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Topological defects play important roles throughout nature, appearing in contexts

as diverse as cosmology, particle physics, superfluidity, liquid crystals, and metallurgy. Point

defects can arise naturally as magnetic monopoles resulting from symmetry breaking in grand

unified field theories. Here, we experimentally demonstrate the creation and detection of

guantum-mechanical analogues of such monopoles in a spin-1 Bose-Einstein condensate. The

defects, which are stable on the time scale of our experiments, are identified from
spin-resolved images of the condensate density profile that exhibit a characteristic
dependence on the choice of quantization axis. Our observations lay the foundation for
experimental studies of the dynamics and stability of topological point defects in quantum

systems.

Two structures are topologically equivalent if they can be continuously transformed into



one another [1, 2], such as the letters ‘O’ and ‘P’. Topological defects exist in a physical system
if its state is not topologically equivalent to its ground state. Such defects can only decay or
disappear in globally non-trivial transformations, rendering them long-lived and ubiquitous in
the universe.

Line defects are among the most common topological structures. In classical physics, for
example, dislocations in a crystal lattice [3] can determine the strength and hardness of
materials. In quantum physics, a line defect in a complex-valued order parameter is
accompanied by a phase winding of an integer multiple of 2m. These quantized vortices are
regarded as the hallmark of superfluidity [4, 5] and constitute a versatile tool in the study of
guantum physics. In contrast, the roles played by point defects in three-dimensional superfluids
and superconductors remain less explored experimentally, although related objects such as
skyrmion solitons and boojums at domain interfaces have been observed [6, 7, 8, 9].

Homotopy theory [2, 10] is a mathematical tool that classifies topological point defects
by the behavior of the order parameter on closed surfaces. Evaluation of the second homotopy
group reveals whether point defects can occur. Nematic liquid crystals [11] and colloids [12] are
examples of classical systems for which the second homotopy group is non-trivial and point
defects have been observed [see also Ref. [13]]. Quantum systems described by
multi-dimensional fields are also predicted to support point defects as stable elementary
particles [2]. The magnetic monopole [14, 15] that emerges under broken symmetry in grand
unified gauge theories [16] is one such example. Importantly for our work, the polar phase of a
spin-1 BEC permits the existence of topological point defects in the quantum-mechanical order

parameter [17, 18]. Although these defects are not elementary particles, they are analogous



guantum objects often referred to as monopoles.

We experimentally create a topological point defect in the spin-1 order parameter of a
87Rb BEC using a method originally suggested in Ref. [19] and used to create Dirac monopoles
in a ferromagnetic BEC in Ref. [20] [see related work in Ref. [21]]. The key technical difference
as compared with Ref. [20] is that the condensate is initialized in its polar phase. This seemingly
minor modification leads to a topological excitation with properties that are fundamentally
different from those of the recently observed Dirac monopole. The Dirac monopole is not a
point-like topological defect in the order parameter, as the second homotopy group of the
ferromagnetic phase contains only the identity element [22]. Consequently, Dirac monopoles
are attached to at least one terminating nodal line [23], which renders the energetics and
dynamics of the excitation similar to those of vortices. No such nodal line is attached to the
point defect structure we create here in the order parameter field, and hence we shall refer to
it throughout this report as an isolated monopole.

A spin-1 condensate can be described by the order parameter @(r) =
Jn(@e®®(r), where n is the particle density, ¢ is the scalar phase, and the spinor is
represented by a normalized complex-valued vector { = ({1 {o {_1)T. Here {,, = (m|{) is
the mth spinor component along the quantization axis z. The most general polar order

parameter, for which the local spin vanishes, is given by
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where the Euler angles B(r) and a(r) refer to the spin rotation of a spinor (0 1 0)7

about the y- and z-axis, respectively, and d is a three-dimensional real-valued unit vector



field known as the nematic vector. Equation 1 shows that the polar spin-1 condensate is simply
described by the mean-field order parameter W(r) = \/n(r)e*®d(r), with its topological
properties determined by the factor e®®d(r) (supplementary online text). Note that any
unitary spin rotation imposed on the order parameter in Eq. 1 corresponds to an identical
rotation of d. Thus the nematic vector d follows adiabatic changes in the external magnetic
field, much as the direction of the spin follows the field in the ferromagnetic case.

