployable computing units in Kubernetes that a user
can build and control. A Pod is a set of one or more containers. Pods can
have shared specifications for running containers, network and storage. To
run a workload, Kubernetes places containers to the Pods in order to run
them on Nodes [16].

CHAPTER 2. BACKGROUND 18

Figure 2.4: Microservices architecture.

Node

A Node is a worker machine that contains everything needed to run a Pod.
It can be a physical or virtual machine. Nodes are managed by the control
plane. There are several components on the Node: kube-proxy, container
runtime, kubelet [17]. The set of Nodes that run a containerized application
is referred to as a Kubernetes cluster.

Deployment

A Deployment offers declarative updates for ReplicaSets and Pods. Repli-
caSet maintains a stable number of replica Pods in a given time. A user
provides the desired state in the Deployment. The desired state is managed
by a deployment controller. The deployment controller gradually converts
the actual state to the desired state. Deployments can be utilized to create
new ReplicaSets or delete current Deployments and replace them with new
Deployments [18].

Microservices

The microservice architecture is a paradigm for building applications. Mi-
croservices are tiny services that run their processes and communicate via

CHAPTER 2. BACKGROUND 19

lightweight procedures. They decompose massive systems into a group of
discrete services, allowing the development of individual microservices inde-
pendently. This approach provides modularity, scalability and distributed
development [19]. Figure 2.4 shows the modules of the application, where
each module is a separate microservice.

DevOps and CI/CD

A CI/CD is an approach to frequent software delivery to customers through
automation development, testing and deployment of applications. The main
concepts of CI/CD are continuous integration, delivery and deployment.
CI/CD allows applying quick fixes without breaking core system elements
[20]. The main objectives are to shorten release cycles, increase productivity
and enhance early fault detection [21].

The CI/CD is a fundamental part of DevOps. DevOps is a method of de-
veloping software that optimizes the systems development life cycle by com-
bining software development (Dev) with IT operations (Ops) [22]. The main
benefit of DevOps is to efficiently coordinate the production and upgrading
of software products and services. It is based on the following processes:
plan, code, build, test, release, deploy and operate.

2.2 Contemporary Attack Environment – MITRE
ATT&CK

Companies use several approaches to analyze possible threats to the systems,
such as Cyber Kill Chain, Diamond Model, MITRE ATT&CK [23]. These
approaches help structure analysis of attacks and adversarial behavior.

However, the framework that is mostly adopted in the security industry
is the MITRE ATT&CK. For example, the National Cyber Security Centre
uses the MITRE ATT&CK structure for their threats analysis [24]. One of
MITRE ATT&CK’s main benefits is that it is based on observations of real-
world attacks. Thus, it helps build possible attack scenarios for the specific
system.

MITRE ATT&CK

MITRE is a non-profit organization that focuses on solving challenges related
to safety in the public interest. MITRE works on various research projects
including MITRE ATT&CK. Published in 2015, MITRE ATT&CK provided
companies with a coherent framework of known tactics used by adversaries

CHAPTER 2. BACKGROUND 20

based on information about previously conducted attacks. The ATT&CK
stands for Adversarial Tactics, Techniques and Common Knowledge. The
framework contains a profound list of possible Tactics, Techniques, Proce-
dures (TTPs) related to different environments. It is publicly accessible and
can be used for building thread models, methodologies and security defense
systems in different organizations. In addition, the framework provides a
classification for both the defensive and offensive security teams. Nowadays,
it is commonly used in the industry for security-related assignments [25].

When discussing threats and attacks in different environments, a typical
problem is a lack of common vocabulary between technical and non-technical
people. In fact, the MITRE ATT&CK framework tackles this problem by
giving people a common vocabulary to use while discussing threats and pos-
sible TTPs related to different environments.

The main components of the framework are the following:

• Tactics – “why”/goals of the adversary during the attack.

• Techniques – how the adversary achieves a goal.

• Sub-techniques – more specific means of achieving a goal on the lower
level than techniques.

• Other metadata that includes: documented adversarial techniques us-
age, mitigations and detection.

The framework consists of three matrices such as enterprise, mobile, and
Industrial Control System (ICS). The enterprise matrix contains information
related to platforms, mainly Windows, macOS, Linux, cloud, network and
containers. The mobile matrix includes Android and iOS platforms. It covers
device access and network-based techniques without adversary access to the
device. Finally, the ICS matrix covers information within an ICS network.

There are multiple benefits of using the MITRE ATT&CK framework
in organizations. Employing this will allow support for adversary emulation,
red/purple team activities, defensive gap analysis, Security Operation Center
(SOC) maturity analysis.

2.3 Security Operation Teams

Security operations are traditionally organized into three teams: offensive
(red), defensive/response (blue) and mixed (purple).

CHAPTER 2. BACKGROUND 21

Red Team

A red team deals with the offensive side of security operations. Red teams
emulate potential attacks of the adversary or exploitation capabilities in the
target environments to identify vulnerabilities in systems and applications.
The main goals of the red team are to showcase the consequences of success-
fully conducted attacks and to help the defense team define what activities
they can detect in a real-world setting [26].

Blue Team

A blue team covers the defensive side of security operations. Blue teams
typically work in the SOC. They monitor system activities to detect any
subnormal ones that can be a sign of attack. Another responsibility of a blue
team is responding to attacks, if any, and building prevention mechanisms
based on faced attack or open-source attacks data. Thus, blue teams are
responsible for defending systems from attacks by working on threat preven-
tion, detection and response [27].

Purple Team

Companies utilize red and blue teams for building system defenses, detecting
threads effectively and finding gaps in security systems. Both red and blue
teams are usually organized as separate entities with separate goals. Usually,
there is not much knowledge sharing between teams or frequent feedback
exchanges. Thus, a purple team was introduced to improve the effectiveness
of utilizing red and blue team activities.

A purple team is a collaborative approach to system testing with ac-
tive knowledge and feedback sharing. It enhances the effectiveness of threat
hunting, network monitoring and vulnerability detection [28].

The purple team security evaluation consists of the following steps:

1. The red team executes different attack techniques in the target envi-
ronment.

2. The red team actively collaborates with the blue team to test the de-
fense and response.

3. Based on the results, defense and response capabilities are improved.

CHAPTER 2. BACKGROUND 22

Automated Purple Team

A purple team is typically a person-to-person collaboration. Person-to-person
collaboration is very laborious and resource-intensive. Thus, it cannot pro-
vide a constant view on the protection of the organization. However, it can
be automated. Security teams can provide automated purple team capability
as a purple team security evaluation tool by simulating possible techniques
of attacks utilized by adversaries (the red team) and giving defensive and
mitigation procedures (the blue team). Therefore, organizations can utilize
an automated purple team evaluation tool to have an ongoing security eval-
uation process [29].

2.4 Test/Attack Automation

Increasing threat vectors result in an increasing need for a security testing
of systems. Therefore, the system needs to be prepared for real attacks
by testing its vulnerabilities and preventing them by setting up detection
and defense. Security testing techniques consist of penetration testing and
red/purple team testing. Penetration testing focuses on exploiting the system
and network vulnerabilities. On the other hand, red/purple team evaluation
focuses on checking the resilience of the system against attacks that are likely
to be performed by real adversaries [30].

We distinguish two approaches to penetration testing or red/purple team
testing. The first approach is manual testing is more detailed and well cus-
tomized to the specific system. Manual testing is a time-consuming process
that requires the advanced knowledge of security experts. Typically a group
of experts is required to perform a comprehensive manual security testing
of the system, especially in a limited time frame. Another approach is au-
tomated testing. Automated testing is a highly adopted approach to de-
creasing time spent on system testing, as it allows to repeat the tests easily.
Automation tools are usually built based on threat research and combined
into easy-to-package and simple-to-use solutions [31].

Due to the multiple benefits offered by automated approaches, we choose
to focus on this set of methods in this thesis work. The current state-of-
art development of automation tools for security testing of a cloud native
environment consists of several solutions. We can summarise the landscape
of the existing attack automation solutions as follows:

• Atomic Red Team is a set of tests mapped to the MITRE ATT&CK
framework for testing environments in a fast, portable and consistent

CHAPTER 2. BACKGROUND 23

manner. The tool is not built specifically for the cloud native environ-
ments and has a limited number of TTPs for cloud native environments.
Attack techniques are formulated in a text markup format [32].

• Stratus Red Team is a tool for emulating offensive attack techniques
that are mapped to the MITRE ATT&CK framework. The tool is
similar to the Atomic Red Team but created explicitly for cloud en-
vironments. The Stratus Red Team cannot simulate attacks against
user environments and only simulates attacks in the pre-created for the
attack needs test environments [33].

• Leonidas is a framework for executing attacks in the cloud. It is a
web application that can be deployed in the target AWS environment
using Terraform. Leonidas describes attack techniques using the YAML
format [34].

• Pacu is an AWS exploitation framework for penetration testing against
cloud environments. It is implemented in Python. It has numerous
attack techniques to exploit and enumerate AWS environments [35].

• MITRE CALDERA is a framework for automated adversary em-
ulation, the assistance of manual red teams and automated incident
response. It is developed by MITRE and is based on the MITRE
ATT&CK framework. The framework has a client-server system, where
the server is responsible for setting up client and operations initiation.
It emulates the typical Command Control (C2) pattern found in real-
world attacks and employs defense evasion techniques, such as jittering
and obfuscation of C2 communication [36].

Chapter 3

Cloud Native Threat Matrix

This chapter contains an overview of the created cloud native threat matrix.
Firstly, we discuss the methodology of creating it. Then we overview the
threats in cloud native environments. Next, we describe the Cloud Native
Threat Matrix structure and its implementation. Finally, we discuss back-
ground work.

