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1. Introduction

Computer software has changed significantly from what it used to be
a decade ago. Traditional applications typically follow the monolithic
architecture [66], where the user interface and the application logic are
combined into a single program and run locally in the computer. Modern
applications, on the other hand, tend to have more distributed structure.
Instead of running as a single computer program, they typically separate
the user interface from the application logic. For instance, web applications
follow the client-server architecture, where the server stores and processes
user data in the cloud, while the user interface runs on a web browser
on the user’s device. The separation enables the application providers
to implement all of their functionality on the server side while keeping
the clients simple (“thin clients”). Furthermore, it enables the providers
to maintain and update their applications easily and allows the users to
access them any time from any device.

Nowadays, many desktop applications also follow the web software archi-
tecture and have separated frontend and backend components. They run
on the same computer, and they connect to each other via an inter-process
communication (IPC) channel [92]. Password managers are examples of
such applications. They usually consist of two discrete components: a
stand-alone application for managing the password vault and a browser
extension for assisting the user on the web browser. The browser exten-
sion acts as an additional user interface of the password manager, and it
communicates with the application via an IPC channel, such as network
sockets or named pipes.

Apart from splitting into server and client sides, many cloud applications
have switched to the microservice architecture [74], in which they are
decomposed into loosely-coupled modules. Each module (i.e., a microser-
vice) is operated as a small yet independent system, which communicates
with other modules over the network through well-defined APIs. This
architecture enables each module to be developed, deployed, and scaled in-
dependently. Furthermore, by implementing the application functionality
as independent services that are loosely coupled through APIs, the APIs
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can also be opened for third parties to build customized features for the
application. The features implemented with these APIs are usually called
“add-ons” [37]. Successful cloud applications have created marketplaces
for add-ons and aim to grow an ecosystem of innovative add-on services
around their core platform.

1.1 Research goals

This dissertation looks at security aspects of modern applications. While
distributed application models solve many problems of the traditional,
bundled applications, they also introduce new security concerns.

In particular, the communication between the software components in-
creases the application’s attack surface because, in many cases, they must
communicate over hostile channels. For example, web servers usually
communicate with their clients over the Internet, where network attackers
may sniff the traffic or impersonate the endpoints. Even applications that
run entirely locally inside one computer are not an exception. The reason
is that the inter-process communication between their components might
still be intercepted by local attackers, such as malware or another user on
the same computer.

Furthermore, opening APIs to external developers to build customized
features for the application may also create new security issues. Many
add-ons are quick hacks by inexperienced developers. As a result, they
might have lower code quality than the application itself and, thus, contain
vulnerabilities that can be exploited to compromise the user data.

Besides, the architectural shifts in software also encourage new devel-
opments in computer networking. The growth in the volume of data
exchanged, stored, and processed in data-centers and the trend of deploy-
ing applications and services on the cloud have driven the demand for
new networking paradigms that are more flexible and responsive than
the traditional ones. These are some of the key factors that triggered
infrastructure providers to gradually switch to using software-defined
networking (SDN) [55] where network functionality is implemented in logi-
cally centralized software controllers rather than in the network hardware.
Such change radically alters the threat environment. Therefore, it must
be carefully studied for possible design or implementation flaws.

Some traditional network technologies have also found new uses. For
example, virtual private network (VPN), which was initially developed for
corporate networking, is now commonly used by regular users who seek
improved security and privacy on the Internet. Because of the increasing
demand, a large number of commercial VPN services have appeared in
the market. It is essential to carefully scrutinize them for flaws that could
undermine the user’s security and privacy.
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In this dissertation, we address these security concerns. The goal is to
find common security issues in the wild that are unknown or have not been
given as much consideration as they deserve.

1.2 Research methodology

This work uses empirical analysis as the primary research methodology.
We first look for popular security-critical applications that are used by
a large number of users. We then study how they are implemented and
analyze what could go wrong with such implementation. If we find a
potential security issue, we verify the issue by implementing the attack
to exploit it either in the application itself (Publications I-IV) or in an
emulated environment (Publication V). When the issue is confirmed, we
generalize the principle behind the vulnerability and analyze its root
causes. We then investigate similar applications to find out how common
it is and report the issue to the vulnerable applications’ providers. We also
suggest technical solutions to address the root causes or to mitigate the
issue.

1.3 Contributions

This dissertation includes five original publications. The main contribu-
tions are the discovery of various severe vulnerabilities in a wide range of
security-critical applications and the solutions to mitigate them. They can
be summarized as follows:

• Publication I presents the attacks by nonprivileged users or processes
against inter-process communication (IPC) between software components
on the same computer. The attacks are similar to impersonation and
man-in-the-middle attacks on the open networks but take place inside a
computer, where application developers often do not expect adversaries.
We call them Man-in-the-Machine (MitMa) attacks. In the publication,
we show that many password managers and security tokens are vulnera-
ble to the attacks, and exploiting them is not difficult. We also discuss
potential mitigation techniques.

• Publication II extends the work in Publication I with the focus on cryp-
tocurrency wallets. Specifically, desktop cryptocurrency wallet applica-
tions often provide a remote procedure call (RPC) interface, through
which other applications can access the wallet’s functionality either lo-
cally or remotely. In the publication, we study the security of the RPC
interface in the MitMa attacker’s presence. We show that the current
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authentication mechanisms used by popular cryptocurrency wallet appli-
cations are not sufficient, and we discuss mitigation solutions.

• Publication III covers client-side vulnerabilities in commercial VPN
services. These vulnerabilities are in the VPN client configurations,
which allow attackers to strip off traffic encryption in the VPN tunnel or
bypass server authentication. By exploiting these configuration flaws, the
attackers can intercept network traffic to and from the victim. Apart from
showing how common these vulnerabilities are, we provide guidelines for
fixing them.

• Publication IV shows that add-ons that add customized commands and
features to cloud applications may introduce security risks to the users
of the applications. In particular, we demonstrate that many add-ons
process untrusted user input in an unsafe way, allowing an attacker to
perform cross-site scripting (XSS).

• Publication V investigates the vulnerability of software-defined network-
ing to one particular class of attacks: topology poisoning. We analyze the
attacks against SDN both qualitatively to understand the principles and
quantitatively with simulations to assess and explain their impact. Our
focus is specifically on attacks mounted from compromised SDN switches.

1.4 Structure of the dissertation

The rest of the dissertation is organized as follows: Chapter 2 presents
the MitMa threat model and the related attacks (Publications I and II).
Chapter 3 describes commercial VPNs and their configuration flaws that
we found (Publication III). Chapter 4 gives an overview of cloud-application
add-ons and shows how the attacker can exploit vulnerable add-ons to
perform XSS attacks (Publication IV). Chapter 5 describes how SDN works
and presents different variants of topology poisoning attacks that can be
carried out by compromised switches (Publication V). Finally, Chapter 6
concludes the dissertation.
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2. Man-in-the-Machine (MitMa)

Publications I and II focus on the security of inter-process communication
(IPC), i.e., communication channels that are internal to the computer. In
the traditional network threat model, the network is usually assumed
to be hostile. The attacker can mount various types of attacks, such as
man-in-the-middle and impersonation [26, 76], to steal sensitive user data
from the network traffic. However, not all communication goes over the
network. Computer software often comprises multiple components, such
as a frontend application and a backend database, which obviously need to
exchange information over some IPC channel inside the computer. Also,
many modern desktop applications follow the architecture of web software
and have a separate UI component, which connects to the business logic
via RESTful APIs. Protecting user information that is exchanged over
these local channels is as important as protecting data on the physical
networks because there can be malicious components running inside the
user device.

However, in Publications I and II, we show that such local communication
usually does not get the same protection as communication over physical
networks. The adversary model that we consider assumes the attacker to
have login access as non-administrator or, at minimum, the ability to keep
a non-privileged process running in the background. Thus, we use the
name Man-in-the-Machine (MitMa) to describe such attacker. Publication
I demonstrates the importance of the adversary model by showing that a
large number of password managers and security tokens were vulnerable
to it. Publication II extends the work with the focus on cryptocurrency
wallets.

In this chapter, we will first give an overview the MitMa attacker. We
will then describe the attack vectors that the attacker may exploit against
against three common IPC methods: network sockets, Windows named
pipes, and Universal Serial Bus (USB). We will also demonstrate each
attack vector with a vulnerable application that we found. More vulnerable
cases can be found in the publications.
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Man-in-the-Machine (MitMa)

2.1 The adversary

In the MitMa adversary model, we consider threats on multi-user comput-
ers that may have processes of two or more users running at the same time.
The attacker is a logged-in user who tries to steal sensitive information
from or interfere with another user of the same computer. The attacker
does this by intercepting communication between the victim user’s pro-
cesses, as illustrated in Figure 2.1. Unlike malware that runs with the
victim’s privileges or as administrator, the attacker here is nonprivileged,
and we do not assume that he can perform any kind of privilege escalation.
The attack is similar to impersonation or man in the middle in computer
networks but takes place inside one computer.

Figure 2.1. MitMa attack

To exploit IPC channels, in addition to having access to a nonprivileged
user account, the MitMa attacker needs to run a process in the background
when the victim is using the computer. On Linux and macOS, the attacker
only needs to log in, run the process, and leave it running when he logs out,
e.g., with the nohup command. On Windows, however, user processes are
killed at the end of the login session. Thus, the attacker needs to do fast
user switching [64] to leave his session in the background. The attacker
can also remotely run his malicious process if SSH [108] or remote desktop
server is enabled on the target computer.