The initial atom number in the optically-trapped 87Rb BEC is N ~ 2.1x10° with
calculated radial and axial Thomas-Fermi radii R = 7.2 um and Z = 5.4 um, respectively, and
corresponding optical trapping frequencies w, = 2nX124 Hz and w, = 2mrX164 Hz,
respectively. The creation process begins with d aligned with a uniform magnetic field
By, (t) = By (t)X + B, (t)y + B,(t)Z [24]. We use By (t) = B,(t)Z here, but the experimental
results are independent of the choice of direction. A quadrupole magnetic field By (r) =
bq(xX + yy — 2zZ) of strength by =3.7 G/cm is then introduced; the zero point
ro(t) = [-Bx(t)X — B, (t)y + B,(t)Z/2]/bq of the total magnetic field B(r,t) = By(r) +
By, (t) is initially located well outside the condensate. We then change By, until r, lies near
the center of the condensate (Fig. 1A). This ‘creation ramp’ is carried out nearly adiabatically
(BZ = —0.25 G/s), i.e., (i(r, t) = ﬁ(r, t), thereby creating the isolated monopole structure in
the order-parameter field shown in Fig. 1, B and C. Non-adiabatic excitations and spin-exchange
collisions are measured to be relatively small (~10%) for the experimental parameter values
employed here.

To select a quantization axis for imaging the monopole structure, we apply a ‘projection

ramp’, in which the magnetic bias field is rapidly increased to |By|/bgq > R, Z along a direction



of our choice, Z,,, leaving the nematic vector essentially unchanged. Subsequently, the spinor
components quantized along this axis, (m|{), are spatially separated and imaged in both the
vertical (Z) and horizontal (¥) directions [24]. In Fig. 2, A and D, we show the corresponding
experimentally obtained particle densities in the simple case Z, = —Z. The theory [Eq. 1 with
d(r,t) = ﬁq(r)] predicts hollow-core vortices of opposite unit circulations in the m = +1
components along z, in agreement with the observed density ‘holes’ in Fig. 2D. The unit phase
winding, and the opposite circulations of the two vortices, are experimentally confirmed using
interferometric techniques [24] as shown in Figs. S1 and S2. Furthermore, the data in Fig. 2, A
and C, are in qualitative agreement with Eq. 1 as the particle density in the m = 0 component
n|{y|? o< dZ vanishes in the z = 0 plane, and the other two components n|{,,|* « di + d3
accumulate in its vicinity. This agreement constitutes the primary evidence for the existence of
the monopole.

We model the experimental creation and imaging process numerically by solving the full
three-dimensional dynamics of the mean-field spinor order parameter from the spin-1 Gross—
Pitaevskii equation [19]. Figures 2 and 3 show one-to-one comparisons of the numerically
obtained particle density distributions to the experimental results without any free parameters.
The good quantitative agreement between the simulations and the experiments reinforces the
congruence between the experiments and the results of the analytic theory, thereby providing
complementary evidence for the realization of an isolated monopole structure in the order
parameter. Discrepancies between the numerical and experimental results, e.g., the density
peak in the m = 0 component in Fig. 2F, may arise from the experimental noise and imaging

technique that are not taken fully into account in the simulations [24].



Identical particle densities to the ones shown in Fig. 2 for our isolated monopole are
expected for the topologically equivalent hedgehog monopole structure shown in Fig. 1D, as
the only difference between the spinors of the two configurations is the sign of the m = +1
components (see Eq. 1 and Fig. 1, C and D). In fact, after the projection ramp Z, = +Z the
order parameter oscillates between the two configurations because of the 350-kHz Larmor
precession of the nematic vector about Z. Because the other condensate dynamics occur on
much longer time scales, the experiment also accurately produces the hedgehog monopole, as
confirmed by the numerical simulations shown in Fig. S3.

One characteristic feature of a quantum-mechanical point defect is that arbitrary
rotations of a properly chosen coordinate system, D, can be compensated by rotations in the
order parameter space, D, and vice versa. We study whether the created point defect has this
property by imposing a spin rotation T)p on the spin state of the defect |{) such that we
choose the direction of the projection ramp, Z,, defined by the coordinate rotation
(xp,yp,zp) = Dgl(x,y, 7). The projection of the original spinor onto the new Zy-quantized
basis is equal to the projection of the rotated spinor onto the z-quantized basis, i.e.,
(My|0) = (M, |DID, 1) = (m|D,|¢). Thus the rotational compensation property given above
demands that there exists a rotation D, into a new coordinate system (x,,V,,2,) =
Dy(x,y,z) such that Eq. 1, with (x,y,z) replaced by (xy, Yy, Z,), yields the observed spinor
components. Below, we analytically find the new coordinate system for both the hedgehog
monopole and our isolated monopole in the case of an arbitrary projection axis, and show
matching experimental observations.