3.1 Methodology

The matrix is a result of a systematic study of sources that contain possible
threats to the cloud native environments and security analysis of such envi-
ronments. The systematic mapping study is adapted from [37] and modified
to the needs of creating the Cloud Native Threat Matrix. We decided to base
the structure on the MITRE ATT&CK matrix for the Cloud Native Threat
Matrix. As MITRE ATT&CK is a widely used framework in the security in-
dustry. For example, Microsoft Defender for Cloud uses MITRE ATT&CK
framework for mapping its security recommendations [38].

Figure 3.1 shows the steps of the systematic mapping study. We present
the methodology used in this study:

1. We defined a research question that established a review scope, as de-
scribed at chapter 1.

2. We conducted a search and gathered resources.

3. We completed the screening of resources and defined the relevant ones.
The relevant sources of information are described at the section 3.5.

4. We performed the data extraction and mapping process. There are
several steps in the data extraction and mapping process. The first

24

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 25

Figure 3.1: A systematic mapping study process steps.

step is to gather techniques after the screening of resources. This step
also requires a decision on whether the technique is in the scope of cloud
native environments. This thesis looks into cloud native environments
as a combination of containerization, cloud and CI/CD.

5. We collect the techniques from the sources to a systematic map. Since
there are multiple redundant techniques, we map similar techniques
into one technique while mentioning the source and specific details in
the description.

The following paragraph contains an example of the same and similar
techniques mapped into one. We define a technique called “Valid Accounts”,
present in the MITRE ATT&CK Cloud matrix and MITRE ATT&CK Con-
tainers matrix. It has multiple sub-techniques (such as default accounts,
local accounts and cloud accounts). We make sure to include information
about these sub-techniques in the description of the technique as shown in
Figure 3.3. After thorough analysis of other techniques, we discover that
“Using cloud credentials” from the Microsoft Threat matrix for Kubernetes
is very similar in the context to the “Valid Accounts”. Therefore, we map this
technique to “Valid Accounts” and proceed by adding information and source
in the “Valid Accounts” technique description. Analyzing even further, we
notice that Common Threat Matrix for CI/CD Pipeline contains similar tech-
niques, such as “Valid Account of Git Repository”, “Valid Account of CI/CD
Service”, “Valid Admin account of Server hosting Git Repository”. We map
it and perform the same steps as with “Using cloud credentials” technique.
The mapping is shown in Figure 3.2. Performing these steps makes a matrix
more coherent and deletes collisions.

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 26

Figure 3.2: Mapping “Valid Accounts” technique in the process of cloud native
matrix creation.

Figure 3.3: View of the “Valid Accounts” technique, after mapping with
similar techniques.

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 27

The next step is to rename some of the techniques in the matrix for con-
sistency. We adopt the same technique used by the MITRE ATT&CK frame-
work that creates a simple technique naming and includes specific details in
the description. For example, a source document “Common Threat Matrix
for CI/CD Pipeline” and a technique “Modify the configuration of Production
environment” can be rephrased as “Production Environment Configuration”.

At this stage, we already have a matrix with techniques divided between
different tactics. Each technique has a description. During this step, we
update the description and create an ID for each technique. The technique
ID facilitates the matrix navigation.

The final step is to develop a view board for the matrix. Firstly the
view board for the matrix was an Excel table, where the matrix was created.
However, having an Excel table is not the most effective solution in this case.
Moreover, there is no good functionality for listing a description of techniques
in a readable form with easy navigation. Therefore, we created a view board
for the matrix. It is described in more detail in the section 3.4.

3.2 Cloud Native Threats

Adversaries are adapting their attack techniques to target both the software
supply chain and the infrastructure of the cloud native applications. In fact,
according to a study conducted [39], software supply chain attacks increased
by more than 300% in 2021 compared to 2020. For example, the SolarWinds
attack [40] and the Codecov breach affected the software supply chains of
many companies, remaining undetected for months. This directed the at-
tention of organizations to build their defense capabilities against software
supply attacks. Adversaries are continuously searching for new techniques to
gain persistence, leverage privilege-escalation and perform data exfiltration
to increase possible damage to the infrastructure and businesses.

Considering that we are looking into cloud native environments as a com-
bination of containerization, cloud, CI/CD, we divided threats into three
categories: container threats, cloud threats and CI/CD threats.

Container Threats

A containerized environments have several possible routes to be attacked.
The most common ones are badly configured containers, build machine at-
tacks, vulnerable application code and exposed secrets [41]. As companies
adopt container technologies like Docker and Kubernetes and microservice
design patterns, security teams have to advance container security solutions

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 28

that allow such infrastructure migrations [42]. In this thesis work, we look
into container threats from both container environment and container or-
chestration perspectives.

Cloud Threats

Cloud security is the practice of protecting data, programs and cloud-based
infrastructures from cyber attacks. In 2021 the number one security weakness
of cloud environments is misconfigurations (23%), followed by exposed data
by users (15%) and account compromise (15%) [3]. When communicating
cloud-related threats in this thesis work, we define them as threats related
to Infrastructure-As-a-Service (IaaS) and Software-As-a-Service (SaaS) plat-
forms.

CI/CD Threats

CI/CD pipeline is a significant attack vector for adversaries, as it has ac-
cess to the code, databases, credentials, secrets, development and production
environments. Additionally, as CI/CD pipeline attacks are less researched,
companies are less prepared to detect or prevent this type of attacks. In this
thesis work, we define CI/CD threats as threats related to the development
process, including the CI/CD pipeline.

3.3 Cloud Native Threat Matrix

The Cloud Native Threat Matrix contains 125 techniques divided among 11
tactics. Each technique has an ID, description, source and category tag.
Figure 3.4 includes the structure of each technique in the matrix, where 1 is
the name of the technique, 2 is a category tag, 3 is the ID, 4 is the description
of the technique, 5 is the source of the technique.

Our matrix consists of 11 tactics, where each tactic entails the goal of the
adversary action. Table 3.1 contains all tactics with a description.

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 29

Figure 3.4: View of the single technique in the matrix.

Table 3.1: Adversarial tactics in the Cloud Native Threat Matrix.

Adversarial tactics
ID Name Description

1 Initial Access
Techniques that the adversary uses to get initial
access to the system. It consists of various entry
approaches to get a foothold in a network.

2 Execution

Techniques that the adversary uses to run a ma-
licious code in the system. It entails using ways
to execute an adversary-controlled code on the re-
mote or local systems.

3 Persistence

Techniques that the adversary uses to persist the
malicious code in the system so that it is not re-
moved by the defender. Adversaries utilize access,
activity, or configuration modifications to stay on
systems. These strategies are used to keep sys-
tems accessible even after restarts, changes in cre-
dentials and other disruptions that could prohibit
them from re-accessing the system.

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 30

Continuation of Table 3.1
ID Name Description

4 Privilege Escala-
tion

Techniques that the adversary uses to get higher
privileges in the system. Typically the adversary
will access a system and explore a network with
unprivileged access. Then they will perform tech-
niques to escalate privileges to reach other goals.

5 Defense Evasion

Techniques that the adversary uses to avoid being
detected. Used techniques are usually removing/-
turning off security software or encrypting/obscur-
ing data and scripts. Adversaries also utilize and
misuse trusted processes to hide the malware.

6 Credential Access

Techniques that the adversary uses to steal ac-
counts credentials. Possible techniques include
keylogging or credential dumping to steal account
login and password.

7 Discovery

Techniques that the adversary uses to learn more
about the environment. The knowledge about the
system and network helps the adversary decide
how to perform the next attack steps.

8 Lateral Movement

Techniques that the adversary uses to move
through the system. The majority of techniques
are focused on gaining access to and controlling re-
mote systems on a network. It frequently involves
exploring the network for the target and getting
access to it.

9 Collection

Techniques that the adversary uses to collect in-
formation that matches their objectives from the
system. Collection of the data is a preparation step
for data stealing. Techniques typically include cap-
turing screenshots and keyboard input.

10 Exfiltration

Techniques that the adversary uses to steal data
from the environment. After collecting the data,
adversaries often package it using compression and
encryption to avoid detection. Exfiltration is typ-
ically performed by transferring the data over an
adversary command and control channel.

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 31

Continuation of Table 3.1
ID Name Description

11 Impact

Techniques that the adversary uses to alter, dis-
rupt, or destroy data and systems. The adver-
sary is attempting to alter, disrupt, or destroy the
data and systems. Adversaries utilize impact ap-
proaches to modify operational and business pro-
cesses in order to disrupt availability or compro-
mise the integrity of systems.

Next, we present a more detailed description of the technique ID. As its
name says, the technique ID is a unique identifier that contains information
about the technique. It has a standard template F-x1.x2.x3. and is formed
as follows:

- The first digit (x1) is a tactic. The numeration follows Table 3.1
content.

- The second digit (x2) is category, which can take the following values:
0 – cloud, containers and CI/CD; 1 – cloud; 2 – containers; 3 – CI/CD;
4 – containers and CI/CD.

- The third digit (x3) is a counter of a technique in each tactic.

There are 125 techniques in the Cloud Native Threat Matrix from both
cloud, container and CI/CD categories.

In this chapter, we present a selection of a few sample techniques from
each tactic to provide a general understanding of what each tactic looks like
and how they align with a tactic goal.

Initial Access

Valid Accounts

F-1.4.01.
The adversary may use compromised credentials of existing accounts.

Obtained certificates can be used to get increased privileges in the system and
provide access to restricted network areas. Different types of accounts and
credentials can be targeted, such as cloud credentials, default accounts, local
accounts, Git repository, CI/CD service and server hosting Git repository
[43–45].