While a PC is often considered personal, it is relatively common that
several people can access it. For example, in enterprise environments that
use centralized access control, users are typically able to sign in to each
other’s workstations. Shared family computers with multiple user accounts
and machines with a guest account enabled are similarly vulnerable.

2.2 Attack vectors

Modern operating systems provide several IPC methods, but not all of
them are vulnerable to the MitMa adversary model. An IPC method is
vulnerable only if the following two conditions are satisfied: (1) one of its
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communication endpoints binds to a specific identifier or name and waits
for connections from other processes and (2) these connections can occur
between different login sessions. We focus on three of such IPC methods:
network sockets, Windows named pipes, and Universal Serial Bus (USB)
communication. The attack vectors to these vulnerable IPC methods are
described below.

2.2.1 Network sockets

While network sockets were originally intended for communication across
a network, they are also used for IPC within one host. For this purpose, the
server listens on the loopback interface (i.e., on one of the special localhost
addresses 127.0.0.0/8 and ::1/128) on a specific port number and waits for
local client processes to connect to it. Any process, regardless of its owner,
can listen on a port 1024 or higher as long as the port has not been taken
by another process. Also, any local process can connect as a client to any
port where a server is listening on the loopback interface.

Network socket communication is inherently vulnerable to local attackers
like MitMa because it does not have any built-on access control to restrict
the communication endpoints. It is the responsibility of the client and
server processes to authenticate each other on the application layer.

Attack vectors. By running malicious processes, the MitMa attacker
can easily perform a client impersonation attack by connecting as a client
to any localhost port where a server is listening. The attacker can also
perform server impersonation by binding to the server port before the
legitimate process does. This is possible because any process, regardless
of its owner, can listen on a port 1024 or higher as long as the number
has not been taken by another process. Combining server and client
impersonation to a full man-in-the-middle attack, however, is not trivial
because the legitimate server and the attacker cannot both bind to the
same port number. One way for the attacker to overcome the limitation is
to alternate between the client and server roles and replay messages.

2.2.2 Windows named pipes

Named pipes are available on both Windows and Unix systems. We focus
on Windows named pipes, in which the actual vulnerabilities were found.
Windows named pipes follow the client-server architecture like network
sockets. However, instead of binding to a port number and an IP address
as network sockets do, a named pipe is bound to a name. When no pipe
with the given name exists, any process can create it. The named pipe can
have multiple instances, each of which connects exactly one pipe server
and one pipe client. The creator of the first instance decides the maximum
number of instances and specifies the security descriptor, which includes
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an access control list (DACL) that applies to all instances of the named
pipe.

Attack vectors. Despite the built-in access control mechanism, it is easy
to overlook the necessary security controls for named pipes, thus creating
vulnerabilities. Specifically, if the named pipe is created with the default
security descriptor (i.e., everyone has read access), or with open read-write
access, the attacker can connect to it and impersonate the legitimate pipe
clients. The pipe server would have to configure the DACL on the named
pipe object carefully to allow access for only legitimate clients.

In addition, the attacker can hijack the pipe name by creating the first
pipe instance and thus become the owner of the pipe object and impersonate
the pipe server. Furthermore, if the legitimate server is careless, it will not
check that it is creating the first instance of the pipe. By choreographing
the creation of the instances and client connections, the attacker can then
become a man in the middle between the legitimate client and server and
pass messages between the two pipes.

2.2.3 Universal Serial Bus

USB allows peripheral devices to communicate with a computer. Even
though USB is not actually an IPC mechanism, we considered it in this
work because USB human interface devices (HID), such as keyboards and
security tokens, bind to an identifier and wait for incoming connections in
a similar way as network sockets and Windows named pipes do. Further-
more, in Windows, a user can access USB HIDs plugged in by other users,
making them vulnerable to our adversary model. Such cross-user access,
however, is not possible in other operating systems.

Attack vectors. In Windows, the MitMa attacker can access USB HIDs
plugged in by other users. Thus, their security depends on application-level
security mechanisms implemented in the hardware or software.

2.2.4 Safe IPC methods

It is worth noting that some IPC mechanisms, such as anonymous pipes
and socket pairs, are not vulnerable to our attacks. In these methods,
both communication endpoints are created at the same time by the same
process, which prevents an untrusted process from getting to the mid-
dle. Unfortunately, these IPC methods can only be used between related
processes (typically parent and child), which severely limits the software
architecture.

On macOS, apart from the same IPC methods that are available on
Windows and Linux, there are also Mach IPC methods that are based
on the Mach kernel. These IPC channels are associated with a login
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session [3], and a process from one login session cannot interact with
another. Thus, they are immune to MitMa attacks between users.

2.3 Related work

There has been not much work in the literature on IPC security. Windows
named pipes have been an attractive target for security analysts, even
though the OS offers security controls to the named pipes using DACL.
The reason is that there could be write access for everyone because of the
developer’s negligence. In such scenarios, even a remote attacker may be
able to impersonate the pipe client to perform code execution or denial
of service [19, 24]. The server-impersonation and name-hijacking attacks
explained in the previous section are not feasible for such remote attackers.

Additionally, Windows named pipes are also known to be vulnerable to an
impersonation attack [101] (unrelated to the client or server impersonation
in this work). The pipe server impersonates its client’s security context,
which allows it to perform actions on behalf of the client. This attack
requires the server and the client processes to run as the same user or for
the server to run as a superuser, which is a stronger assumption than our
threat model.

Vulnerabilities have also been found for other IPC mechanisms. Xing et
al. [106] demonstrated that a malicious application on macOS and iOS can
access another application’s resources despite their isolation. The attacks
intercept IPC in a way similar to ours, but the malicious binary is executed
with the victim’s privileges. Related problems have also been found in
Android applications’ isolation [35, 90].

2.4 Our study

We analyzed various widely-used applications against the MitMa adver-
sary model. In Publication I, we chose password managers and security
tokens as our primary case study, and in Publication II, we focused on
cryptocurrency wallets. The reason we chose these application classes is
that the information they communicate over IPC is critical and, thus, it is
easy to identify security violations. We usually selected the popular appli-
cations in each class. However, in some cases, we also chose interesting or
architecturally different applications because we wanted to have variety.

The main observation is that application developers usually have an am-
biguous attitude towards local attackers and the security of IPC channels.
They often make some attempt to authenticate or encrypt the communi-
cation, but rarely with the same prudence as seen in communication over
physical networks. In this section, we will present three vulnerable appli-
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cations to demonstrate the attack vectors that we presented in the previous
section. More vulnerable applications can be found in Publications I and II.

2.4.1 Case 1: Bitcoin Core wallet

Cryptocurrencies, such as Bitcoin [73] and Ethereum [105], have become
remarkably popular in the last decade. Users access a cryptocurrency with
a wallet application, which manages the private/public key pairs that are
used for transactions and allows the user to store, send and receive the
cryptocurrency. We will use Bitcoin Core1, one of the most popular Bitcoin
wallets on desktop, to demonstrate the attack vectors against network
sockets. We considered Bitcoin Core v0.16.3, the latest version of the
application at the moment of our study (October, 2018).

Like most desktop wallet applications, Bitcoin Core provides a remote
procedure call (RPC) interface, through which other applications can ac-
cess the wallet’s functionality (e.g., querying account balance, or making
transactions) either locally or remotely. When Bitcoin Core is started, it
runs the RPC server in the background on localhost port 8332 by default so
that only local clients can access it. The RPC server does not support TLS,
and it authenticates the client with HTTP basic access authentication [86],
in which the client sends its username and password to the server in an
HTTP header. Bitcoin Core allows the user to encrypt each private key
with a password, and the client must send the password as HTTP POST
data to the RPC server to unlock the key before the key can be used for
transactions.

Attacks. Since only the RPC server authenticates the client, it is possible
for a MitMa attacker to impersonate the server to benign clients. This can
be done by the attacker running a malicious server on port 8332 before the
benign server starts and accepting any clients regardless of the credentials
they present. Luckily for the attacker, when Bitcoin Core fails to start
the RPC server, it does not notify the user about the failure. As a result,
the attacker can capture both the plaintext authentication credentials and
the decryption passwords for the victim’s private keys sent by the benign
clients without alerting the victim. Once the attacker has obtained these,
the attacker can terminate the malicious RPC server, wait for the benign
RPC server to restart, use the captured secrets to connect to the benign
RPC server and steal the coins from the wallet.

2.4.2 Case 2: Password Boss

Password Boss2 is a popular desktop password manager. We will use it
to demonstrate the attack vectors against Windows named pipes. We

1https://bitcoin.org/
2https://www.passwordboss.com/
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considered Password Boss v3.1.3434, the latest version of the application
at the moment of our study (October, 2017).

As many other password managers, it is integrated to web browsers with
browser extensions. Passwords are managed by the Password Boss desktop
application, and they are communicated to the browser extensions over
a local communication channel so that the browser extensions can assist
the user in creating and storing passwords and also in entering them into
login pages.

At the moment of testing, Password Boss supported Chrome and Firefox.
On Windows, the communication between the desktop application and
the browser extensions is implemented with a Windows named pipe as
follows. When the desktop application is started, it creates a named pipe
with a fixed name and a maximum of 50 instances. The browser extensions
connect to the named pipe as pipe clients, and they exchange messages with
the desktop application in plaintext. The access-control list on the named
pipe is set to allow all authenticated users on the computer to read and
write to the pipe’s instances. (Note that browser extensions implemented
in JavaScript cannot directly access Windows named pipes. Instead, they
communicate via a native-code component using a mechanims called native
messaging3.)