The hedgehog monopole is characterized by the nematic vector d, = —f', where the



primed coordinates are defined as (x’,y',z") = (x,y,2z). Because the radial vectors in any
two rotated coordinate systems coincide, F'(xp,¥p2p)= Fp(Xp,¥p2p), we can choose
(xy, Yv,2v) = (Xp, ¥p,Zp), i.e., Dy = Dyl. Together with Eq. 1, this shows that the vortices in

the m, = +1 components of the hedgehog configuration always align with the projection axis

P
Z,. To find how the vortices will be oriented in the case of our isolated monopole, we employ
the property that the hedgehog monopole is obtained from the isolated monopole
configuration by a continuous m-rotation about the z-axis (see Fig. 1, C and D), i.e.,
R,(M)|¢m) = 1¢,) and R,(m)d,, = d,. By writing the observed spinor component as

(Mp|¢m) = (Mp| R, ()R, (1) |{m) = [(mp|R,()1]|0n), we find that a proper choice of the

new coordinate system is (xy, Yy, Zy) = R, (1) (Xp, Vp, Zp). Thus the vortices are aligned with

The isolated monopole (Fig. 1, B and C) is topologically equivalent to the hedgehog
structure (Fig. 1D) and has the same topological charge and stability properties. However, the
fact that the projection axis and the vortex axis are not always aligned makes the isolated
monopole an ideal object to demonstrate that the observed vortices are not technical artifacts
of the projection ramp. The corresponding experimental results are shown in Fig. 4. In
agreement with the result Z, = R,(m)Z, derived above, we observe that the two axes, Z,
and ip, are parallel when they lie in the xy plane (Fig. 4A), and rotate in opposite directions
inthe xz plane (Fig. 4B).

Both monopole structures are expected to exhibit an instability toward a formation of a
vortex ring [25]. Although this and other instabilities [26, 27] occur slowly enough not to disturb

the creation and imaging process (supplementary online text), observation of the resulting



decay dynamics and implementation of a system where they are absent are interesting
research directions. Furthermore, studies of the interaction between monopoles and other
topological defects, such as domain walls and skyrmions [7], may yield additional insights into
high-energy physics and cosmology [28]. A related goal is to create a topological point defect
that also generates the synthetic magnetic field of a monopole, thereby combining the
scenarios of Dirac [23], 't Hooft [14] and Polyakov [15]. Finally, the observation of non-Abelian

monopoles [29, 30] remains an important goal.



References and Notes

[1] N.D.Mermin, Rev. Mod. Phys. 51,591 (1979).

[2] M. Nakahara, Geometry, Topology and Physics (Taylor & Francis Group, Boca
Raton, 2003).

[3] N.W. Ashcroft, N. D. Mermin, Solid State Physics (Harcourt College Publishing,
Orlando, 1976).

[4] R.J.Donnelly, Quantized Vortices in Helium Il (Cambridge University Press,
Cambridge, 1991).

[5] A.L. Fetter, Rev.Mod. Phys. 81,647 (2009).

[6] J.-y.Choi, W.J. Kwon, Y.-i. Shin, Phys. Rev. Lett. 108, 035301 (2012).

[7]1 P.Milde, etal., Science 340,1076 (2013).

[8] R.Blaauwgeers, etal., Nature 404,471 (2000).

[9] R.Blaauwgeers, etal.,, Phys.Rev. Lett. 89, 155301 (2002).

[10] G. Toulouse, M. Kléman, J. Physique Lett. 37, 149 (1976).

[11] I Chuang, R. Durrer, N. Turok, B. Yurke, Science 251, 1336 (1991).

[12] B.Senyuk, etal., Nature 493,200 (2013).



[13] S.T.Bramwell, etal., Nature 461,956 (2009).

[14] G.’tHooft, Nuclear Physics B 79, 276 (1974).

[15] A. M. Polyakov, JETP Letters 20, 194 (1974).

[16] J. Preskill, Ann. Rev. Nucl. Part. Sci. 34, 461 (1984).

[17] H.T.C. Stoof, E. Vliegen, U. Al Khawaja, Phys. Rev. Lett. 87, 120407 (2001).

[18] F.Zhou, Int.J. Mod. Phys. B 17, 2643 (2003).

[19] V. Pietild, M. M6ttonen, Phys. Rev. Lett. 103, 030401 (2009).

[20] M. W. Ray, E. Ruokokoski, S. Kandel, M. Mo6tténen, D. S. Hall, Nature 505, 657
(2014).

[21] J.-y.Choi, S. Kang, S. W. Seo, W. J. Kwon, Y.-i. Shin, Phys. Rev. Lett. 111,
245301 (2013).

[22] Y. Kawaguchi, M. Ueda, Physics Reports 520, 253 (2012).