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 32

Supply Chain Compromise

F-1.0.03.
The adversary may exploit the weakest/less secure link in the CI/CD

pipeline or application. Mainly targeted areas are exploits on widely used
open-source packages, open-source vulnerabilities, compromised CI/CD tools
and changes in the build process as part of an unpatched or malicious supply
chain [39].

Compromised Images in Registry

F-1.2.05.
The adversary may attempt to add a compromised image to the private

registry given its access. Additionally, they can add compromised images to a
public registry, like Docker Hub and expect the user to use this compromised
image [46].

Execution

Deploy Container

ID: F-2.2.03.
The adversary may deploy a container via Kubernetes dashboard, Kube-

flow, or via Kubernetes API server. The deployed container can be used to
execute malicious commands or download malware. Another important as-
pect of malicious containers is that it allows using a wider range of techniques
to be used and achieve persistence [47].

Scheduled Task/Job

ID: F-2.2.04.
The adversary may compromise job scheduling in containerized environ-

ments. It can be used to schedule the deployment of a container that executes
malicious code. Container job scheduling works similarly to the Cron job in
Linux. Thus, it performs defined tasks in a designated time [47].

CronJob in Kubernetes can be used to schedule a specific Job (e.g., a Job
that executes a malicious code in the Pod) [46].

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 33

Container Lifecycle Hooks

ID: F-2.2.08.
The adversary may add container lifecycle hooks to a Pod by editing

a Pod YAML file and adding, for example, postStart and preStop events.
Those events can contain a malicious script [48].

Persistence

Account Manipulation

ID: F-3.1.03.
The adversary may modify cloud accounts by adding a new set of creden-

tials. Having adversary-controlled credentials in the cloud accounts allows
adversaries to have persistent access to the targeted system. There are several
ways to add SSH key in the cloud environment, such as using ImportKeyPair
or gcloud compute os-login ssh-keys add command in Google Cloud Platform
(GCP), or CreateKeyPair API in AWS [49].

Host Mount

ID: F-2.2.07.
The adversary may mount a file or folder to a target container using

hostPath volume. It is used to mount a file/folder from a host machine to a
container and can be exploited by adversaries to get persistent access to the
host machine [46].

CI/CD Configuration

F-2.3.16.
The adversary may try to modify CI/CD configurations. When CI/CD

configurations on the Git repository are allowed without review, Git allows
pushing unsigned commits. When there is no signature to CI/CD configura-
tions, the adversary can try to change configurations. Weak audit login can
help the adversary to remain undetected [45].

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 34

Privilege Escalation

Privileged Container

ID: F-4.2.05.
The adversary may get access to or deploy a privileged container. A

privileged container has permission to do a wide variety of actions on the
host. Thus, by having access to it, the adversary may modify the host and
get access to the admin information and resources located on the same host
[46, 50].

Cluster-Admin Binding

ID: F-4.2.06.
The adversary may create a binding to the privileged role or to an admin

role. A role binding allows giving permissions specific to the role to the user
or group of users. It is an initial part of Role-Based Access Control (RBAC)
in Kubernetes [46, 51].

Defense Evasion

Impair Defenses

ID: F-5.0.02.
The adversary may turn off, exhaust, or block the defensive mechanisms of

a target system. Defensive mechanisms include security tools, cloud firewalls,
or cloud logs. Having these mechanisms disabled allows adversaries to avoid
detecting malicious activities and system modification [52].

In cloud environments, modifying cloud firewall rules allow bypassing
limitations on accessing cloud resources [53].

Masquerading

ID: F-4.2.08.
The adversary may change/manipulate the name or metadata of a file/ob-

ject. Masquerading is used to evade detection. It takes place when malicious
files/objects are modified to look legitimate by changing the name and defin-
ing a different file type so that the user will misidentify it [54]. Legitimate
location can also be matched when applicable [55].

In containerized environments, the adversary may exploit Pod/container
name similarity. Kubernetes system Pods names are appended by a random
suffix. Thus, the adversary can create a Pod that will emulate the look of

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 35

the legitimate Pod by using a known Pod name and adding a random suffix
[43].

Credential Access

Brute Force

ID: F-6.0.02.
The adversary may brute force system credentials to get access to the

system. The adversary can perform brute force online by guessing a password
to the system and receiving an instant result about their validity, or offline,
by using previously obtained hashes. In addition, the adversary may use
the knowledge gathered in other steps, such as valid accounts and password
policy discovery. Having information about password policy decreases the
time needed to brute force valid credentials [56].

Network Sniffing

ID: F-5.1.10.
The adversary may perform network sniffing of the traffic to get informa-

tion about the system, users and authentication details. Network sniffing is
monitoring wireless or wired networks to record data. User credentials are
one of the biggest targets, especially when transmitted using unencrypted
protocols. The adversary may also discover system configurations that are
helpful for the consequent attack steps. In the cloud environments, the ad-
versary may utilize GCP Packet Mirroring, Azure vTap to record traffic and
AWS Traffic Mirroring [57].

Discovery

Network Service Discovery

ID: F-7.0.01.
The adversary may scan the network to discover running services or re-

mote hosts. Some of the discovered services may be vulnerable, which can
be used for exploitation. The adversary may discover services running on
the non-target machine. Service discovery from the cloud host may allow
the adversary to discover services of the underlying host. In the case of
containerized systems, the adversary with access to one container might be
able to map all networks, as, by default, there are no limitations on Pods
communication [46, 58].

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 36

Cloud Infrastructure Discovery

ID: F-7.1.04.
The adversary may try to discover components of IaaS environments using

cloud API and CLI. System components include cloud instances, snapshots,
virtual machines and cloud services. API and CLI commands have the capa-
bility of requesting information about the infrastructure. The adversary can
use the gathered information for planning the next attack steps [59].

Lateral Movement

Use Alternate Authentication Material

ID: F-8.0.01.
The adversary may use alternate authentication material to access the

target system. For example, web session cookies are commonly used in cloud
web applications. Session cookies keep the user logged in to the application,
even when the application is not actively used. Thus, the adversary may try
to steal a cookie to bypass the log in and access the data available to the
victim user [60]. In containerized environments, secrets, including application
credentials, can be stored in the configuration files. Thus, adversaries may
attempt to retrieve the secrets to escalate privileges [46].

Writable Volume Mounts on the Host

ID: F-8.2.04.
The adversary may escape from the exploited container to the underlying

system by creating a container with a writable hostPath volume. Escaping
the container will give the adversary access to the host system (underlying
system in the containerized environments) [46].

Collection

Data from Cloud Storage Object

ID: F-9.1.01.
The adversary may collect information from the cloud data storage that

does not have proper protection. For example, retrieving data from cloud
storage directly via vulnerable to attacks API. Commonly the end-users mis-
configure such storage, leaving them vulnerable to attacks. Credentials gath-
ered in the previous steps can be used for accessing storage with access per-
missions controls [61].

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 37

Automated Collection

ID: F-9.1.05.
The adversary may collect internal data using automatic data gathering

techniques. The adversary may use cloud API, CLI, or transform services to
collect information in the cloud environments automatically [62].

Exfiltration

Transfer Data to Cloud Account

ID: F-10.1.01.
The adversary may exfiltrate data and backups from one cloud account

to another within the same cloud provider to avoid detection. This transfer
within the same cloud provider might be more difficult to be monitored,
unlike data transfers over external network interfaces [63].

Impact

Resource Hijacking

ID: F-11.0.03.
The adversary may use the system to solve resource-intensive problems,

likely affecting the system’s availability. The common use case is cryptojack-
ing [64]. Cryptojacking is an act of mining cryptocurrencies. Cloud-based
systems are a common target for this attack, as they have a high potential of
available resources. Containerized environments are also commonly targeted
because of exposed API and the possibility for the resource scaling [65].

Denial of Service

ID: F-11.4.02.
The adversary may perform a Denial-of-Service (DoS) attack to make the

services unavailable to users. A DoS is an attack that is intended to cause a
machine or network to be inaccessible to the intended users. There are many
possible DoS attack types: Endpoint DoS, Network DoS, Application DoS,
Node scheduling DoS, Service discovery DoS, SOC/Security Information and
Event Management (SIEM) DoS [45, 46, 66, 67].

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 38

3.4 Implementation

As mentioned earlier, there is a need for a more efficient way to display and
navigate the matrix. Therefore, we created a web application that displays
a dashboard. Figure 3.5 shows a dashboard view. The application builds
a dashboard view based on the data in the Excel spreadsheet. The applica-
tion parses the .xlsx file during build time to a JSON file. The application
uses React and NextJS for displaying the page. Styling is implemented using
Tailwind library. It is written in TypeScript. The category label is deter-
mined by the technique ID. The dashboard view of the matrix contains all
techniques and can be filtered by category. Having a dashboard application
provides us with a better look and usability for a future building on the other
components of the framework. The source code of the matrix is available on
its GitHub repository https://github.com/fraktalcyber/threat-matrix-CN.

3.5 Background work

The Cloud Native Threat Matrix is based on the information collected from
multiple resources. The primary resources that the threat matrix is based
on are listed below.

MITRE ATT&CK Cloud Matrix

As a part of the MITRE ATT&CK framework, the Cloud matrix belongs to
the Enterprise section, as discussed in the section 2.2. It covers cloud-related
techniques based on five platforms, such as Office 365, Google Workspace,
Azure AD, SaaS and IaaS [68]. For the Cloud Native Threat Matrix, we used
techniques related to the IaaS and SaaS platforms. These techniques are
divided into 11 tactics.