Attacks. Because of the improper configuration of the named pipe, a
MitMa attacker can perform a man-in-the-middle attack as follows. First,
the attacker connects as a client to the desktop application’s named pipe
instance. The attacker then creates another instance of the named pipe,
which is possible thanks to the unnecessarily high maximum number of
instances. When a Password Boss’s browser extension tries to communicate
with the desktop application, it will connect to the attacker’s instance
because it is the only one available. The attacker can thus sit between the
two pipe instances, forward messages, and read their content, including
passwords.

2.4.3 Case 3: FIDO U2F security key

FIDO U2F [36] is a USB HID security key device that is used to enable
strong two-factor authentication on online services. It is supported by vari-
ous online service providers and browsers. We will use it to demonstrate
attack vectors against USB communication.

To use a FIDO U2F device for two-factor authentication, the user must
first register the device to the online service. During the registration, the
device generates a service-specific key pair and stores it together with a
key handle (i.e., identifier) and the origin URL of the service.

After the device has been registered, it can be used as a second factor

3https://developer.chrome.com/apps/nativeMessaging
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Figure 2.2. Basic authentication flow with U2F security key [4]

as illustrated in Figure 2.2. First, the browser receives a challenge to-
gether with a key handle from the web server. It then forms the so-called
client-data object and sends the object to the device for signing. The user
needs to activate the device by touching a button on the device. This is
meant to prevent unauthorized use of the device. Once the device has been
activated, it signs the first received client-data object and sends it back to
the browser. The browser then delivers the signed object to the web server
for verification.

Attacks. As mentioned in Section 2.2, the MitMa attacker can access USB
HIDs plugged in by other users in Windows. Thus, if the MitMa attacker
has compromised the victim’s password, the attacker can also subvert the
hardware-device authentication as follows. The attacker first creates a
malicious (browser) process that runs on the victim’s computer and tries to
log into one of the user’s online services. The attacker’s process then sends
client-data objects to the U2F device at a high rate. When the user decides
to log in to any service using U2F authentication and touches the button
on the device, there is a high probability that the attacker’s request will be
signed. The user may notice that the first button press had no effect, but
such minor glitches are normal in computers and typically ignored.

2.5 Discussion

In Publication I, we found 6 password managers, 2 hardware tokens, and
5 other security-critical applications that were vulnerable to the MitMa
attacks. In Publication II, 7 wallet applications of 5 popular cryptocurren-
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cies were discovered vulnerable. There are likely to be other vulnerable
applications in the wild that can be exploited by the MitMa attackers. The
explanation why the problems are so widespread is probably twofold. First,
developers are inclined to consider the user’s computer a trusted environ-
ment. Second, the best practices for secure IPC are not documented, and
therefore developers may simply be unaware of the threats and solutions.
We therefore believe that the best way to address both of these potential
explanations is to publicly discuss the attacks and defenses, as we did in
the publications. Over time, better tools such as safe APIs and security
test benches could help eradicate the entire class of problems.

The idea of protecting the users of a multi-user computer system from
each other takes us back to the early days of computer security. With
personal computers, this has not been perceived as so important. It has
also become common wisdom among information-security experts that, if
the attacker can run a process on the computer, they always can find a way
to perform privilege escalation [6, 50, 106] and gain full administrative
access. There is, however, the opposite trend towards greater isolation of
applications from each other and containing malicious applications. This
started in mobile devices, but desktop operating systems are beginning
to provide similar protections. The MitMa attacks are one way for a non-
privileged process to circumvent isolation boundaries within the computer,
and we believe that the observations of the papers will prove useful in the
design of application-isolation mechanisms.
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3. Configuration Vulnerabilities in
Commercial VPNs

Virtual private networks (VPN) [104] were originally developed for con-
necting geographically distributed corporate networks to each other with
encrypted tunnels so that they would form a single secure logical network.
However, today they are commonly provided as subscription-based ser-
vices by commercial VPN providers to regular Internet users for personal
purposes, such as protecting Internet traffic when using a shared WLAN,
hiding sensitive online activities, and accessing geo-blocked media content.

In Publication III, we study the client-side configuration of commercial
VPNs. The work was primarily motivated by the observation that many
commercial VPN providers configured L2TP/IPsec, a popular VPN protocol,
in an insecure way1. Specifically, the protocol relies on IPsec [11] to provide
the secure transport, but many VPN providers used a single publicly-
known pre-shared key (e.g., “12345678”) for all users to authenticate the
IPsec tunnels. If an attacker knows the pre-shared key, the attacker can
perform a man-in-the-middle attack on the VPN connection and, as the
result, obtain all the network traffic to and from the victim’s computer.
This problem was discussed on public forums in 2016. However, when
we re-analyzed the 14 insecure commercial VPN services mentioned in
the discussion, we found that 10 of them were still using the insecure
configuration. Since such a vulnerability remains opaque to most end-
users, we felt that it was important to further scrutinize commercial VPN
services for flaws that could undermine the user’s security and privacy.

In this chapter, we first give an overview of how commercial VPNs work
and related work in the literature. We then describe our study in detail.

3.1 Background

This section gives an overview of commercial VPNs and related work.
1https://gist.github.com/kennwhite/1f3bc4d889b02b35d8aa
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3.1.1 Commercial VPNs

The principle of commercial VPNs is quite simple: they tunnel the user’s
Internet traffic through a trusted remote server before it is forwarded to
its final destination. This achieves two goals: first, the traffic is protected
by an encrypted VPN tunnel against dangers in the access network and,
second, the destination server does not learn the real IP address of the
client.

Most commercial VPN providers provide native desktop applications,
which set up the VPN connection, to their users. These applications are
usually available only for the Windows and macOS operating systems. For
Linux users or those who prefer not to install the provided applications,
the VPN service providers usually give instructions for configuring the
built-in VPN client in the user’s operating system (OS) to work with their
servers.

Commercial VPN desktop applications. The desktop applications pro-
vided by commercial VPN providers typically work as follows. The user
must first enter his VPN user-login credentials into the application. The
application then pulls configuration data, such as VPN server addresses,
roots of trust for the authentication, and VPN-client credentials (which
are not necessarily the same as the user-login credentials), from the VPN
provider’s server. When the user wants to use the VPN, the application
typically allows the user to choose the location of the VPN server and the
VPN protocol (e.g., PPTP, SSTP, OpenVPN) for the tunnel implementation
and then sets up the VPN connection accordingly.

The process of setting up a VPN connection is similar regardless of the
protocol used: First, the VPN client establishes a VPN tunnel to the VPN
server with the selected protocol. The client and the server authenticate
each other in the protocol handshake with predefined credentials and roots
of trust. If the authentication succeeds, the client and server negotiate
various parameters for the VPN connection, such as the encryption scheme
and the DNS servers, and the VPN tunnel is established. After that, the
client creates a virtual network interface (e.g., tun0 or ppp0) and modifies
the host’s routing table to redirect all Internet traffic towards it. Traffic
that goes through the virtual interface is tunneled to the VPN server
through the established VPN connection.

3.1.2 Related work

Prior work in the literature has shown various security and privacy threats
against the users of commercial VPN services.

Deanonymization is one of the biggest threats against commercial VPN
users. First, it is obvious that VPN users are not anonymous from their
service providers. They must blindly trust the providers to not be malicious
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and to not disclose their activity log to third parties. The data that the
providers retain about their users exacerbates this problem further. For
example, many VPN services ask for the user’s personal information at
registration time. A number of them even retain the traffic log of each
VPN connection [75]. Another way that a user can be deanonymized is
through end-to-end traffic correlation [60, 70, 89]. Furthermore, users
typically tend to give priority to connection quality over location diversity.
This means that they often rely on the same small subset of VPN servers,
making end-to-end attacks easier. User anonymity can also be compro-
mised because of misconfiguration [10]. In many cases, the VPN reveals
user information due to IPv6 traffic and DNS leakage [82]. Such leaks can
also occur due to advanced VPN functionality such as port forwarding [81],
WebRTC [7], and web cookie synchronization [79].

Security of the VPN tunnel is another concern. Cryptographic weak-
nesses can undermine the security of the tunneled traffic. Nafeez disclosed
the compression oracle attack on OpenVPN compression algorithms, where
an attacker can send cross-domain requests when an HTTP website is
tunneled through OpenVPN connections [72]. Felsch et al. demonstrated
that reusing the same key pair across IKEv1 and IKEv2 allows an attacker
to bypass authentication as well as perform impersonation attacks [34].
Weak pseudo-random number generators (PRNG) in the VPN implemen-
tation can also subvert the security of the cryptographic protection. The
weaknesses could be due to faulty implementation, such as a hard-coded
seed key along with a legacy PRNG [25], an intentional backdoor [17], or
an intentionally insecure random-number generator [22]. In any case, an
attacker may be able to recover the secret keys for the VPN tunnel and
intercept the traffic passing through the VPN.

3.2 Our study

As we described in the previous section, commercial VPNs have undergone
severe scrutiny and various problems have been found. In Publication III,
we extended this theme in the literature with focus on the security of the
VPN tunnel configuration. Specifically, we studied how popular commercial
VPN providers set up, or how they instructed users to set up, desktop VPN
clients for common VPN protocols. The goal was to find configuration flaws
that could undermine the user’s security and privacy.

In this section, we first describe the adversary model and our methodol-
ogy for systematically finding vulnerabilities in VPN client configuration.
We then present some highlighted results from the study.
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3.2.1 Adversary model

In the study, we considered two types of attackers whose ultimate goal
was to bypass the protection mechanisms of the VPN connection and
steal sensitive data transmitted through it: network attacker and MitMa
attacker.