[23] P.A.M. Dirac, Proc.R. Soc. Lond. A 133, 60 (1931).

[24] Materials and methods are available as supporting materials on Science Online.

[25] J. Ruostekoski, J. R. Anglin, Phys. Rev. Lett. 91, 190402 (2003).

[26] W. Zhang, D. L. Zhou, M.-S. Chang, M. S. Chapman, L. You, Phys. Rev. Lett. 95,
180403 (2005).



[27] L. E.Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, D. M. Stamper-Kurn,
Nature 443,312 (2006).

[28] M. O. Borgh, J. Ruostekoski, Phys. Rev. Lett. 109, 015302 (2012).

[29] J.Ruseckas, G. Juzeliu tinas, P. Ohberg, M. Fleischhauer, Phys. Rev. Lett. 95,
010404 (2005).

[30] V. Pietila, M. Méttdnen, Phys. Rev. Lett. 102, 080403 (2009).

[31] E.A.Burt, etal, Phys. Rev. Lett. 79,337 (1997).

Acknowledgments:

We acknowledge funding by the National Science Foundation (grant PHY-1205822), by
the Academy of Finland through its Centres of Excellence Program (grant no. 251748) and
grants (nos 135794 and 272806), Finnish Doctoral Programme in Computational Sciences, and
the Magnus Ehrnrooth Foundation. CSC - IT Center for Science Ltd. (Project No. ay2090) and
Aalto Science-IT project are acknowledged for computational resources. We thank M. Nakahara
and M. Krusius for discussions concerning this work, and N.H. Thomas and S.J. Vickery for
experimental assistance. All data used to support the conclusions of this work are presented
either in this manuscript or in the Supporting Online Material.

M.W.R. and D.S.H. developed and conducted the experiments and analysed the data.
E.R. and K.T. performed the numerical simulations under the guidance of M.M. who provided
the initial ideas and suggestions for the experiment. All authors discussed both experimental
and theoretical results and commented on the manuscript.



; ‘\\1/1/ # NG EALE \
-—— 0 > — B — 0 — = " —>—>—> @ — — <
///;\\:\ ( \\1{/ : /}1\ /

Fig. 1. Schematic representation of the experiment. (A) Magnetic field lines as B, is
decreased. The zero-point of the magnetic field is shown as a black dot. (B)—(D) Cross sections
through the condensate in the (B) x'y’ and (C) x'z’ planes showing the nematic vector field
(thick arrows) defining our isolated monopole structure, which is related to the hedgehog
monopole structure (D) by a rotation of m about the z'-axis, R,(m). The primed coordinates
are defined as x' = x, y' =y, and z’' = 2z, and the gray arrows depict magnetic field lines.
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Fig. 2. Experiment compared to numerical simulations following a projection ramp along —z
. Experimentally obtained images of the condensate were taken along the horizontal (y) axis
(A), and vertical (z) axis (D) and compared to corresponding results of numerical simulations (B)
and (E). In each panel the top image gives a false-color composite, in which the color intensity
represents the particle density of each spinor component integrated along the respective
imaging axis. The lower three sets of images show the densities for the individual components.
(C), (F) Quantitative comparison of experimental (solid lines) and simulated (dashed lines)
column density, i, for cross-sections. The field of view is (288%288) um? for images along
the horizontal axis, and (219%x219) um? for those along the vertical axis. The peak column
density in all images is i, = 12.9x10% cm 2.



Fig. 3. Experiment compared to numerical simulations following a projection ramp along —y.
(A) Experimentally obtained images of the condensate were taken along the horizontal (y) axis
and compared to (B) results of corresponding numerical simulations. See Fig. 2 for further
description. (C),(D) As above, but for images taken along the vertical (z) axis. The field of view is
(288x288) um? in panels (A) and (B), and (219%219) um? in panels (C) and (D). The peak
column density is 1, = 12.9%10% cm ~2. Color and intensity scales are given in the
bottommost panel.
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Fig. 4. Experimental results for different choices of the projection axis. (A) The angle of the
vortices in the |m = +1) states, ¢,, resulting from projections in the xy plane with
azimuthal angle ¢,. Condensates are imaged along the z-axis and ¢, is extracted from the
alignment of the density profile in the |m = 0) state as shown in the insets (see also Figs.
S4-S7). Typical uncertainties are indicated by the two error bars. The dashed line shows the
theoretical result. The black arrows in the insets show the projection axes, z,, and the
chevrons show the experimentally extracted vortex axes, z,. (B) Same as (A) but for angles
6, resulting from projections in the xz plane with polar angle 6, and imaging axis y.