MITRE ATT&CK Containers Matrix

The MITRE ATT&CK containers matrix covers techniques targeted to the
containerized technologies. It is a part of MITRE ATT&CK Enterprise, as
discussed in the section 2.2. It has 9 tactics, such as Initial Access, Execu-
tion, Persistence, Privilege Escalation, Defense Evasion, Credential Access,
Discovery, Lateral Movement and Impact [69].

https://github.com/fraktalcyber/threat-matrix-CN

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 39

Microsoft Threat Matrix for Kubernetes

Initially, MITRE ATT&CK only provided coverage for Windows and Linux
systems. The Azure Security Center noticed that Windows and Linux sys-
tems share plenty of techniques with Kubernetes [70]. Thus, the Microsoft
Threat matrix for Kubernetes was created as an ATT&CK-like matrix of
techniques related to the container orchestration security focusing on Ku-
bernetes [43, 46]. It was built on and influenced by the MITRE ATT&CK
framework. It has 9 tactics and 40 techniques.

Hacking Kubernetes

Hacking Kubernetes is a book authored by Andrew Martin and Michael
Hausenblas, that contains a threat-based guide to the Kubernetes security
[48]. The authors provide practical advice on how to configure a Kubernetes
cluster from the perspective of the adversary. Authors reference a Microsoft
Threat matrix for Kubernetes and add 69 new techniques shared within 9
tactics to it.

Common Threat Matrix for CI/CD Pipeline

It is an ATT&CK-like matrix that focuses on CI/CD pipeline-specific threats
[45]. Its main goal is to educate the cybersecurity community on how to
secure CI/CD pipelines. It uses the same structure as the MITRE ATT&CK
framework. It has 29 techniques shared between 9 tactics.

Other public research reports (Aqua Security)

Aqua Security is a cloud native security company that conducts a plethora
of security research projects. The most relevant to this thesis work is “Cloud
Native Threat Report: Attacks in the Wild on the Container Supply Chain
and Infrastructure” [71]. This project was conducted in 2020 and 2021. The
2021 report contains the data collected from honeypots for the duration of six
months, during which the Aqua Security team observed more than 17 thou-
sand attacks. The results were mapped to the MITRE ATT&CK Containers
matrix and added 19 new techniques split over 9 tactics.

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 40

(a) Part 1 of the Cloud Native Threat Matrix.

Figure 3.5: The Cloud Native Threat Matrix dashboard view.

CHAPTER 3. CLOUD NATIVE THREAT MATRIX 41

(b) Part 2 of the Cloud Native Threat Matrix.

Figure 3.5: The Cloud Native Threat Matrix dashboard view.

Chapter 4

Attack automation

In this chapter, we present an overview of attack automation. Firstly, we
provide a methodology. Next, we describe a tool for techniques automation.
We present a laboratory environment for tool testing. Finally, we describe
combining techniques into attacks.

4.1 Methodology

The overall methodology follows the design science approach that focuses on
problem-solving [72] and designing a tool based on predefined needs. We
picked design science as it bridges the gap between academic research and
the requirements of the organization. Furthermore, this thesis work is based
on an industrial collaboration. Thus, the aim is to provide a feasible tool for
attack techniques automation to improve purple team evaluations of cloud
native environments.

We followed the principles of a problem-solving cycle based on the design
research for the automation tool development. Figure 4.1 shows steps of the
problem-solving cycle [73]. The first step of this approach requires a clear
definition of the problem. We defined a problem at the very beginning of the
thesis work in the section 1.3. The next step is the analysis and diagnosis
of the problem. During this step, we accomplished a literature review and
defined existing solutions for the problem, discussed in the section 2.4. We
identified that we need a simple static solution, and current tools do not
cover this requirement. Thus, we started a solution design. We identified
that Fraktal Oy has an internal automation tool that fits the requirements
of a simple and static tool. We designed our tool inspired by Fraktal’s in-
ternal automation tool. As an intervention, we implemented a solution in
the organization. As a final step, we evaluated the solution by implementing

42

CHAPTER 4. ATTACK AUTOMATION 43

Figure 4.1: Problem-solving cycle [73].

automation of attack techniques and testing them in the laboratory environ-
ment, as discussed in section 4.4.

4.2 Tool for the Techniques Automation

Our tool is inspired by Fraktal’s internal automation tool, which is a simple
container-based tool for running automated security tests. Individual tests
are modules that can be executed sequentially. The internal automation tool
has a set of simple commands automated (e.g., Network Mapper (nmap)
port scan). However, automated commands are not exclusive to cloud native
environments.

The automation tool created for the thesis work is a closed source software
built to perform the cloud native attack techniques automation. It is written
in Go and has a structured way of adding new techniques description and
commands for execution. After the proper framework and the process are
both in place, adding new techniques is relatively easy. The tool is lightweight
and can be containerized for easy deployment in the target environment.

In our automation tool, we want to control when and which techniques
are being executed as it is undesirable for the attack container to automati-
cally run the automation every time it is installed or executed in the target

CHAPTER 4. ATTACK AUTOMATION 44

environment. We also aim to have a standardized way to trigger the deploy-
ment of the attack container and its deletion after the testing is completed.
Therefore, we developed a script runner. Script runner is a bash code that
triggers several actions. The script runner deploys a Pod in the target clus-
ter, executes all or selected attack techniques, cleans up after techniques
execution and deletes a Pod from the cluster. The user selects and triggers
commands for the execution from the list of commands. We show the CLI
tool for a script runner below.

$. / scr iptRunner . sh
Commands : :
0 − deploy an attack automation conta ine r in the

c l u s t e r
1 − l i s t a l l t e chn iques
2 − execute a l l t e chn iques
3 − c l ean up a f t e r execut ing a l l t e chn iques
4 − pick a techn ique f o r the execut ion
5 − de l e t e the attack automation conta ine r from the

c l u s t e r
e x i t − terminate
Please s e l e c t a command :
1
L i s t i n g a l l commands . . .
he lp − Pr int s command help .
execute − Runs a l l a t tack s imu la t i on s with d e f au l t

arguments .
cleanUp − Clean up a f t e r s imu la t i on o f a l l t e chn iques .
dud − Simulates dud attack i . e . does nothing .
dpcn − Simulates dep loy ing conta ine r .
l f h k − Simulates c r e a t i n g a pod with l i f e −cy c l e

hooks .
s c j b − Simulates s chedu l ing a job .
dprc − Simulates dep loy ing a p r i v i l e g e d conta ine r .
c lab − Simulates a c l u s t e r admin binding .
a s c r − Simulates a c c e s s i n g c loud r e s ou r c e s .

CHAPTER 4. ATTACK AUTOMATION 45

Assume Breach Approach

Our automation tool is built based on the assume breach principle. When
securing systems and applications, we always understand that there is no
complete security, which means that security incidents are inevitable. Thus,
when building security for systems, we have to ensure that the blast radius
of the breach is limited, meaning that we are able to detect and respond to
the attack in a timely manner [74].

The traditional approach for building security controls and defenses is a
prevent breach approach. A prevent breach focuses on the security of the sys-
tem’s outer layer to avoid security breaches. It contains preventive controls
that try to secure a system from the initial access of the adversary. However,
preventative security controls are not enough in the modern landscape of
new threats. For instance, the log4j incident [75] or Dependency Confusion
attack [76] could not be predicted, and once they happen, something other
than the outer perimeter of defense is required.

That is mainly why an assume breach approach has gained popularity
in recent years. Building security controls based on the assume breach ap-
proach accepts that the adversary already has access to the system. The
testing is focused on checking if protections inside the system can prevent
the adversaries from lateral movement/privilege escalation to minimize the
final impact on the system. An assume breach approach helps to build the
defense-in-depth system capabilities. The defense-in-depth is an approach to
building layered defense mechanisms to protect a system in situations where a
security control fails or a vulnerability is exploited [77]. The defense-in-depth
is needed because the outer layer of security cannot be relied on.

4.3 Laboratory Environment

For testing the automation tool, we set up a restricted laboratory environ-
ment. Figure 4.2 shows the architecture of the laboratory environment. It
is hosted on the AWS cloud. The main building blocks of the laboratory
environment are:

• Elastic Container Registry (ECR) is a fully managed container
registry, that allows to deploy, share and store application images. In
our laboratory environment, this module stores an attack container
image that is used for deployment in the target system. The attack
container image is built and pushed to the ECR from the bastion host.

• Bastion host is a server that provides access to the private network

CHAPTER 4. ATTACK AUTOMATION 46

Figure 4.2: Architecture of laboratory environment for the attack simulation
testing.

from the external network. In our laboratory environment, it is an
Amazon Elastic Compute Cloud (Amazon EC2) instance that hosts
the script runner. It is used to trigger the execution of techniques and
receive the output of the techniques execution. It provides a remote
connection to the private instance with a script runner through the
public internet. Bastion host also hosts a kubeconfig file for the target
cluster access.

• Target system is the cloud native system that is targeted with au-
tomated attacks. In our restricted laboratory environment, a target
system is an Amazon EC2 instance with a running K3s (a lightweight
Kubernetes distribution) Kubernetes cluster.

4.4 Implemented Techniques

To execute attacks, the attack container should be deployed in the target
environment. Then one or multiple techniques should be triggered. The log
of technique execution is collected at the bastion host and provides whether
the technique was successfully run.

CHAPTER 4. ATTACK AUTOMATION 47

We tested our automation tool by running automated techniques in the
laboratory environment. We automated 7 techniques from 4 different tactic
categories:

• Execution: Deploy container, Scheduled Task/Job, Container Lifecy-
cle Hooks.

• Persistence: Host Mount.

• Privilege Escalation: Privileged Container, Cluster-admin Binding.