The network attacker is the standard attacker model for network security.
We considered an active network attacker who could intercept and modify
network traffic originating from and destined to the user’s machine. The
attacker could, for example, be a rogue hotspot operator or a compromised
core-network operator.

The MitMa attacker could be any non-privileged user on the same com-
puter, as described in Section 2.1. We included this type of attackers to
the study because the VPN client software on the user’s computer often
comprised multiple separate components that communicate with each
other via IPC (e.g., network sockets, files on disk) and the attacker might
be able to exploit them to steal sensitive information or to modify the VPN
connection settings.

3.2.2 Methodology

We selected 30 popular commercial VPN services based on popularity and
advertised features. We focused on standard VPN protocols, including
PPTP [40], L2TP/IPsec [97, 11], IKEv2 [51], Cisco IPsec [2], SSTP [65],
OpenVPN [33], and SoftEther VPN2.

For each of the selected commercial VPN services, we first looked at
the way its provided VPN client application created and configured VPN
connections. If the VPN service provider also recommended a built-in client
in the OS or a third-party client, we scrutinized the provided configuration
instructions and unchanged default settings. In both cases, we looked
for potential misconfigurations and architectural mistakes that might
compromise the security of the resulting VPN connection. We did not
try to find flaws in the cryptographic protocols themselves or code-level
implementation errors.

When we found a potential client-configuration issue, depending on the
type of the attack, we verified it with experiments. In particular, for
network attacks, we created a fake VPN server, configured the VPN client
with the potentially vulnerable settings, routed the VPN client’s traffic to
the fake server, and checked whether the client could detect the attack.
For local attacks, we created two users accounts on a test machine: one
acted as the honest user and the other as the MitMa attacker. We then
checked whether the attacker was able to exploit the vulnerability in the
VPN client application that was running in the honest user’s login session.

2https://www.softether.org/
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3.2.3 Study results

We found security issues in the configurations of all of the selected protocols.
They existed not only in the way the commercial VPN providers configured
the protocols but also in their instructions for built-in or third-party VPN
clients. In this section, we will describe the issues in three protocols: Cisco
IPsec, IKEv2, and OpenVPN. The details of the remaining issues can be
found in Publication III.

Cisco IPsec is not only widely used in enterprise VPNs, but it is also sup-
ported by many commercial VPN services. Like L2TP/IPsec, the protocol
uses IPsec to tunnel traffic. The main distinguishing feature of Cisco IPsec
is that, after the communicating nodes have completed the conventional
IKEv1 authentication, an additional phase of Extended Authentication
(XAUTH) [80] is performed to authenticate the user. XAUTH allows vari-
ous types of user authentication, such as challenge-response and one-time
password.

In the study, we found that all of the VPN services that supported Cisco
IPsec had the same issue as with L2TP/IPsec: they used a single pre-
shared key to authenticate the IPsec channel for all of their users. This
allowed the network attacker to perform MitM attacks on these IPsec
connections and to obtain all the network traffic.

IKEv2 is a more modern VPN protocol based on IPsec. As the name
suggests, the protocol uses IKEv2 [51] for authentication as well as es-
tablishing and maintaining security associations. The server in a typical
IKEv2 VPN is authenticated with a server certificate, while the client is
authenticated with the EAP-MSCHAPv2 protocol [44] and user password.

We observed that some of the commercial VPN providers instructed
their Linux users to install StrongSwan3, an open-source IPsec client, to
use IKEv2 with their services. To establish an IKEv2 connection with
StrongSwan, the user has to create a profile for the connection. The profile
that the providers instructed their users to create was as follows (only
important parts are shown):

le f tauth=eap−mschapv2
. . .
r ight=<server−address>
rightauth=pubkey
r ight id=%any

Left and right indicate the client and the server, respectively. With
such a profile, the server uses a public key for authentication while the
client uses EAP-MSCHAPv2, as we described above. The problem is with
the rightid setting, which tells how the server should be identified in the
authentication. Since it is set to %any, the client will accept any certified

3https://www.strongswan.org/

29



Configuration Vulnerabilities in Commercial VPNs

server regardless of its identity. Consequently, the network attacker can
pick any domain that it owns, purchase a certificate from a widely trusted
CA, and then impersonate the server in the server authentication step
because the client does not check the name in the certificate.

Fortunately, EAP-MSCHAPv2 actually provides mutual authentication
with the user password. The binding of this authentication to the SA
prevents the attacker from completing the protocol without knowing the
password. Thus, the misconfiguration effectively reduces the security of
IKEv2 to that of EAP-MSCHAPv2, which is significantly weaker [61, 88].

OpenVPN appears to be the most widely supported protocol by commercial
VPN services. It uses TLS as the underlying authentication and key
exchange protocol. Commercial VPN services deploy OpenVPN in the
client-server mode, in which the server authenticates itself to the client
with an X.509 certificate signed by a CA that the client trusts while the
client proves its identity with a username and password.

Despite the wide range of configuration options that OpenVPN supports,
we did not find any broken configuration that would allow the network
attacker to compromise the OpenVPN connection. We found, however, that
the MitMa attacker could steal the username and password that were
used for authenticating the client in some VPN services as follows. To
support OpenVPN, commercial VPN providers included the open-source
openvpn client binary in their client software and run it as a daemon. To
create an OpenVPN connection, the openvpn daemon required configura-
tion information including the server address, server name, trusted CA
certificate, and the user’s VPN username and password. The problem was
that some commercial VPN client applications passed the information to
the OpenVPN daemon via configuration files, but the files were readable
to all users on the user’s computer. Therefore, the MitMa attacker could
capture this sensitive information. Some of these services removed the
credentials from the file after the connection was established, but this still
left a window of a few seconds to capture the information.

3.3 Discussion

It appears that commercial VPN services compete by providing the maxi-
mum number of features, such as different VPN protocols, and maximum
ease of use, and that security is a secondary concern for them. For example,
the issue of using publicly known pre-shared keys for L2TP/IPsec has been
known for years, but it has not been addressed by most commercial VPN
services. While this issue could be solved by provisioning certificates to
the clients, that would be an administrative hurdle for the VPN service
providers and might scare away non-expert customers. This could be the
reason why they have opted to continue the insecure practices.
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Furthermore, the vulnerabilities that we found were surprisingly com-
mon among the commercial VPN services that we analyzed. For example,
14 of the selected services supported Cisco IPsec, and all of them had the
publicly known pre-shared key problem described in Section 3.2.3. This
seems to indicate lack of technical knowledge or security awareness across
the commercial VPN industry. We hope that our study will, at least to
some extent, increase awareness about the importance of correct VPN
configuration among the commercial VPN developers and operators.

31





4. XSS vulnerabilities in
cloud-application add-ons

Modern web applications store and process user data mainly in the cloud,
and their user interface is implemented with HTML and JavaScript and
runs on the web browser. With this architecture, the users do not need to
install or update the applications, and sharing and synchronizing between
users and services becomes easier. Furthermore, many cloud applications
follow the microservice architecture where much of the functionality is
implemented as independent services that are loosely coupled to the core
service through APIs. The APIs can also be opened to external developers
so that they can develop customized features for the applications. These
features are usually called “add-ons”. For example, Google Docs is a well-
known online document editor, and its Translate add-on allows the user to
translate text to another language — a feature that is not part of the core
service.

While cloud-application providers have come a long way in securing
their applications, third-party add-ons may be developed by inexperienced
developers and, thus, bring in security vulnerabilities. In Publication IV,
we present one of the first, if not the first, studies on the effect of add-ons
on cloud-application security. The study focuses on how add-ons process
untrusted user input. This is a critical issue because the emphasis on
collaboration and data sharing in the cloud applications makes it easy to
exploit vulnerabilities in the handling of untrusted data. The study reveals
that many cloud-application add-ons are vulnerable to cross-site scripting
(XSS). In this chapter, we first give an overview of how cloud-application
add-ons work and how they can be vulnerable to XSS attacks. We then
discuss the impact of the vulnerabilities and show how common vulnerable
add-ons are in the wild.

4.1 Background

In this section, we give an overview of cross-site scripting attacks and
cloud-application add-ons as well as related work.
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4.1.1 Cross-site scripting

In a cross-site scripting (XSS) attack [38], the attacker injects malicious
client-side code, typically JavaScript, to a website that does not sufficiently
filter user inputs. When a victim accesses the site, the injected code is
executed in the user’s web browser in the same context as the legitimate
scripts on the same page. Thus, the code gains unauthorized access to the
site’s resources and bypasses the same-origin policy (SOP) [109].

In general, there are four types of XSS attacks: stored XSS, reflected
XSS, DOM-based XSS, and persistent client-side XSS. The first three can
be considered the “traditional” XSS attacks [38] and are well-known in
the web security community, while the fourth is relatively new in the
literature [93].

XSS variants can also be classified into server-side XSS and client-side
XSS1. The former occurs when untrusted user data is included in an HTML
response generated by the server, while the latter occurs when a JavaScript
call uses untrusted user data to update the DOM of the vulnerable page in
an unsafe way.

4.1.2 Cloud-application add-ons

Add-ons (also known as add-ins, plugins, extensions, or apps) add cus-
tomized commands and features to a cloud application, called the host
application. Cloud-application vendors often distribute add-ons for their
applications through an online marketplace. For example, the G Suite mar-
ketplace2 lists add-ons of Google applications, such as Gmail and Google
Docs.