• Discovery: Cloud Infrastructure Discovery.

Next, we describe more detailed techniques automation.

Technique: Deploy Container

The goal of this technique is to facilitate the execution of malicious commands
or to download malware. It may be achieved by deploying a container in the
target cluster. The adversary would not usually be able to deploy containers.
However, the cluster might be misconfigured, and given too much privileges,
it might allow this technique to be executed.

To execute the technique in the target environment, we trigger “dpcn –
Simulates deploying container” command from the script runner. The attack
automation tool executes the command on the target machine. It pulls the
specification file that is stored inside the attack container. Considering that
the tool has access to the kubectl, it triggers the kubectl apply command to
deploy a container.

We present the view of the CLI tool for a script runner after triggering
the deploy container technique execution:

$ Please s e l e c t a command :
4
Enter the techn ique shor t name , as s p e c i f i e d
in the a l l t e chn iques l i s t i n g :
dpcn
deployment . apps/new−deployment c rea ted

The conta ine r i s s u c c e s s f u l l y deployed .

CHAPTER 4. ATTACK AUTOMATION 48

To ensure that the technique was executed correctly, we list Pods:

$ kubect l get pods
NAME READY STATUS AGE
attack 1/1 Running 30h
new−deployment−66b6c48dd5−7hvj r 1/1 Running 13m
new−deployment−66b6c48dd5−sp75 j 1/1 Running 13m
new−deployment−66b6c48dd5−vrpsr 1/1 Running 13m

As shown above, we can see that 3 replicas of the container were created
in the cluster after the technique execution.

Technique: Scheduled Task/Job

ID: F-2.2.04.
The goal of this technique is to schedule a job in the environment to

achieve persistence or defense evasion. As containers might be recycled/de-
stroyed, a Cron job could recreate the malicious containers for the adversary.
Usually, the adversary should not be able to schedule a Kubernetes Cron-
Job. However, in the misconfigured cluster, the service accounts may be
given privileges to the Kubernetes apiserver. Such privileges should not be
given to service accounts (i.e., machine users of the Kubernetes cluster).

In our case, we simulate the scheduling of a Kubernetes CronJob. To
execute this technique, we trigger “scjb – Simulates scheduling a job” from
the script runner. Then, the automation tool pulls a job configuration file
and deploys a new job using kubectl apply.

The configuration file of the job scheduling:

ap iVers ion : batch/v1
kind : CronJob
metadata :

name : h e l l o
spec :

s chedu le : "∗/1 ∗ ∗ ∗ ∗"
jobTemplate :

spec :
template :

spec :
c on ta i n e r s :
− name : h e l l o

CHAPTER 4. ATTACK AUTOMATION 49

image : busybox : s t ab l e
imagePul lPo l i cy : I fNotPresent
command :
− /bin / sh
− −c
− date ; echo He l lo World

r e s t a r tP o l i c y : OnFailure

We present the view of the CLI tool for a script runner after triggering
the scheduled job technique execution:

$ Please select a command :
4
Enter the techn ique shor t name , as s p e c i f i e d
in the a l l t e chn iques l i s t i n g :
s c j b
cronjob . batch/ h e l l o c r ea ted

The job i s s u c c e s s f u l l y scheduled .

To check that the technique was executed correctly, we list CronJobs:

$ kubect l get c ron jobs
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
he l l o ∗/1 ∗ ∗ ∗ ∗ False 0 14 s 55 s

As shown above, we can see that a new job was created.

Technique: Host Mount

ID: F-2.2.07.
The goal of this technique is to get persistent access and escalate privileges

on the host machine. Access may be gained from the container to the host
by mounting a file or folder to a target container using hostPath volume.
Usually, the adversary should not be able to add hostPath volume. However,
it is possible in a misconfigured system with RBAC that does not forbid
doing so.

To execute this technique, we trigger “smhm – Simulates host mount”
from the script runner. The tool pulls a specification file stored inside the

CHAPTER 4. ATTACK AUTOMATION 50

attack container. The specification file defines a privileged Pod with a host
mount and copy of the public key to the Node’s .ssh/authorized_keys file to
gain persistent access to the system.

The container specification file:

ap iVers ion : vk
kind : Pod
metadata :

name : pod
namespace : d e f au l t

spec :
c on ta i n e r s :
− image : busybox

name : e v i l −pod
command :
["/ bin / sh " , "−c " , " whi l e t rue ; do s l e e p 3600 ; done "]
args :
["−c " , " echo ssh−r sa <public_key> <user_name>@<ip_adress>
>> /host /home/ user / . ssh / author i zed _keys " ,
" whi l e : ; do echo ’ . ’ ; s l e e p 5 ; done "]
volumeMounts :
− mountPath : / host

name : host−root
secur i tyContext :

p r i v i l e g e d : t rue
volumes :
− hostPath :

path : /
type : ""

name : host−root

Technique: Container Lifecycle Hooks

ID: F-2.2.08.
The goal of this technique is to execute a malicious code inside the target

system. It may be performed by adding container lifecycle hooks to a Pod,
such as postStart and preStop events. Usually, the adversary should not
be able to add container lifecycle hooks. This still can be possible in a
misconfigured system with RBAC that does not follow the least privilege

CHAPTER 4. ATTACK AUTOMATION 51

principle [41]. Where the least privilege principle implies that a user is given
the minimum levels of permissions needed to perform their functions.

To run this technique, we trigger “link – Simulates creating a Pod with
life-cycle hooks” from a script runner. It then triggers kubectl to create a
new Pod with life-cycle hooks adding postStart and preStop events to the
Pod configuration file.

Relevant part of the postStart and preStop events configurations is shown
below.

l i f e c y c l e :
po s tS ta r t :

exec :
command : ["/ bin / sh " , "−c " ,
" echo He l lo from the pos tS ta r t handler >
/ usr / share /message "]

preStop :
exec :

command : ["/ bin / sh","−c " ," nginx −s qu i t ;
whi l e k i l l a l l −0 nginx ; do s l e e p 1 ; done "]

We present the view of the CLI tool for a script runner after the container
lifecycle hook technique execution is triggered:

$ Please select a command :
4
Enter the techn ique shor t name , as s p e c i f i e d
in the a l l t e chn iques l i s t i n g :
l f h k
pod/ l i f e c y c l e −demo crea ted

The pod with a l i f e −cy c l e hooks i s s u c c e s s f u l l y deployed .

We list Pods to check that the technique was executed correctly, as it is
shown below.

$ kubect l get pods
NAME READY STATUS AGE
attack 1/1 Running 30h
l i f e c y c l e −demo 1/1 Running 50 s

CHAPTER 4. ATTACK AUTOMATION 52

Technique: Privileged Container Technique

ID: F-4.2.05.
The goal of this technique is to escalate privileges and/or access the host

system by getting access or deploying a privileged container. A privileged
container has permission to do a wide variety of actions on the host. In the
carefully secured cluster, this technique is normally not available to adver-
saries because the cluster should be configured with least privilege principle.

To execute this technique, we trigger “dprc – Simulates deploying a priv-
ileged container”. The tool then pulls a configuration file and using kubectl
apply deploys a privileged container.

We present the view of the CLI tool for a script runner after triggering
the privileged container technique execution:

$ Please select a command :
4
Enter the techn ique shor t name , as s p e c i f i e d
in the a l l t e chn iques l i s t i n g :
dprc
deployment . apps/nginx−deployment c rea ted

The p r i v i l e g e d conta ine r i s s u c c e s s f u l l y deployed .

We list Pods to check that the technique was executed correctly, as it is
shown below:

$ kubect l get pods
NAME READY STATUS AGE
attack 1/1 Running 30h
nginx−deployment −645bf95774−fdjmn 1/1 Running 45 s

Technique: Cluster-Admin Binding

ID: F-4.2.06.
The goal of this technique is to escalate privileges to gain full access to the

cluster by creating a binding to the privileged or admin role. Cluster-Admin
binding should not be possible in the carefully secured system. In a secured
system, users that can have a cluster-admin role should be limited, as well
as, users that can create role bindings.

CHAPTER 4. ATTACK AUTOMATION 53

To trigger execution of this technique, we pick “clab – Simulates a cluster
admin binding” option on the script runner. After triggering, the tool pulls
a configuration file and performs a cluster-admin binding.

The configuration file for the service account creation is shown below:

ap iVers ion : v1
kind : ServiceAccount
metadata :

name : myaccount

The configuration file for the cluster role binding:

−−−
ap iVers ion : rbac . au tho r i z a t i on . k8s . i o /v1
kind : ClusterRoleBinding
metadata :

name : c l u s t e r −ro l e −binding
sub j e c t s :

− kind : ServiceAccount
name : myaccount
apiGroup : rbac . au tho r i z a t i on . k8s . i o

r o l eRe f :
kind : ClusterRole
name : c l u s t e r −admin
apiGroup : rbac . au tho r i z a t i on . k8s . i o

We present the view of the CLI tool for a script runner after triggering
the cluster-admin binding technique execution:

$ Please select a command :
4
Enter the techn ique shor t name , as s p e c i f i e d
in the a l l t e chn iques l i s t i n g :
c lab
s e rv i c ea c coun t /myaccount c rea ted

c l u s t e r r o l e b i n d i n g . rbac . au tho r i z a t i on . k8s . i o /
c l u s t e r −ro l e −binding c rea ted

CHAPTER 4. ATTACK AUTOMATION 54

The c l u s t e r admin binding was s u c c e s s f u l l y performed .

Technique: Cloud Infrastructure Discovery

ID: F-7.1.04.
The goal of this technique is to discover components of IaaS environments

using cloud API and CLI. The adversary may try to enumerate system com-
ponents, including cloud instances, snapshots, virtual machines, cloud ser-
vices to define the next steps of attack execution. Gained information may
also be used to modify the system’s configuration to be publicly accessible.
The other use case for the cloud infrastructure discovery is to enumerate the
database configurations to define their potential value for the next steps of
the attack.

The adversary will not be able to successfully execute this technique if
the system has restricted access via Network Policies in Kubernetes.

We execute the shown below command to perform this technique in the
target environment.

c u r l http : //169 . 254 . 169 . 254/ l a t e s t /meta−data/

We show the output of the technique execution from the script runner:

$ Please select a command :
4
Enter the techn ique shor t name , as s p e c i f i e d
in the a l l t e chn iques l i s t i n g :
a s c r
ami−id
ami−launch−index
ami−manifest−path
block−device−mapping/
events /
h ibe rna t i on /
hostname
iam/
iden t i t y −c r e d e n t i a l s /
ins tance−ac t i on
ins tance−id
ins tance− l i f e −cy c l e
ins tance−type

CHAPTER 4. ATTACK AUTOMATION 55

local−hostname
local−ipv4
mac
metr i c s /
network/
placement /
p r o f i l e
publ ic−hostname
publ ic−ipv4
publ ic−keys /
r e s e rva t i on −id
s e cu r i t y −groups

Cloud r e s ou r c e s are s u c c e s s f u l l y acce s s ed .

As we can see from the output of the technique execution we successfully
listed meta-data of the cloud environment.

4.5 Combining Techniques into Attacks

We previously showcased the automated execution of separate techniques. It
is important to automate different types of techniques to check if a target
environment can detect attempts of their execution or if it is resistant to their
execution or impact. In case of attack execution, techniques are linked in the
attack chains. Typically, the adversary will pick techniques to get access to
a system, execute malicious scripts, try to escalate privileges to have more
options for the next steps, hide the activity not to be quickly detected and
impact the system. The combination of steps varies from attack to attack,
but the basic idea of attack construction remains the same. The steps that
the adversary performs are usually aligned with MITRE ATT&CK tactics,
same steps that we follow in the proposed threat matrix. Out of 11 tactics for
cloud native environments, not all tactics have to be utilized as an attack step.
Typically, the best impact may be achieved by combining a few techniques
from selected tactics appropriate to the target [78].

To utilize automated in this thesis work techniques and showcase building
the attack chain, we build an attack based on the techniques listed in the
section 4.4. We perform the attack execution in the lab environment. Fol-
lowing the assume breach approach, we assume that we have initial access to
the system. The next step is execution, we schedule a privileged container
deployment. A privileged container has a mount from the Pod to the file

CHAPTER 4. ATTACK AUTOMATION 56

Figure 4.3: Linked techniques into the attack.

system of a Node. As a persistence step, we perform account manipulation
by adding a copy of the public key into the .ssh/authorized_keys file on the
cluster Node. With persistent access and privileged rights, we can perform
different impact-related techniques, such as using ransomware to encrypt
data on the host or destructing the data, which breaks the integrity of the
system. Figure 4.3 shows linked techniques into the attack.

Chapter 5

Discussion

In this chapter, we discuss the advantages and disadvantages of the research
conducted and the artifact created in this thesis work. Firstly, we review
the research process. Second, we discuss the improvements proposed to the
existing threat matrix. Thirdly, we examine the process of creating the au-
tomation tool. Next, we discuss the potentially achievable improvements in
purple team exercises using the threat matrix method and automation tool.

5.1 Research Process

The research followed the design science research methodology [79]. This was
done due to the fast-evolving nature of the cloud environment. The iterative
process of triangulating between cloud native threats, automating testing and
improving the purple team’s performance required several cycles of creating,
experimenting, learning and amending. These development cycles were easier
to manage because of the business and operational context as well as the
competency provided at Fraktal Oy [5] for the research. For example, the
variations in threat naming and selecting the cloud native specific threats
from the plethora of possible threats required a reflection from practice. The
reflection also provided necessary viewpoints for lean design thinking [80],
which improved the usability of the final artifacts. Naturally, continuing to
repeat the cycles of iteration would improve the threat matrix, tool and be
a perfect aim for additional research because of the fast-evolving nature of
the cloud native environment.

57

CHAPTER 5. DISCUSSION 58

5.2 Cloud Native Threat Matrix

The first research question, “What type of new cyber threats do cloud na-
tive environments face?” presented a typical challenge in dynamic and open
systems. Therefore, answering the first question of what is the cloud native
requires defining features for the cloud native system. There are several ap-
proaches for cloud native architecture [81], but they do not support the target
viewpoint. Hence, the research composed a threat model from components
of cloud, containers and CI/CD to keep the focus during the threat survey.

Answering the second sub-question of what are the new cyber threats,
especially those targeting the cloud native architecture, required surveying
and categorizing processes. First, sourcing the attack vectors opened sev-
eral options. For example, there are many contemporary studies discussing
threats from the perspective of a specific time scope [82], continuous collec-
tion of threats [83], generic attack vector models [84] or cumulative threat
knowledge base [85]. Since the cumulative approach provides more than a
snapshot of the dynamic threat environment, the MITRE ATT&CK knowl-
edge base established the foundation for threat information. Moreover, other
cumulative sources like Microsoft, Linux Foundation, Aqua Security, CI/CD
pipeline threat research were referred to and correlated when collecting and
normalizing feasible presentation of contemporary threats.

Cloud native threat vectors created a large matrix, and the original Excel
format appeared inefficient for the users. Therefore, research designed a
dashboard for the testing teams to get a more comfortable presentation of
the vast amount of data. The purple team in Fraktal Oy appreciated the
improved usability.

5.3 Automation Tool

Besides improving the focus and usability, the research’s second question,
“How to effectively utilize the automated purple team approach for attack au-
tomation in cloud native environments?” aimed to examine how automation
may improve the testing process. Fortunately, Fraktal’s internal automation
platform provided an integrated toolbox for automation testing. Therefore,
the tool provided in this research did not remain a stand-alone tool. Since
the development followed a mature state of policy, language, and integration,
the automation tool emerged lightweight and ready to evolve as the demands
of in dynamic threat environment and testing process change.

Recognising the ethical hacking principles [86], the research chose to test
the tool in a controlled laboratory environment. The testing included seven

CHAPTER 5. DISCUSSION 59

techniques from four different categories to keep the sampling broad and
deep while keeping the programming work aligned with the focus of the
research. During the process, the research observed that not all 11 tactics
categorized in the matrix need to apply in a successful attack. However, the
best impact may be achieved by combining a few techniques from selected
tactics appropriate to the target.

5.4 The Performance Improvement of the Pur-
ple Team Evaluation Process

Combining the created matrix and the automation tool provides the following
improvements to purple team activities:

• The improved threat matrix helps purple teams to focus on cloud native
specific threats and shorten the time for their test planning.

• The automation tool includes a more straightforward work process for
security evaluations which standardizes the process and improves its
maturity.

• Utilizing automation allows making sure that security weaknesses are
not re-introduced during major changes. Automation allows running
periodic security checks that do not require manual labor as part of the
continuous integration and testing of the service.

• The matrix and tool support iterative development. Thus, purple teams
may develop them further as threats and targets evolve. Moreover, the
purple teams using the package can start small and elaborate in steps
as their competency and objectives evolve.

• A purple team approach allows to develop and verify system detections
with a SIEM or other log monitoring systems. This makes it more
probable to detect real attacks in a production environment.

Chapter 6

Conclusions

This thesis explores a purple team approach to attack automation in the
cloud native environment. It firstly investigates cyber threats that cloud
native environments face. As a result of the research, we created a more
comprehensive resource of the cloud native threats that we refer to as a Cloud
Native Threat Matrix. Threats are grouped by the goals of the adversary and
by the environment it is related to, such as containers, cloud and CI/CD.
The other aspect of this thesis work is the utilization of purple team activities
together with attack automation. We built the tool for attack automation.
The tool follows the assume breach approach, providing a defense-in-depth
security testing of cloud native environments. As a final step, we propose an
improvement to the purple team evaluation of the cloud native environments.
It combines created Cloud Native Threat Matrix with an automated attack
techniques execution and active collaboration as a fundamental concept of
purple team assessments.

The assume breach approach helps to evaluate the possible system im-
pact, and improve defense capabilities to minimize a possible system impact
after the adversary got initial access to the system. The benefit of utilizing
automation is the possibility of rerunning such assessments and making sure
that security weaknesses are not re-introduced during major changes. In ad-
dition, a Cloud Native Threat Matrix solves the problem of scattered threat
data over to the Internet, providing a coherent and easy-to-use platform.
Furthermore, the purple team approach to the automated attack techniques
execution helps to improve system defense capabilities based on the active
collaboration during the testing process.

60

CHAPTER 6. CONCLUSIONS 61

6.1 Limitations

The most significant limitation of thesis work is that we could not test a
purple team evaluation of the cloud native environments in the actual client
setting. The purple team approach requires an active collaboration with an
organization’s blue team to test or set up detection capabilities. Thus, the
evaluation effectiveness cannot be assessed.

6.2 Improvements

The contemporary threat landscape is constantly changing. Thus, a matrix
needs to be updated frequently. This is a time-consuming process. Therefore,
building an update pipeline that will make this update easier to approach
is beneficial. One of the solutions can be building a hybrid matrix that
references different matrices to avoid constant updates.

Another possible improvement is expanding the scope of the cloud native
threats by adding network threats to the matrix, as discussed in [87].

6.3 Future Work

The next step of the project development is to increase the number of auto-
mated techniques, integrate the automation framework into the Cloud Native
Threat Matrix User Interface (UI) and test the purple team evaluation of the
cloud native environments in the client setting.