Each add-on is basically a separate web service with its own server and
web front-end, but it has access to the user data and some core functionality
of the host application through APIs defined by the application. When the
user starts an add-on, the host application typically loads the add-on UI
into an iframe and displays it as a part of the application user interface.
There are two fundamentally different ways for the add-on UI to interact
with the host application. It can communicate either locally with the
host-application UI component or via the add-on server. In the latter
case, the add-on UI usually connects to the add-on server in the cloud,
which interacts with the host application server and accesses the user data
through backend APIs that are not visible to the user.

Access control. Cloud-application vendors typically implement permission-
based access control for add-ons to limit their access to user data in the host
application. Each add-on has a list of the permissions which it requires to

1https://owasp.org/www-community/Types_of_Cross-Site_Scripting
2https://gsuite.google.com/marketplace
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operate. The host application usually asks the user to explicitly approve
the permissions when the user runs the add-on for the first time or during
its installation. In cases where the add-on is updated and needs new
permissions, the host application will ask the user to review and approve
them again. This access control tends to be rather coarse grained, i.e., the
user has to grant all the requested permissions for either all user data or
for a specific document. Furthermore, the add-on retains the permissions
until the user uninstalls it.

4.1.3 Related work

This section summarizes the related literature about XSS attacks and secu-
rity analysis of add-on ecosystems outside the domain of web applications.

XSS vulnerabilities. XSS has always been a prevalent problem in
web security [59, 63, 71, 93, 94, 95]. The literature on XSS defenses
includes both client and server-side solutions. The client-side solutions
involve sanitizing user input before sending it to the server. However,
distinguishing between trusted and untrusted content is a challenging task.
This is why the validation of web pages is sometimes outsourced to the
browsers [96] or to the web firewalls that run on the client device [46, 54].

Taint checking is a server-side protection mechanism where the input
originating from untrusted sources is flagged as potentially malicious
and subjected to further scrutiny. Similar techniques can be employed
on the client side if combined with the static analysis of the input pro-
cessing [98, 100]. There are other server-side solutions that involve, for
example, passive monitor of web traffic [49] or dynamic comparison of
HTTP responses with pre-defined ones [18].

Add-on security. Even though there are add-ons for almost any type of
software, it is mostly the browser add-ons which have undergone critical
security scrutiny. For example, Google Chrome has a browser extension
ecosystem, where the extensions themselves [47], their architecture [21]
and protection mechanisms [42] have been targets of security research.
Weissbacher et al. inspected Chrome extensions for privacy violations
(e.g., leaking browsing history) by observing the network traffic patterns
generated by the add-ons [102]. Firefox add-ons have also undergone
similar vetting [13, 14, 15]. Text editors also have add-on ecosystems
(e.g., Sublime plugins) that have been recently criticized for security vul-
nerabilities. Azouri Dor analyzed several text editors and found that it
is possible for a malicious add-on to achieve privilege escalation on the
victim’s computer [12].

Cloud-application add-ons are still a relatively new phenomenon, and
their effect on the application security has not been widely studied. We
believe that it deserves the same attention from the security research
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Figure 4.1. XSS attacks with vulnerable add-ons

community as any other type of add-ons.

4.2 XSS against cloud-application add-ons

In Publication IV, we studied the security risks that arose from potential
security vulnerabilities in cloud-application add-ons. The focus of the study
was on cross-site scripting.

4.2.1 Attack variants

We identified two types of XSS attacks against vulnerable add-ons, as
illustrated in Figure 4.1:

1. Attack with shared workspace: The attacker and the victim are col-
leagues, friends or remote collaborators who use the same cloud applica-
tion and share a workspace. The workspace basically is any environment
through which changes made by one user are propagated to the others
(e.g., a shared Google Docs document). The attacker injects malicious
JavaScript code into the workspace. When the victim enables the vul-
nerable add-on for the shared workspace and the add-on renders the
attacker’s input in an unsafe way, the injected script may be executed in
the add-on’s iframe. This way, the attacker has performed an XSS attack
on the victim.

2. Attack with outside input: Some host applications accept external input,
which may contain XSS code for an add-on that later processes the data.
For example, if the host application is an email service (e.g., Gmail or
Outlook), the attacker can hide the malicious script in an email and send
it to the victim. If the victim has enabled a vulnerable add-on to process
emails, the injected script may again find its way to the add-on’s iframe

and be executed there like any JavaScript in that frame.
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How the attacker injects the script into the shared workspace is naturally
specific to the cloud application, to the add-on, and to the vulnerability
that is being exploited. In any case, the root cause of the above attacks is
that the vulnerable add-on routes the untrusted user input to JavaScript’s
execution sinks in the add-on UI without sanitizing it. For example, the
malicious data from the attacker can be executed if the add-on renders it
as HTML rather than as text.

4.2.2 Attack consequences

We now discuss what the attacker can gain by performing XSS on a vul-
nerable add-on. As in all XSS attacks, with the ability to run arbitrary
scripts in the context of the vulnerable add-on, the attacker can access
HTML5 APIs and request access to local resources, such as geolocation, or
authorization to access external resources owned by the victim user. The
attacker can also access data on the add-on server through its APIs. In a
microservice architecture, the add-on server is likely to have its own data
storage. Furthermore, the attacker can spoof another user interface and
trick the user into entering confidential data or credentials.

The attacker, however, cannot directly access data in the host application.
This is because the malicious script runs in the add-on’s iframe, whose
origin is different from the host application’s. Thus, it cannot access the
DOM model of the host-application within the web browser or the cookies
related to the host application.

To understand the real consequences of XSS attacks against cloud-
application add-ons, we analyzed the add-on architectures of three popular
cloud application suites: Microsoft (MS) Office Online3, G Suite4, and
Shopify5. What the attacker could do with malicious code execution in
each case is as follows.

• MS Office Online is a cloud-based office suite, which includes popular
office applications like Word, Excel, PowerPoint, and Outlook. Add-ons
of MS Office Online applications interact with the host application on
the client side via JavaScript APIs. Specifically, the window.postMessage()

function [69] is used for cross-origin messaging between the add-on iframe

and the parent application window.
With this architecture, once the attacker has managed to inject mali-

cious scripts into the add-on UI, the attacker can access any resources
in the host application which the add-on is permitted to access. This is
because the scripts can call the JavaScript APIs provided by the host
application. Since the attacker’s scripts run within the add-on’s iframe, it

3https://office.com/
4https://gsuite.google.com/
5https://shopify.com/
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is not possible for the host application to differentiate between malicious
requests from the injected code and legitimate ones from the add-on UI
code.

• G Suite is another office suite, which is developed by Google. Some
well-known applications in the suite are Google Docs, Google Sheets,
and Gmail. The main difference to MS Office Online’s add-ons is that G
Suite add-ons are always hosted in the Google cloud and they interact
with the host application’s data on the server side. The add-on server is
basically a Google APIs client6, and it obtains the access token for the
user’s private data when the user starts the add-on for the first time.
The add-on UI sends requests to interfaces defined by the add-on server,
and the server implements the desired actions on user data as well as
returns responses.

At first glance, since the host application window does not accept local
messages from the add-on UI, it appears that the XSS attacker cannot
compromise the victim’s data. However, there is a very common Google
API used by add-on UIs, which allows the attacker to bypass this limita-
tion: the Picker API7. It is used for the user to select a file or folder that
is stored in Google servers. Like any other Google APIs, the Picker API
requires an access token to operate. Add-on servers commonly create an
interface by which the add-on code running in the browser can obtain
a copy of the server’s token; this is even a recommended practice [1].
Thus, the injected XSS code can request the access token from the same
interface. As the result, the attacker gains the same permissions to the
user’s data as the add-on server.

• Shopify is an e-commerce platform with which small merchants can
create online shops. Each shop is managed through a web admin inter-
face, on which the owner can access the built-in services of the platform.
Shopify add-ons integrate third-party services into this admin interface.

Unlike the other two application suites, we could not find any way for
the XSS attacker to gain access to Shopify data through the published
APIs. The add-on server runs in the cloud and accesses the shop data
with the Shopify REST APIs over HTTPS. It is authorized with an OAuth
2.0 access token, which it obtains when the user starts the add-on for the
first time. Since the add-on accesses the user’s data from the server side,
the attacker cannot directly access the victim’s data with the injected
client-side script. There was also no dangerous API like the Picker API
used by G Suite add-ons.

We can see different design choices in the three add-on architectures

6https://developers.google.com/apis-explore
7https://developers.google.com/picker/
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above and how they significantly affect what the attacker gains with XSS
attacks on the add-ons. However, even if the attacker cannot gain access
to the data in the host application through the published APIs, spoofing
always poses a great threat to the user. In particular, we found that in all
three analyzed application suites, the attacker could create a malicious
add-on or app with the same name as the vulnerable add-on and display an
OAuth authorization prompt to trick the victim into granting it permissions
to access private resources. Since the victim is already familiar with the
authorization prompt that the add-on displays when it runs for the first
time or when it is updated (see Section 4.1.2), there is a high chance that
the trick will work.

4.3 Empirical analysis

To gain deeper understanding of the attacks described above and to find
out how common they are in the wild, we looked for vulnerable add-ons
in the marketplaces of the three selected cloud application suites (MS
Office Online, G Suite, and Shopify). For each of them, we selected 100
free add-ons, in which 50 were popular ones and another 50 were selected
randomly, and we manually analyzed the add-ons to see whether they
were vulnerable to our XSS attacks. Among the 300 analyzed add-ons, we
found 28 vulnerable ones (around 9%). Some of the vulnerable add-ons
had nearly 10 million users. We have disclosed all the vulnerabilities to
the corresponding developers (their contact information was available on
the marketplaces).

We observed that the vulnerability rate in the popular add-ons was lower
than in the randomly-selected ones in all the three marketplaces. The
reason could be that the popular add-ons are more likely to be written by
experienced developers. Moreover, add-ons that were vulnerable to outside
input were rare. Specifically, only one add-on in our study was vulnerable.
This could be because the add-on developers are more familiar with threats
from external input (i.e., emails in this case) than those from a shared
workspace.

4.4 Discussion

Since cross-site scripting is a well-known vulnerability, prudent engineer-
ing practices have been developed to prevent such mistakes [77]. Never-
theless, the problem has not been completely solved. From our empirical
analysis, we can see that vulnerable add-ons are not rare in the wild. At-
tackers always find new ways of bypassing the defenses, and the speed of
software development makes it difficult for threat analysis and defenses to
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stay up to date.
We have confirmed by experiments that the vulnerabilities described in

this paper are real and exploitable. There are, however, some additional
practical considerations which a real-world attacker would face. The at-
tacker needs to know which vulnerable add-on the victim is using, and the
victim has to enable the add-on for the shared document. Thus, a successful
attack probably requires a vulnerable add-on that users regularly invoke
on large classes of documents which they are reading or editing. Translator
and writing-assistant add-ons could meet these criteria. Add-ons that fix
problems in data, such as duplicate removers, could even be installed by
the victim when they receive a document with the corresponding problem.

In addition to the XSS vulnerabilities in the add-ons, another serious
issue discovered in this work is the way OAuth 2.0 tokens are used in the
Picker API, and the powerful exploits that it enables for the XSS attacker.
The Picker API documentation has educated developers to use a design
pattern where the add-on server shares its OAuth 2.0 token with the client-
side code. Even if the Picker API itself is replaced with a safer solution,
this unsafe software pattern might persist among developers.

Overall, we hope that our work will attract more attention to the area of
cloud-application add-ons because further work is clearly needed. There
might be other attack vectors that allow the attacker to exploit non-
malicious add-ons. Analyzing threats from malicious add-ons could also be
an interesting area for future work.
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5. Topology poisoning in
software-defined networking

Software-defined networking (SDN) [55] is a relatively new networking
paradigm. Unlike traditional networks where routers and other dedicated
network devices control the network’s behavior with distributed routing
protocols (e.g., OSPF [68], BGP [85]), SDN separates the control plane
of the network from the network devices and moves it to a centralized
software-based controller. With this architecture, it provides a network-
wide view and flexible programmability to network administrators, allow-
ing them to design and control the network with their own applications
and to respond quickly to changing business needs.

As for any new technology, it is essential to understand the security
threats in SDN. In Publication V, we consider the network-wide visibility
of SDN and investigate one particular class of attacks: topology poisoning.
We analyze the topology poisoning attacks against SDN both qualitatively
to understand the principles, and quantitatively with simulations and
abstract network structures to assess and explain their impact. Our focus
is specifically on attacks mounted from compromised SDN switches.

In this chapter, we first give an overview of SDN and how topology
discovery is performed. We then explain topology poisoning attacks and
present the variants that we found. Finally, we describe the simulations
and present the main results and insights.

5.1 Background

This section gives an overview of SDN and its topology discovery process
as well as related work.

5.1.1 Software-defined networking

The principal idea of SDN is to decouple the control plane and the data
plane of network devices. This is achieved by removing the control-plane
logic from the routers and moving it to a logically centralized controller.

41



Topology poisoning in software-defined networking

Switch Switch Switch Switch

Controller

Application

Southbound interface

Northbound interface
D

at
a 

pl
an

e
C

on
tr

ol
 p

la
ne

A
pp

lic
at

io
ns

Figure 5.1. SDN architecture

Figure 5.1 shows a high-level overview of the SDN architecture. The
SDN applications, such as network monitors and load balancers, make
decisions based on the abstracted view of the network provided by the con-
troller and specify their network requirements towards the controller via
the northbound interface. The SDN controller, besides providing relevant
information to the SDN applications, translates the network requirements
to configuration commands and sends them to the physical network. (While
the SDN controller is defined as a single logically centralized entity, it can
be physically distributed to improve its performance and reliability.) In-
stead of routers and switches, all SDN network devices are called switches,
although they forward packets based on both layer-2 and layer-3 head-
ers. The controller exchanges control messages with the switches via the
southbound interface using standardized protocols, such as Forwarding
and Control Element Separation (ForCES) [30, 107], SoftRouter [58], and
OpenFlow [62].

Topology discovery with OpenFlow. To make routing decisions, the
SDN controller needs to know the network topology, i.e., how the switches
are connected to each other. In this work, we used OpenFlow as the exam-
ple controller-channel protocol and architecture because of its popularity.

In an OpenFlow software-defined network, the Link Layer Discovery
Protocol (LLDP) [5] is used to dynamically detect layer-2 links between
adjacent OpenFlow switches. Figure 5.2 illustrates how the controller
detects a link between two switches. First, the controller sends to one
switch an OFPT_PACKET_OUT message, which contains an LLDP packet
and the instruction to forward it on a specific port. The switch forwards
the LLDP packet on the specified port. If there is another switch connected
to the port, it receives the LLDP packet and sends it to the controller in an
OFPT_PACKET_IN message along with the ingress-port identifier. The
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controller can thus reason that there is a directional link between the
two switches. The controller then proceeds to do the same in the other
direction.

Figure 5.2. Switch-to-switch link discovery in OpenFlow networks

5.1.2 Related work

The earlier literature on SDN security has focused on the security of
SDN applications [84, 91, 103], real-time verification of network policies
[39, 52, 53, 83], and vulnerabilities in the controllers [56, 57, 87] as well
as controller-switch communication [20, 28]. Much less effort has been put
into studying attacks originating from the data plane and, more specifically,
from compromised hosts and switches [9, 16, 48].

Topology poisoning in SDN has stimulated some interest among scholars.
Hong et al. [43] presented several ways in which the controller’s network
view can be poisoned by a compromised host even when the controller
channel is protected with TLS. The proposed attacks are carried out either
by creating fake Link Layer Discovery Protocol (LLDP) packets or by
forwarding genuine ones from one switch to another. We build on this
basic technique while discussing a broader range of attack variants and
analyzing them in more depth.

5.2 Topology poisoning attacks

This section presents our threat model and different variants of topology
poisoning attacks in SDN.

Threat model. The attacker that we consider is in control of a small
number of compromised switches. By compromised switches, we mean
that the attacker is able to access and manipulate their configuration,
authentication credentials, and flow tables. For example, the switches
could be compromised by attacking them via a console serial port or by
exploiting a software vulnerability. The compromised switches are not
assumed to have any special hardware capabilities.

The goal of the attacker is to route more traffic to the compromised
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nodes by spoofing fake links that create shorter or alternative paths in the
network. Since all routing algorithms favor shorter paths at least to some
extent, the SDN controller may route packets via these fake links. The
attacker can then sniff the packets or mount MitM attacks on the data
plane.

Attacks mounted by a small number of compromised nodes in an other-
wise secure network are a timely issue for two reasons. First, in targeted
attacks against high-security organizations, the attacker first tries to gain
any kind of small foothold, such as one compromised network device, and
then starts to extend this gradually. Second, the trustworthiness of net-
work equipment is often called into question. This concern becomes even
more acute with SDN because one of its promises is that networks can be
built with low-cost, heterogeneous equipment.

Attack principle. The opportunities for topology poisoning in SDN
are narrower than in traditional networks [45, 67, 78, 99]. In a well-
managed SDN network, there is a direct secure channel between the
non-compromised switches and the controller. Also, the switches do not ag-
gregate routes or forward unauthenticated topology or routing information
from each other. Thus, the compromised switches cannot spoof or make
malicious modifications to the routes or to the forwarded topology data.
This means that the only way for the compromised switches to influence
routing in SDN is to tweak the topology-discovery process locally between
the compromised switches and their neighbors.

The attacker first needs to manipulate the propagation of the LLDP
packets to fabricate non-existing links and then establishes tunnels that
make these links appear functional. For example, if there are two com-
promised switches, whenever one of them receives an LLDP packet that
should cross the fake link, it tunnels the packet to the other switch, which
encapsulates the packet and sends it to the controller. As the result, the
controller thinks that there is a direct link between the two switches. The
attacker, however, needs to avoid creating a forwarding loop. The issue is
familiar from any type of tunneling in traditional networks: the tunnel
packets must not themselves be routed into the tunnel because that would
result in a loop. To avoid this pitfall, the attacker needs a relay node via
which the tunnel endpoints communicate.

Attack variants. We found four different variants of topology poisoning
in SDN, as illustrated in Figure 5.3. Among these, only the basic variant
has been discussed in the literature [9, 28].

• Basic variant: The controller is fooled into thinking that there is a direct
link between two compromised switches. This is the most obvious variant
of the attack.
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Figure 5.3. Four variants of topology poisoning in SDN

• Neighbor variant: This variant also requires two compromised switches,
but the fake link is created between two good switches that are neighbors
to the two compromised switches. The compromised switches typically
have many neighbors, and it is possible to pair them up to create multiple
fake links.

• Merging variant: In this variant, two or more compromised switches
merge together and appear as one big virtual switch with many neigh-
bors. They all share one identity, which can be taken from one of the
participating switches.