Bibliography

[1] The Linux Foundation. Cloud native computing foundation charter,
2015. URL: https://github.com/cncf/foundation/blob/main/charter.
md.

[2] Red Hat. Kubernetes adoption, security, and market trends report 2022.
2022.

[3] Jay Chen, Nathaniel “Q” Quist, Matthew Chiodi. Cloud threat report
1h 2021. 2021.

[4] The MITRE Corporation. Mitre att&ck, 2015. URL: https://attack.
mitre.org/.

[5] Fraktal. Fraktal: Positive takes on cyber security, 2022. URL: https:
//www.fraktal.fi/about.

[6] IBM Cloud Education. Virtualization a complete guide,
June 2019. URL: https://www.ibm.com/cloud/learn/
virtualization-a-complete-guide.

[7] VMware. What is a virtual machine?, May 2022. URL: https://www.
vmware.com/topics/glossary/content/virtual-machine.html.

[8] Masdari Mohammad, Nabavi Sayyid, Ahmadi Vafa. An overview of vir-
tual machine placement schemes in cloud computing. Journal of Network
and Computer Applications, 66:32, January 2016.

[9] Docker. What is a container?, April 2022. URL: https://www.docker.
com/resources/what-container.

[10] Combe Theo, Martin Antony, Pietro Roberto. To docker or not to
docker: A security perspective. IEEE Cloud Computing, 3:54–62, 09
2016.

62

https://github.com/cncf/foundation/blob/main/charter.md
https://github.com/cncf/foundation/blob/main/charter.md
https://attack.mitre.org/
https://attack.mitre.org/
https://www.fraktal.fi/about
https://www.fraktal.fi/about
https://www.ibm.com/cloud/learn/virtualization-a-complete-guide
https://www.ibm.com/cloud/learn/virtualization-a-complete-guide
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

BIBLIOGRAPHY 63

[11] IBM Cloud Team, IBM Cloud. Containers vs. virtual machines (vms):
What is the difference?, 2021. URL: https://www.ibm.com/cloud/blog/
containers-vs-vms.

[12] Docker. Docker overview. URL: https://docs.docker.com/
get-started/overview/.

[13] Asif Rameez, Ghanem Kinan, Irvine James. Containerization: For over-
the-air programming of field deployed internet-of-energy based on cost
effective lpwan. In 2020 First International Conference of Smart Systems
and Emerging Technologies (SMARTTECH), pages 65–70, 2020.

[14] The Linux Foundation. What is kubernetes?, April 2022. URL: https:
//kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

[15] The Linux Foundation. Kubernetes components, April 2022. URL:
https://kubernetes.io/docs/concepts/overview/components/.

[16] The Linux Foundation. Pods, January 2022. URL: https://kubernetes.
io/docs/concepts/workloads/pods/.

[17] The Linux Foundation. Nodes, April 2022. URL: https://kubernetes.
io/docs/concepts/architecture/nodes/.

[18] The Linux Foundation. Kubernetes concepts, 2022. URL: https://
kubernetes.io/docs/concepts/_print/.

[19] Dragoni Nicola, Giallorenzo Saverio, Lluch-Lafuente Alberto, Mazzara
Manuel, Montesi Fabrizio, Mustafin Ruslan, Safina Larisa. Microser-
vices: yesterday, today, and tomorrow. page 16, 06 2016.

[20] Rossel Sander. Continuous integration, delivery, and deployment: Reli-
able and faster software releases with automating builds, tests, and de-
ployment. Packt, 2017.

[21] RedHat. What is ci/cd?, May 2022. URL: https://www.redhat.com/en/
topics/devops/what-is-ci-cd.

[22] Loukides Mike. What is devops? O’Reilly Media., 2012.

[23] Al-Mohannadi Hamad, Mirza Qublai, Namanya Anitta, Awan Irfan,
Cullen Andrea, Disso Jules. Cyber-attack modeling analysis techniques:
An overview. pages 69–76, 2016.

https://www.ibm.com/cloud/blog/containers-vs-vms
https://www.ibm.com/cloud/blog/containers-vs-vms
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/_print/
https://kubernetes.io/docs/concepts/_print/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd

BIBLIOGRAPHY 64

[24] National Cyber Security Centre. Cyclops blink. malware analy-
sis report, February 2022. URL: https://www.ncsc.gov.uk/files/
Cyclops-Blink-Malware-Analysis-Report.pdf.

[25] The MITRE Corporation. Corporate overview, October 2020. URL:
https://www.mitre.org/about/corporate-overview.

[26] Rehberger Johann. Cybersecurity attacks - Red Team Strategies: A prac-
tical guide to building a penetration testing program having homefield
advantage. Packt Publishing Ltd, 2020.

[27] Nadean Tanner. Cybersecurity Blue Team Toolkit. Wiley, 2019.

[28] Redscan. What is purple teaming? how can it strengthen
your security?, May 2022. URL: https://www.redscan.com/news/
purple-teaming-can-strengthen-cyber-security/.

[29] XM Cyber. What is a purple team?, March 2022. URL: https://www.
xmcyber.com/glossary/what-is-a-purple-team/.

[30] Automated technologies vs manual testing?, Au-
gust 2018. URL: https://www.packetlabs.net/posts/
automated-technologies-vs-manual-testing/.

[31] Stefinko Yaroslav, Piskozub Andrian, Banakh Roman. Manual and au-
tomated penetration testing. benefits and drawbacks. modern tendency.
2016 13th International Conference on Modern Problems of Radio En-
gineering, Telecommunications and Computer Science (TCSET), 2016.

[32] Redcanaryco. Explore atomic red team, 2017. URL: https://
atomicredteam.io/.

[33] Stratus Red Team. Stratus red team, 2021. URL: https://
stratus-red-team.cloud/.

[34] FSecureLABS. Fsecurelabs/leonidas: Automated attack simulation in
the cloud, complete with detection use cases., 2021. URL: https://
github.com/FSecureLABS/leonidas.

[35] Spencer Gietzen. Pacu: The open source aws exploitation frame-
work, August 2018. URL: https://rhinosecuritylabs.com/aws/
pacu-open-source-aws-exploitation-framework/.

[36] The MITRE Corporation. Caldera, May 2020. URL: https://caldera.
mitre.org/.

https://www.ncsc.gov.uk/files/Cyclops-Blink-Malware-Analysis-Report.pdf
https://www.ncsc.gov.uk/files/Cyclops-Blink-Malware-Analysis-Report.pdf
https://www.mitre.org/about/corporate-overview
https://www.redscan.com/news/purple-teaming-can-strengthen-cyber-security/
https://www.redscan.com/news/purple-teaming-can-strengthen-cyber-security/
https://www.xmcyber.com/glossary/what-is-a-purple-team/
https://www.xmcyber.com/glossary/what-is-a-purple-team/
https://www.packetlabs.net/posts/automated-technologies-vs-manual-testing/
https://www.packetlabs.net/posts/automated-technologies-vs-manual-testing/
https://atomicredteam.io/
https://atomicredteam.io/
https://stratus-red-team.cloud/
https://stratus-red-team.cloud/
https://github.com/FSecureLABS/leonidas
https://github.com/FSecureLABS/leonidas
https://rhinosecuritylabs.com/aws/pacu-open-source-aws-exploitation-framework/
https://rhinosecuritylabs.com/aws/pacu-open-source-aws-exploitation-framework/
https://caldera.mitre.org/
https://caldera.mitre.org/

BIBLIOGRAPHY 65

[37] Petersen Kai, Feldt Robert, Mujtaba Shahid, Mattsson Michael. Sys-
tematic mapping studies in software engineering. Proceedings of the
12th International Conference on Evaluation and Assessment in Soft-
ware Engineering, 17, 06 2008.

[38] Microsoft. Evaluate security postures by using microsoft defender for
cloud, 2022. URL: https://docs.microsoft.com/en-gb/learn/modules/
evaluate-security-posture-recommend-technical-strategies-to-manage-risk/
3-postures-use-microsoft-defender-for-cloud.

[39] Argon Security. Software supply chain attacks: 2021 in review. 2022.

[40] Lazarovitz Lavi. Deconstructing the solarwinds breach. Computer Fraud
amp; Security, 2021(6):17–19, 2021.

[41] Rice Liz. Container security: Fundamental technology concepts that
protect containerized applications. O’Reilly Media, 2020.

[42] Red Hat. What is container security? URL: https://www.redhat.com/
en/topics/security/container-security.

[43] Yossi Weizman. Secure containerized environments with
updated threat matrix for kubernetes, March 2021.
URL: https://www.microsoft.com/security/blog/2021/03/23/
secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/.

[44] The MITRE Corporation. Valid accounts, May 2017. URL: https:
//attack.mitre.org/techniques/T1078/.

[45] Mercari Security Team. Common threat matrix for ci/cd pipeline. URL:
https://github.com/rung/threat-matrix-cicd.

[46] Yossi Weizman. Threat matrix for kubernetes, April 2020.
URL: https://www.microsoft.com/security/blog/2020/04/02/
attack-matrix-kubernetes/.

[47] The MITRE Corporation. Deploy container. URL: https://attack.
mitre.org/techniques/T1610/.

[48] Martin Andrew, Hausenblas Michael. Hacking Kubernetes. O’Reilly
Media, Inc, 2021.