• Single-switch variant: The last variant differs from the previous ones
in that only one compromised switch is needed. The attacker configures
the compromised switch to forward the LLDP packets received from one
port directly to another port. Thus, fake links are established between
neighbors of the compromised switch.

The above attack variants were tested in an emulated OpenFlow network
environment using the Mininet emulator [41]. The principles of the attacks,
however, are general and can be applied to most SDN technologies.

5.3 Attack simulation

Previous research has found topology poisoning attacks in SDN are partic-
ularly difficult to defend against, especially those based on LLDP relay/-
tunneling [8, 28, 43]. Thus, we decided to simulate the topology poisoning
attacks that are described in the previous section against a wide variety
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Table 5.1. Network topologies in the simulations

Topology Type Edges
Grid regular mesh yes

2D torus regular mesh no

3D torus regular mesh no

Hypercube regular mesh no

Triangulated planar irregular mesh yes

Ad-hoc radio irregular mesh yes

Fat tree tree-like yes

Binary tree tree-like yes

of network topologies and routing strategies and analyze their threats.
The goal was to gain insights into effective attack strategies and also into
factors that mitigate their effect.

In this section, we give an overview of our simulation setup and the main
observations from the simulation. The details can be found in Publication
V.

5.3.1 Simulation setup

In the simulations, we tested two routing strategies:

• Fully-deterministic routing: The Dijkstra algorithm [29] was used to find
the path with the smallest number of hops.

• Load-balancing routing: This strategy also used the Dijkstra algorithm
but with the total number of active flows on the links in the considered
path as the primary distance measure. It was non-deterministic in the
sense that the route for a new flow depended on the other flows in the
network and, thus, could not be predicted reliably.

We considered a broad range of network topologies with different charac-
teristics, which are shown in Table 5.1. They were categorized into three
types: regular mesh, irregular mesh, and tree-like. The regular mesh
topologies have been widely used for high-performance computing appli-
cations [23, 32]. The triangulated planar topology, which is a Delaunay
triangulation [27] of a set of points in a plane, and the ad-hoc radio topol-
ogy, where geographically placed nodes communicate with those within
the radio range, represent wireless mesh networks. The fat-tree topology
is popular in data centers because of its high fault tolerance. Simple tree
topology can also be deployed in small-scale networks. After experiment-
ing with different node degrees, we chose binary trees for the simulations
because they exhibit the properties of tree topologies at their most extreme.
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Figure 5.4. Topology examples

Figure 5.4 illustrates an example of each type of the topologies.
For each simulation, we picked one, two, or many compromised switches

in random and measured the number of data flows that passed through
them. This metric was chosen because it reflects how many flows are
vulnerable to follow-up attacks (e.g., sniffing, man-in-the-middle) by the
compromised switches. We first simulated the baseline case, i.e., with no
topology poisoning. We then repeated the experiment for each of the attack
variants described in Section 5.2 to see how many more data flows were
captured by the compromised switches.

5.3.2 Results

Our simulations indicated that topology poisoning clearly increases the
attacker’s ability to capture traffic flows. The neighbor and merging vari-
ants of the attack were significantly more successful than the basic variant.
Even the single-switch attack could divert considerably more flows than
the baseline.

We also observed that there was big variation in the results between
simulations. Thus, we analyzed the factors that influenced the attacker’s
success. One key result was that, in most cases, load balancing and non-
determinism in the routing reduced the effects of the attacks. This can
be explained by the fact that, if a fake link is able to capture many traffic
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flows, the controller soon thinks that the link is congested and routes the
new flows around it. In general, any randomness or state-dependency in
the routing means that the shortest path by hop count is not always used,
and that reduces the attacker’s ability to attract large numbers of flows
to a small number of compromised switches. However, the load-balancing
was less effective in mitigating the neighbor and merging variant attacks
because the attacks create multiple fake links, which have more apparent
capacity than the single fake link in the basic variant.

Irregularity in the network topology also helped reduce the impact of
topology poisoning. This tendency can be explained by the fact that a
regular network structure has many equal-length shortest paths between
two endpoints, and one small shortcut may be able to divert them all. The
phenomenon is familiar to cities with a rectangular grid plan (Figure 5.4a).
If even just one of the rectangles is a park that can be crossed diagonally,
that park attracts a large number of people walking through — and not
just for the birds and trees but because it shortens many paths.

Another factor that affected the outcome of the attacks was the location
of the compromised switches. It is obvious that central network locations
are best for passive sniffing if the network has a center and an edge. For
example, the grid, triangulated planar, and tree topologies have a center
and edge, while the 2D torus, 3D torus, and hypercube do not. However,
for topology spoofing, we observed that the central network locations may
not be as critical because the fake links attract more traffic when their
endpoints are more distant from each other. The longer jump a fake link
makes, the bigger its effect on the apparent path lengths. This observation
was clear in networks with no center and edge.

5.4 Discussion

Our work shows that topology poisoning attacks remain a serious threat in
SDN. These attack techniques are attractive to an attacker who is looking
for any way to expand a small foothold on a network. Also, an attacker
that controls a significant fraction of the network devices can use them
selectively to gain effective control of most data-plane traffic.

The attacks were tested against OpenFlow, but the principles are more
general. First, the link discovery with LLDP is not specific to OpenFlow. It
and similar proprietary protocols are widely used for topology discovery.
Second, our simulations were done on a high level of abstraction that does
not depend on the exact control protocol or method of link discovery, so the
result can be generalized to most SDN technologies.

Furthermore, the observations from the simulation results can help set
up the network in such a way that the impact of topology poisoning attacks
is reduced. For example, since load balancing and non-determinism in the
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routing strategy mitigated the attacks, random route mutation [31], which
is a technique where routes between endpoints are periodically randomized,
could be a very effective countermeasure. Also, a small amounts of random
variation, such as shortcut links, could be artificially added to the network
to increase the irregularity of the network topology and counter the effect
of topology poisoning.
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6. Conclusion

In this dissertation, we present various vulnerabilities in a wide range
of security-critical applications and we analyze the potential solutions of
each type of the vulnerabilities. Publication I presents the novel Man-in-
the-Machine (MitMa) adversary model, in which the attacks are performed
by nonprivileged users or processes against inter-process communication
(IPC) between software components on the same computer. We demon-
strate that the model has been overlooked in various vulnerable password
managers and security tokens. Publication II is incremental work that
builds on the research in Publication I. It shows that the current authen-
tication mechanisms that are used by popular desktop cryptocurrency
wallet applications are not effective against the MitMa adversary model.
Publication III presents a large number of vulnerabilities in commercial
VPN services. These vulnerabilities are in the configuration of the VPN
clients and allow attackers to bypass the protection of the VPN tunnel
and intercept network traffic to and from the victim. Publication IV con-
siders cloud-application add-ons, a relatively new phenomenon in modern
software, and how they bring unwanted security vulnerabilities to the
applications. Publication V focuses on software-defined networking, an
emerging network paradigm, and investigates a particular class of attack:
topology poisoning.

The security of modern applications is a broad and ever-evolving topic
and there are still many open and undiscovered problems in the area.
While this dissertation is a step on the path towards more secure and
resilient software, there is definitely a continuous demand for further
research on security vulnerabilities in new software technologies.

51





References

[1] Dialogs and sidebars in G Suite documents. https://developers.google.com/

apps-script/guides/dialogs. [Accessed Aug. 2019].

[2] Introduction to Cisco IPsec technology. https://www.cisco.com/c/en/us/

td/docs/net_mgmt/vpn_solutions_center/2-0/ip_security/provisioning/guide/

IPsecPG1.html. [Accessed Jan. 2019].

[3] Root and login sessions on OS X. https://developer.apple.com/

library/content/documentation/MacOSX/Conceptual/BPMultipleUsers/Concepts/

SystemContexts.html. [Accessed Oct. 2017].

[4] U2F technical overview. https://developers.yubico.com/U2F/Protocol_details/

Overview.html. [Accessed Oct. 2017].

[5] IEEE standard for local and metropolitan area networks – Station and
media access control connectivity discovery. IEEE Std 802.1AB-2009, 2009.

[6] Kernel local privilege escalation "Dirty COW" (CVE-2016-5195). https:

//access.redhat.com/security/cve/cve-2016-5195, 2016.

[7] Nasser Mohammed Al-Fannah. One leak will sink a ship: WebRTC IP ad-
dress leaks. In International Carnahan Conference on Security Technology
(ICCST). IEEE, 2017.

[8] Talal Alharbi, Marius Portmann, and Farzaneh Pakzad. The (in)security of
topology discovery in software defined networks. In Conference on Local
Computer Networks (LCN). IEEE, 2015.

[9] Markku Antikainen, Tuomas Aura, and Mikko Särelä. Spook in your
network: Attacking an SDN with a compromised OpenFlow switch. In
Secure IT Systems (NordSec). Springer, 2014.

[10] Jacob Appelbaum, Marsh Ray, Karl Koscher, and Ian Finder. vpwns: Virtual
pwned networks. In USENIX Workshop on Free and Open Communications
on the Internet, 2012.

[11] Randall Atkinson and Stephen Kent. Security architecture for the Internet
protocol. RFC 4301, 1998.

[12] Dor Azouri. Abusing text editors via third-party plugins. SafeBreach Labs
research, 2018.

[13] Sruthi Bandhakavi, Samuel T King, Parthasarathy Madhusudan, and Mari-
anne Winslett. VEX: Vetting browser extensions for security vulnerabilities.
In USENIX Security Symposium, 2010.