[49] The MITRE Corporation. Account manipulation: Additional cloud cre-
dentials, January 2021. URL: https://attack.mitre.org/techniques/
T1098/001/.

https://docs.microsoft.com/en-gb/learn/modules/evaluate-security-posture-recommend-technical-strategies-to-manage-risk/3-postures-use-microsoft-defender-for-cloud
https://docs.microsoft.com/en-gb/learn/modules/evaluate-security-posture-recommend-technical-strategies-to-manage-risk/3-postures-use-microsoft-defender-for-cloud
https://docs.microsoft.com/en-gb/learn/modules/evaluate-security-posture-recommend-technical-strategies-to-manage-risk/3-postures-use-microsoft-defender-for-cloud
https://www.redhat.com/en/topics/security/container-security
https://www.redhat.com/en/topics/security/container-security
https://www.microsoft.com/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/
https://www.microsoft.com/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/
https://attack.mitre.org/techniques/T1078/
https://attack.mitre.org/techniques/T1078/
https://github.com/rung/threat-matrix-cicd
 https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
 https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://attack.mitre.org/techniques/T1610/
https://attack.mitre.org/techniques/T1610/
https://attack.mitre.org/techniques/T1098/001/
https://attack.mitre.org/techniques/T1098/001/

BIBLIOGRAPHY 66

[50] Dang Wei Lien. Protecting kubernetes against mitre att/ck:
Privilege escalation. URL: https://cloud.redhat.com/blog/
protecting-kubernetes-against-mitre-attck-privilege-escalation.

[51] Kubernetes. Using rbac authorization, April 2022. URL: https:
//kubernetes.io/docs/reference/access-authn-authz/rbac/.

[52] The MITRE Corporation. Impair defenses, February 2020. URL: https:
//attack.mitre.org/techniques/T1562/.

[53] The MITRE Corporation. Impair defenses: Disable or modify cloud fire-
wall, June 2020. URL: https://attack.mitre.org/techniques/T1562/
007/.

[54] The MITRE Corporation. Masquerading, May 2017. URL: https://
attack.mitre.org/techniques/T1036/.

[55] The MITRE Corporation. Masquerading: Match legitimate name or
location, February 2020. URL: https://attack.mitre.org/techniques/
T1036/005/.

[56] The MITRE Corporation. Brute force, May 2017. URL: https:
//attack.mitre.org/techniques/T1110/.

[57] The MITRE Corporation. Network sniffing, May 2017. URL: https:
//attack.mitre.org/techniques/T1040/.

[58] The MITRE Corporation. Network service discovery, May 2017. URL:
https://attack.mitre.org/techniques/T1046/.

[59] The MITRE Corporation. Cloud infrastructure discovery, August 2020.
URL: https://attack.mitre.org/techniques/T1580/.

[60] The MITRE Corporation. Use alternate authentication material, Jan-
uary 2020. URL: https://attack.mitre.org/techniques/T1550/.

[61] The MITRE Corporation. Data from cloud storage object, August 2019.
URL: https://attack.mitre.org/techniques/T1530/.

[62] The MITRE Corporation. Automated collection, May 2017. URL:
https://attack.mitre.org/techniques/T1119/.

[63] The MITRE Corporation. Transfer data to cloud account, August 2019.
URL: https://attack.mitre.org/techniques/T1537/.

https://cloud.redhat.com/blog/protecting-kubernetes-against-mitre-attck-privilege-escalation
https://cloud.redhat.com/blog/protecting-kubernetes-against-mitre-attck-privilege-escalation
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://attack.mitre.org/techniques/T1562/
https://attack.mitre.org/techniques/T1562/
https://attack.mitre.org/techniques/T1562/007/
https://attack.mitre.org/techniques/T1562/007/
https://attack.mitre.org/techniques/T1036/
https://attack.mitre.org/techniques/T1036/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1110/
https://attack.mitre.org/techniques/T1110/
 https://attack.mitre.org/techniques/T1040/
 https://attack.mitre.org/techniques/T1040/
https://attack.mitre.org/techniques/T1046/
https://attack.mitre.org/techniques/T1580/
https://attack.mitre.org/techniques/T1550/
https://attack.mitre.org/techniques/T1530/
https://attack.mitre.org/techniques/T1119/
https://attack.mitre.org/techniques/T1537/

BIBLIOGRAPHY 67

[64] Jayasinghe Keshani, Poravi Guhanathan. A survey of attack instances
of cryptojacking targeting cloud infrastructure. Proceedings of the 2020
2nd Asia Pacific Information Technology Conference, 2020.

[65] The MITRE Corporation. Resource hijacking, April 2019. URL: https:
//attack.mitre.org/techniques/T1496/.

[66] The MITRE Corporation. Endpoint denial of service, April 2019. URL:
https://attack.mitre.org/techniques/T1499/.

[67] The MITRE Corporation. Network denial of service, April 2019. URL:
https://attack.mitre.org/techniques/T1498/.

[68] The MITRE Corporation. Cloud matrix, April 2022. URL: https:
//attack.mitre.org/matrices/enterprise/cloud/.

[69] The MITRE Corporation. Containers matrix, April 2022. URL: https:
//attack.mitre.org/matrices/enterprise/containers/.

[70] Jen Burns. Help shape att&ck for containers, Jun 2021.

[71] Aqua Security. Cloud native threat report: Attacks in the wild on the
container supply chain and infrastructure. 2022.

[72] Dresch Aline, Lacerda Daniel Pacheco, Antunes José Antônio Valle. De-
sign science research. In Design science research, pages 67–102. Springer,
2015.

[73] J.E van Aken, Johannes Jentinus Berends. Problem solving in organi-
zations: A methodological handbook for business and management stu-
dents. Cambridge University Press, 2019.

[74] Steve Anson. Applied incident response. Wiley, 2020.

[75] National Cyber Security Center. Log4j vulnerability - what every-
one needs to know, December 2021. URL: https://www.ncsc.gov.uk/
information/log4j-vulnerability-what-everyone-needs-to-know.

[76] Ravie Lakshmanan. Dependency confusion supply-chain attack
hit over 35 high-profile companies, February 2021. URL: https:
//thehackernews.com/2021/02/dependency-confusion-supply-chain.
html.

[77] Matthew Rosenquist. Defense in depth strategy optimizes security. Intel
Corporation, 2008.

https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/matrices/enterprise/cloud/
https://attack.mitre.org/matrices/enterprise/cloud/
https://attack.mitre.org/matrices/enterprise/containers/
https://attack.mitre.org/matrices/enterprise/containers/
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://thehackernews.com/2021/02/dependency-confusion-supply-chain.html
https://thehackernews.com/2021/02/dependency-confusion-supply-chain.html
https://thehackernews.com/2021/02/dependency-confusion-supply-chain.html

BIBLIOGRAPHY 68

[78] CISA. Cisa releases best practices for mapping to mitre att&ck, June
2021. URL: https://www.cisa.gov/uscert/ncas/current-activity/
2021/06/02/cisa-releases-best-practices-mapping-mitre-attckr.

[79] Hevner Alan, Chatterjee Samir. Design research in information systems.
Springer, 2010.

[80] Ahmed Bakhtiyar, Dannhouser Thomas, Philip Nada. A lean design
thinking methodology (ldtm) for machine learning and modern data
projects. 10th Computer Science and Electronic Engineering (CEEC),
pages 11–14, 2018.

[81] Kratzke Nane, Quint Peter-Christian. Understanding cloud-native ap-
plications after 10 years of cloud computing - a systematic mapping
study. Journal of Systems and Software, pages 1–16, 2017.

[82] Mukhopadhyay Indraneel. ICT Analysis and Applications. Lecture Notes
in Networks and Systems. Springer, 2022.

[83] Karagiannis Stylianos, Magkos Emmanouil, Ntantogian Cristoforos,
Ribeiro Luis L. Sandboxing the Cyberspace for Cybersecurity Education
and Learning. Springer, 2020.

[84] Fitch Scott C. Muckin Michael. A threat-driven approach to cyber.
2014.

[85] Lee Tae-Jin Hwang Chan-Woong, Bae Sung-Ho. Mitre att&ck and
anomaly detection based abnormal attack detection technology research.
Convergence Security Journal, pages 13–23, 2021.

[86] Olivier David, Chiffelle Jaquet, Loi Michele. Ethical and Unethical Hack-
ing. Springer, 2020.

[87] Francesco Minna, Agathe Blaise, Filippo Rebecchi, Balakrishnan Chan-
drasekaran, and Fabio Massacci. Understanding the security implica-
tions of kubernetes networking. IEEE Security Privacy, 19(5):46–56,
2021.

https://www.cisa.gov/uscert/ncas/current-activity/2021/06/02/cisa-releases-best-practices-mapping-mitre-attckr
https://www.cisa.gov/uscert/ncas/current-activity/2021/06/02/cisa-releases-best-practices-mapping-mitre-attckr

	Cover page
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Goals
	1.3 Research Questions
	1.4 Sustainability and Ethics
	1.5 Structure of the Report

	2 Background
	2.1 Cloud Native
	2.2 Contemporary Attack Environment – MITRE ATT&CK
	2.3 Security Operation Teams
	2.4 Test/Attack Automation

	3 Cloud Native Threat Matrix
	3.1 Methodology
	3.2 Cloud Native Threats
	3.3 Cloud Native Threat Matrix
	3.4 Implementation
	3.5 Background work

	4 Attack automation
	4.1 Methodology
	4.2 Tool for the Techniques Automation
	4.3 Laboratory Environment
	4.4 Implemented Techniques
	4.5 Combining Techniques into Attacks

	5 Discussion
	5.1 Research Process
	5.2 Cloud Native Threat Matrix
	5.3 Automation Tool
	5.4 The Performance Improvement of the Purple Team Evaluation Process

	6 Conclusions
	6.1 Limitations
	6.2 Improvements
	6.3 Future Work