53



References

[14] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman.
Protecting browsers from extension vulnerabilities. In Network and Dis-
tributed System Security Symposium, 2010.

[15] Anton Barua, Mohammad Zulkernine, and Komminist Weldemariam. Pro-
tecting web browser extensions from JavaScript injection attacks. In Inter-
national Conference on Engineering of Complex Computer Systems. IEEE,
2013.

[16] Kevin Benton, L Jean Camp, and Chris Small. OpenFlow vulnerability
assessment. In ACM SIGSAC Workshop on Hot topics in software defined
networking. ACM, 2013.

[17] Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. Dual EC: A
standardized back door. In The New Codebreakers. Springer, 2016.

[18] Prithvi Bisht and VN Venkatakrishnan. XSS-GUARD: precise dynamic
prevention of cross-site scripting attacks. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2008.

[19] Jesse Burns. Fuzzing Win32 inter-process communication mechanisms. In
Presentad in Black Hat 2006 Conference, Las Vegas, NV, USA, 2006.

[20] Jiahao Cao, Qi Li, Renjie Xie, Kun Sun, Guofei Gu, Mingwei Xu, and Yuan
Yang. The CrossPath attack: Disrupting the SDN control channel via
shared links. In USENIX Security Symposium, 2019.

[21] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. An evaluation
of the Google Chrome extension security architecture. In USENIX Security
Symposium, 2012.

[22] Stephen Checkoway, Ruben Niederhagen, Adam Everspaugh, Matthew
Green, Tanja Lange, Thomas Ristenpart, Daniel J Bernstein, Jake Mask-
iewicz, Hovav Shacham, and Matthew Fredrikson. On the practical ex-
ploitability of dual EC in TLS implementations. In USENIX Security
Symposium, 2014.

[23] Hyunseung Choo, Seong-Moo Yoo, and Hee Yong Youn. Processor scheduling
and allocation for 3D torus multicomputer systems. IEEE Transactions on
Parallel and Distributed Systems, 2000.

[24] Gil Cohen. Call the plumber – you have a leak in your (named) pipe. In
Presentad in DEF CON 25 (2017) Conference, Las Vegas, NV, USA, 2017.

[25] Shaanan N Cohney, Matthew D Green, and Nadia Heninger. Practical state
recovery attacks against legacy RNG implementations. In ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018.

[26] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the
middle attacks. IEEE Communications Surveys & Tutorials, 2016.

[27] Boris Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk, 1934.

[28] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann.
Sphinx: Detecting security attacks in software-defined networks. In Net-
work and Distributed System Security Symposium, 2015.

[29] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1959.

54



References

[30] Avri Doria, J Hadi Salim, Robert Haas, Horzmud Khosravi, Weiming Wang,
Ligang Dong, Ram Gopal, and Joel Halpern. Forwarding and control
element separation (ForCES) protocol specification. RFC 5810, 2010.

[31] Qi Duan, Ehab Al-Shaer, and Haadi Jafarian. Efficient random route
mutation considering flow and network constraints. In IEEE Conference on
Communications and Network Security. IEEE, 2013.

[32] Ralph Duncan. A survey of parallel computer architectures. Computer,
1990.

[33] Markus Feilner. OpenVPN: Building and integrating virtual private net-
works. Packt Publishing Ltd, 2006.

[34] Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam Czubak, and Marcin
Szymanek. The dangers of key reuse: Practical attacks on IPsec IKE. In
USENIX Security Symposium, 2018.

[35] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna,
and Erika Chin. Permission re-delegation: Attacks and defenses. In
USENIX Security Symposium, volume 30, 2011.

[36] FIDO ALLIANCE. Universal 2nd factor (U2F) overview. https:

//fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.

2-ps-20170411.html. [Accessed Nov. 2017].

[37] Google. Extending Google workspace with add-ons. https://developers.

google.com/gsuite/add-ons/overview. [Accessed Dec. 2020].

[38] Jeremiah Grossman, Seth Fogie, Robert Hansen, Anton Rager, and Petko D
Petkov. XSS attacks: cross site scripting exploits and defense. Syngress,
2007.

[39] Arjun Guha, Mark Reitblatt, and Nate Foster. Machine-verified network
controllers. In ACM SIGPLAN Notices. ACM, 2013.

[40] Kory Hamzeh, Grueep Pall, William Verthein, Jeff Taarud, W Little, and
Glen Zorn. Point-to-point tunneling protocol (PPTP). RFC 2637, 1999.

[41] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and
Nick McKeown. Reproducible network experiments using container-based
emulation. In International conference on Emerging networking experiments
and technologies. ACM, 2012.

[42] Stefan Heule, Devon Rifkin, Alejandro Russo, and Deian Stefan. The most
dangerous code in the browser. In Workshop on Hot Topics in Operating
Systems. USENIX, 2015.

[43] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. Poisoning network
visibility in software-defined networks: New attacks and countermeasures.
In Network and Distributed System Security Symposium, 2015.

[44] Ryan Hurst and Ashwin Palekar. Microsoft EAP CHAP extensions. IETF
Draft, 2007.

[45] Geoff Huston, Mattia Rossi, and Grenville Armitage. Securing BGP – a
literature survey. IEEE Communications Surveys Tutorials, 2011.

[46] Omar Ismail, Masashi Etoh, Youki Kadobayashi, and Suguru Yamaguchi.
A proposal and implementation of automatic detection/collection system for
cross-site scripting vulnerability. In International Conference on Advanced
Information Networking and Applications. IEEE, 2004.

55



References

[47] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis Mavrommatis,
Niels Provos, Moheeb Abu Rajab, and Kurt Thomas. Trends and lessons
from three years fighting malicious extensions. In USENIX Security Sym-
posium, 2015.

[48] Samuel Jero, William Koch, Richard Skowyra, Hamed Okhravi, Cristina
Nita-Rotaru, and David Bigelow. Identifier binding attacks and defenses in
software-defined networks. In USENIX Security Symposium, 2017.

[49] Martin Johns, Björn Engelmann, and Joachim Posegga. XSSDS: Server-
side detection of cross-site scripting attacks. In 2008 Annual Computer
Security Applications Conference (ACSAC). IEEE, 2008.

[50] Leon Juranic. Back to the future: Unix wildcards gone wild. http://www.

defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt. [Accessed
Oct. 2017].

[51] Charlie Kaufman, Paul Hoffman, Yoav Nir, Parsi Eronen, and Tero Kivinen.
Internet key exchange protocol version 2 (IKEv2). RFC 7296, 2014.

[52] Peyman Kazemian, Michael Chan, Hongyi Zeng, George Varghese, Nick
McKeown, and Scott Whyte. Real time network policy checking using
header space analysis. In USENIX Symposium on Networked Systems
Design and Implementation. USENIX, 2013.

[53] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P Godfrey. Veriflow:
verifying network-wide invariants in real time. ACM SIGCOMM Computer
Communication Review, 2012.

[54] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic.
Noxes: a client-side solution for mitigating cross-site scripting attacks. In
ACM symposium on Applied computing. ACM, 2006.

[55] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, et al. Onix: A distributed control platform for large-scale
production networks. In USENIX Symposium on Operating Systems Design
and Implementation. USENIX, 2010.

[56] Diego Kreutz, Fernando Ramos, and Paulo Verissimo. Towards secure and
dependable software-defined networks. In ACM SIGCOMM workshop on
Hot topics in software defined networking. ACM, 2013.

[57] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Es-
teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined
networking: A comprehensive survey. Proceedings of the IEEE, 2015.

[58] TV Lakshman, T Nandagopal, R Ramjee, K Sabnani, and T Woo. The
SoftRouter architecture. In ACM SIGCOMM Workshop on Hot Topics in
Networking. ACM, 2004.

[59] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later:
Large-scale detection of DOM-based XSS. In ACM SIGSAC conference on
Computer & communications security. ACM, 2013.

[60] Brian N Levine, Michael K Reiter, Chenxi Wang, and Matthew Wright.
Timing attacks in low-latency mix systems. In International Conference on
Financial Cryptography. Springer, 2004.

[61] Moxie Marlinspike and David Hulton. Divide and conquer: Cracking MS-
CHAPv2 with a 100% success rate. https://www.cloudcracker.com/blog/2012/

07/29/cracking-ms, 2012. [Accessed Jan. 2019].

56



References

[62] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review, 2008.

[63] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin
Jia. Riding out DOMsday: Towards detecting and preventing DOM cross-
site scripting. In NDSS, 2018.

[64] Microsoft. Fast user switching. https://msdn.microsoft.com/en-us/library/

windows/desktop/bb776893. [Accessed Feb. 2020].

[65] Microsoft. Secure Socket Tunneling Protocol (SSTP). https://msdn.microsoft.
com/en-us/library/cc247338.aspx. [Accessed Jan. 2019].

[66] Microsoft. Three-tier application model. https://docs.microsoft.com/en-us/

previous-versions/office/developer/server-technologies/aa480455(v=msdn.10),
2006. [Accessed Feb. 2020].

[67] Alper Tugay Mizrak, Yu-Chung Cheng, Keith Marzullo, and Stefan Savage.
Fatih: Detecting and isolating malicious routers. In IEEE International
Conference on Dependable Systems and Networks. IEEE, 2005.

[68] John Moy. OSPF version 2. RFC 2328, 1997.

[69] Mozilla. window.postmessage() method. https://developer.mozilla.org/

en-US/docs/Web/API/Window/postMessage. [Accessed Aug. 2019].
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